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Abstract

We study the space of linear difference equations with periodic coefficients and (anti)periodic
solutions. We show that this space is isomorphic to the space of tame frieze patterns and closely
related to the moduli space of configurations of points in the projective space. We define the notion
of a combinatorial Gale transform, which is a duality between periodic difference equations of
different orders. We describe periodic rational maps generalizing the classical Gauss map.

2010 Mathematics Subject Classification: 39A70, 14M15, 13F60, 52B99

1. Introduction

Linear difference equations appear in many fields of mathematics; they relate
fundamental objects of geometry, algebra, and analysis. In this paper, we study the
space of linear difference equations with periodic coefficients and (anti)periodic
solutions. (The solutions of the equation are periodic if the order of the equation
is odd, and antiperiodic if the order is even.) The space of such equations is a
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very interesting algebraic variety. Despite the fact that this subject is very old and
classical, this space has not been studied in detail.

We prove that the space &, of n-periodic linear difference equations of order
k + 1 is equivalent to the space F;., of tame SL,, -frieze patterns of width w =
n — k — 2. (Tameness is the nonvanishing condition on certain determinants; see
Definition 2.2.1.) We also show that these spaces are closely related to a certain
moduli space Cy, 1, of n-gons in k-dimensional projective space. While C; 41, can
be viewed as the quotient of the Grassmannian Gr., by a torus action, see [21],
the space &1, is a subvariety of Gry; ,. We show that, in the case where k + 1
and n (and thus w 4+ 1 and n) are coprime, the two spaces are isomorphic.

A frieze pattern is just another, more combinatorial, way to represent a linear
difference equation with (anti)periodic solutions. However, the theory of frieze
patterns was created [8, 9] and developed independently; see [2, 4, 31, 32, 38].
The current interest in this subject is due to the relation with the theory of
cluster algebras [5]. We show that the isomorphism between £, and Fy .,
immediately implies the periodicity statement, which is an important part of the
theory. Let us mention that a more general notion of SL,-tiling was studied
in [4]; a version of SL;-frieze patterns, called 2-frieze patterns, was studied
in [32, 38].

Let us also mention that an SL;-frieze pattern can be included in a larger
pattern sometimes called a T-system (see [11] and references therein), and better
known under the name of discrete Hirota equation (see, for a survey, [46]).
Although an SL;,-frieze pattern is a small part of a solution of a T-system, it
contains all the information about the solution. We will not use this viewpoint in
the present paper.

The main result of this paper is a description of the duality between the
spaces Ex.1.,, and €, 41, when (k + 1) + (w + 1) = n. We call this duality the
combinatorial Gale transform. This is an analog of the classical Gale transform,
which is a well-known duality on the moduli spaces of point configurations; see
[6,7, 14, 17]. We think that the most interesting feature of the combinatorial Gale
transform is that it allows one to change the order of an equation while keeping
all the information about it.

Let us give here the simplest example, which is related to Gauss’ pentagramma
mirificum [18]. Consider a third-order difference equation

Vi=aVioi=bVio+ Vs, i€l

Assume that the coefficients (¢;) and (b;) are 5-periodic (a;,5 = @; and b;,5 =
b;), and that all the solutions (V;) are also 5-periodic, that is, V;;5 = V;. The
combinatorial Gale transform in this case consists in ‘forgetting the coefficients
b;’; to this equation it associates the difference equation of order 2:
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Wi=aWi_1 — Wi

It turns out that the solutions of the latter equation are S-antiperiodic: W, s =
—W,;. Conversely, as we will explain later, one can reconstruct the initial third-
order equation from the second-order one. Geometrically speaking, this transform
sends (projective equivalence classes of) pentagons in P? to those in P!. In terms
of the frieze patterns, this corresponds to a duality between 5-periodic Coxeter
friezes and 5-periodic SL;-friezes.

Our study is motivated by recent works [19, 20, 25, 26, 29, 30, 34, 35, 42, 43]
on a certain class of discrete integrable systems arising in projective differential
geometry and cluster algebra. The best known among these maps is the pentagram
map [40, 41] acting on the moduli space of n-gons in the projective plane.

We would like to attract attention to a recent paper by Krichever [27] that
connects the combinatorial Gale transform and the classical theory of commuting
difference operators. This provides a link with the theory of completely integrable
systems; see [28].

This paper is organized as follows.

In Section 2, we introduce the main objects, namely the spaces E;11.,, Fitins
and Cy 1 ,-

In Section 3, we construct an embedding of &, into the Grassmannian
Gry41.,- We then formulate the result about the isomorphism between &, and
Fit1.q, and give an explicit construction of this isomorphism. We also define a
natural map from the space of equations to that of configurations of points in the
projective space.

In Section 4, we introduce the Gale transform, which is the main notion of
this paper. We show that a difference equation corresponds not to just one, but
to two different frieze patterns. This is what we call the Gale duality. We also
introduce a more elementary notion of projective duality that commutes with the
Gale transform.

In Section 5, we calculate explicitly the entries of the frieze pattern associated
with a difference equation. We give explicit formulas for the Gale transform.
These formulas are similar to the classical and well-known expressions often
called the André determinants; see [1, 22].

Relation of the Gale transform to representation theory is described in
Section 6. We represent an SL;-frieze pattern (and thus a difference equation)
in a form of a unitriangular matrix. We prove that the Gale transform coincides
with the restriction of the involution of the nilpotent group of unitriangular
matrices introduced and studied by Berenstein et al. [3].

In Section 7, we present an application of the isomorphism between difference
equations and frieze patterns. We construct rational periodic maps generalizing
the Gauss map. These maps are obtained by calculating consecutive coefficients
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of (anti)periodic second-order and third-order difference equations and using
the periodicity property of SL,-frieze and SL;-frieze patterns. We also explain
how these rational maps can be derived, in an alternate way, from the projective
geometry of polygons.

In Section 8, we explain the details about the relations between the spaces we
consider. We also outline relations to the Teichmiiller theory.

2. Difference equations, SL,,-frieze patterns, and polygons in RP*

In this section, we will define the three closely related spaces Exi1.5 Fiitns
and C; 1, discussed in the introduction. All three spaces will be equipped with
the structure of algebraic variety; we choose R as the ground field.

2.1. Difference equations. Let &, be the space of order k + 1 difference
equations

Vi=alVio —aVia 4+ (DA Vi (DY, @)

where aij € R, withi € Z and 1 < j < k, are coefficients and V; are unknowns.
(Note that the superscript j is an index, not a power.) Throughout the paper, a
solution (V;) will consist either of real numbers, V; € R, or of real vectors V; €
R¥*!, We always assume that the coefficients are periodic with some period n >
k+2,

J

_
Aip = 4;

for all i, j, and that all the solutions are n-(anti)periodic:
Vigw = (=D* V.. (2.2)
The algebraic variety structure on &1, will be introduced in Section 3.1.

EXAMPLE 2.1.1. The simplest example of a difference equation (2.1), an
element of the space &, ,, is the well-known discrete Hill (or Sturm—Liouville)
equation

Vi=aiVioi — Vi

with n-periodic coefficients and n-antiperiodic solutions.

2.2. SL;,-frieze patterns. An SL,,,-frieze pattern (see [4]) is an array of
numbers consisting of a finite number of infinite rows:
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0 0 0 0 0
1 1 1 1 1
do.w-1 dy dr 1
do.1 dis drs ds4 dys
do,o d, dr» ds 3 dyg
1 1 1 1 1
0 0 0 0 0

(2.3)
where the strip is bounded by k rows of Os at the top, and at the bottom, and
where every ‘diamond’ (k + 1) x (k + 1)-subarray forms an element of SL; ;.
The number of rows between the bounding rows of 1s is called the width, and is
denoted by w. To simplify the pictures, we often omit the bounding rows of 0s.

More precisely, the entries of the frieze are denoted by (d; ;), where i € Z, and

i—k—1<j<i+w+k,

for a fixed i, and they satisfy the following ‘boundary conditions’,

dii—y =d;iy, = 1foralli,
{d,;_,: 0 forj<i—1lorj>i+w,
and the ‘SL;-conditions’
d; ; d; j+1 R
D, = divij disrjer oo digrjyk _1, (2.4)
divi,j digkj+1 - digkjtk

for all (7, j) in the index set.

DEFINITION 2.2.1. An SL,,-frieze pattern is called tame if every (k +2) x (k +
2)-determinant equals O.

