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NUCLEAR NORM REGULARIZED
QUANTILE REGRESSION WITH
INTERACTIVE FIXED EFFECTS

JUNLONG FENG

Hong Kong University of Science and Technology

This paper studies large N and large T conditional quantile panel data models with
interactive fixed effects. We propose a nuclear norm penalized estimator of the
coefficients on the covariates and the low-rank matrix formed by the interactive
fixed effects. The estimator solves a convex minimization problem, not requiring
pre-estimation of the (number of) interactive fixed effects. It also allows the number
of covariates to grow slowly with N and T. We derive an error bound on the estimator
that holds uniformly in the quantile level. The order of the bound implies uniform
consistency of the estimator and is nearly optimal for the low-rank component. Given
the error bound, we also propose a consistent estimator of the number of interactive
fixed effects at any quantile level. We demonstrate the performance of the estimator
via Monte Carlo simulations.

1. INTRODUCTION

Panel data models are widely applied in economics and finance. Allowing for rich
heterogeneity, interactive fixed effects are important components in such models
in many applications. In applications such as asset pricing, it could be desirable
to explain or forecast an outcome variable at certain quantile levels. However, the
well-studied mean regression with interactive fixed effects (e.g., Pesaran, 2006;
Bai, 2009; Moon and Weidner, 2015) misses such distributional heterogeneity.

In this paper, we consider a panel data model where the conditional quantile
of an outcome variable is linear in the covariates and in the product of time and
individual fixed effects. These interactive fixed effects are unobservables that may
be correlated with the covariates. The number of covariates is allowed to grow
slowly to infinity with N and T. Meanwhile, we allow the coefficients, the set of
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2 JUNLONG FENG

the effective fixed effects and the realization of each of them to all be quantile-level
dependent, generating large modeling flexibility.

To estimate the model, this paper proposes a nuclear norm penalized estimator.
The nuclear norm of a matrix is equal to the sum of all its singular values. By
deriving the estimator’s theoretical error bound, we show that it can consistently
estimate the coefficients and the (realizations of) the interactive fixed effects
uniformly in quantile level. The estimator solves a convex problem and computes
quickly in practice even in large panel datasets based on our proposed augmented
Lagrangian multiplier algorithm. Implementing the estimator does not require pre-
estimation of the number of interactive fixed effects or the fixed effects themselves.

To illustrate the estimator, let us consider a simple example where only the coef-
ficients are quantile-level dependent: For a panel dataset {(Yit,Xit) : i = 1, . . . ,N;
t = 1, . . . ,T}, suppose the uth conditional quantile of Yit given p covariates Xit and
r time and individual fixed effects (Ft,�i) is qYit|Xit,Ft,�i(u) := X′

itβ0(u) + F′
t�i,

where both Ft and �i are r×1 vectors. The interactive fixed effects form an N ×T
matrix L0 := (�1, . . . ,�N)′(F1, . . . ,FT), whose rank is at most r. Thus, the dense
matrix L0 is low-rank, when r is small relative to N and T. Exploiting such low-
rankness, our estimator, inspired by the seminal work by Candès and Recht (2009),
jointly estimates (β0(u),L0) for a given quantile level u ∈ (0,1) by solving

min
β∈B,L∈L

1

NT

∑
i,t

ρu(Yit −X′
itβ −Lit)+λ‖L‖∗, (1.1)

where ρu is the standard check function in the quantile regression literature, λ is a
positive penalty coefficient, ‖L‖∗ is the nuclear norm of the N × T matrix L, and
B and L are convex parameter spaces about which we will be specific later.

The key component of the estimator is the convex nuclear norm penalty.
Summing up the singular values of a matrix, the nuclear norm is to the rank,
counting the nonzero singular values, what the convex �1-norm is to the nonconvex
�0-norm of the vector of the singular values. Hence, the nuclear norm penalty can
be viewed as the matrix counterpart of the LASSO penalty in regression with high-
dimensional regressors. Being a convex surrogate of the rank functional, we show
that this penalty is effective to deliver consistent estimates under low-rankness
of L0.

