SPACES OF CONTINUOUS VECTOR FUNCTIONS AS DUALS

BY MICHAEL CAMBERN AND PETER GREIM

ABSTRACT. A well known result due to Dixmier and Grothendieck for spaces of continuous scalar-valued functions C(X), X compact Hausdorff, is that C(X) is a Banach dual if, and only if, X is hyperstonean. Moreover, for hyperstonean X, the predual of C(X) is strongly unique. Here we obtain a formulation of this result for spaces of continuous vector-valued functions. It is shown that if E is a Hilbert space and $C(X, (E, \sigma^*))$ denotes the space of continuous functions on X to E when E is provided with its weak * (= weak) topology, then $C(X, (E, \sigma^*))$ is a Banach dual if, and only if, Xis hyperstonean. Moreover, for hyperstonean X, the predual of $C(X, (E, \sigma^*))$ is strongly unique.

0. **Introduction.** Throughout this article the letters E, U, V will stand for Banach spaces while X and Y will denote compact Hausdorff spaces. C(X, E) denotes the space of continuous functions on X to E provided with the supremum norm. And, for a dual space E^* , we will denote by $C(X, (E^*, \sigma^*))$ the Banach space of continuous functions F on X to E^* when the latter space is provided with its weak * topology, again normed by $||F||_{\infty} = \sup_{x \in X} ||F(x)||$. If E is the one-dimensional field of scalars then we write C(X) for C(X, E).

The notation $U \cong V$ is used to indicate that the Banach spaces U and V are isometric. The interaction between elements of a Banach space and those of its dual is denoted by $\langle \cdot, \cdot \rangle$. If S is a subset of the Banach space E, then S^{\perp} denotes the subspace of E^* given by $S^{\perp} = \{e^* \in E^*: \langle e, e^* \rangle = 0 \text{ all } e \in S\}$. And if $S \subseteq E^*$ then we denote by S the set $\{e \in E: \langle e, e^* \rangle = 0 \text{ all } e^* \in S\}$. For any subset $S \subseteq E$, SP(S) will denote the closed linear span of S.

Given a positive measure space (Ω, Σ, μ) and $1 \le p \le \infty$, the Bochner space $L^p(\Omega, \Sigma, \mu, E)$ will be denoted by $L^p(\mu, E)$ when there is no danger of confusing the underlying measurable space involved. We refer to [6] for the definitions and properties of these spaces. Facts about vector measures used in this paper can be found in [6] and [7]. We will, in particular, rely upon I. Singer's characterization of $C(X, E)^*$ as the space of all regular Borel vector measures on X to E^* with finite variation |m|, [14], or [7, p. 387]. Throughout the article, scalar measures are denoted by μ while vector measures are denoted by m and n.

Received by the editors May 1, 1986, and, in revised form, January 14, 1987. AMS Subject Classification (1980): Primary 46E40; Secondary 46E15, 46G10. © Canadian Mathematical Society 1986.

If X is an extremally disconnected compact Hausdorff space we will call a nonnegative, extended real-valued Borel measure μ on X a category measure if

- (i) every nonempty clopen set has positive measure,
- (ii) every nowhere dense Borel set has measure zero, and
- (iii) every nonempty clopen set contains a nonempty clopen set with finite measure.

(In [1] and [3] measures having these properties are referred to as "perfect".) An extremally disconnected compact Hausdorff space on which a category measure is defined will be called *hyperstonean*. This is equivalent to the definition of hyperstonean space obtained via the use of normal measures, [13, p. 95] and [1, p. 26]. Since for hyperstonean X every Borel set B has a unique representation $B = C \Delta D$ with C clopen and D nowhere dense, [1, pp. 1-2] and [8, p. 160], it follows that the null sets for a category measure are precisely the nowhere dense Borel sets. Given a hyperstonean space X with category measure μ , property (iii), together with an application of Zorn's lemma, can be used to show that X is the Stone-Čech compactification of the disjoint union of clopen subsets X_{γ} , $X = \beta(\bigcup_{\gamma \in \Gamma} X_{\gamma})$, with $\mu(X_{\gamma}) < \infty$ for all γ , and for all Borel subsets B of X, $\mu(B) = \sum_{\gamma \in \Gamma} \mu(B \cap X_{\gamma})$.

