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Summary

Quantitative trait is always controlled by multiple latent genetic loci, and genetic markers have been
used to map quantitative trait loci (QTLs) auxiliarily. The method of multiple interval mapping
(MIM) provides an appropriate way for mapping QTL using genetic makers. However, the
computation in the MIM seems infeasible for a large number of marker intervals. Nowadays, the
Dantzig selector (DS) method proves to be a more efficient method to estimate model effects in a
lincar model when the number of parameters is (much) larger than the sample size, which has not
been applied to genetic mapping for QTL. In this paper, we developed a two-step method for
mapping QTL based on the MIM, and we also illustrate the feasibility of adopting the DS to
estimate marker or QTL effects. Simulation results showed that the proposed method performed
satisfactorily well by comparisons with the existing MIM method, and the analysis to real data set
also tested the practicability and efficiency of the DS method in genetic mapping.

1. Introduction

With the development of new molecular technology,
a large number of genetic markers have been found
and used for statistical analysis in genetics, which es-
pecially play an important role in quantitative trait
loci (QTLs) mapping. Generally, statistical inference
for gene mapping consists of locating gene loci rela-
tive to a set of DNA markers and estimating their
effects on trait values of interest.

The problem of identifying QTL has a long history,
and the ability to map QTL has been greatly im-
proved by rapid development in the construction and
refinement of the genetic map as well as the develop-
ment of relevant statistical methodology. The basic
principle of using a genetic marker to study QTL was
well established (Thoday, 1961; Lander & Botstein,
1989; Jansen, 1993; Zeng, 1993, 1994; Kao & Zeng
1997; Kao et al., 1999), and Chen (2005) summarized
current statistical methods for QTL mapping, among
which the interval mapping (IM) method proposed by
Lander & Botstein (1989) was thought to be a creative
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work to map genes by using multiple-marker infor-
mation. Based on the IM, Jansen (1993) and Zeng
(1993, 1994) independently proposed the idea of com-
bining IM with multiple regression analysis to deal
with multiple QTL problems; Kao e al. (1999) de-
veloped the multiple interval mapping (MIM) method
that used multiple marker intervals simultaneously to
detect multiple putative QTLs in the model for QTL
mapping.

Nowadays, it is considered that the genetic variance
of most quantitative traits is usually controlled by
several major loci with large effects and many QTLs
with very small effects (Otto & Jones, 2000), which
changes the optimization problem considerably.
Aiming at some quantitative traits, however, there are
numerous markers available to analyse its genetic
basis. Therefore, how to jointly use these marker in-
formation to map the major QTL becomes an im-
portant issue in QTL mapping. Xu (2003) presented a
Bayesian regression method to simultaneously esti-
mate genetic effects associated with markers of the
entire genome. However, the Bayesian shrinkage
method is computationally intensive especially when
the QTL genotypes are introduced into the statistical
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model and thus has not been widely applied to
QTL mapping. Another method called the empirical
Bayes method was developed by Xu (2007) to esti-
mate epistatic effects under a mixed model frame-
work, which efficiently dealt with the situation in
which the potential number of effect parameters
may be larger than the sample size. In fact, when
the markers are abundant, it is hard to include all
markers in the model due to high multicolinearity
among the markers. However, Yi & Banerjee (2009)
developed a computationally efficient algorithm for
genome-wide analysis of QTL, which can take ad-
vantage of the special correlation structure in QTL
data.

In this paper, we propose a two-step method for
QTL mapping based on the idea of MIM. It can deal
with the situation in which the number of genetic ef-
fect parameters may be larger or much larger than the
sample size, in which a critical step is to determine the
candidate markers with information, and the second
step is to construct marker intervals and then estimate
the QTL positions and effects by simultaneous MIM.
The proposed method is a marker-assisted method. In
the first step, we adopted the Dantzig selector (DS)
method to select candidate markers, where the theor-
etical foundation of which was proposed by Candes &
Tao (2007), and we introduced it here to deal with the
problem of QTL mapping in genetics. In fact, the
famous Lasso method (Tibshirani, 1996; Yi & Xu,
2008) can also be applied to select the candidate
markers. However, in theory, Bickel et al. (2009) ex-
hibited an approximate equivalence between the
Lasso estimator and the DS under sparsity scenario.
Therefore, we would like to resort to the new method
DS to search for those key markers. Of course, it is
worth to explore the option of using Lasso type of
approach to replace DS in the two-step method as
well. In the second step, we concentrated on the ten-
tative MIM models used in the existing literatures,
and addressed the issues of statistical inference for the
MIM models. Our simulation results and real data
analysis show that the following MIM approach can
improve the performance of the first step selection
by DS, and the proposed two-step method is a fast
and efficient method.