The notion of tame friezes was introduced in [4]. Let F;,;, denote the space
of tame SL; |-frieze patterns of width w =n — k — 2.
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EXAMPLE 2.2.2. (a) The most classical example of friezes is that of Coxeter—
Conway frieze patterns [8, 9] corresponding to k = 1. For instance, a generic
Coxeter—Conway frieze pattern of width 2 looks like

1 1 1 1 1
x1+x2+1
X2 —]xlxzz X1
x2+1 x1+1
X1 i—] ;—2 X
1 1 1 1

for some x;, x,. (Note that we omitted the first and the last rows of 0s.) This
example is related to so-called Gauss pentagramma mirificum [18]; see also [39].
(b) The following width-3 Coxeter pattern is not tame:

REMARK 2.2.3. Generic SL,,-frieze patterns are tame. We understand the
genericity of an SL,, |-frieze pattern as the condition that every k x k-determinant
is different from 0. Then the vanishing of the (k+2) x (k+2)-determinants follows
from the Dodgson condensation formula, involving minors of order k + 2, k + 1,
and k obtained by erasing the first and/or last row/column. The formula can be
pictured as follows:

ok k% kok % L S

k ko ko ok k% |k ox ok L S L S L S
k% k% k% Tk ox % E I S N k) ok 3k L S
k k k ok L k) ok 3k

where the deleted columns/rows are left blank.

NOTATION 2.2.4. Given an SL;;-frieze pattern F as in (2.3), it will be useful to
define the following (k + 1) x n-matrices

1 di,,' .o e di,w+i—l 1
M = . @5)

1 diyiti coo rgigguwric 1
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Throughout this paper, the ‘empty’ entries of matrices represent 0. For a subset /
of k+1 consecutive elements of Z/nZ, denote by A, (M) the minor of a matrix M
based on columns with indices in /. There are n such intervals /. By the definition
of an SL; |-frieze pattern, AI(M;")) =1.

The matrix M(Fi) determines a unique tame SL;,-frieze pattern. Indeed, from
M(Fi) one can compute all the entries d; ;, one after another, using the fact that
(k +2) x (k + 2)-minors of the frieze pattern vanish.

We will also denote the North-East (respectively South-East) diagonals of an
SL;-frieze pattern by u; (respectively 7;):

nj-1 nj nj+l z—l Mit
dl 1,j lj+1
N/
SN
dij1 diy1,j

XN

2.3. Moduli space of polygons. A nondegenerate n-gon is a map
v:Z— RP

such that v;,,, = v;, for all 7, and no k + 1 consecutive vertices belong to the same
hyperplane.

Let Cii1, be the moduli space of projective equivalence classes of
nondegenerate n-gons in RP*.

REMARK 2.3.1. The space C;1,, has been extensively studied; see, for example,
[14, 17, 21, 23]. Our interest in this space is motivated by the study of the
pentagram map, a completely integrable map on the space C;, (see [34, 35,
40, 41, 43]), as well as its higher generalizations acting on C; ,, for k > 4
(see [25, 26, 29, 30]). Let us add that the Gale transform interchanges the spaces
Cy.n and C,_;,, and it is interesting to investigate how it interacts with various
discrete dynamical systems on these spaces.

3. Geometric description of the spaces £;.1,,5 Fii1,n, a0d Cyy1,,
In this section, we describe the structures of algebraic varieties on the spaces

Exvtns Frrrn> and Cryy .. We also prove that the spaces &1, and Fy,;, are
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isomorphic. The spaces &1, and C; 1, are also closely related. We will define
a map from & , to C41.,, which turns out to be an isomorphism, provided that
k + 1 and n are coprime. If this is not the case, then these two spaces are different.

3.1. The structure of an algebraic variety on £;1,. The space of difference
equations &, is an affine algebraic subvariety of R"*, This structure is defined
by condition (2.2).

The space of solutions of Equation (2.1) is (k + 1)-dimensional. Consider k +
1 linearly independent solutions forming a sequence (V;);cz of vectors in R¥+!
satisfying (2.1). Since the coefficients are n-periodic, there exists a linear map T
on the space of solutions called the monodromy satisfying

Vi+n =TV,.
One can view the monodromy as an element of GL;, | defined up to a conjugation.

PROPOSITION 3.1.1. The space Eii1n has codimension k(k + 2) in R™ with
coordinates a; .

Proof. Since the last coefficient in (2.1) is (—1)¥, one has (Throughout the paper,
Vi, ..., Vil stands for the determinant of the matrix with columns V;, ...,
Vitk)

Vi, Viers oo s Vil = Vit Vigas o5 Vi |-

Hence the monodromy is volume preserving, and thus belongs to the group
SLit1(R).

If furthermore all the solutions of (2.1) are n-(anti)periodic, then the
monodromy is (—1)*Id. Since dimSL;,; = k(k + 2), this gives k(k + 2)
polynomial relations on the coefficients. O

3.2. Embedding of F;,,, into the Grassmannian. Consider the
Grassmannian Gry,, of (k + 1)-dimensional subspaces in R". Let us show
that the space of SL;,-frieze patterns F;,;, can be viewed as an (n — 1)-
codimensional algebraic subvariety of Gry ,.

Recall that the Grassmannian can be described as the quotient

Gy 2 GLiy i \Matl,, , (R), (3.6)

where Mat; +1..(R) is the set of real (k+ 1) X n-matrices of rank k+ 1. Every point
of Gry41., can be represented by a (k4 1) x n-matrix M. The Pliicker coordinates
on Gry, , are all the (k 4+ 1) x (k + 1)-minors of M; see, for example [16].
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Note that the (k + 1) x (k + 1)-minors depend on the choice of the matrix, but
they are defined up to a common factor. Therefore, the Pliicker coordinates are
homogeneous coordinates independent of the choice of the representing matrix.
The minors A;(M) with consecutive columns, see Notation 2.2.4, play a special
role.

PROPOSITION 3.2.1. The subvariety of Griy1, consisting in the elements that
can be represented by the matrices such that all the minors A; (M) are equal to

each other,
Ar(M)=Ap(M) foralll, I, 3.7

is in one-to-one correspondence with the space Fi.1 , of SLy-frieze patterns.

Proof. If M € Gryyy, satisfies A;(M) = Ay (M) for all intervals I, I’, then it
is easy to see that there is a unique representative of M of the form (2.5), and
therefore a unique corresponding SL,; . |-frieze pattern.

Conversely, given an SL;,-frieze pattern F, the corresponding matrices Mg)
satisfy (3.7). Fixing i, for instance, taking i = 1, we obtain a well-defined
embedding

Fistn C Grigpp.

Hence the result follows. O

Note that the constructed embedding of the space F. , into the Grassmannian
depends on the choice of index i. A different choice leads to a different
embedding.

3.3. The space C;y,, as a quotient of the Grassmannian. A classical way
to describe the space Ci, 1, as the quotient of Gr, , by the torus action,

Cigin = Grigr /T, (3.8)

is due to Gelfand and MacPherson [21].

Let us comment on this realization of C;,;,. Given an n-gon v : Z — RP*,
consider an arbitrary lift V : Z — R**!. The result of such a lift is a full rank
(k + 1) x n-matrix, and thus an element of Gry, ,. Recall that the action of T"~!,
in terms of the matrix realization (3.6), consists in multiplying (k4 1) x n-matrices
by diagonal n x n-matrices with determinant 1. The projection of V' to the quotient
Gryy1.,/T"! is independent of the lift of v to R¥*!,

3.4. Triality. Let us briefly explain the relations between the spaces & 1.,
Fiz1.ns and Ciyy.,. We will give more details in Section 8.
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The spaces of difference equations &, and that of SL,,-frieze patterns
Fiy1.. are always isomorphic. These spaces are, in general, different from the
moduli space of n-gons, but isomorphic to it if k + 1 and n are coprime.

THEOREM 3.4.1. (i) The spaces Ei1, and Fiyy1, are isomorphic algebraic
varieties.

(ii) If k + 1 and n are coprime, then the spaces E; 1., Fis1.n and Ciy1, are
isomorphic algebraic varieties.

The complete proof of this theorem will be given in Section 8. Here, we just
construct the isomorphisms.
Part (i). Let us define a map

€k+l,n — ‘Fk+l.n

which identifies the two spaces. Roughly speaking, we generate the solutions of
the recurrence equation (2.1), starting with k Os, followed by 1, and put them
on the North-East diagonals of the frieze pattern. Let us give a more detailed
construction.