Setting up the minimization problem as in (1.1) yields a convex objective
function in (β,L), and one does not need to know r before implementation. To
highlight these benefits, let us consider a natural alternative estimator

min
β∈B,�∈�,F∈F

1

NT

∑
i,t

ρu(Yit −X′
itβ −�′

iFt), (1.2)

whereB, � andF are parameter spaces for β, �, and F, respectively. Ando and Bai
(2020) study a similar estimator where the coefficients are i-specific. The objective
function in (1.2) is nonconvex in the parameters (β,�,F). As the minimization
problem needs to be solved iteratively, nonconvexity leads to two potential issues.
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NUCLEAR NORM REGULARIZED QUANTILE REGRESSION 3

First, one may obtain a local minimum which can be arbitrarily far from the global
one. Second, solving the minimization problem may be computationally intensive,
especially in large panel datasets. In the simulation experiments in the paper,
we find that it computes much slower than the penalized estimator we propose.
Meanwhile, to make the alternative estimator (1.2) feasible, r needs to be known
or pre-estimated. This step results in additional computation burden and a mis-
specified r may lead to inconsistent estimates.

Besides convexity and the convenience brought by avoiding estimating r, we
show that our approach allows for certain low-rank covariates. This finding echoes
a similar result in Moon and Weidner (2019) on nuclear norm penalized mean
regression. A covariate is low-rank when, for instance, it has a factor structure.
Unlike this paper, such covariates are usually excluded in interactive fixed effects
regression for identification purposes (Bai, 2009; Moon and Weidner, 2015).

A major drawback of the nuclear norm penalized estimator is that the rate of
convergence of the coefficient estimator is slow compared to, for instance, the
rate in mean regressions when the interactive fixed effects are estimated separately
(e.g., Bai, 2009). We propose a consistent estimator of r based on our penalized
estimator. With this rank estimator, treating our consistent penalized estimator as
an initial value for estimator (1.2) with a few rounds of iterations might attain a
faster rate of convergence (see Chernozhukov et al., 2019; Moon and Weidner,
2019 for mean regressions) and reduce computation time. On the other hand, the
error bound on the estimator of L0 can be nearly optimal in squared Frobenius
norm.

With the dense latent component and the nonsmooth objective function
involved, deriving the estimator’s uniform error bound is challenging. We prove
new results on random matrices for this purpose. Moreover, we develop novel
theoretical arguments which relax some usual assumptions or replace some high-
level technical conditions in the panel data quantile regression literature with
primitive ones that are easier to interpret. These arguments are useful to study
quantile regression with fixed effects under other setups.

This paper adds to the literature of panel data quantile regression. Since
Koenker (2004), panel data quantile regression began to draw increasing attention.
Abrevaya and Dahl (2008), Lamarche (2010), Canay (2011), Kato, Galvao, Jr.,
and Montes-Rojas (2012), Galvao, Lamarche, and Lima (2013), and Galvao and
Kato (2016) study quantile regression with one-way or two-way fixed effects.
Harding and Lamarche (2014) consider interactive fixed effects with endogenous
regressors. They require the factors to be pre-estimated or known. Chen (2022)
considers quantile regression with interactive fixed effects. They need to first
estimate the time fixed effects, or, the factors, that are assumed to be quantile-
level independent. They then estimate the coefficients and the individual fixed
effects via smoothed quantile regression. Chen, Dolado, and Gonzalo (2021)
propose a quantile factor model without regressors. They estimate the factors and
the factor loadings via nonconvex minimization similar to (1.2). Pre-estimation
of the number of factors is needed. Ando and Bai (2020) consider quantile
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regression with heterogeneous coefficients and a factor structure. They propose
both a frequentist and a Bayesian estimation procedure. The number of factors also
needs to be estimated first, and the minimization problem is noncovex. Both Ando
and Bai (2020) and Chen et al. (2021) establish consistency pointwise in quantile
level, while we focus on uniform consistency. On the technical side, both impose
stronger assumptions on the conditional density of the outcome variable than our
paper.1 In our simulation study, we find that our estimator is computationally more
efficient.