2. Theory and method

A backcross (BC) or an intercross population is
usually considered in IM for experimental organisms.
In order to obtain a BC or an intercross population,
two parental inbred lines P; and P, with significant
difference in a quantitative trait of interest are ob-
tained first. Let loci L, with alleles L and /, and U,
with alleles U and u, denote two flanking markers for
an interval where a putative QTL is being tested, and
the QTL is denoted by locus Q, with alleles Q and g¢.
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A cross between the two inbred lines is performed to
produce an F; generation. Backcrossing the F; in-
dividuals to P, or P, will produce a BC population in
which there are two possible genotypes at each locus.
Intermating the F; individuals themselves will pro-
duce an F, population, and there are three possible
genotypes at each locus.

In this paper, we consider the statistical inference
under given tentative models, and we mainly consider
the following two cases when the number of model
effects is larger than the sample size in different
degrees.

(1) When the number of model effects is much larger
than the sample size

Let Y; for i=1, ..., n be the phenotypic value of ith
individual in a mapping population, where 7 is the
sample size. Let p denote the number of markers.
Since the number of marker loci is sufficiently large,
we may think that the true QTLs are very near to
their flanking markers and the markers will partly
absorb the effects of the QTL, respectively. The linear
models

P

Y,-=//t+ Z b]‘Gy‘-i‘E,', i=1,...,n, (1)
Jj=1

for a BC or a double-haploid (DH) population and

P
Yi=u+ Y (@Gi+diZy)+e, i=1,....,n, )

Jj=1

for an F, population are considered, where u is the
mean effect, b;is the QTL effect associated with the jth
marker, G; denotes the genotype value of the jth
marker of the ith individual and ¢; is a random error
in equation (1); and g, is the additive QTL effect, d, is
the dominant QTL effect associated with the jth
marker,

1
~1

Zi=4
2

in eqn (2). If there are interactions among the QTL,
then the models would include product terms of
variables G}. We assume that ¢, ..., &, are indepen-
dently and identically distributed, and follow a normal
distribution with mean zero and variance o*.

For model (1) or (2), it is usually difficult to esti-
mate the parameters of interest in statistics because
p>n. Fortunately, in multivariate regression and
from a model selection view, Candes & Tao (2007)
proposed an effective method called DS. In detail, for
linear model y=X, . ,f+z, where fe R’ is a par-
ameter vector (p>n), X is a data matrix and z is an
error vector. The DS estimator is the solution to the /;

if the marker is homozygous,
otherwise,
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Table 1. Conditional probabilities of the genotypes of an putative QTL given the flanking marker genotypes

for an F, population

QTL genotype

Code Marker genotypes Expected frequency Q0 Qq qq

1 LU/LU (1—rpp)/4 1 0 0

2 LU/Lu reo(l1—rrp)/2 1—r r 0

3 Lu/Lu 13 y/4 (I—r)? 0 I

4 LU/[U "LU(l_rLU)/Z r 1—r 0

5 LU/lu or Lu/lU (I—re)?2+ 1102 0 1 0

6 Lu/lu rro(l—rpp)/2 0 l1—r r

7 [UJIU 13 u/4 2 0 (I—r)?
8 [U/lu reo(l—rrp)/2 0 r 1—r

9 luflu 3 ul4 0 0 1

Note: I‘:VLQ/I'Lu.

regularization problem
ming||B|l, subject to [|X(y—XB)|l,.
<(1+t7YHy/2logp - 0.

The estimator can achieve a loss within a logarithmic
factor of the ideal mean — squared error, and it can
well handle the situation where the number of vari-
ables or parameters is much larger than the number of
observations n in a linear model. It selects the best
subset of variables, by solving a very simple convex
problem, which can easily be recast as a convenient
linear programming problem. Strictly speaking, the
DS method solved a question of importance in stat-
istics because of its high efficiency. In fact, it can
handle the genetical problem here, because the true
parameter vector here is sufficiently sparse in general.
Due to the above merits, we take advantage of the DS
method to estimate the effect parameters in models (1)
and (2). After computation using the DS method,
we will obtain the estimates of QTL effects, many of
which are in fact zero. Since the makers are dense, it is
not necessary to further obtain the estimate of their
positions. In section 3, we will utilize this method to
handle a real data set for illustration purpose.