We will say that a Banach dual U^* has strongly unique predual U if, given any isometry T of U^* onto a Banach dual V^* with predual V, then the adjoint mapping T^* carries the canonical image J(V) of V in V^{**} onto the canonical image $J_0(U)$ of U in U^{**} . (One easily verifies that, T being a surjective isometry, it is enough to require that $T^* \circ J(V)$ is contained in $J_0(U)$ in other words that T is $\sigma(U^*, U) - \sigma(V^*, V)$ continuous.) Now it is a well known result due to Dixmier [8] or [13, p. 95] that, when X is hyperstonean, C(X) is a dual space. And Grothendieck has provided a strong converse. If C(X) is a dual then X is hyperstonean; moreover, for hyperstonean X the predual of C(X) is strongly unique [11] or [13, p. 96]. The goal of this article is to provide an analogue of these results for spaces of continuous vector functions.

It is a result of Cembranos [4] that if X is any infinite compact Hausdorff space and E is infinite dimensional, then C(X, E) contains a complemented copy of c_0 , and hence C(X, E) is not even isomorphic to a dual space. However, when one deals with vector-valued functions, the space $C(X, (E^*, \sigma^*))$ with hyperstonean X arises repeatedly as a Banach dual. In [2] it is shown that, if E^* has the Radon-Nikodym property, then for any compact Hausdorff space Y the bidual of C(Y, E) is of the form $C(X, (E^{**}, \sigma^*))$ for a certain hyperstonean space X related to Y. More generally, in [3] it is shown that the space $C(X, (E^*, \sigma^*))$ with X hyperstonean arises as the dual of a space of vector measures, and that it is always a dual space – specifically, it is the dual of $L^1(\mu, E)$ for μ a category measure on X. In this paper we obtain vector analogues of the Dixmier-Grothendieck results for the space $C(X, (E, \sigma^*))$ when E is a Hilbert space. We wish to prove the following:

THEOREM. Let X be a compact Hausdorff space and E a Hilbert space. Then (a) $C(X, (E, \sigma^*))$ is a Banach dual if, and only if, X is hyperstonean. Furthermore, (b) if X is hyperstonean then the predual of $C(X, (E, \sigma^*))$ is strongly unique.

1. **Proof of (a).** As previously mentioned, the "if" part of the assertion is known, and holds for any Banach dual E [3, Theorem 1]. We need to establish the "only if" portion. For this we will need the following:

PROPOSITION. Let E be a Hilbert space and let m and n be finite regular Borel measures on X to E whose respective values are taken in two closed orthogonal subspaces of E. Then $||m||^2 + ||n||^2 \le ||m + n||^2$.

PROOF. Suppose that m takes its values in M and n its values in N where M and N are closed orthogonal subspaces of E. We may clearly assume that at least one of m and n is distinct from the zero measure. Choose a sequence $\{F_k\} \subseteq C(X, E)$, with $||F_k||_{\infty} \leq 1$ for all k, such that the F_k take their values in M and $\int F_k dm \to ||m||$ as $k \to \infty$. Then choose a sequence $\{G_k\} \subseteq C(X, E)$ taking values in N such that $||G_k||_{\infty} \leq 1$ for all k and $\int G_k dn \to ||n||$. Define $H_k = [1/(||m||^2 + ||n||^2)^{1/2}](||m||F_k + ||n||G_k)$. Then $||H_k||_{\infty} \leq 1$ for all k and we thus have

$$||m + n|| \ge \left| \int H_k d(m + n) \right|$$

$$= \left[\frac{1}{(||m||^2 + ||n||^2)^{1/2}} \right] \left[||m|| \int F_k dm + ||n|| \int G_k dn \right]$$

$$\to (||m||^2 + ||n||^2)^{1/2} \text{ as } k \to \infty.$$

In what follows we assume that V is a Banach space such that there exists an isometry T mapping $C(X, (E, \sigma^*))$ onto V^* . J denotes the canonical injection of V into V^{**} .

We let e be an element of E with ||e|| = 1 and let S(e) denote the subspace of $C(X, (E, \sigma^*))$ defined by $S(e) = \{f \cdot e : f \in C(X)\}$. If we can show that T(S(e)) is weak * closed in V^* then T(S(e)) is dual space [12, p. 212], and, since C(X) is obviously isometric to T(S(e)), the fact that X is hyperstonean would thus follow from what is known about spaces of continuous scalar-valued functions.