Given a difference equation (2.1) satisfying the (anti)periodicity assumption
(2.2), we define the corresponding SL;,-frieze pattern (2.3) by constructing its
North-East diagonals p;. This diagonal is given by a sequence of real numbers
V = (V;)sez that are the solution of Equation (2.1) with the initial condition

Vick—1, Vicks oo+, Vie)) = (0,0, ..., 0, 1);
this defines the numbers d; ; via
dij =V, (3.9
Since the solution is n-(anti)periodic, we have
diiywir = =diitn2=0, diin-1 = (=D
Furthermore, from Equation (2.1), one has
di,i+w =1

The sequence of (infinite) vectors (7;), that is, of South-East diagonals, satisfies
Equation (2.1).

EXAMPLE 3.4.2. For an arbitrary difference equation, the first coefficients of the
ith diagonal are
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_ 1
di,i =a;,
10 2
dijiv1 = a;a; — a;yy,
_ 110 1 2 1 12 3
dijivr = 0;G;10; 5 — Q70 — ;A7 a7,

We will give more general determinant formulas in Section 5.

REMARK 3.4.3. The idea that the diagonals of a frieze pattern satisfy a difference
equation goes back to Conway and Coxeter [8]. The isomorphism between the
spaces of difference equations and frieze patterns was used in [32, 34] in the
casesk =1, 2.

Parts (ii). The construction of the map &1, — Cy11., consists of the following
two steps.

1. The spaces &1, and F; 1, are isomorphic.

2. There is an embedding F;, C Gry41,, and there is a projection Gry,, —
Cii1.n; see (2.5) and (3.8).

More directly, given a difference equation (2.1) with (anti)periodic solutions,
the space of solutions being k + 1-dimensional, we choose any linearly
independent solutions (Vi(l)), R (Vi(kH)). For every i, we obtain a point,
V; € R, which we project to RP*; the (anti)periodicity assumption implies that
we obtain an n-gon. Furthermore, the constructed n-gon is nondegenerate, since
the (k + 1) x (k + 1)-determinant

\Vi, Visrs ..., V| = Const # 0. (3.10)

A different choice of solutions leads to a projectively equivalent n-gon. We have
constructed a map
5k+1,n — Ck+1,n- (31 1)

We will see, in Section 8.2, that this map is an isomorphism if and only if k 4 1
and n are coprime.

PROPOSITION 3.4.4. Suppose that gcd(n, k + 1) = g # 1, then the image of the
constructed map has codimension g — 1.

We will give the proof in Section 8.3.

NOTATION 3.4.5. It will be convenient to write the SL;,,-frieze pattern
associated with a difference equation (2.1) in the following form:
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1 1 1 1 1 1
o o o) o
ol ol o3 a?
o, o o o,
1 1 1 1 1 1

(3.12)
The relation between the old and new notation for the entries of the SL;,-frieze
pattern of width w is

e J_
di,j =0, s o = di+l,w+i—j+1’ (313)

where d; ; is the general notation for the entries of an SL,,-frieze pattern. See
formula (2.3).

4. The combinatorial Gale transform

In this section, we present another isomorphism between the introduced spaces.
This is a combinatorial analog of the classical Gale transform, and it results from
the natural isomorphism of Grassmannians:

Grk+1,n = er+1,nv

forn =k+w+2.

On the spaces &1, and Fiy1,, we also define an involution, which is a
combinatorial version of the projective duality. The Gale transform commutes
with the projective duality so both maps define an action of the Klein group
(Z.]27)%.

4.1. Statement of the result.

DEFINITION 4.1.1. We say that a difference equation (2.1) with n-(anti)periodic
solutions is the Gale dual of the following difference equation of order w + 1:

W, = Ol,-]Wi—l - 05,'2“11‘—2 +---+ (—l)wflaf”Wi—w +(=D"Wi_yot, (4.14)

where o are the entries of the SL;-frieze pattern (3.12) corresponding to (2.1).
The following statement is the main result of the paper.

THEOREM 4.1.2. (i) All solutions of Equation (4.14) are n-(anti)periodic; that
is,
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Wiiw = (—1)" Wi,

(ii) The defined map & 11, — Ewy1.q is an involution.

We obtain an isomorphism
G Erin —> Euwrin (4.15)

between the spaces of n-(anti)periodic difference equations of orders k + 1 and
w + 1, provided that
n=k+w+2.

We call this isomorphism the combinatorial Gale duality (or the combinatorial
Gale transform).

An equivalent way to formulate the above theorem is to say that there is a
duality between SL,.-frieze patterns of width w and SL,,,-frieze patterns of
width k: N

G Firin —> Futin-

PROPOSITION 4.1.3. The SL,, . -frieze pattern associated to Equation (4.14) is

the following:
1 1 1 1 1 1
a, a; a a,
a, at a3 a,
(4.16)
ak at at ak
1 1 1 1 1 1

We say that the SL, ,-frieze pattern (4.16) is Gale dual to the SL;, -frieze
pattern (3.12).
The combinatorial Gale transform is illustrated by Figure 1.

4.2. Proof of Theorem 4.1.2 and Proposition 4.1.3. Let us consider the
following n-(anti)periodic sequence (W;). On the interval (W_,,, ..., W,_,,_1) of
length n, we set

(was ey W,], W(), Wls WZ’ e Wn7w72a anwfl)

=(0,...,0,1,a", a1, ... al, 1)

n’

and then continue by (anti)periodicity: W;,, = (—=1)"W,.
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LEMMA 4.2.1. The constructed sequence (W;) satisfies Equation (4.14).

Proof of the lemma. By construction of the frieze pattern (3.12), its South-East
diagonals n; satisfy (2.1).

Consider the following selection of k + 2 diagonals in the frieze pattern (3.12),
and form the following (k + 2) X n-matrix:

Mn—k—1 NMn—k n
o I 0o - 0
2 1
oy o, 1 0
0
1
k41 1
1
oy )
1 il
0
1 o a?l
n—2 n—2
0 0o 1 a¥,
(=D 0 o0 1

The above diagonals satisfy the equation
I G A S G D

Let us express this equation for each component (that is, each row of the above
matrix).

The first row gives a’ = o/, which can be rewritten as W; = a; W,. Since, by
construction, W_; = --- = W_,, = 0, we can rewrite this relation as

W, = aiWO - afW—l +--+ (_l)wW—un

which is precisely (4.14) for i = 1. Then, considering the second component of
the vectors 1, we obtain the relation 0 = a*~! — a*a) + &2, which reads as

n

Wy =alW, —a2Wy = Wr = alW, —a2Wo +3W_, + -+ (=D"W,_,.
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gk+l,n
Vi=alVi_| —a?Vi_y +
i=a; Vi1 —a;Vi—2T ...

fk-»,—l,n / \ fw_H,n
1 1 1 1 1 1

1 1
i i

1 1

w. k
i a;
1 1 1 1
ngrl,l‘l
Wi=a Wiy —a}W; o +...

Figure 1. Duality between periodic difference equations, friezes of solutions, and
friezes of coefficients; the explicit relations between the coefficients a; and o
will be given in Proposition 5.1.1.

Continuing this process, we obtain n relations which correspond precisely to
Equation (4.14), fori =1, ..., n. Hence the lemma follows. O

Shifting the indices, in a similar way we obtain w other solutions of
Equation (4.14) that, on the period (W_,,, ..., W,_,_), are given by

k k-1 I
o, ... 0, 1, a,_4, a_, ..., a,, 1, 0)
k k-1 1
o, ..., 1, Ay 5y Ay 5y eey Gy, 1, 0, 0
k k-1 1
a, a,_,, a_,, ..., a,_,, 1, 0, ..., 0, 0).

Together with the solution from Lemma 4.2.1, these solutions are linearly
independent and therefore form a basis of n-(anti)periodic solutions of
Equation (4.14). We proved that this equation indeed belongs to &, ., SO
that the map G is well defined.

The relation between Equations (2.1) and (4.14) can be described as follows:
the solutions of the former one are the coefficients of the latter, and vice
versa. Therefore, the map G is an involution. This finishes the proof of
Theorem 4.1.2. O

To prove Proposition 4.1.3, it suffices to notice that the diagonals of the
pattern (4.16) are exactly the solutions of Equation (4.14) with initial conditions
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O,...,0, l,a{‘). This is exactly the way we associate a frieze pattern to a
differential equation; see Section 3.4. O

EXAMPLE 4.2.2. Let us give the most elementary, but perhaps the most striking,
example of the combinatorial Gale transform. Suppose that a difference equation
(2.1) of order k + 1 is such that all its solutions (V;) are (k + 3)-(anti)periodic:

Vitiss = (—l)k Vi.
Consider the Hill equation
W, = ail Wi — Wi,

obtained by ‘forgetting’ the coefficients aij with j > 2. Theorem 4.1.2 then
implies that all the solutions of this equation are antiperiodic with the same period:
Wi+k+3 =—-W.