Another literature this paper speaks to is on nuclear norm penalized estimation.
This literature was initially motivated by low-rank matrix completion or recovery
problems in computer science and statistics (e.g., Candès and Recht, 2009; Ganesh
et al., 2010; Zhou et al., 2010; Candès et al., 2011; Hsu, Kakade, and Zhang, 2011;
Negahban and Wainwright, 2011; Agarwal, Negahban, and Wainwright, 2012;
Negahban et al., 2012, among others). In this literature, the outcome matrix is
usually modeled as the sum of a low-rank matrix and some other matrices that
are, for instance, sparse or Gaussian. The primary goal is to estimate the low-
rank or the sparse matrix. This setup is different from our paper. Nuclear norm
penalized estimation and matrix completion related topics have also gained interest
in econometrics recently. Chernozhukov et al. (2019), Moon and Weidner (2019),2

and Athey et al. (2021) investigate nuclear norm penalized mean regression with
interactive fixed effects. Beyhum and Gautier (2019) also consider mean regression
with interactive fixed effects, but they use a square-root nuclear norm penalty.
Bai and Feng (2019) propose a nuclear norm regularized median regression for
robust principal component analysis for fat tailed data. Bai and Ng (2021) consider
imputation of missing data and counterfactuals. Bai and Ng (2019) study penalized
estimation for approximate factor models with singular values thresholding. Chao,
Härdle, and Yuan (2021) consider penalized multi-task quantile regression where
there are multiple outcome variables and the coefficient matrix is low-rank. Ma,
Su, and Zhang (2022) apply nuclear norm penalized logistic regression to study an
undirected network formation model.

A recent paper done in parallel with ours by Belloni et al. (2023) studies quantile
regression with both interactive fixed effects and high-dimensional regressors.
Besides the nuclear norm penalty, they have an additional �1-norm constraint on
the coefficients to deal with the high-dimensional regressors. In contrast, we focus
on low-dimensional regressors, although we do allow the number of regressors to
slowly grow to infinity. On the other hand, unlike our paper that derives a uniform
error bound, they focus on convergence rate pointwise in quantile level. The two
papers also differ in assumptions and algorithms. We provide a more detailed

1We will discuss these differences in detail in Section S.A.2 of the Supplementary Material.
2Moon and Weidner (2019) also briefly discuss nuclear norm penalized quantile regression with a single regressor
as an extension. Using a different approach than this paper, they focus on pointwise (in quantile level) convergence
rate of the coefficient estimator. In this paper, we obtain uniform rates for both the coefficients and the low-rank
component. Also, the number of covariates can be more than one and growing to infinity slowly.
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discussion in Section S.A.2 of the Supplementary Material. We view these two
papers as complementary.

The rest of the paper is organized as follows: Section 2 introduces the model and
the estimator. Section 3 previews the main results and provides some preliminary
results. Section 4 proves identification on a restricted set. Section 5 derives the
uniform error bound. Section 6 shows Monte Carlo simulation results. Section 7
concludes. The algorithm and implementation details are in the Appendix A. The
Supplementary Material provides an alternative approach to proving consistency,
compares the assumptions in this paper with the most related literature, and collects
all the proofs.

1.1. Notation

Besides the nuclear norm ‖·‖∗, four additional matrix norms are used in the paper:
Let ‖ · ‖, ‖ · ‖F, ‖ · ‖1, and ‖ · ‖∞ denote the spectral norm, the Frobenius norm,
the �1-norm, and the maximum norm. When applied to a vector, the Frobenius
norm is equal to the euclidean norm. For two arbitrary N × T matrices A and B,
〈A,B〉 :=∑

i,t AitBit denotes the inner product of A and B. For two real numbers,
a∨b and a∧b return the maximum and the minimum of a and b, respectively.

2. THE MODEL AND THE ESTIMATOR

We consider a panel dataset {(Yit,Xit) : i = 1, . . . ,N;t = 1, . . . ,T}, where Yit is a
scalar outcome and Xit is a p×1 vector of covariates. Let Y = (Yit) and Xj = (Xj,it)

(j = 1, . . . ,p) be N × T matrices of the outcome and the jth covariate. Let U be
a compact subset of (0,1). Throughout the paper, we assume that r̄ is fixed, not
changing with N and T. For any u ∈ U , there are r̄ possibly u-dependent time and
individual fixed effects. For k = 1, . . . , r̄, let Fk(u) = (F1k(u), . . . ,FTk(u))′ be the
kth time fixed effect. Let �k(u) = (�1k(u), . . . ,�Nk(u))′ be the kth individual fixed
effects. Let WX = (X1, . . . ,Xp), WL = ({Fk(u)}k=1,..., r̄,u∈U,{�k(u)}k=1,..., r̄,u∈U ), and
W = (WX,WL). Assume, for all u ∈ U , the conditional quantile of outcome Yit in
matrix notation satisfies the following model with probability one:

qY|W(u) =
p∑

j=1

Xjβ0,j(u)+
r̄∑

k=1

1k(u)�k(u)Fk(u)′ (2.1)

=:
p∑

j=1

Xjβ0,j(u)+L0(u), (2.2)

where 1k(u) ∈ {0,1} determines whether the kth interactive fixed effect Fk(u) or
�k(u) affects the uth conditional quantile of Y at all. Model (2.1) allows both the
effective fixed effects and the realizations of them to depend on u. Throughout, we
allow the fixed effects to be either random or deterministic. When they are random,
the covariates can be correlated with them, and all the stochastic statements in this
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6 JUNLONG FENG

paper are conditional on their realization. Similar setups can be found in Ando and
Bai (2020) and Chen et al. (2021).