Hence suppose, to the contrary, that T(S(e)) is not closed in the weak * topology of V^* . Then by the Krein-Smulian theorem [9, p. 429] there would be a net $\{f_{\alpha}\}\subseteq C(X)$ with $||f_{\alpha}||_{\infty} \leq 1$ for all α such that $T(f_{\alpha}\cdot e)$ tends weak * to an element $v^*\in V^*$ with $v^*\notin T(S(e))$. Thus $\langle f_{\alpha}\cdot e, T^*\circ J(v)\rangle=\langle v, T(f_{\alpha}\cdot e)\rangle$ $\to \langle v, v^*\rangle=\langle T^{-1}(v^*), T^*\circ J(v)\rangle$ for all $v\in V$.

Now $T^{-1}(v^*)$ is an element $F \in C(X, (E, \sigma^*))$ with $||F||_{\infty} \le 1$ and $F \notin S(e)$ so that there exist an element $\phi \in E$ with $||\phi|| = 1$ and an element $x \in X$ such that $\langle e, \phi \rangle = 0$ and $\langle F(x), \phi \rangle \neq 0$. Define the element $g \in C(X)$ by $g(x) = \langle F(x), \phi \rangle$ and let $G = F - g \cdot \phi$. Then there is a $v^{**} \in V^{**}$ with

 $||v^{**}|| = 1$ such that $|\langle g \cdot \phi, T^*(v^{**}) \rangle| = ||g||_{\infty}$ and $\langle G, T^*(v^{**}) \rangle = 0$. (Just pick any $v^{**} \in V^{**}$ such that $T^*(v^{**})$ is equal to the vector measure $\phi \cdot \mu_{\chi}$, where $\chi \in X$ is such that $|g(\chi)| = ||g||_{\infty}$.)

Next define the positive numbers δ and ϵ by

(1)
$$\delta = (1 - ||g||_{\infty}^2 / 4)^{1/2}$$

and

(2)
$$\epsilon = \max \left\{ \delta, \frac{3}{4} \right\}.$$

Since the image under J of the unit ball in V is weak * dense in the unit ball of V^{**} , we can find a $v \in V$ with $||v|| \le 1$ such that

$$|\langle g \cdot \phi, T^* \circ J(v) \rangle| > \epsilon \cdot ||g||_{\infty}$$

and

$$|\langle G, T^* \circ J(v) \rangle| < ||g||_{\infty}/4.$$

Then

(5)
$$|\langle F, T^* \circ J(v) \rangle| \ge |\langle g \cdot \phi, T^* \circ J(v) \rangle|$$

$$- |\langle G, T^* \circ J(v) \rangle| > ||g||_{\infty}/2$$

by (3), (4) and (2).

Now as $T^* \circ J(v)$ is an element of $C(X, (E, \sigma^*))^*$, its restriction to C(X, E) is represented by a regular Borel vector measure m_0 on X to E with $||m_0|| \le ||T^* \circ J(v)|| \le 1$. Let P be the orthogonal projection of E onto $\overline{sp}(\{\phi\})$ and define the vector measures m and n by $m = Pm_0$ and $n = (I - P)m_0$. Then let \overline{m}_0 denote any Hahn-Banach extension of m_0 to an element of $C(X, (E, \sigma^*))^*$ and let $\phi = T^* \circ J(v) - \overline{m}_0$, so that $T^* \circ J(v) = \overline{m}_0 + \phi$ with $\phi \in C(X, E)^{\perp}$.

Since $\langle g \cdot \phi, T^* \circ J(v) \rangle = \int (g \cdot \phi) dm$, it follows from (3) that $||m|| > \epsilon$. Hence, as $||m + n|| = ||m_0|| \le 1$, it is a consequence of (2), (1) and the Proposition that $||n|| < ||g||_{\infty}/2$. Thus for all α we have $\langle f_{\alpha} \cdot e, T^* \circ J(v) \rangle = \int (f_{\alpha} \cdot e) dn$ which has modulus less than $||g||_{\infty}/2$, whereas, by (5), $|\langle F, T^* \circ J(v) \rangle| > ||g||_{\infty}/2$. This contradicts our assumption that $\langle f_{\alpha} \cdot e, T^* \circ J(v) \rangle \to \langle F, T^* \circ J(v) \rangle$, and completes the proof that X is hyperstonean.