Conversely, any difference equation (2.1) of order k 4+ 1 with (k + 3)-
(anti)periodic solutions can be constructed out of a Hill equation.

At first glance, it appears paradoxical that, forgetting almost all the information
about the coefficients of a difference equation, we still keep the information about
the (anti)periodicity of solutions.

4.3. Comparison with the classical Gale transform. Recall that the classical
Gale transform of configurations of points in projective spaces is a map:

gclass : Ck+1,n — Cw-H,na

where n = k + w + 2; see [6, 7, 14, 17].

The classical Gale transform is defined as follows. Let A be a (k+ 1) x n-matrix
representing an element of Cyy; ,, and let A’ be a (w + 1) x n-matrix representing
an element of C, 1 ,; see (3.6) and (3.8). These elements are in Gale duality if
there exists a nondegenerate diagonal n X n-matrix D such that

ADAT =0,

where A" is the transposed matrix. This is precisely the duality of the
corresponding Grassmannians combined with the quotient (3.8).

To understand the difference between the combinatorial Gale transform and the
classical Gale transform, recall that the space &1, ~ Fii1., is a subvariety of
the Grassmannian Gry | ,. Given an SL;  |-frieze pattern F, the (k+ 1) x n-matrix
Mg) representing F', as in (2.5), satisfies the condition that every (k+1) x (k+1)-
minor
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A My =1
1(Mg") = 1.
This implies that the diagonal matrix D also has to be of a particular form.

PROPOSITION 4.3.1. Let F be an SL,,-frieze pattern and G(F) its Gale dual
SL,,11-frieze pattern. Then the corresponding matrices satisfy

MO DMy, =o, (4.17)

wherei — j = w + 1 mod n, and where D is the diagonal matrix

1 0 ... 0
0 -1 ... 0

p=|. . , . (4.18)
0 0 ... (=11

Proof. The matrices are explicitly given by

k 1
1 aj+w—1 aj+w71 1

of size (w + 1) x n. The columns of the matrix Mg) correspond to the diagonals

Ni—1s - -+ Nizksw I0 F, which are solutions of (2.1). This gives immediately the
relation
MO DM, =0, where D = diag(1,—1,1,-1,...). 0

Recall that, in Section 3.4, we defined a projection from the space of equations
to the moduli space of n-gons. The Gale transform agrees with this projection.
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Figure 2. Gale transform between arbitrary SL,-friezes of width 2 and SL;-friezes
of width 1.

Figure 3. An SL;-frieze of width 3 and its Gale dual SL,-frieze of width 2.

COROLLARY 4.3.2. The following diagram commutes:

g
gk+l.,n I gw+l,n

L

Ck+l.,n — Cw+l,n
gc]ass

Proof. The projection &1, — Ciy1.,, Written in the matrix form, associates to
a matrix representing an element of &, a coset in the quotient Gry, ,/T"!
defined by left multiplication by diagonal n x n-matrices. If two representatives
of the coset satisfy (4.17), then any two other representatives also do. O

EXAMPLE 4.3.3. One immediately checks in these examples in Figures 2 and 3
that the corresponding matrices (matrix A on the left and matrix A’ on the right)
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satisfy
ADA" =0, for D =diag(l,—1,1,—1,1,—1,1).

The Gale dual of a frieze can be obtained by computing minors in the initial
frieze. For instance, in Figure 3, the first nontrivial row of the frieze on the right
coincides with the last row of the frieze on the left (that is, 1 x 1 minors), and the
second row of the frieze on the right consists of 2 x 2-minors formed by the last
and the one before the last nontrivial rows:

8 3 1 7 11 8

1 2
1 1 1 11 11

7 19
’ 1 7

s

g oo

The same rule applies for going from right to left.

4.4. The projective duality. Recall that the dual projective space (RP*)*
(which is of course itself isomorphic to RP*) is the space of hyperplanes in RP.
The notion of projective duality is central in projective geometry.

Projective duality is usually defined for generic n-gons as follows. Given an
n-gon (v;) in RP*, the projectively dual n-gon (vy) in (RP*)* is the n-gon such
that each vertex v; is the hyperplane (v;, vit1, ..., Vigk—1) C RP*. This procedure
obviously commutes with the action of SL;;, so that one obtains a map

* 1 Ck-H,n — Ck+1,n’

which squares to a shift: x o x : (v;) > (Viix_1)-
In this section, we introduce an analog of the projective duality on the space of
difference equations and that of frieze patterns:

* 5k+1,n g 5k+1,n, * 1 Frpin = Frgin

The square of * also shifts the indices, but this shift is ‘invisible’ on equations and
friezes so that it is an involution: * o % = id.

DEFINITION 4.4.1. The difference equation

Vi =ai Vi eV o+ GOV (CDYE L @19)
is called the projective dual of (2.1).

Here, (V;*) is just a notation for the unknown.
EXAMPLE 4.4.2. The projective dual of the equation V; = a;V;_; —b;V; ,+V,_3

is
* * * *
Vi=b,V', —a Vi, + V>,
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The above definition is justified by the following statement.

PROPOSITION 4.4.3. The map &1, —> Ciy1.n from Section 3.4 commutes with
projective duality.

Proof. Recall that an n-gon (v;) is in the image of the map &1, — Ciy1., if
and only if it is a projection of an n-gon (V;) in R¥! satisfying the determinant
condition (3.10).

Let us first show that the dual n-gon (v}) is also in the image of the map
Et1in = Ciy1,- Indeed, by the definition of projective duality, the affine
coordinates of a vertex v/ € (RP*)* of the dual n-gon can be calculated as the
k x k-minors of the k x (k + 1)-matrix

Vi Vi - Vigr—n),

where V; are understood as (k + 1)-vectors (that is, the columns of the matrix).
Denote by V;* the vector in (R**!)* with coordinates given by the k x k-minors.
In other words, the vector V/* is defined by the equation

|‘/i7 ‘/i+l7 ) ‘/H—k—lv ‘/l*| = 1

A direct verification then shows that the sequence (V") satisfy Equation
(4.19). (|

The isomorphism &, ~ Fi,1., allows us to define the notion of projective
duality on SL,-frieze patterns.

PROPOSITION 4.4.4. The projective duality of SL;-frieze patterns is just the
symmetry with respect to the median horizontal axis.

We will prove this statement in Section 5.4. The proof uses explicit
computations. See Proposition 5.4.1.

COROLLARY 4.4.5. The projective duality commutes with the Gale transform:

x0G =G o *.

4.5. The self-dual case. An interesting class of difference equations and,
equivalently, of SL;,-frieze patterns, is the class of self-dual equations. In the
case of frieze patterns, self-duality means invariance with respect to the horizontal
axis of symmetry.
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EXAMPLE 4.5.1. (a) Every SL,-frieze pattern is self-dual.
(b) Consider the following SL;-frieze patterns of width 2:

The first one is self-dual but the second one is not.

An n-gon is called projectively self-dual if, for some fixed 0 < £ < n — 1, the
n-gon (v,_,) is projectively equivalent to (v;). Note that £ is a parameter in the
definition (so, more accurately, one should say ‘Z-self-dual’); see [15].

5. The determinantal formulas

In this section, we give explicit formulas for the Gale transform. It turns out that
one can solve Equation (2.1) and obtain explicit formulas for the coefficients of
the SL,,,-frieze pattern. Let us mention that the determinant formulas presented
here already appeared in the classical literature on difference equations in the
context of the ‘André method of solving difference equations’; see [1, 22].

5.1. Calculating the entries of the frieze patterns. Recall that we
constructed an isomorphism between the spaces of difference equations &1,
and frieze patterns F;,,. We associated an SL;, -frieze pattern of width w to
every difference equation (2.1). The entries d; ;. ; of the SL;-frieze pattern (also
denoted by a;”:lj ; see (3.12), (3.13)) were defined nonexplicitly by (3.9).

