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SPACES OF CONTINUOUS VECTOR FUNCTIONS AS DUALS

BY
MICHAEL CAMBERN AND PETER GREIM

ABSTRACT. A well known result due to Dixmier and Grothen-
dieck for spaces of continuous scalar-valued functions C(X), X
compact Hausdorff, is that C(X) is a Banach dual if, and only if, X'is
hyperstonean. Moreover, for hyperstonean X, the predual of C(X)
is strongly unique. Here we obtain a formulation of this result for
spaces of continuous vector-valued functions. It is shown that if E is
a Hilbert space and C(X, (E, o*)) denotes the space of continuous
functions on X to E when E is provided with its weak * (= weak)
topology, then C(X, (E, 0*)) is a Banach dual if, and only if, X
is hyperstonean. Moreover, for hyperstonean X, the predual of
C(X, (E, 6%)) is strongly unique.

0. Introduction. Throughout this article the letters E, U, V' will stand for
Banach spaces while X and Y will denote compact Hausdorff spaces. C(X, E)
denotes the space of continuous functions on X to E provided with the
supremum norm. And, for a dual space E*, we will denote by C(X, (E*, 6*))
the Banach space of continuous functions ¥ on X to E* when the latter space is
provided with its weak * topology, again normed by ||F||,, = sup, ¢y ||F(x) |].
If E is the one-dimensional field of scalars then we write C(X) for C(X, E).

The notation U = V is used to indicate that the Banach spaces U and V are
isometric. The interaction between elements of a Banach space and those of its
dual is denoted by (-, -). If S is a subset of the Banach space E, then S+ denotes
the subspace of E* given by S* = {e* € E*:(e, e*) = O all e € S}. And if
S C E* then we denote by S the set {e € E:{e,e*) = 0O all e* € S}. For any
subset S C E, sp(S) will denote the closed linear span of S.

Given a positive measure space (£, 2, p) and 1 = p = oo, the Bochner space
I’(Q, 3, p, E) will be denoted by I (u, E) when there is no danger of confusing
the underlying measurable space involved. We refer to [6] for the definitions
and properties of these spaces. Facts about vector measures used in this paper
can be found in [6] and [7]. We will, in particular, rely upon I. Singer’s charac-
terization of C(X, E)* as the space of all regular Borel vector measures on X to
E* with finite variation |m|, [14], or [7, p. 387]. Throughout the article, scalar
measures are denoted by p while vector measures are denoted by m and n.
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If X is an extremally disconnected compact Hausdorff space we will call a
nonnegative, extended real-valued Borel measure u on X a category measure if
(1) every nonempty clopen set has positive measure,
(1) every nowhere dense Borel set has measure zero, and
(ii1) every nonempty clopen set contains a nonempty clopen set with finite
measure.

(In [1] and [3] measures having these properties are referred to as “perfect”.) An
extremally disconnected compact Hausdorff space on which a category measure
is defined will be called hyperstonean. This is equivalent to the definition of
hyperstonean space obtained via the use of normal measures, [13, p. 95] and
[1, p. 26]. Since for hyperstonean X every Borel set B has a unique representa-
tion B = C A D with C clopen and D nowhere dense, [1, pp. 1-2] and [8, p. 160],
it follows that the null sets for a category measure are precisely the nowhere
dense Borel sets. Given a hyperstonean space X with category measure p,
property (iii), together with an application of Zorn’s lemma, can be used to
show that X is the Stone-Cech compactification of the disjoint union of clopen
subsets X,, X = B(U, er X,), with p(X,) < oo for all v, and for all Borel subsets
B of X, (B) = Zyer wB N X))

We will say that a Banach dual U* has strongly unique predual U if, given any
isometry T of U* onto a Banach dual V* with predual V, then the adjoint
mapping T* carries the canonical image J(V) of V in V** onto the canonical
image Jo(U) of U in U**. (One easily verifies that, 7 being a surjective isometry,
it is enough to require that 7* o J (V') is contained in Jy(U) — in other words that
T is o(U*, U) — o(V*, V) continuous.) Now it is a well known result due to
Dixmier [8] or [13, p. 95] that, when X is hyperstonean, C(X) is a dual space.
And Grothendieck has provided a strong converse. If C(X) is a dual then X is
hyperstonean; moreover, for hyperstonean X the predual of C(X) is strongly
unique [11] or [13, p. 96]. The goal of this article is to provide an analogue of
these results for spaces of continuous vector functions.