2. **Proof of (b).** The proof of part (b) will be established by means of a sequence of lemmas. Throughout, μ will denote a fixed category measure on X.

LEMMA 1. Let E^* be any Banach dual with the Radon-Nikodym property. If $G \in C(X, (E^*, \sigma^*))$ then there exists an open dense set $O(=O_G)$ of X such that G is continuous from O to E^* when the latter space is given its norm topology.

PROOF. X is of the form $X = \beta(\bigcup_{\gamma \in \Gamma} X_{\gamma})$, where the X_{γ} are pairwise disjoint clopen sets with $\mu(X_{\gamma}) < \infty$ for all γ and $\mu(B) = \sum_{\gamma \in \Gamma} \mu(B \cap X_{\gamma})$ for all Borel sets B. We denote by μ_{γ} the restriction of μ to the Borel sets of X_{γ} , and by G_{γ} the restriction of G to X_{γ} .

As mentioned in the introduction, the dual of $L^1(\mu_\gamma, E)$ is $C(X_\gamma, (E^*, \sigma^*))$. Here the interaction between elements $F_0 \in L^1(\mu_\gamma, E)$ and $G_0 \in C(X_\gamma, (E^*, \sigma^*))$ is given by $\langle F_0, G_0 \rangle = \int \langle F_0(x), G_0(x) \rangle d\mu_\gamma(x)$, [3, Theorem 1]. And it is known that there exists an isometry of $L^\infty(\mu_\gamma, E^*)$ into $C(X_\gamma, (E^*, \sigma^*))$, [10, Proposition 2.4]. But since E^* has the Radon-Nikodym property it follows (as μ_γ is a finite measure) that $L^\infty(\mu_\gamma, E^*)$ is also the dual of $L^1(\mu_\gamma, E)$, [6, p. 98]. Thus the isometry of Proposition 2.4 in [10] is surjective. In particular, elements of $C(X_\gamma, (E^*, \sigma^*))$ are μ_γ -measurable. We note for future reference that, as a consequence, the restriction of a $G \in C(X, (E, \sigma^*))$ to a σ -finite subset of X is μ -measurable.

Thus as countably valued functions are dense in $L^{\infty}(\mu_{\gamma}, E^*)$ [6, p. 97], for each positive integer k we can find a countably valued measurable function $G_{\gamma,k}$ on X_{γ} such that ess $\sup \|G_{\gamma}(x) - G_{\gamma,k}(x)\| < 1/k$. Moreover, since every measurable subset of X_{γ} differs from a clopen set by a set of measure zero [1, p. 1] we may assume that $G_{\gamma,k} = \sum_{j=1}^{\infty} e_{\gamma,k,j} \chi_{A_{\gamma,k,j}}$, where the $A_{\gamma,j,k}$ are pairwise disjoint clopen sets with $(\bigcup_{j=1}^{\infty} A_{\gamma,k,j})^{-} = X_{\gamma}$. Note that since $G_{\gamma,k}$ is norm-continuous on $\bigcup_{j=1}^{\infty} A_{\gamma,k,j}$ and since G_{γ} is weak * continuous, we must have $\|G_{\gamma}(x) - G_{\gamma,k}(x)\| \le 1/k$ for all $x \in \bigcup_{j=1}^{\infty} A_{\gamma,k,j}$. Also note that $C_{\gamma,k} = X_{\gamma} - \bigcup_{j=1}^{\infty} A_{\gamma,k,j}$ is nowhere dense, and thus $\mu(C_{\gamma,k}) = 0$.

Now let $V_k = \bigcup_{\gamma \in \Gamma} \bigcup_{j=1}^{\infty} A_{\gamma,k,j}$ and define G_k on V_k by $G_k = G_{\gamma,k}$ on $\bigcup_{j=1}^{\infty} A_{\gamma,k,j}$. Then G_k is norm-continuous on V_k and $X - V_k$ is nowhere dense. It follows that the set $N = \bigcup_{k=1}^{\infty} (X - V_k)$ is nowhere dense. (Here again we use the fact that a set of first category in a hyperstonean space is nowhere dense [8, p. 160].) Thus $O = X - \bar{N}$ is an open dense subset of X on which G is the uniform limit of the norm-continuous functions $G_k|_{O}$.