(i) When the number of model effects is larger than
the sample size but moderate

The QTLs are considered to lie within some marker
intervals when the number p of the selected markers is
moderate. However, it is hard for the conventional
mapping method to work because p>n. Under the
shrinkage estimation framework, Xu (2003) investi-
gated the estimation problem of QTL effects using the
Bayesian shrinkage method, and the author (2007)
further considered how to estimate all the main effects
and the epistatic effects of QTL using an empirical
Bayes method. Based on the idea of MIM, next we
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will present a two-step method that can estimate QTL
effects as well as their positions simultaneously, which
is different from the conventional MIM.

Each marker interval is assumed to contain at
most one QTL. For an interval, let the recombination
fractions between the left and right marker, between
the left marker and the putative QTL in the interval
and between the putative QTL and the right marker
be denoted, respectively, by r.p, rro and rop.
Throughout the paper, we assume that there is no
crossover interference, and therefore, rpy=r o+
rou—2rrorou- For the case that crossover inter-
ference is present, the reader is referred to Zhou
(2010). We also assume that double—recombination
events within the interval are rare and can be ignored.

Firstly, we use an intercross population as an illus-
trative example, and the results for an intercross
population can be extended easily to a BC population.
In an intercross population, there are nine possible
genotype combinations for the flanking markers of an
interval. The marker genotype combinations, their
expected frequencies and the conditional QTL geno-
type frequencies given marker genotype combinations
can be seen in Table 1.

Let Gy denote the marker genotype combination.
The possible values of Gy are listed in the first col-
umn of Table 1. Let Gy denote the genotype of the
putative QTL in the marker interval whose possible
values are QQ, Qg and gq. Note that the G, is not
observable. Next, our two-step method of mapping
QTLs is illustrated as follows:

Step I: Reduce the dimension of markers.

In general, marker effect has some relationship with
the effect of some QTL close to the marker and the
recombination fraction between them. The marker
effect will partly absorb the effect of QTL close to it.
For a BC population, Broman (2001) pointed out that
Anv=(1—=2rp0)Aq, Where Ay is the effect of marker
M (the difference between the phenotype averages for


https://doi.org/10.1017/S0016672310000650

W. Ma et al.

the two marker genotype groups) and Ag is the effect
of QTL Q. For an F, population, we have obtained a
similar conclusion. For simplicity, we suppose that
the dominance effect d=0 (additive model). Suppose
that the individuals with QTL genotype QQ, Qg and
gq have average phenotypes upg, Ho, and u,,, re-
spectively. In detail, upp=2a, po,=a and p,,=0
(see model (3) in the following content). Consider a
marker locus M which is away from the QTL with
a recombination fraction ryso. Thus, the individuals
with genotype MM have average phenotype ty,=
(1 — rMQ)ZIuQQ + erQ (1 — rMQ) Hogq + r%\/[Q Hgq- Simi-
larly, the individuals with marker genotype Mm have
average phenotype s =ruo(l —ryo)oo + o+
(1 =ryo)og+rmo(l —raolity, So the difference
between the phenotype averages for the two marker
genotype groups, i.e.,

Ay =typpr =g =1 =2ry0)a=(1—=2ryp)Ap.

The marker effects in the other two cases also have
similar results. Therefore, from the expression we
conclude that the markers that are near to some QTL
relatively have larger effects when the QTL effects are
fixed, and we can utilize the model in eqn (2) to find
and retain the markers with larger effects by the DS
method, and delete those with small effects (we will
discuss how to decide the number of selected markers
later).

Step I1: Construct marker intervals and estimate all
QTL parameters simultaneously.

After Step I, we use the selected markers with large
effects as well as their neighbour markers to construct
marker intervals, through which we will perform the
following MIM procedure. Suppose m marker in-
tervals are constructed. We consider the following
statistical model including m intervals:

Yi=u+ Y (a,Gh+dZy) +e;, i=1,....n, (3)
=1

where G’é denotes the genotype value at the jth QTL
of the ith individual, for simplicity, we define

- [0 forgg;
Go=q 1, forQy;, and
2, for QjQ]’

il _ { — 3. forgg; or 0,0),
0 % ’ otherwise.