PROPOSITION 5.1.1. The entries of the Sl -frieze pattern associated to a
difference equation (2.1) are expressed in terms of the coefficients a! by the

following determinants.
OIf0oL j<k—1and j < w, then

dijrj =) = . (5.20)
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(i) Ifk — 1 < j < w, then

- _
dijvj =0 =

1

a

i+j

a

i+j

22

(5.21)

Proof. We use the Gale transform G(F) of the frieze F associated to (2.1). In
G(F), the following diagonals of length w + 1

Ni—w—2  Ni—w-1 Ni—w+j Ni—2  Ni—1
ai' 1
ai2+1 ai1+1
1
aljj-r]] aij+j i1+j
. . . |
ai1+u,v 1
satisfy the recurrence relation

Mot =0 Mima — -4+ (=)o

4+ e (_l)w—l at

i—1

which can be written in terms of vectors and matrices as

(=D

=Dy,

Ni—t = Mi—w—2,

L)

ni—2)

(= l)oail—l
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The coefficients "’ can be computed using the Cramer rule,

D" nicw, -

|77i—w—29 o

s Nicw+js Ni—1s Nicw+j+25 -+
5 77i—2|

w—j _
i-1 =

< Mial

(5.22)

The denominator is 1, since G(F) is an SL,,, ;-frieze, and the numerator simplifies
to (5.20) or to (5.21) accordingly after decomposing by the n;_;th column. The
coefficient ¢’ is in position d; ; ; in the frieze F. O

5.2. Equivalent formulas. There is another, alternative, way to calculate the
entries of the SL;;-frieze pattern.

PROPOSITION 5.2.1. () If j + k > w, then

k k-1 k—w+j+1
ai—w+j—1 ai—w+j—1 i—w+j—1
k k—w+j
1 S S
di,i+j = 1
k
1 a;_,
W) If j +k < w, then
k 1
Ai—wij—1 Ai _wyj-1 1
k 1
1 i—wtj Aiwij 1
1 1
dijyj =
k k-1
1 a;_3 4;_j3
k
1 a;_,
Proof. These formulas are obtained in the same way as (5.20) and (5.21). ]
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EXAMPLE 5.2.2. (a) Hill’s equations V; = «a;V;_; — V,_, with antiperiodic
solutions correspond to Coxeter’s frieze patterns with the entries

a; 1
1 aq 1
di,i+j =

1 aiyj-2 1

1 Aiyj—1

The corresponding geometric space is the moduli space (see Theorem 3.4.1) of n-
gons in the projective line known (in the complex case) under the name of moduli
space M, ,.

(b) In the case of third-order difference equations, V; = a;V;_| —b; V; » + V,;_3,
we have
a; by 1

I a by 1

dijyj =
NEY
1 Aivj—3 biyj3 1
1 divj—2 biyjo
1 Aitj-1

This case is related to the moduli space C;,, of n-gons in the projective plane
studied in [32].

5.3. Determinantal formulas for the Gale transform. Formulas from
Propositions 5.1.1 and 5.2.1 express the entries of the SL, . |-frieze pattern (3.12)
as minors of the Gale dual SL,,,-frieze pattern (4.16). One can reverse
the formulas and express the entries of (4.16), that is, the coefficients of
Equation (2.1) as minors of the SL; ;-frieze pattern (3.12).

For instance, the Gale dual of (5.22) is

k—j—1
k=i (DT iy Mk g Miets Nickajg2s - oo Nial

=
' [Mi—k—25 - s N2l

, (5.23)

where the 7 are the South-East diagonals of the SL;,-frieze pattern (3.12). Note
that the denominator is equal to 1.
For j < k, we obtain an analog of formula (5.20):
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di+1,i+w 1
=1 : 5.24
a, | = : - 1 s ( . )
digjviivw - Qivjrlivj+w

and similarly for (5.21).

5.4. Frieze patterns and the dual equations.

PROPOSITION 5.4.1. The North-East diagonals (i1;) of the SL,-frieze pattern
corresponding to the difference equation (2.1) satisfy the projectively dual
difference equation (4.19).

Proof. This is a consequence of the tameness of the SL,,,-frieze pattern
corresponding to (2.1) and can be easily shown using the explicit determinantal
formulas (5.23) that will be established in the next section. We first consider the
case j =1+ w —k —2. We know that the (k +2) x (k + 2)-determinant vanishes;
thus

djwi1,) 1

di_wi2j dj—wirjp 1

1
d; ; s dii+w-1

Decomposing the determinant by the first column gives the recurrence relation
dij = a::zdi—l,j - a,{(:;di—l,j +--+ (—l)kfla,-l,k,ldi—k,j + (_l)kdi—k—l.ja

where the coefficients are computed using (5.23). The recurrence relation then
propagates inside the frieze due to the tameness property, and hence will hold for
all j. This proves that the North-East diagonals satisfy (4.19) after renumbering

Wi = ikt O

6. The Gale transform and representation theory
In this section, we give another description of the combinatorial Gale transform

G in terms of representation theory of the Lie group SL,. Let N C SL, be the
subgroup of upper unitriangular matrices.
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*
1

We will associate a unitriangular n x n-matrix to every SL;-frieze pattern. This
idea allows us to apply in our situation many tools of the theory of matrices, as
well as more sophisticated tools of representation theory. We make just one small
step in this direction: we show that the combinatorial Gale transform G coincides
with the restriction of the antiinvolution on N introduced in [3].

6.1. From frieze patterns to unitriangular matrices. Given an SL;-frieze
pattern F of width w, as in formula (2.3), cutting out a piece of the frieze, see
Figure 4, we associate to F' a unitriangular n X n-matrix

1 diy - diw 1

1
Ap = drwn (6.25)

dn—l,n—l
1

with w 4 2 nonzero diagonals. As before, n = k + w + 2.

REMARK 6.1.1. Note that the matrix Ar contains all the information about
the SL,,-frieze pattern. Indeed, the frieze pattern can even be reconstructed
by a much smaller (k 4+ 1) x n-matrix (2.5). However, Ar is not defined
uniquely.Indeed, it depends on the choice of the first element d, ; in the first line
of the frieze. A different cutting gives a different matrix.

6.2. The combinatorial Gale transform as an antiinvolution on N. Denote
by * the antiinvolution of N defined for x € N by

x' = Dx7'D, (6.26)

where D is the diagonal matrix (4.18). Recall that the term ‘antiinvolution’
means an involution that is an antihomomorphism; that is, (xy)' = y‘x".
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Figure 4. Cutting a unitriangular matrix out of a frieze.

This antiinvolution was introduced in [3] in order to study the canonical
parameterizations of N. We will explain the relation of ‘ to the classical
representation theory in Section 6.4.

THEOREM 6.2.1. (i) The operation Ar +— (Afr)* associates to a matrix (6.25) of
a tame SLy-frieze pattern a matrix of a tame SL,,, |-frieze pattern.
(1) The corresponding map
' :5k+1,n — gw+1,n

coincides with the composition of the Gale transform and the projective duality:

‘=G o x*.

Proof. Let us denote by S = {1, 2, ..., n} the index set of the rows, respectively
columns, of a matrix x € N. For two subsets I, J C S of the same cardinality, we
denote by A, ;(x) the minor of the matrix x taken over the rows of indices in /
and the columns of indices in J. We have the following well-known relation:

A (x') = As_j) s—1i (X),

where A; ;(x') is simply the entry in position (i, j) in x‘. Taking into account that
the matrix x belongs to N, whenever j > i, the (n — 1) x (n — 1)-minor in the
above right-hand side simplifies to a (j — i) x (j — i)-minor
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A i (x) = A j—nivn (),

where [a, b] denotes the interval {a,a + 1, ..., b}. Let us use this relation to
compute the entry in position (i, j) in (Ar)‘. One has

w w—1 w—j+i—1
dii dijz1 ... ... dij O Oy e ees Qi
1 di.: d. . 1 w w—j+i
Q1041 ee e oen i+1,j—1 o ... i
A;j(A%) = ! = 1
. . w
1 d]*l,]fl 1 Olj72

According to the determinantal formulas of Section 5, this is precisely the entry
d; 4y of the frieze G(F), and the result follows. I

J

6.3. Elements of the representation theory. Our next goal is to explain the
relation of the involution * with Schubert cells in the Grassmannians. We have to
recall some basic notions of representation theory.

The Weyl group of SL,, is the group S, of permutations over n letters that we
think of as the set of integers {1, 2, ..., n}. The group S, is generated by (n — 1)
elements denoted by s;, 1 <i < n — 1, representing the elementary transposition
i <> i + 1. The relations between the generators are as follows:

SiSi+18i = Si+15iSi+1,

§i8; = 88, |l—]|>1
A decomposition of o € S, as

o = Silsiz . "S,‘p

is called reduced if it involves the least possible number of generators.
Equivalently, we call the sequence i = (iy, ..., i,) a reduced word for o.

The group S, can be viewed as a subgroup of SL, using the following lift of
the generators:
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Let us now describe the standard parameterization of the unipotent subgroup
N. Consider the following one-parameter subgroups of N:

X (1) = i . 1<i<n-1.1t€R,

where ¢ is in position (i, i +1). The matrices x; (¢) are called the elementary Jacobi
matrices; these are generators of N.