The fixed effects in equation (2.1) form an N × T matrix L0(u) :=∑r̄
k=11k(u)

�k(u)Fk(u)′. The rank of the matrix L0(u) is at most r(u) :=∑r̄
k=11k(u) ≤ r̄ by

construction. Since we assume that r̄ is fixed, L0(u) is low-rank, when N and T are
large.

Let β0(u) = (β0,j(u))j=1,...,p. This paper focuses on consistently estimating
(β0(u),L0(u)) uniformly in u ∈ U . When L0(u) is random, consistency is in terms
of its realization.

Remark 1. When U is a singleton containing u, the conditioning variables W
only contain the covariates and the fixed effects at u. The model is then in line with
the models in the literature on panel data quantile regression that focus on a fixed
u ∈ (0,1), for example, Harding and Lamarche (2014), Ando and Bai (2020), and
Chen et al. (2021).

Now, let us present a few models which admit the conditional quantile function
(2.1).

Example 1 (A location shift model with one-way fixed effects only). Suppose
the outcome matrix Y is determined by the following linear model with only
individual fixed effects �o = (�o

1, . . . ,�
o
N)′ (similarly, one can also consider a

model with time fixed effects only):

Y = βo ·1N×T +
p∑

j=1

Xjβ0,j +�o ·11×T + ε,

where ε is an N × T error matrix, 1N×T and 11×T are N × T and 1 × T matrices
of ones. Assume {Xj}j ⊥⊥ ε|�o, whereas {Xj}j and �o, as well as �o and ε, can
be correlated. Assume the εits, conditional on �o, are identically distributed on
R across t. Let qεi|�0(·) denote the conditional quantile function of εit. Then the
uth conditional quantile of Y is qY|W(u) = qY|{Xj}j,�(u)(u) =∑p

j=1 Xjβ0,j +�(u)F′
with probability one for all u ∈ (0,1), where �(u) = �o + qε|�o(u) + βo · 1N×1,
qε|�o(u) = (qε1|�o(u), . . . ,qεN |�o(u))′, and F = 1T×1. The fixed effects form an N ×
T matrix with identical columns and r̄ = 1.

Example 2 (A location-scale model with interactive fixed effects). Suppose

Y =
p∑

j=1

Xjβ
a
0,j +

r̄1∑
k=1

�a
kFa′

k +
⎛
⎝ p∑

j=1

Xjβ
b
0,j +

r̄2∑
m=1

�b
mFb′

m

⎞
⎠◦ ε,

where ◦ denotes the Hadamard product of matrices. Assume that ({Xj}j,{Fa
k,�

a
k}k,

{Fb
m,�b

m}m) ⊥⊥ ε, and let qε(·) be the quantile function of the identically distributed
εits. If, for all i,t, and m, and all x,f b

m, and λb
m in the support sets of Xit, Fb

tm,
and �b

im, the inequality x′βb
0 +∑r̄2

m=1 f b
mλb

m > 0 holds, then for any u ∈ (0,1),
by letting β0(u) = βa

0 + βb
0 qε(u), �(u) = (�a

1, . . . ,�
a
r̄1
,�b

1qε(u), . . . ,�b
r̄2

qε(u))
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and F = (Fa
1, . . . ,F

a
r̄1
,Fb

1, . . . ,F
b
r̄2

), the uth conditional quantile of Y is qY|W(u) =
qY|{Xj}j,{Fl,�l(u)}l(u) =∑p

j=1 Xjβ0,j(u)+∑r̄1+r̄2
l=1 �l(u)F′

l with probability one. In this
example, the coefficients and the individual fixed effects are u-dependent.

Example 3 (A random coefficient model with quantile-dependent fixed effects).
Let Uit ∼ Unif[0,1] and

Yit = X′
itβ0(Uit)+

r̄−1∑
k=1

1k(Uit)F
o
tk(Uit)�

o
ik(Uit)+ εit.