The explanations for other variables and parameters
are the same as those in model (2). Model (3) implies
that, given Gp=(G3, .... G3)', Y; follows a normal
distribution with mean u+3Y" (4,Gy+d,Z)) and
variance o®. At the same time, given that Giy=
(Gtu ... GTy), GB, ...,GE' are independent and
follow trinomial distributions with probabilities given
in Table 1. Let g, 1o denote the recombination
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fractions for interval j, and let ® denote the totality of
parameters, then the likelihood for © given the data
can be written as

i=1 | (kirs oo ki) j=1

“4)
X (P(y[,//t (kib R kim)s 02)‘| s

where X denotes the observed data of n individuals
taken at random from an intercross population,
say X={(y;, GLp), i=1, ..., n}; the summation term
in (4) is over the set {(kj, ....k;,): k;=0, 1, 2,
j=1,...,m}, and so it is a normal mixture of 3"
components (unobservable QTL genotype com-
binations); ¢(y, u, 0*) denotes the density function
of the normal distribution with mean x and vari-
ance 0.

To deal with the normal mixture model (Mclachlan
& Peel, 2000) and also an incomplete-data problem,
we utilized the expectation—-maximization (EM) al-
gorithm (Dempster et al., 1977) to estimate ®. The
EM algorithm exhibited many advantages in the
mapping of QTL, and therefore many authors chose
and used it in practice. However, different from gen-
eral MIM strategies, we simultaneously computed
the maximum-likelihood estimation (MLE) of QTL
effects and positions based on the EM algorithm
(Chen, 2005).

We first augment X by the unobservable variable
set {Gp=(GP, ..., GF), i=1, ..., n}, and the complete
data T={(y;, GLu, Gp), i=1,...,n} are obtained.
Then, the complete data log-likelihood /(®|T) is given
by

1
(O|T) = =55 [(y— 1) (y— 1) —2(y— 1u) WD

! ! n
+b'W'Wh]— iln(Znoz) (5)
+ Y Y In p(GYIGY . o),
i=1j=1
where y=()/1a EEEPY yn)ls W=(W1, cees Wn)la Wi=
(GB, ... GBL Z, .. ZE)  b=(ay, ..., Ay, oy ... dyy),

and 1 be a vector of elements all 1. Next, we con-
cretely estimate all parameters of interest using the
iterative algorithm.

E-step: Given X and ®®), compute the conditional
expectation of /(®|T) on the incomplete data. In
fact, we need to compute E(GL|X,0%), M,A
E(W|X, ®®), and M,4 E(W'W|X, @), The elements
of M, and M, can be calculated based on the con-
ditional distributions of those unobservable variables.
Note that ZZ is the function of Gg, and so
E(Z}|X, ®") can be obtained by E(G)|X, ©D) cor-
respondingly.

M-step: Maximize the conditional expected log
likelihood E(/(®|T)X, ®®) to obtain ®@%*+V. The
iterative expressions of the (k+ 1)th step parameter
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estimates are given by

b*HD = (M, — Lmmy) M (1- 11y,
lu(k+1) =Y— % l/Mlb(k“),

(02)(k+1) — %[(y o llu(kﬂ))/(y o llu(k+1)) _b(k+1)’M2b(k+l)]’

where Y=13"_y, The derivation of {5 is a little
complex. After some elaborate computation, we ob-

tain that

o (Enyj+ 2Eso+ Egsj + Eayy+ 2Eng; + Egy))
Nyi+2Ny+ Ny + N+ 2Ny + Ny

r]L(kQJr 1) _

where E\'ti:z;zzlaltj(k)l{GZU:S}’ N.V'ZZ?:J{GZU“:S}’
s=2, 3, 4, 6, 7, 8 =0, 1, 2 and aj,=
P(ng 11X, @®),

When the EM iteration converges, the MLEs of
QTL parameters would be obtained. Note that the
recombination fractions are estimated directly in our
method, instead of scanning point by point on the
chromosome as is usual in the IM procedure. If BC
population is considered, the same two-step pro-
cedure can be performed correspondingly. The main
difference lies in the expressions of the estimates of
recombination fractions in Step II.

3. Example

Here we tested the feasibility of using the proposed
two-step method to estimate the main and epistatic
effects of QTL. The well-known barley data set from
the North American Genome Mapping Project
(Tinker et al., 1996) was used for demonstration. The
DH population contained 145 lines (n=145); each
was grown in a range of environments. A total of 127
mapped markers (p =127) covering about 1500 cM of
the genome along seven linkage groups were used in
the analysis. Seven traits were included in the data,
and the phenotype of kernel weight across the en-
vironment was analysed here, which has also been
investigated by Xu (2003, 2007). It is noted that in-
cluding u, the main and epistatic effects, the total
number of model effects is 14127+ C3y;=8129,
which is typically many times larger than the sample
size. Here the epistatic effects need to be added into
model (1), i.e., the current model is

4
Yl=ﬂ+ Z bfGi/+ Z bj/‘»G,:,'ij +¢&i, = 1, Lo, ny
j=1 j<k
where bj. denotes the epistatic effect between marker
jand k; the genotype of markers are recoded as 1 for
genotype 4,4, (one parent), and —1 for genotype B;B;
(the other parent).