The next notion we need is that of the Schubert cells. Denote by B~ the Borel
subgroup of lower triangular matrices of SL,. Fix an arbitrary element o € S,,,
and consider the set

N° . =NNB oB~,

which is known as an open dense subset of a Schubert cell. It is well known that
generically elements of N can be represented as

Xi(t) = x;, (t)x;,(12) - - - x;,(2,) (6.27)
where t = (#1,...,f,) € R? andi = (iy,...,i,) is an arbitrary reduced word
foro.

For the choice
O = Skq1 " Su1 Sk Sp—2 0t S|t Spk—1> (6.28)

the set N is identified with an open subset of the Grassmannian Gty ,. See, for
example, [44, Ch. 8], for more details.

6.4. The antiinvolution ‘' and the Grassmannians. It was proved in [3] that
the antiinvolution ‘ on N can be written in terms of the generators as follows. Set
x; (1) = x;(¢); then, for x as in (6.27), one has

xt=x;, (tp)xi,_ (ty_1) - x;, (1).

This map is well defined; that is, it is independent of the choice of the
decomposition of x into a product of generators, since it coincides with (6.26).

Restricted to N, where o is given by (6.28), the antiinvolution reads * : N —
N°'. In particular, it sends an open subset of the Grassmannian Gryy, to an
open subset of Gry,;1 .
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We have already defined the embedding (2.5) of the space of SL;,-frieze
patterns into the Grassmannian. Quite obviously, one also has an embedding into

N°?, so that
Fisin C N° C Grigyp.

It can be shown that the image of the involution * restricted to F;, , belongs to
Fuwt1..- However, the proof is technically involved, and we do not dwell on the

details here. The following example illustrates the situation quite well.

EXAMPLE 6.4.1. The case of Grys. Fix 0 = 55354515253, and consider the

following element of N°:

1ty s titsts 0
1 ts + 1 tits + tits + tsts titats
x = Xa(11) X3 (12) X4 (13) X1 (14) X2 (15) X3 (t6) = 1 o+ 1 Lt
1 12
1
One then has
1 4 un 0 0
1 ts+1t, tts 0O
x' = x3(te)xa(15) X1 (84) X4 (13) X3 (12) X2(11) = 1 o+t Il
1 5
1

If now x € F, 5, so that every 2 x 2-minor equals 1, then one has, after an easy

computation,
tty =1, Hbhts =1, Lbhtbtsts =1, tbht; =1,

and this implies that x* € F3 5.

7. Periodic rational maps from frieze patterns

The periodic rational maps described in this section are a simple consequence
of the isomorphism &1, >~ Fi11., and of the periodicity condition. However, the
maps are of interest. The simplest example is known as the Gauss map; see [18].

This map is given explicitly by
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1
(c1,¢2) > <02, $> )

Cci1Cy —1

where ¢y, ¢, are variables. Gauss proved that this map is 5-periodic. In our
terminology, the Gauss map consists in the index shift (¢, c;) — (c3,¢3) in a
Hill equation V; = ¢;V;_; — V;_, with S-antiperiodic solutions.

The maps that we calculate in Section 7.1 are related to the so-called
Zamolodchikov periodicity conjecture. They can be deduced from the simplest
A, x A,-case; the periodicity was proved in this case in [45] by a different
method. The general case of the conjecture was recently proved in [24]. It would
be interesting to investigate an approach based on linear difference equations in
this case.

Finally, the maps that we calculate in Section 7.2 correspond to self-dual
difference equations. They do not enter into the framework of the Zamolodchikov
periodicity conjecture, and seem to be new.

7.1. Periodicity of SL;.,-frieze patterns and generalized Gauss maps. An
important property of SL,,-frieze patterns is their periodicity.

COROLLARY 7.1.1. Tame SL;-frieze patterns of width w are n-periodic in the
horizontal direction: d; ; = diyn j4n for alli, j, wheren =k +w + 2.

This statement is a simple corollary of Theorem 3.4.1, Part (i). Note that, in the
simplest case k = 1, the above statement was proved by Coxeter [9].
Let us introduce the following notation:

a 1
1 ay 1
U(a]a az, ..., ak) =

1 Aj—1 1

1 ay

for the simplest determinants from Section 5; see Example 5.2.2, part (a). We
obtain the following family of rational periodic maps.

COROLLARY 7.1.2. Let the rational map F : R"3 — R"73 be given by the
Sformula

F: (a17 az, ..., an—3) = (a27 az,...,d-3, P(a17 az, ..., an—3))9
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where
1+Ua,...,a,-
P(alﬁaZa ~"’an—3) = * (al : 4)'
U(Cl], L) an—3)
Then F" = id.
Proof. Consider the periodic Hill equation V; = a;V;_; — V;_,, or equivalently

the SL,-frieze pattern whose first row consists of 1s, and whose second row is the
biinfinite sequence (a;). The entries of the kth row of this frieze pattern are

Uai,...,ai4-2), i€

see Example 5.2.2 and [9, 32].

Assume that all the solutions of the Hill equation are n-antiperiodic. Then the
frieze pattern is closed, of width n — 3, and its rows are n-periodic; see [9] and
Corollary 7.1.1. Furthermore, the (n — 2)th row of a closed SL,-frieze pattern
consists of 1s. Therefore

Uai,ai1, ..., 0i10-3) =1,
for all i.
On the other hand, decomposing the determinant U (a;, @;1, - . ., @;+,—3) by the
last row, we find
Aiyn3 = P(ai, ..., Qiyn4). (7.29)
We can choose ay, ..., a,_3 arbitrarily, and then consecutively define a,_,, a,_1,
. using formula (7.29) for i = 1,2, .... That is, we reconstruct the sequence
(a;) from the ‘seed’ {ay, ..., a,_3} by iterating the map F. By the periodicity
assumption, the result is an n-periodic sequence. O

Introduce another notation:

ag b] 1

V(al’bl""vbkfl,ak) = . “. .. .. :

1 =2 brp 1
1 ar— by
1 473

see Example 5.2.2, part (b).
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COROLLARY 7.1.3. Let the rational map @ : R**=8 — R>~3 pe given by the
formula
D :(ay,by,a,by,...,0,_4,b,_4)
= (b1, az, by, ..., bya, Qar, by, oo bygy Gn-a)),
where
1+b,_4V(a, by, ...,a,_5) —V(a, by, ...,a,_¢)
V(a, by, ..., a,_4) '

Q(ala bl7 ceey Qpy, bn74) =
Then &' = id.

Proof. The arguments are similar to those of the above proof, but we will also use
the notion of a projectively dual equation.

Consider the difference equation V; = a;V;_| — b;V;_, + V;_3, and assume that
all its solutions (and therefore all its coefficients) are n-periodic. Consider the
dual equation, see Example 4.4.2, but ‘read’ it from right to left:

Vis=aVi, =bina Vi, +V

The map @ associates to a ‘seed’ {ay, by, ..., a,_4, b,_4} of the initial equation
the same ‘seed’ of the dual equation.

Recall finally that the double iteration of the projective duality is a shift: i —
i + 1. Therefore, @2 : (a;, b;,...) — (@41, bis1,...), which is n-periodic by
assumption. O

EXAMPLE 7.1.4. For n = 5, the maps from Corollaries 7.1.2 and 7.1.3 are as

follows:
1 1
Fana) = (a. —2).  o®.a)=(a 2.
aja, — 1 b

The first one is the classical 5-periodic Gauss map; the second, which looks even
more elementary, is 10-periodic.

7.2. Periodic maps in the self-dual case. Let us now consider a version of
the rational periodic maps that correspond to self-dual third-order n-periodic
equations; see Section 4.5.

COROLLARY 7.2.1. (i) Let n = 2m — 1, and let the rational map G, : R"™* —
R"~* be given by the formula

Go(ala b]aa2’ b27 ey A2, bm—z)
= (b1,a2,bs,...,b,2,Ry(ai, by, ...,au_2,b,)),
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where

R,,(al, bla ey o2, bm—2)

_ V(027 b2’ LR R) am72) + bm72v(a17 bl’ R dm,3) - V(alv b17 KRN am,4)
V(alibli"'sam—z) ‘

Then G = id.
(ii) Let n = 2m, and let the rational map G, : R"~* — R"~* be given by the
formula
Ge(ah bl, a, b27 ceey A2, bm72)
= (blv as, b21 ceey bm—27 Re(al’ b17 ey Ay, bm—z))7

where

Ré(ah b]’ ey A2, bm72)

_ V(bZ’ as, ... 7am—2) +bm—2V(al7bla ~"’am—3) - V(alabl’ . -aam—4)
V(al,bl,...,am72) .