Throughout the remainder of this section E will denote a Hilbert space while V, V^* , T and J will be as given in Section 1. J_0 denotes the canonical injection of $L^1(\mu, E)$ into $C(X, (E, \sigma^*))^*$.

LEMMA 2. For $v \in V$, $e \in E$ and $f \in C(X)$ we have $\langle f \cdot e, T^* \circ J(v) \rangle = \int f d\mu_{e,v}$ for some normal regular Borel measure $\mu_{e,v}$ on X.

PROOF. We first note that if U is any weak * closed subspace of V^* , then U is isometric to $(V/^{\perp}U)^*$ under the linear map $A:U \to (V/^{\perp}U)^*$ defined by $\langle [v], Au \rangle = \langle v, u \rangle$ for $u \in U, v \in V$. (Here, for $v \in V, [v]$ denotes the equivalence class of v in $V/^{\perp}U$.) For since U is weak * closed, $U = (^{\perp}U)^{\perp}$ by the bipolar theorem, and our assertion is thus contained in [15, p. 227, problem 5], or [5, p. 29, Lemma 1].

We may clearly assume that ||e||=1, and, as in the previous section, we let $S(e)=\{f\cdot e: f\in C(X)\}$. We have seen that T(S(e)) is a weak * closed subspace of V^* . By the first paragraph of this proof the map sending $u=T(f\cdot e)$ into $\langle [v],Au\rangle = \langle v,T(f\cdot e)\rangle$ is weak * continuous on the dual space T(S(e)). Since this dual is the isometric image of C(X) under $f\to T(f\cdot e)$, and every isometry between C(X) and a dual space is continuous with respect to the weak * topologies of these spaces by Grothendieck's result, it follows that the map $f\to T(f\cdot e)\to \langle v,T(f\cdot e)\rangle$ is weak * continuous. Thus, again by Grothendieck's theorem, $\langle f\cdot e,T^*\circ J(v)\rangle=\int fd\mu_{e,v}$, where $\mu_{e,v}$ is a normal regular Borel measure on X.

Henceforth $\{e_{\alpha}: \alpha \in A\}$ will denote a fixed orthonormal basis for E. For simplicity of notation given α , $\alpha_j \in A$ we will denote by $\mu_{\alpha,\nu}$ the normal regular Borel measure determined via Lemma 2 by $\langle f \cdot e_{\alpha}, T^* \circ J(\nu) \rangle$, $f \in C(X)$, and by $\mu_{j,\nu}$ the measure determined by $\langle f \cdot e_{\alpha}, T^* \circ J(\nu) \rangle$.

LEMMA 3. (a) Given $v \in V$ then $\mu_{\alpha,v} = 0$ except for those α belonging to a countable subset K_v of A.

(b) If $K_{\nu} = \{e_{\alpha_{j}}: j = 1, 2, \ldots\}$ then the vector measures m_{N} defined by $m_{N} = \sum_{j=1}^{N} e_{\alpha_{j}} \cdot \mu_{j,\nu}$ constitute a Cauchy sequence in $C(X, E)^{*}$ and thus converge to an $m_{\nu} \in C(X, E)^{*}$ with $m_{\nu} \ll \mu$.

PROOF. (a): Let k be any fixed positive integer and suppose that there are n indices $\alpha_1,\ldots,\alpha_n\in A$ with $||\mu_{j,\nu}||>1/k$, $1\leq j\leq n$. For each such j choose $f_j\in C(X)$ with $||f_j||_{\infty}=1$ and $\int f_jd\mu_{j,\nu}$ a real number greater than 1/k. Then $||(f_1\cdot e_{\alpha_1}+\ldots+f_n\cdot e_{\alpha_n})/\sqrt{n}||_{\infty}\leq 1$ so that

 $||v|| = ||T^* \circ J(v)|| \ge \langle (f_1 e_{\alpha_1} + \ldots + f_n e_{\alpha_n}) / \sqrt{n}, T^* \circ J(v) \rangle > \sqrt{n}/k$ and hence $n < ||v||^2 \cdot k^2$ from which (a) follows.