It is a result of Cembranos [4] that if X is any infinite compact Hausdorff
space and E is infinite dimensional, then C(X, E) contains a complemented
copy of ¢,, and hence C(X, E) is not even isomorphic to a dual space. However,
when one deals with vector-valued functions, the space C(X, (E*, o*)) with
hyperstonean X arises repeatedly as a Banach dual. In [2] it is shown that, if E*
has the Radon-Nikodym property, then for any compact Hausdorff space Y
the bidual of C(Y, E) is of the form C(X, (E**, o*)) for a certain hyper-
stonean space X related to Y. More generally, in [3] it is shown that the space
C(X, (E*, o*)) with X hyperstonean arises as the dual of a space of vector
measures, and that it is always a dual space — specifically, it is the dual of
Ll(p, E) for p a category measure on X. In this paper we obtain vector ana-
logues of the Dixmier-Grothendieck results for the space C(X, (E, 6*) ) when E
is a Hilbert space. We wish to prove the following:
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THEOREM. Let X be a compact Hausdorff space and E a Hilbert space. Then
(a) C(X, (E, 6*)) is a Banach dual if, and only if, X is hyperstonean. Furthermore,
(b) if X is hyperstonean then the predual of C(X, (E, 6*)) is strongly unique.

1. Proof of (a). As previously mentioned, the “if” part of the assertion is
known, and holds for any Banach dual E [3, Theorem 1]. We need to establish
the “only if”” portion. For this we will need the following:

PROPOSITION. Let E be a Hilbert space and let m and n be finite regular Borel
measures on X to E whose respective values are taken in two closed orthogonal
subspaces of E. Then ml? + lnll> = |jm + nl|%.

PrOOF. Suppose that m takes its values in M and n its values in N where M
and N are closed orthogonal subspaces of E. We may clearly assume that at
least one of m and n is distinct from the zero measure. Choose a sequence
{F,} € CX, E), with [|F|lo, = 1 for all k, such that the F) take their values
in M and [ F,dm — ||m|| as k — co. Then choose a sequence {G,} S C(X, E)
taking values in N such that ||G,[|,, = 1 for all k and f G dn — ||n||. Define
H, = [1/(llml? + lInl»"2)(lIml|E, + |InllG,). Then [[H,||o, = 1 for all k and
we thus have

v

IfH,\.d(m + n)
1/l + Pt [ Fm + il | Goa]

= (mll* + [|n]»)"? as k — co.

llm + nl|

I

In what follows we assume that V' is a Banach space such that there exists an
isometry 7 mapping C(X, (E, *) ) onto V*. J denotes the canonical injection of
V into V**.

We let e be an element of E with |le]| = 1 and let S(e) denote the subspace of
C(X, (E, 0*)) defined by S(e) = {f - e:f € C(X)}. If we can show that
T(S(e)) is weak * closed in V* then T(S(e)) is dual space [12, p. 212], and,
since C(X) is obviously isometric to T(S(e) ), the fact that X is hyperstonean
would thus follow from what is known about spaces of continuous scalar-valued
functions.

Hence suppose, to the contrary, that T(S(e)) is not closed in the weak *
topology of V'*. Then by the Krein-Smulian theorem [9, p- 429] there would be a
net { £,} € C(X) with || £ llo = 1 for all & such that T(f, - ) tends weak * to an
element v* € V* withv* & T(S(e)). Thus (f, - e, T* o J(v) ) = (v, T(f, " €))
— (v, v¥) = (T \v*), T* o J(v) ) for all v € V.

Now T~ '(v*) is an element F € C(X, (E, 0*) ) with ||F|l,, = 1 and F & S(e)
so that there exist an element ¢ € E with ||¢|| = 1 and an element x € X such
that (e, ¢) = 0 and (F(x), ¢) # 0. Define the element g € C(X) by
g(x) = (F(x), ¢) and let G = F — g - ¢. Then there is a v** & V** with
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[Iv**|] = 1 such that | (g - ¢, T*(v**) ) | = |lgllc and (G, T*(»**) ) = 0. (Just
pick any v** € V** such that T*(v**) is equal to the vector measure ¢ - p,,
where x € X is such that |g(x) | = |lgll.)

Next define the positive numbers 8 and € by

$)) 8 = (1 — llgll2/a)'?

and

3
2 = 5, —1q.
2) € max{ 4]

Since the image under J of the unit ball in V is weak * dense in the unit ball of
V** we can find a v € V with ||v|| = 1 such that

3 (g ¢ T*oJ() )| > e liglleo
and

4 <G, T* o J() ) | < llgllee’4.
Then

(%) [KF,T*oJ() )| = [(g 9, T* 0 J() )|

— (G, T* o J() ) | > llgllos/2

by (3), (4) and (2).