Then G =1id.

Proof. Let us consider part (i); the other case is similar.
As before, consider n-periodic equations V; = a; V;_1—b; V;_,+V;_;. As before,
both sequences (g;) and (b;) are n-periodic, so that the sequence

...,b],al,bz,az,...,bn,an,...

is 2n-periodic. However, if the equation is self-dual, then this sequence is,
actually, n-periodic. More precisely,

bi+m=ai, n=2m—1;

bi+m =b;, iy = 4di, N = 2m.
We are concerned with the shift
(@i, bi,a2,bs, ..., 05_2,by2) > (b1, a2, bs, ..., an_2, by_2, Gy_1),

and we need to express a,,_; as a function of ay, by, ay, by, ..., ap_2, by _».

To this end, we express, in two ways, the same entry of the SL;-frieze pattern.
Consider the South-East diagonal through the entry a; of the top nontrivial row
and the South-West diagonal through the entry a,,_; of the same row. The entry
at their intersection is V (ay, by, . .., a,_1); see [32].
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Since the difference equation is self-dual, the bottom nontrivial row of the SL;-
frieze pattern is identical to the top one. The North-East diagonal through the
entry a, of this bottom nontrivial row intersects the North-West diagonal through
the entry a,,_, of the same row at the same point as above, and the entry there is
V(az, bz, ey am_z).

Therefore

Vay, by, ...,am_1) = V(az, by, ...,a,_5),

and it remains to solve this equation for a,,_;. This yields the formula for the
rational function R. O

EXAMPLE 7.2.2. If n = 6, we obtain the map

G.(a,b) = (b, %)
a

that indeed has order 6. If n = 7, we obtain the map

a2+a1b2— 1)

Golay, by, ar, by) = (bl, a, by,
aa —bl

that has order 7.

7.3. Another expression for 2n-periodic maps. Let us sketch a derivation of
the map @ from a geometrical point of view. The formula is

D(xy, ..., Xoy—g) = (X2, ..., Xopeg, R(X1, ..., X0pg)) ,

where -
o

2n—9 2n—11"
0_1 — X2p—8X2m—9 0_1

R(xi, ..., x,8) =
and where O is defined by recurrence relation
05 = 0272 — Xp—2 0574 + Xp_2Xp_3Xp_4g 0576, a=>b— 4, b— 6, .

with the initial conditions O} = O} _, = 1. We will see below why @*" is the
identity map.

EXAMPLE 7.3.1. The first nontrivial example is

1—X1
¢(X1,x2) = | X2, )
1—.X,'1.X,'2
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which is the Gauss map. The next example is

1 — X1 — X3 +X1X2X3>
9

D (x1, X2, X3, X4) = | X2, X3, X4,
1-— X1 — X3X4

which is 12-periodic.

These formulas give the expression of the map @ in so-called corner
coordinates on the moduli space of n-gons in P2, Let L L’ denote the intersection
of lines L and L', and let P P’ denote the line containing P and P’. We have the
inverse cross-ratio

(a—Db)(c—d)
,b,c,dl = ————. 7.30
[a,b,c,d] @—ob—d (7.30)
A polygonal ray is an infinite collection of points P_;, P_3, Py, ..., with

indices congruent to 1 mod 4, normalized so that
pP,=(0,0,1), P;=(,0,1), P,=(,1,1), Pis=(,1,1).
These points determine the lines
L_six = P74 P_agy,
and also the flags
F o= (Pay, Losyr), Foge = (Posgu, Losyy)

We associate corner invariants to the flags, as follows.

c(Forx) = [P-74ks Posqis LosyxLagi, LosixLayi],

c(Fav1) = [Potks Psip, Lok Lo1ks Ly Losii],
All these equations are meant for k = 0, 4, 8, 12, . ... Finally, we define
xr=c(Fy); k=0,1,2,3....
The quantities xy, X1, X2, . . . are known as the corner invariants of the ray.
Remark: From the exposition here, it would seem more natural to call these

invariants flag invariants, though in the past we have called them corner
invariants.
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We would like to go in the other direction. Given a list (xq, X1, X2, . ..), we seek
a polygonal ray which has this list as its flag invariants. Taking [41], Equation
(20), and applying a suitable projective duality, we get the reconstruction formula

1 —1 XoX1 Oka
Popyy=|1 0 0 O k=0,2,4,.... (7.31)

34k
1 0  xox; 03

Multiplying through by the matrix M~!, where M is the matrix in Equation
(7.31), we get an alternate normalization. Setting

0 0 1
Q= |xx1|, Qs=| 0], =0, Os=]|1],
1 XoX1 0 0
we have o
071
Qo= |0 k=0,2,4,....
gt

In case we have a closed n-gon, we have

0 o
0 =10-3]1=[0um-3] =1Qo120n-6)] = Oinl_S . (7.32)
1 0

Here, [-] denotes the equivalence class in the projective plane. Equation (7.32)
yields 0" = Oi’ﬁ’3 = 0. Shifting the vertex labels of our polygon by 1 unit has
the effect of shifting the flag invariants by 2 units. Doing all cyclic shifts, we get

0'=0 b—a=2n-4,2n-2, a,bodd (7.33)

Given a polygon P with flag invariants xj, x,,..., we consider the dual
polygon P*. The polygon P* is such that a projective duality carries the
lines extending the edges of P* to the points of P, and vice versa. When suitably

labeled, the flag invariants of P* are x,, x3, .. .. For this reason, Equation (7.33)
also holds when both a and b are even. In particular, we have the following 2n
relations:

0! =0, b—a=2n—4. (7.34)

Equation (7.34) tells us that 03”1*5 = 0. But now our basic recurrence relation
gives
X2n—7X27-8X2n—9 03"[” — Xoy_7 03’;’9 + 03”1’7 =0.
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Note that xy does not occur in this equation. Solving for x,,_7, we get

Xon—7 = Ry(X1, ..., X20_8),

where R, is the expression that occurs in the map @ above. Thanks to Equation
(7.34), these equations hold when we shift the indices cyclically by any amount.
Thus

Xon—7+k = Rty o, Xopgqi),  k=1,...,2n.

This is an explanation of why ®?" is the identity.

8. Relation between the spaces €1,y Fuy+1,n, and Ciy1,,

In this section, we give more details about the relations between the main spaces
studied in this paper, and complete the proof of Theorem 3.4.1.

8.1. Proof of Theorem 3.4.1, Part (i). Let us prove that the map &, —>
Fiy1., constructed in Section 3.4 is indeed an isomorphism of algebraic varieties.

A. Let us first prove that this map is a bijection. By the (anti)periodicity
assumption (2.2), after n — k — 2 numbers on each North-East diagonal, there
appears 1, followed by k Os. Thus we indeed obtain an array of numbers bounded
by a row of 1s and k rows of Os.

Consider the determinants D; ; defined by (2.4) for j > i — 1. We show that
D; ; = 1 by induction on j, assuming that i is fixed. By construction, k + 1
consecutive North-East diagonals of the frieze give a sequence (V) ez of vectors
in R**! satisfying the difference equation (2.1), where

di,j
dit1j
Vj = !
diyi,j
One has D; ; = |V;, Vii1, ..., Vil Now we compute the first determinant,
I dii ... dijiyi
Diiy = 0 1 coo digrivie 1
o 0 ... 1

Since the last coefficient in Equation (2.1) satisfied by the sequence of the vectors
(V;) is a{‘“ = (—1)¥, one easily sees that D;; = D; . Therefore D; ;1 =

D; ; = --- = 1. We have proved that the array d; ; is an SL;-frieze pattern.
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LEMMA 8.1.1. The defined frieze pattern is tame.

Proof. The space of solutions of the difference equation (2.1) is k + 1-
dimensional; therefore every (k + 2) x (k + 2)-block cut from k + 2
consecutive diagonals gives a sequence of linearly dependent vectors. Hence
every (k 4+ 2) x (k + 2)-determinant vanishes. ]

Conversely, consider a tame SLy-frieze pattern. Let n; = (..., d; ;, di11 ;,
...) be the jth South-East diagonal. We claim that, for every j, the diagonal n; is
a linear combination of n;_, ..., nj_x_1:

nj=aln o — @4+ (=D a4+ (DR . (839)

Indeed, consider a (k + 2) x (k 4+ 2)-determinant whose last column is on
the diagonal n;. Since the determinant vanishes, the last column is a linear
combination of the previous k + 1 columns. To extend this linear relation to the
whole diagonal, slide the (k + 2) x (k + 2)-determinant in the n-direction; this
yields (8.35).