(b): Suppose, to the contrary, that $\{m_N:N=1,\,2,\ldots\}$ is not a Cauchy sequence. Then there is an $\epsilon>0$ such that for each positive integer M there exists N greater than M with $||m_N-m_M||>2\epsilon$. Choose $N_1>0$ such that $||m_{N_1}||>\epsilon$ and suppose that $N_2< N_3<\ldots< N_p$ have been chosen with $||m_{N_k}-m_{N_{k-1}}||>\epsilon$ for $k=2,\ldots,p$. For simplicity of notation we write e_j for e_{α_j} and set $N_0=0$. Then for each $k,0\leq k\leq p-1$ take $H_{k+1}\in C(X,E)$ such that the range of H_{k+1} lies in $\overline{sp}(\{e_{N_k+1},\ldots,e_{N_{k+1}}\})$, $||H_{k+1}||_{\infty}\leq 1$, and such that $\langle H_1,m_{N_1}\rangle$ and $\langle H_k,m_{N_k}-m_{N_{k-1}}\rangle$, $2\leq k\leq p$, are each real numbers greater than ϵ . Thus

$$\left\| (1/\sqrt{p}) \sum_{k=1}^{P} H_{k} \right\|_{\infty} \leq 1 \text{ but } \left\langle (1/\sqrt{p}) \sum_{k=1}^{P} H_{k}, T^{*} \circ J(v) \right\rangle$$

$$= (1/\sqrt{p}) \left[\langle H_{1}, m_{N_{1}} \rangle + \langle H_{2}, m_{N_{2}} - m_{N_{1}} \rangle + \dots + \langle H_{p}, m_{N_{p}} - m_{N_{p-1}} \rangle \right] > \sqrt{p} \cdot \epsilon$$

which, for sufficiently large p, will be greater than $||T^* \circ J(v)|| = ||v||$. This contradiction shows that the m_N do indeed form a Cauchy sequence in $C(X, E)^*$ and hence converge to an $m_v \in C(X, E)^*$. Since m_N is absolutely continuous with respect to μ for each N, so then is m_v . This completes the proof.

Now given $v \in V$ the restriction of $T^* \circ J(v)$ to C(X, E) is represented by a regular Borel vector measure n_v on X to E with $||n_v|| \le ||T^* \circ J(v)|| = ||v||$. Moreover, for all $e \in E$ and $f \in C(X)$ it is clear that

$$\langle f \cdot e, n_v \rangle = \langle f \cdot e, T^* \circ J(v) \rangle = \langle f \cdot e, m_v \rangle.$$

It thus follows that n_v and m_v agree on $C(X) \otimes E$ which is dense in C(X, E) [7, p. 375], and so $n_v = m_v$. The elements of $C(X, (E, \sigma^*))$ are integrable with respect to m_v , for they are μ -measurable on μ - σ -finite sets as mentioned in the proof of Lemma 1, and as $|m_v|$ is finite, the μ -continuous measure m_v has μ - σ -finite support. Therefore $F \to \int F dm_v$ defines a continuous linear functional on $C(X, (E, \sigma^*))$. Then $\phi_v = T^* \circ J(v) - m_v \in C(X, (E, \sigma^*))^*$ with $\phi_v \in C(X, E)^\perp$ and we have $T^* \circ J(v) = m_v + \phi_v$. Whenever we write, for $v \in V$, $T^* \circ J(v) = m_v + \phi_v$ it will be understood that m_v is the vector measure which is determined by Lemma 3 and is the restriction of $T^* \circ J(v)$ to C(X, E), and that $\phi_v \in C(X, E)^\perp$.

LEMMA 4. For $v \in V$ we have $T^* \circ J(v) = G_v d\mu$ for some $G_v \in L^1(\mu, E)$ with $||G_v||_1 = ||v||$. Consequently $V \cong L^1(\mu, E)$ under the mapping $J_0^{-1} \circ T^* \circ J$.