Now as T* o J(v) is an element of C(X, (E, *) )*, its restriction to C(X, F)
is represented by a regular Borel vector measure m; on X to E with ||mg|| =
[|T* o J(v) || = 1. Let P be the orthogonal projection of E onto sp( {¢} ) and
define the vector measures m and n by m = Pmy and n = (I — P)my,.
Then let m, denote any Hahn-Banach extension of m; to an element of
C(X, (E, 0*))* and let ¢ = T* o J(v) — iy, so that T* o J(v) = iy + &
with ¢ € C(X, E)* .

Since (g - ¢, T* o J(v) ) = [ (g - ¢)dm, it follows from (3) that |lm|| > e
Hence, as |lm + n|| = |lmy|| = 1, it is a consequence of (2), (1) and the
Proposition that ||n|| < [Igll./2. Thus for all « we have (f, - e, T* o J(v) ) =
[ (f, - e)dn which has modulus less than |[lgll./2, whereas, by (5),
[(F, T* o J(v))| > llgllw/2. This contradicts our assumption that
{fo - e, T* o J(v) ) = (F, T* o J(v) ), and completes the proof that X is
hyperstonean.

2. Proof of (b). The proof of part (b) will be established by means of a se-
quence of lemmas. Throughout, p will denote a fixed category measure on X.

LEMMA 1. Let E* be any Banach dual with the Radon-Nikodym property. If
G € C(X, (E*, 0*)) then there exists an open dense set O(= O;) of X such that G
is continuous from O to E* when the latter space is given its norm topology.
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ProOF. X is of the form X = B(U cr X,), where the X, are pairwise disjoint
clopen sets with p(X,) < oo for all y and w(B) = Zyep w(B N X,) for all Borel
sets B. We denote by p, the restriction of p to the Borel sets of X,, and by G, the
restriction of G to X,

As mentioned in the introduction, the dual of L' (1), E) is C(X,, (E*, 0%)).
Here the interaction between elements F, € L (py, E)and G, € C(X (E*, 0%))
is given by (Fy, Gy) = f (Fo(x), Go(x) Ydp.(x), [3, Theorem 1]. And it is known
that there exists an isometry of L°°(pty, E*) into C(X,, (E* o%)), [10,
Proposition 2.4]. But since E* has the Radon-Nikodym property it follows (as
py is a finite measure) that L°°(,uY, E*) 1s also the dual of Ll(,uy, E), [6, p. 98].
Thus the isometry of Proposition 2.4 in [10] is surjective. In particular, elements
of C(X,, (E*, 0*)) are u,-measurable. We note for future reference that, as a
consequence, the restriction of a G € C(X, (FE, %)) to a o-finite subset of X is
pu-measurable.

Thus as countably valued functions are dense in LOO(MY, E*)[6, p. 97], for each
positive integer k we can find a countably valued measurable function G, ; on
X, such that ess supl|G,(x) — G, (x) || < 1/k. Moreover, since every measur-
able subset of X, differs from a clopen set by a set of measure zero [1, p. 1] we
may assume that G, , = 2 =1 Cy kXA, , where the 4, ;, are pairwise disjoint
clopen sets with (U 1 Aykj) = X,. {ote that since G, is norm-continuous
on szl Ay i and since G, is weak * continuous, we must have [|G(x) —
Gy (x) Il = 1/kforallx € Uf’i, Ay, - Alsonote that C,y = X, — Ufil Ay
is nowhere dense, and thus w(C, ;) = 0.

Now let 1, = Uyer U2, A, ; and define G, on¥; by G, = G, on
U_;’il A, i ;- Then Gy is norm-continuous on ¥ and X — Vk is nowhere dense It
follows that the set N = U2, (X — ;) is nowhere dense. (Here again we use
the fact that a set of first category in a hyperstonean space is nowhere dense
[8, p. 160].) Thus O = X — N is an open dense subset of X on which G is the
uniform limit of the norm-continuous functions G,|,,.

Throughout the remainder of this section E will denote a Hilbert space while
V, V*, T and J will be as given in Section 1. J,; denotes the canonical injection
of L'(p, E) into C(X, (E, o%) )*.

LEMMA 2. Forv € V,e € Eandf € C(X) we have {f - e, T* o J(v) ) =
/ Jdp,,, for some normal regular Borel measure p,, on X.