First, we performed Step I, i.e., the DS method was
used to find and retain the markers with larger effects
in the above model. After computation, the method
detected six markers with main effects whose absolute
values are greater than 0-095, and some makers have a
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Table 2. The estimated results of QTL effects for the
kernel weight in barley

Marker Main effect Marker loci Epistatic
locus j (b)) (j, k) effect (b )
102 0-4381 (33,84) 0-0892

12 0-2276 (7,51) —0-0719

2 0-1302 (20,98) 0-0650

21 0-1121 (68,125) —0-:0630

43 —0-0970 (58,64) 0-0625

75 0-0957 (30,111) 0-0625

little smaller epistatic effects. The computation took
about 0-503 s on a P IV computer to detect those main
effects, and it would need a little more time to detect
the trivial epistatic effects. Here, we mainly listed the
larger effects of the QTL in Table 2, and all the esti-
mated QTL effects for the barley kernel weight are
plotted in Fig. 1. In the 3D figure, the numbers on the
two axes in the horizontal plane indicate the marker
IDs (j, k=1, ..., 127), and the height of each prism
indicates the estimated values of QTL effects (up for
positive effects and down for negative effects). When
j=k the estimated value is a main effect, otherwise it is
a epistatic effect.

It can be found that the results are similar to those
in Xu (2007). From Table 2 and Fig. 1 we find that
the main effects are the major contributors to the
phenotypic variance, where the maximum main effect
explains approximately 18 % of the phenotypic vari-
ance; and whether a locus interacts with the other
locus does not depend on whether the locus has a
main effect or not.

At the same time, it is worth mentioning that
the first three markers detected by the DS method are
exactly consistent with the reported results in the
published paper (Tinker et al., 1996), and the cor-
responding effects of the three markers were not
brought by their markers of the neighbourhood.
However, in Xu’s paper (2007) the effects of markers
2, 12 and 102 were estimated from markers 1, 11 and
101, respectively.

Yi & Banerjee (2009) also analysed the data set.
Their method detected some main effects, and they
gave the corresponding position estimates of QTL at
the same time. Here, we further performed Step 11 of
our method, and then position estimates of the six
detected QTLs are obtained, respectively: 7@6-5,
1@9591, 1@3-15, 1@178-11, 3@25-71, 5@124-2,
where the notation for positions, e.g., 7@6-5 indicates
chromosome 7, position 6:5cM. Obviously, the re-
sults are favourable complementarity for the esti-
mates of marker effects in Step I. In addition, from
the results we find that the proposed method performs
comparably with the existing sophisticated methods.
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Fig. 1. The estimated QTL effects for the kernel weight in barley. The numbers on the two axes in the horizontal plane

indicate the marker IDs (j, k=1, ...,
(up for positive effects and down for negative effects).

4. Simulation

In this section, simulation studies are performed to
illustrate and evaluate the proposed two-step method
for QTL mapping, and compare it with the exist-
ing MIM method. A BC population is used for
analysis.

In the simulations, we consider the situation that
a trait is contributed by two QTLs located on a
genome composed of 10 chromosomes, where there
are totally 1000 uniformly spaced makers on the
genome (100 markers on each chromosome).
The sample size n=150 is chosen, and so the number
of markers is timely larger than the sample size here.
We consider two simulated scenarios by taking the
heritability 42=0-3 and h®=0-5, respectively. We take
0-1 as the true values of the recombination fractions
of all marker intervals in order to generate
maker genotype combinations (or G;p). Let ©y=
(rPo.rT0, 06, o, bi, byg) denote the true value of
parameter vector ©, and the true values of the
parameters are all listed in Tables 3—6. The quanti-
tative trait values are generated from the statistical
model

y[:ﬂ0+b10Gg+b20GiQ2+€,’, lzl, e, n,

where &’s are independently and identically dis-
tributed normal errors with mean zero and variance
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127), and the height of each prism indicates the estimated values of QTL effects

0% Then the data {(y, GLy), i=1,...,n} of n
individuals are obtained. The simulated maker geno-
type data and the QTL phenotype data are used to
map the QTL.