PROOF. We have established that for $v \in V$ one has $T^* \circ J(v) = m_v + \phi_v$, and we want to show that $\phi_v = 0$. For if this is established we would have $T^* \circ J(v) = m_v$, and, since E has the Radon-Nikodym property, [6, p. 218], this latter element is of the form $G_v d\mu$ for some $G_v \in L^1(\mu, E)$ with $||G_v||_1 = ||m_v|| = ||v||$. We would thus have established that $T^* \circ J$ embeds V isometrically into $J_0(L^1(\mu, E))$, which, as previously noted, shows that $T^* \circ J$ maps V onto $J_0(L^1(\mu, E))$.

Thus, to show that $\phi_v = 0$ for each $v \in V$, take any $F \in C(X, (E, \sigma^*))$ and define $v_F^* \in V^*$ by $\langle v, v_F^* \rangle = \langle F, m_v \rangle$, $v \in V$. Then since v_F^* is a continuous linear functional on V there exists an $H_F \in C(X, (E, \sigma^*))$ with $||H_F||_{\infty} = ||v_F^*|| \le ||F||_{\infty}$ and $\langle v, v_F^* \rangle = \langle v, T(H_F) \rangle$. If we can show that $F = H_F$ we would have, for $v \in V$,

$$\langle F, m_{\nu} \rangle = \langle \nu, \nu_F^* \rangle = \langle \nu, T(H_F) \rangle = \langle \nu, T(F) \rangle$$

= $\langle F, T^* \circ J(\nu) \rangle = \langle F, m_{\nu} \rangle + \langle F, \phi_{\nu} \rangle$,

so that $\langle F, \phi_{\nu} \rangle = 0$. Since this would be true for all $F \in C(X, (E, \sigma^*))$, it would follow that $\phi_{\nu} = 0$.

Thus suppose, to the contrary, that $F \neq H_F$ and let $\delta = ||F - H_F||_{\infty}$. Then choose $\epsilon > 0$ such that

$$\delta(1-\epsilon) > \delta/2,$$

and

$$(7) 5\epsilon \cdot ||F||_{\infty} < \delta/2.$$

We know that $F - H_F$ is norm-continuous on an open dense subset O_1 of X and we have $\sup_{x \in O_1} ||F(x) - H_F(x)|| > \delta(1 - \epsilon)$. (Note that $||F(\cdot)||$ is lower semicontinuous on X.) Take a clopen subset C of O_1 such that $\sup_{x \in C} ||F(x) - H_F(x)|| > \delta(1 - \epsilon)$. Then $\chi_C(F - H_F) \in C(X, E)$ and $||\chi_C(F - H_F)||_{\infty} > \delta(1 - \epsilon)$.

Choose $v \in V$ with $||v|| \le 1$ such that $|\langle v, T(\chi_C(F - H_F)) \rangle| = |\langle \chi_C(F - H_F), T^* \circ J(v) \rangle| > \delta(1 - \epsilon)$. If $T^* \circ J(v) = m_v + \phi_v$ then $\langle \chi_C(F - H_F), \phi_v \rangle = 0$ and $|m_v|(C) > 1 - \epsilon$, hence $|m_v|(X - C) < \epsilon$. We would next like to show that $||\phi_v||$ is small.

To this end take $G \in C(X, (E, \sigma^*))$ with $||G||_{\infty} \le 1$ such that $\langle G, \phi_{\nu} \rangle > ||\phi_{\nu}|| - \epsilon$. Now G is norm-continuous on an open dense subset $O_2 \subseteq X$ and since $|m_{\nu}|(X - O_2) = 0$, we can find a clopen set $D \subseteq O_2$ with $|m_{\nu}|(D) > 1 - \epsilon$, hence $|m_{\nu}|(X - D) < \epsilon$. Thus we can take an $F_0 \in C(X, E)$ such that the support of F_0 is contained in D, $||F_0||_{\infty} \le 1$, and $\langle F_0, m_{\nu} \rangle$ is real and greater than $1 - \epsilon$. Then $F_0 + G - \chi_D G \in C(X, (E, \sigma^*))$ with $||F_0 + G - \chi_D G||_{\infty} \le 1$. Hence, (noting that $\langle \chi_D G, \phi_{\nu} \rangle = 0$ as $\chi_D G$ is norm-continuous), we have

$$1 \ge |\langle F_0 + G - \chi_D G, T^* \circ J(v) \rangle| = |\langle F_0 + G - \chi_D G, m_v + \phi_v \rangle|$$

$$\ge \langle F_0, m_v \rangle + \langle G, \phi_v \rangle - |\langle G - \chi_D G, m_v \rangle|$$

$$> 1 - \epsilon + ||\phi_v|| - \epsilon - |m_v|(X - D) > 1 + ||\phi_v|| - 3\epsilon.$$

Therefore $||\phi_{\nu}|| < 3\epsilon$.