Next, we claim that ajf“ = 1. To see this, choose a (k+ 1) x (k+1)-determinant
whose last column is on the diagonal n;. By the definition of an SL;,,-frieze
pattern, this determinant equals 1. On the other hand, due to relation (8.35), this
determinant equals a’jf“ times a similar (k 4+ 1) x (k 4 1)-determinant whose last
column is on the diagonal 7;_;. The latter also equals 1; therefore a?“ =1.

We have shown that each North-East diagonal of the SL,,,-frieze pattern
consists of solutions of the linear difference equation (8.35) with af“ = 1, that is,
the difference equation (2.1). By the definition of an SL,,-frieze pattern, these
solutions are (anti)periodic. Hence the coefficients are periodic as well.

We proved that the map &1, — Fiy1., constructed in Section 3.4 is one-to-
one.

B. Let us now show that this map is a morphism of algebraic varieties defined
in Sections 3.1 and 3.2.

Recall that the structure of algebraic variety on &, 1, is defined by polynomial
equations on the coefficients resulting from the (anti)periodicity. More precisely,
these relations can be written in the form

diivw =1, di;j=0, w<j<n,

where d; ; are defined by (3.9) and calculated according to formulas (5.20) and
(5.21) that also make sense for j > w. These polynomial equations guarantee
that the solutions of Equation (2.1) are n-(anti)periodic. In other words, if M is
the monodromy operator of the equation (which is, as is well known, an element
of the group SL; ), then the (anti)periodicity condition means that M = (—1)*1d.
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Note that exactly k(k 4 2) of these equations are algebraically independent, since
this is the dimension of SL; ;.

The structure of algebraic variety on the space F;, ., is given by the embedding
into Gryyy,. The Grassmannian itself is an algebraic variety defined by the
Pliicker relations, and the embedding F;.,,, C Gry. ., is defined by the conditions
that some of the Pliicker coordinates are equal to each other.

We claim that the map &1, — Fii1.., constructed in Section 3.4, is a
morphism of algebraic varieties (that is, a birational map). Indeed, the coefficients
aij of Equation (2.1) are pull-backs of rational functions in Pliicker coordinates;
see formula (5.23). Moreover, all the determinants in these formulas are equal to 1
when restricted to & 11 ,. Conversely, the Pliicker coordinates restricted to Fistn
are polynomial functions in a; . This follows from formulas (5.20) and (5.21), and
from the fact that the Pliicker coordinates are polynomial in d; ;.

This completes the proof of Theorem 3.4.1, Part ().

8.2. Second isomorphism, when n and k + 1 are coprime. Let us prove
that the spaces of difference equations (2.1) with (anti)periodic solutions and the
moduli space of n-gons in RP* are isomorphic algebraic varieties, provided that
the period n and the dimension k + 1 have no common divisors.

A. We need to check that the map (3.11) is, indeed, a one-to-one
correspondence between &£, and Ciy,. Let us construct the inverse map
to (3.11). Consider a nondegenerate n-gon (v;) in RP*. Choose an arbitrary lift
(Vi) € R¥1 of the vertices. The k + 1 coordinates V", ..., V.*™" of the vertices
of this n-gon are solutions to some (and the same) difference equation (2.1) if
and only if the determinant (3.10) is constant (that is, independent of i). We thus
wish to define a new lift V; = ¢; \7, such that

titiz1 -t Vi, Vigrs oo, Vil = 1

This system of equations on ¢, ..., t, has a unique solution if and only if n and
k + 1 are coprime. Finally, two projectively equivalent n-gons correspond to the
same equation. Thus the map (3.11) is a bijection.

B. The structures of algebraic varieties are in full accordance, since the
projection from Gry;, to Ciy1., is given by the projection with respect to the
T"~!-action which is an algebraic action of an algebraic group.

Theorem 3.4.1, Part (ii) is proved.

8.3. Proof of Proposition 3.4.4. Consider finally the case where n and k + 1
have common divisors. Suppose that gcd(n, k + 1) = g # 1. In this case, the
constructed map is not injective, and its image is a subvariety in the moduli space
of polygons.
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As before, we assign an n-gon Vi,...,V, € R to a difference equation.
Given numbers #, .. ., t,—; whose product is 1, we can rescale
V_,~l—>t_,~m(,dqvj, j=1,...,l’l,
keeping the determinants |V;, Vi1, ..., Viy| intact. This action of (R*)?~! does

not affect the projection of the polygons to RP*. Thus the fiber of this projection
is at least ¢ — 1-dimensional.
To find the dimension of the fiber, we need to consider the system of equations

titi+l"'ti+k=1a i=1,...,l’l,

where, as usual, the indices are understood cyclically mod n. Taking logarithms,
this is equivalent to a linear system with the circulant matrix

11 ....110 ... 0 O
o1 ....111 0 ... 0

0 01 1 1 1
1 0 00 1 1 1
1 1 ....100 ... 0 1

with £ + 1 1s in each row and column.
The eigenvalues of such a matrix are given by the formula

l+oj+o;+-- 4o, j=01,....n-1,

where w; = exp(2mij/n) is nthroot of 1; see [10]. If j > 0, the latter sum equals

k+1
J 1

Cl)j—l

w

’

and it equals O if and only if j(k + 1) = 0 mod n. This equation has ¢ — 1
solutions; hence the circulant matrix has corank ¢ — 1. Proposition 3.4.4 is proved.

8.4. The SL,-case: relations to Teichmiiller theory. Now, we give a more
geometric description of the image of the map (3.11) in the case when k = 1.
If n is odd then this map is one-to-one, but if n is even then its image has
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codimension 1. To describe this image, we need some basic facts from decorated
Teichmiiller theory [36, 37].

Consider RP' as the circle at infinity of the hyperbolic plane. Then a polygon
in RP' can be thought of as an ideal polygon in the hyperbolic plane H?. A
decoration of an ideal n-gon is a choice of horocycles centered at its vertices.

Choose a decoration, and define the side length of the polygon as the signed
hyperbolic distance between the intersection points of the respective horocycles
with this side; the convention is that if the two consecutive horocycles are disjoint
then the respective distance is positive (one can always assume that the horocycles
are ‘small’ enough). Denoting the side length by §, the lambda length is defined
as A = exp (6/2).

Let n be even. Define the alternating perimeter length of an ideal n-gon: choose
a decoration and consider the alternating sum of the side lengths. The alternating
perimeter length of an ideal even-gon does not depend on the decoration:
changing a horocycle adds (or subtracts) the same length to two adjacent sides
of the polygon, and does not change the alternating sum.

PROPOSITION 8.4.1. The image of the map (3.11) with k = 1 and n even consists
of polygons with zero alternating perimeter length.

Proof. Let (v;) be a polygon in RP'. Let x; = [v;_;, v;, Vi41, Visn] be the cross-
ratio of the four consecutive vertices. Of six possible definitions of cross-ratio, we
use the following one:

(t) — 1)t — 14)
(h — )ty —1y)

This is the reciprocal of the formula in Equation (7.30).
We claim that a 2r-gon is in the image of (3.11) if and only if

]_[ x; = ]_[ x;. (8.36)

i odd i even

[t1, 1, 15, 4] =

Indeed, let (V;) C R? be an antiperiodic solution to the discrete Hill’s equation
Vim=aVi—V,,
with |V;, Vi 1| = 1. Then

|‘/I'713 ‘/I'+1||‘/i’ ‘/i+2|
= = CiCiy1-
Vit Vill Vi1, Vigal

i

Therefore (8.36) holds.
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Conversely, let (8.36) hold. Let (V;) be a lift of (v;) to R2 with |V;, Vi,| > 0. As
before, we want to renormalize these vectors so that the consecutive determinants
equal 1. This boils down to solving the system of equations t,-t,-+1|‘7i, ‘7,-+1| =1.
This system has a solution if and only if

[TV Vil = T Vi, Vil
i odd i even

On the other hand, one computes that

2

t

1= l_[i oddxi _ Hi even|Viv i+]|

l_[i even i 1_[,' odd | i i+1|

and the desired rescaling exists.
Finally, one relates cross-ratios with lambda lengths; see [36, 37]:

1
I}

Ai—LittAig2
[Vi1, Vi, Vig1, Vigol = ———————

Miotikigriva
Therefore ,
| = Hi odd Xi — <Hz even )"i,i+l> — eZ(*l)"t?i
ni even Xi Hi odd )‘i«i'H
It follows that the alternating perimeter length is zero. O
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