(1) Evaluation on detection powers

In each scenario of this simulation, we suppose that
the two simulated QTLs lie within the 5th and 77th
marker interval on chromosome 1, respectively, the
position and effect parameters of which are provided
in Table 3. The proposed two-step method was used
to analyse the randomly generated data. To evaluate
the detection ability of the proposed method, it was
firstly employed to estimate all marker effects in Step I
based on the phenotype data and all marker genotype
data, and we here retained the four, five, six and
ten largest-effect markers, respectively. Therefore,
we can determine the most possible marker intervals
(the numbers of marker intervals are 8, 10, 12 and 20,
respectively, see Table 3). To show the detection ef-
ficiency, we listed the coverage rates of the marker
intervals selected by the two-step method. Here the
coverage rate CR(i) of the marker intervals is defined
as the proportion of covering/detecting i true QTL by
the selected marker intervals. Over the 1000 replicates,
where i=1, 2 and the cumulative coverage rate
CSUM is the proportion that the selected marker
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Table 3. The simulated coverage rates by the Table 4. The simulated true—positive rates for the
proposed method proposed method
Coverage rates (%) True positive rates (%)
mt CR(1) CR(2)" CSUM¢  m® QTL 1 QTL2
=03 =03
8 64 11 75 8 25 61
10 66 11 77 10 26 62
12 67 13 80 12 30 63
20 62 23 85 20 37 71
h=0-5 h*=0-5
8 68 16 84 8 24 76
10 68 20 88 10 28 80
12 67 21 88 12 28 81
20 67 24 91 20 32 83

“m: the number of the retained marker intervals; ?CR(i):
the coverage rate that the selected marker intervals
cover i QTL (i=1,2); ‘CSUM: the cumulative coverage
rate. The true values of parameters are u=0, b;=0-64,
by=114, o?=1, =002, ry=002 for h®>=0-3; and
u=0, b;=090, b,=178, o*=1, r,=002, r,=0-02 for
h=0-5.

intervals can detect at least one true QTL over the
1000 replicates.

It can be seen from the simulation results in Table 3
that the coverage rates of the marker intervals decided
by the proposed method are satisfactory. Take the
fourth case when /#*=0-3 in Table 3, for example, on
average the two-step method detects only one QTL
for 620 times, and thoroughly detects two QTLs for
230 times and thus detects at least one QTL for 850
times (cumulative coverage) over 1000 simulations.
As expected, the coverage rate increases with the in-
crease in the heritability. When /#%2=0-5, the cor-
responding coverage rates, respectively, reach 67, 24
and 91 % in the same case (see Table 3). The simu-
lation results also show that the coverage rate in-
creases to some degree with the number of retained
markers in Step 1.

To concretely evaluate the powers of detecting
QTL by the new method, we also presented the true
positive rates (TPRs) of detecting QTL over the 1000
simulation replicates for each scenario (see Table 4).
At the same time, when h*=0-3, the false—positive
rates (FPRs) for each negative marker are all less
than 0-05, except for marker 76 (FPR =0-006), that is,
because the marker is very close to QTL 2 and is
prone to be included in the mapping model. When
h*=0-5, the results are similar. By comparison, we
find that the TPRs of our method are close to the ones
obtained by the existing MIM method; however, the
FPRs of the MIM method can hardly be controlled.
This showed the the new method had special ad-
vantages.
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“m: see the explanation in Table 3.

In addition, if the above statistical model includes
two QTLs from two different chromosomes, similar
results can also be obtained based on our simulation
experience.

(i1) Evaluation on estimation precisions

In this part, for each scenario of heritability above, we
further evaluate the estimation precisions based on
the genotype data of the selected marker intervals
which we just obtained and the phenotype data. Here
we also consider another case, i.e., two QTLs are
located on different chromosomes, one of which lies
within the fifth marker interval on chromosome 1,
and the other lies within the 77th marker interval
on chromosome 3. For this case, 1000 samples are
generated, and we also first select those significant
markers by the proposed method.

Based on the simulated genotype data of the selec-
ted marker intervals and the phenotype data we, re-
spectively, computed the MLEs of all parameters by
our proposed method and using the existing MIM
method directly. We obtained the averages of MLEs
and also correspondingly compute the estimated
mean square error (MSEs) of each parameter. The
simulation results are provided in Tables 5 and 6 for
h*=0-3 and h*=0-5, respectively. (Since both the
methods provided some false—positive intervals, we
utilized those detected true intervals to map QTL and
compare the corresponding precisions to ensure their
comparison base.) From the results we can find that
the averages of MLEs of QTL effects and positions by
the proposed method are very close to the corre-
sponding true values of parameters in each case, and
in most cases the new method outperforms using the
MIM directly for estimating the parameters (the esti-
mates obtained by the new method have smaller MSE
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Table 5. Simulation results by the proposed method
and MIM for the BC samples of 150 individuals
(h*=0-3)
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Table 6. Simulation results by the proposed method
and MIM for the BC samples of 150 individuals
(R*=0-5)