We thus have

$$\int \chi_{C}Fdm_{\nu} + \int_{X-C}Fdm_{\nu} = \langle F, m_{\nu} \rangle$$

$$= \langle \nu, \nu_{F}^{*} \rangle = \langle \nu, T(H_{F}) \rangle = \langle H_{F}, T^{*} \circ J(\nu) \rangle$$

$$= \int \chi_{C}H_{F}dm_{\nu} + \int_{X-C}H_{F}dm_{\nu} + \langle H_{F}, \phi_{\nu} \rangle.$$

It follows that

$$\langle \chi_C(F - H_F), T^* \circ J(v) \rangle = \langle \chi_C(F - H_F), m_v \rangle = \int \chi_C(F - H_F) dm_v$$

= $\int_{X-C} H_F dm_v + \langle H_F, \phi_v \rangle - \int_{X-C} F dm_v$.

But the modulus of the quantity on the left is greater than $\delta(1 - \epsilon) > \delta/2$ by

- (6), whereas the modulus of the quantity on the right is less than $5\epsilon \cdot ||F||_{\infty} < \delta/2$ by (7). This contradiction completes the proof.
- 3. **Remarks and Problems.** Obviously our theorem is false if we attempt to replace $C(X, (E, \sigma^*))$ by $C(X, (E^*, \sigma^*))$ for an arbitrary (even separable) Banach dual E^* . For if X is a one-point space then $C(X, (E^*, \sigma^*)) \cong E^*$. Thus if E^* fails to have a unique predual, e.g. if $E^* = \ell^1$, then the same may be true of $C(X, (E^*, \sigma^*))$. However one may ask whether we can replace Hilbert space 1E in our theorem by a suitable class of Banach duals E^* properly containing Hilbert space. Ideally, can one characterize the class of Banach duals E^* for which our theorem holds with E replaced by E^* ? In particular, if E^* has the Radon-Nikodym property and strongly unique predual then, for X hyperstonean, is the predual of $C(X, (E^*, \sigma^*))$ also strongly unique?

REFERENCES

- 1. E. Behrends, et al., L^P -structure in real Banach spaces, Lecture Notes in Mathematics 613, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- 2. M. Cambern and P. Greim, *The bidual of C(X, E)*, Proc. Amer. Math. Soc. **85** (1982), pp. 53-58.
- 3. M. Cambern and P. Greim, *The dual of a space of vector measures*, Math. Z. **180** (1982), pp. 373-378.
- 4. P. Cembranos, C(K, E) contains a complemented copy of c_0 , Proc. Amer. Math. Soc. **91** (1984), pp. 556-558.
- 5. M. M. Day, *Normed linear spaces*, 3rd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1973
- 6. J. Diestel and J. J. Uhl, Jr., *Vector measures*, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
 - 7. N. Dinculeanu, Vector measures, Pergamon Press, New York, 1967.
- 8. J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), pp. 151-182.
 - 9. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- 10. P. Greim, Banach spaces with the L^1 -Banach-Stone property, Trans. Amer. Math. Soc. 287 (1985), pp. 819-828.
- 11. A. Grothendieck, Une caractérisation vectorielle métrique des espaces L¹, Canadian J. Math. 7 (1955), pp. 552-561.
- 12. R. B. Holmes, Geometric functional analysis and its applications, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- 13. H. E. Lacey, *The isometrical theory of classical Banach spaces*, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- 14. I. Singer, Linear functionals on the space of continuous mappings of a compact space into a Banach space, Rev. Roumaine Math. Pures Appl. 2 (1957), pp. 301-315. (Russian)
 - 15. A. E. Taylor, Introduction to functional analysis, John Wiley and Sons, New York, 1958.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
SANTA BARBARA, CA 93106

Department of Mathematics The Citadel Charleston, SC 29409