Proor. We first note that if U is any weak * closed subspace of V*, then U
1s isometric to (V/lU)* under the linear map A:U — (V/LU)* defined by
{[v]l, Au) = (v, u) foru € U,v € V. (Here, forv € V, [v] denotes the equiva-
lence class of v in V/+ U.) For since U is weak * closed, U = (l U)l by the bi-
polar theorem, and our assertion is thus contained in [15, p. 227, problem 5], or
[5, p- 29, Lemma 1].
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We may clearly assume that |le]l = 1, and, as in the previous section,
we let S(e) = {f - e:f € C(X)}. We have seen that T(S(e)) is a weak *
closed subspace of V'*. By the first paragraph of this proof the map sending

= T(f - e) into {[v], Au) = (v, T(f - e)) is weak * continuous on the
dual space T(S(e) ). Since this dual is the isometric image of C(X) under f —
T(f - e), and every isometry between C(X) and a dual space is continuous
with respect to the weak * topologies of these spaces by Grothendieck’s
result, it follows that the map f — T(f - e) — (v, T(f - e) ) is weak * contin-
uous. Thus, again by Grothendieck’s theorem, {f - e, T* o J(v) ) = [ fdp,,,
where p, , is a normal regular Borel measure on X.

Henceforth {e,;a € A} will denote a fixed orthonormal basis for E. For
simplicity of notation given a, &; € 4 we will denote by p, , the normal regular
Borel measure determined via Lemma 2 by (f - e,, T* o J(v) ), f € C(X), and
by p;, the measure determined by (/- ey T* 0 J(v) ).

LEMMA 3. (a) Given v € V then p,, = 0 except for those a belonging to a
countable subset K, of A.

(b) If K, = = {eq:J = 1, 2,...} then the vector measures my defined by
my = EN_, € Wy  constitute a Cauchy sequence in C(X, E)* and thus converge
toan m, € C(X E)* with m, < p.

PrOOF. (a): Let k be any fixed positive integer and suppose that there are n

indices a), ..., a, € A4 with [l |l > 1/k, 1 = j = n. For each such j choose
/€ C(X) w1th llfll = 1 and ffdujv a real number greater than 1/k. Then
||(f ” +f e)/\/_ll = 1 so that

Ivl| = ||T* oJ(v) | = ((fle'o‘I ot j:,ean)/\/ﬁ, T* 0o J(v)) > \/n/k

and hence n < |]v||> - * from which (a) follows.

(b): Suppose, to the contrary, that {my:N = 1, 2,...} is not a Cauchy
sequence. Then there is an € > 0 such that for each positive integer M there
exists N greater than M with |lmy — myl| > 2e. Choose N; > 0 such that
IlmN || > € and suppose that N, < N3 < ... < N, have been chosen with
lIme —my, ||l >efork =2,...,p. For simplicity of notation we write e; for
e, and set NO = 0. Then foreachk,0 =k =p — 1 take H, .| € C(X, E) such
that the range of H, ., lies in sp( {eN - "eNHn} ), I1Hp il = 1, and
such that (H,, my ) and (H,, my — mNH) 2 = k = p, are each real numbers
greater than e. Thus

H(l/\/i) kél Hyl =

P
1 but <(1/\/,3) > H, T*oJ(v)>
k=1
= (/P (Hy,my Y + (Hy,my, —my )+

.+ (HP, my — mNp_]>]> VP €
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which, for sufficiently large p, will be greater than ||T* o J(v) || = |]v||. This
contradiction shows that the my do indeed form a Cauchy sequence in C(X, E)*
and hence converge to an m, € C(X, E)*. Since my is absolutely continuous
with respect to p for each N, so then is m,. This completes the proof.

Now given v € V the restriction of T* o J(v) to C(X, E) is represented by a
regular Borel vector measure n, on X to E with [|n)|| = [[T* o JO) || = []vll.
Moreover, for all e € E and f € C(X) it is clear that

(fen)={(feT*odv)) = {(f" e m).

It thus follows that n, and m, agree on C(X) ® E which is dense in C(X, E)
[7, p. 375], and so n, = m,. The elements of C(X, (E, ¢*)) are integrable with
respect to m,, for they are p-measurable on p-o-finite sets as mentioned in the
proof of Lemma 1, and as |m,| is finite, the u-continuous measure m, has
p-o-finite support. Therefore F — [ Fdm, defines a continuous linear func-
tional on C(X, (E, 0*)). Then ¢, = T* o J(v) — m, € C(X, (E, ¢*) )* with
¢, € C(X, E)J' and we have T* o J(v) = m, + ¢,. Whenever we write, for
veV, T*oJ(v) = m, + ¢, it will be understood that m, is the vector measure
which is determined by Lemma 3 and is the restriction of T* o J(v) to C(X, E),
and that ¢, € C(X, E)J‘.

LEMMA 4. Forv € V we have T* o J(v) = G,du for some G, € L\(u, E) with
NG, = IIVll. Consequently V = Ll(u, E) under the mapping J(;l oT*olJ.