MIM Proposed method MIM Proposed Method
True True

Case’ Para value Mean” MSE Mean MSE Case Para value Mean MSE Mean MSE
1 u 0-00 - —0-059 0-0190 1 u 0-00 - - —0-056 0-0202
by 0-64 0-816 0-0325  0:698 0-0222 by 0-90 0-873 0-0338 0961 0-0219
by 1-14 1-038 0-0327 1-162 0-0289 by 1-78 1-626 00343  1-803 0-0296
o? 1-00 0-750 0-0622 0909 0-0154 2 1-00 0-864  0:0224 0910 0-0151
" 0-02 0-039 0-0008  0-030 0-0004 " 0-02 0-041 0-0009  0-028 0-0004
Ty 0-02 0-041 0-0011  0-028 0-0005 Ty 0-02 0-011 0-0004  0-025 0-0003
2 u 0-00 - - —0-034 0-0172 2 u 0-00 - - —0-032 0-0177
by —0:65 —0656 0-0166 —0-625 0-0202 by —0-82 —0-720  0-0192 —0-790 0-0192
by 1-14 1-038 0-0199 1-154 0-0310 by 1-83 1-733 0-0319  1-842 0-0319
o? 1-00 0-828 0-0468 0910 0-0172 o? 1-00 0797  0-0425 0909 0-0172
" 0-02 0-028 0-0005  0-030 0-0003 " 0-02 0-039  0-:0009 0-028 0-0003
Iy 0-02 0-023 0-0003  0-026 0-0005 Iy 0-02 0-029  0-:0002 0-024 0-0002

“ Two simulated cases (Case 1: two QTLs are located on a
single chromosome; Case 2: they are located on two differ-
ent chromosomes). ” Mean: the average of MLEs; ¢ the
MIM method cannot provide an estimate of u.

than the existing method). Only in case 2 of herit-
ability /2=0-3, the estimated results using the new
method are a little worse for the estimation of some
parameters (i.e. when the simulated QTLs are located
on different chromosomes).

Accurate MLEs of QTL effects are important in
practice, because the estimated QTL effects can im-
pact the test of the existence of QTL that contribute to
some trait. And also, the estimated QTL positions by
IM may provide the researchers some reference before
cloning a QTL.

We also find that the estimates provided by the
proposed method become more accurate with the in-
crease in heritability (i.e. corresponding MSEs de-
crease for most parameters) by comparing the results
listed in the two tables. Our experience also shows
that the estimates will become accurate with increase
in the number of observations, but the results are not
very significant since the number of marker effects is
still larger than the sample size.

Although we evaluate the proposed method from
different aspects, the two steps of our method sup-
plement each other. If the detection power in Step I is
high, then the QTL parameters can also be inferred in
reasonable intervals in Step II. At the same time, Step
IT also supplements the estimates of QTL effects and
positions in QTL mapping, and therefore the whole
mapping power of the method will be high. In fact, the
true positive is consistent with the detection power in
existing documents, and so it is not only an evaluation
for Step I but also a measure for the whole QTL
detection in a certain sense.
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In addition, the computational amount of the MIM
method is bigger than that of the new method, es-
pecially when the number of markers is larger, and
therefore the computational speed of the former is
slower than the latter. In the above simulations, the
average computing time per replicate is 27-81 s for the
new method, but 64:43 s for the MIM on a P IV
computer. Although the number of markers increases
more, the new method can also be applied to search
QTL in gene mapping. Yet, the existing MIM seems
infeasible for the practical reason that p>n, e.g.,
when #*=0-3 and there are ten QTLs that are re-
sponsible for a trait, in general the MIM can only
detect three QTLs and two of them are close to their
true positions from our additive simulation.

All in all, the simulation results suggest that the
proposed two-step method is an efficient mapping
method. It resolves the estimation problem that the
number of QTL effect parameters is (much) larger
relative to the sample size, and it can give reasonable
estimates of QTL positions simultaneously based on
the idea of IM. Therefore, it can be used in current
genome-wide QTL mapping, and can be a better
alternative for MIM and the Bayesian mapping
method.

5. Discussion

In this paper, we developed a two-step method for
mapping QTL based on the conventional MIM. The
method may deal with the situation that the number
of QTL parameters is larger than the sample size in
practice, and the simulation results show that the
performance of the proposed method is satisfactory,
i.e., it has its advantages over the existing method.
When the number of QTL parameters is much larger
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than the sample size, we suggest directly using the DS
method (Candes & Tao, 2007) to handle the case.
Through the analysis of a real data set, we found that
the proposed two-step method is really an efficient
method, and the DS method can be used in the
marker-assisted QTL analysis. Both methods may
detect the true trait loci with larger probability and
therefore can be used in the genome-wide searching of
QTL according to their performance.

Xu (2007) used the empirical Bayes method to es-
timate QTL main effects of all markers and all pair-
wise epistatic effects for the barley data set. Xu’s
method is also fit for the problem that the number of
QTL parameters is (much) larger than the number of
observations, and is computationally efficient. How-
ever, the two-step method has its own advantage,
i.e., it can estimate QTL effects and positions simu-
Itaneously from relatively finite data, which may
potentially improve the accuracy of parameter esti-
mation (Chen, 2005), and the estimates of QTL posi-
tions would be helpful to further fine mapping.
Based on the obtained MLEs of QTL parameters, all
pertinent hypotheses testing can also be performed
further.

Yi & Banerjee (2009) developed computationally
efficient algorithms for genome-wide analysis of QTL,
which showed good performance, e.g., they proposed
a novel model search strategy to look for the most
significant markers near to the true QTL, and the
computing speed is faster than the Markov Chain
Monte Carlo (MCMC) method. However, our two-
step method maintains some advantages of IM, and
can therefore detect the true QTL within some inter-
vals (if the markers are denser, say <10 cM, the esti-
mated results by the proposed two-step method
should be close to those by Yi & Banerjece’s method).
Moreover, the new method avoids complex model
search, and so its computing amount is not much and
the computing speed is faster than the conventional
MIM method from the results of our simulation
studies.

Similar to the conclusion about BC population
given by Broman (2001), we have proved the fact that
marker effect has some relationship with the effect of
some certain QTL close to it and the recombination
fraction between them for an F, population, i.e. Ay, =
(I =2rp0)Ap. When the QTL effect is fixed, the
marker nearer to the QTL has larger marker effect. So
it is reasonable to think that marker effect may partly
absorb the effect of QTL near it. The relationship
is exactly the theoretical basis for the Step I of the
proposed method.

One remaining question is deciding the number of
selected/retained markers in Step I. In practice, Yi &
Banerjee’s idea (2009) can be adopted, i.e., we can set
a very small threshold value 7 in advance and delete
genetic effects satisfying | ;| <r from the estimates
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obtained in Step I, and the P-values for testing ;=0
are further used to build a parsimonious model, which
is flexible and simple to operate. Of course, our ex-
perience shows that there is no unique answer in
choosing an optimal number. If there is weak linkage
disequilibrium (LD) between adjacent markers, a
smaller number can be taken (i.e. 4-10). If there is
strong LD between adjacent markers, the optimal
number should be much larger because more infor-
mation is needed to separate linked QTL. If there is
some prior information about the number of QTLs
that can be used, the efficiency of the proposed
method would be higher. In conclusion, we need fur-
ther investigation on choosing the optimal number.

In Step II, the markers with larger effects are used
to construct candidate marker intervals for IM. In our
simulation we chose four different number of markers
with the largest effect to construct candidate marker
intervals, and the cumulative coverage rate of the true
QTL can attain 91 % when the number of retained
significant marker loci is 10 and #*=0-5. Of course, if
two more intervals were added to the analysis, the
coverage rate of the true two QTLs would increase as
expected, but choosing too much marker interval is
not necessary in fact.

During the description of the proposed two-step
method, we consider only the additive model. Yet,
despite this, our method can also be used in other
models with interaction, and therefore both the main
effects and the interaction effects can be estimated
simultaneously. In the analysis of the example, we did
successfully estimate all main effects and all possible
interaction effects for the known barley data.

The proposed method also has some shortcomings.
In Step II of the proposed method, we only consider
mapping QTL from the aspect of linkage information,
but not thinking much of the information about
the genetic structure of the population such as LD.
Recent studies show that joint modelling of the link-
age and LD between markers and QTL may sub-
stantially enhance the analytical power and precision
compared to the pure IM (Lund ef al., 2003; Lou
et al., 2005). So substantial extensions of IM into
more general situations are worth studying further in
the framework of the two-step method. In addition,
the proposed method is only fit for the experimental
populations such as BC, DH and F, populations, and
so one method applicable to more general population
is expected to develop.
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