Proor. We have established that for v € V one has T* o J(v) = m, + ¢,,
and we want to show that ¢, = 0. For if this is established we would have
T* o J(v) = m,, and, since E has the Radon-Nikodym property, [6, p. 218],
this latter element is of the form G,du for some G, € L‘(,u, E) with ||G ]|, =
llml = |lv|l. We would thus have established that T* o J embeds V iso-
metrically into JO(L'(,u, E)), which, as previously noted, shows that 7* o J
maps ¥ onto Jo(L'(u, E) ).

Thus, to show that ¢, = 0 for each v € V, take any F € C(X, (E, 0*)) and
define vi € V* by (v, vi) = (F, m,), v € V. Then since v} is a continuous
linear functional on V there exists an Hr € C(X, (E, o*)) with ||Hpll,, =
IVEl = l|Fllo and (v, vEY = (v, T(Hg) ). If we can show that F = Hp we would
have, forv € V,

(Fymy) = (v viy = (v T(Hp) ) = (v, T(F) )
= (F, T*oJ(v)) = (F,m,) + (F, ¢,),

so that (F, ¢,> = 0. Since this would be true for all F € C(X, (E, ¢*) ), it would
follow that ¢, = 0.
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Thus suppose, to the contrary, that F # Hpand let § = ||F — Hgl|,. Then
choose € > 0 such that

6) 81 — ¢) > 8/2,
and
@) S¢ - ||Flloe < 8/2.

We know that F — Hjis norm-continuous on an open dense subset O, of X and
we have sup, <o, [IF(x) — Hp(x)|| > (1 — ¢). (Note that ||F() || is lower
semicontinuous on X.) Take a clopen subset C of O, such that sup, . |[F(x) —
He(x) |l > 8(1 — ¢). Then x(F — Hy) € C(X, E) and |lxo(F — Hp) lloo >
8(1 — ).

Choose v € V with |[v|| = 1such that | (v, T(x-(F — Hg)) ) | = | {xc(F — Hp),
T*oJ(®))| > 81 — o. I T* 0 J(v) = m, + ¢, then (x(F — Hyg), 9,5 = 0
and |m |(C) > 1 — ¢, hence |m (X — C) < e. We would next like to show that
He, ! is small.

To this end take G € C(X, (E, o*) ) with ||Gl|l., = 1 such that (G, ¢,> > |l¢,l|
— ¢. Now G is norm-continuous on an open dense subset O, € X and since
|m,|(X — O,) = 0, we can find a clopen set D € O, with |m,|(D) > 1 — ¢, hence
Im,| (X — D) < €. Thus we can take an F, € C(X, E) such that the support of
F, is contained in D, ||Fpll, = 1, and (F,, m,) is real and greater than 1 — .
Then F, + G — xpG € C(X, (E, 0*)) with |[F, + G — xpGllew = 1. Hence,
(noting that (x,G, ¢,) = 0 as x,G is norm-continuous), we have

1Z|(Fp+ G—xpG T*oJ())| = |{(Fy + G — xpG, m, + ¢,) |
= (Fy, m,) + (G, ¢,) — (G — xpG, m,) |
>1—¢e+ llp)l —e— Iml(X — D)>1+ llg,|l — 3e

Therefore [¢,|| << 3e.
We thus have

fxCdev + Jy_o Fdm, = (F, m,)

= VB = (n T(H) ) = (Hp T*0 J() )

It follows that
(Xc(F — Hgp), T* 0 J(v) ) = (xc(F — Hp), m,) = _[XC(F — Hp)dm,

v—c Hrdm, + (Hp, ¢,) — _/;(“C Fdm,.

But the modulus of the quantity on the left is greater than 6(1 — €¢) > /2 by
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(6), whereas the modulus of the quantity on the right is less than 5¢ - ||F||,, <
8/2 by (7). This contradiction completes the proof.

3. Remarks and Problems. Obviously our theorem is false if we attempt to
replace C(X, (E, o*)) by C(X, (E*, o*)) for an arbitrary (even separable)
Banach dual E*. For if X is a one-point space then C(X, (E*, 6*)) = E*. Thus
if E* fails to have a unique predual, e.g. if E* = ¢!, then the same may be true
of C(X, (E*, 0*)). However one may ask whether we can replace Hilbert space
1E in our theorem by a suitable class of Banach duals E* properly containing
Hilbert space. Ideally, can one characterize the class of Banach duals E* for
which our theorem holds with E replaced by E*? In particular, if £* has the
Radon-Nikodym property and strongly unique predual then, for X hyper-
stonean, is the predual of C(X, (£*, 0*)) also strongly unique?
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