Assume that X′
itβ0(u) +∑r̄−1

k=11k(u)Fo
tk(u)�o

ik(u) is strictly increasing in u for
all realizations of Xit and the fixed effects. For instance, suppose 11(u) = 1,
12(u) = 1(u > 0.3), etc. and the product of the fixed effects are positive and
increasing in u. Or, the indicator function may not increase in u, for instance,
r̄ − 1 = 2 and 11(u) = 1 if u ≤ 0.5 while 12(u) = 1 if u > 0.5, then the
assumption is satisfied if both Fo

t1(u)�o
i1(u) and Fo

t2(u)�o
i2(u) are strictly increasing

in u with Fo
t1(0.5)�o

i1(0.5) ≤ Fo
t2(0.5)�o

i2(0.5). Suppose εit is generated by some
strictly increasing function of Uit, G−1(Uit). Finally, assume that {Uit}i,t are
independent of ({Xit,{Fo

tk(u)}k,u,{�o
ik(u)}k,u}i,t). Then, by strict monotonicity and

independence, the uth conditional quantile of Y is qY|W(u) = ∑p
j=1 Xjβ0,j(u) +∑r̄

k=11k(u)�k(u)Fk(u)′ with probability one for all u ∈ (0,1), where, for k < r̄,
Fk(u) = Fo

k (u) and �k(u) = �o
k(u). For k = r̄, �r̄(u) = G−1(u)1N×1 while1r̄(u) = 1

and Fr̄(u) = 1T×1 for all u ∈ (0,1). In this example, the coefficients, fixed effects,
and the set of the effective fixed effects all depend on u. We will revisit this example
in our Monte Carlo experiment in Section 6.

Now, we introduce our estimator of (β0(u),L0(u)). For an arbitrary N × T
matrix Z, define ρu(Z) := ∑

i,t ρu(Zit) ≡ ∑
i,t Zit(u − 1(Zit ≤ 0)). By exploiting

the linearity of the conditional quantile function (2.2) in (β0(u),L0(u)) and the
low-rankness of L0(u), this paper proposes the following nuclear norm penalized
quantile regression estimator to jointly estimate β0(u) and L0(u), for any u ∈ U :

(β̂(u),L̂(u)) := arg min
β∈Rp,L∈L

1

NT
ρu

⎛
⎝Y −

p∑
j=1

Xjβj −L

⎞
⎠+λ‖L‖∗, (2.3)

where λ > 0. The parameter space for the matrix component L := {L ∈ R
N×T :

‖L‖∞ ≤ αNT} is convex and compact and αNT ≥ 1 can be (N,T)-dependent. In
particular, we allow αNT to grow to infinity with N and T. We need αNT for technical
reasons to be discussed in Section 4. In Section S.A.1 of the Supplementary
Material, we show that we can drop αNT to make L = R

N×T under a different
set of assumptions.

Two remarks on the estimator are in order.

Remark 2. The estimator does not directly penalize or constrain the rank of
the estimated interactive fixed effect matrix to avoid nonconvexity. Instead, it
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8 JUNLONG FENG

seeks an L̂(u) that has a small nuclear norm. Intuitively, this is reasonable because
the rank-r(u) matrix L0(u) itself typically has a small nuclear norm by low-
rankness. To achieve a small nuclear norm, the penalty would shrink some of L̂(u)’s
singular values even though the rank of L̂(u) may still remain high since rank may
increase dramatically even by a very small perturbation to L0(u). For instance, the
(r(u)+1)th to the (N ∧T)th singular values in L̂(u) can be nonzero, but they may
have a smaller order than the first r(u) singular values. This is shown in Section 5
and is helpful to develop the estimator of r(u) we propose.

Remark 3. The penalty coefficient λ balances how small ‖L̂(u)‖∗ is and how
well the estimator fits the data. When λ = 0, the trivial solution to (2.3) is
(β̂(u),L̂(u)) = (0,Y), provided that Y ∈ L. This estimator fits the data perfectly
but is inconsistent as long as the true coefficients β0(u) �= 0. On the other hand,
when λ is infinity, L̂(u) would be 0 to set the nuclear norm penalty equal to 0. This
could again be implausible because it is equivalent to ignoring L0(u) and estimating
β0(u) simply by pooled quantile regression. As a result, the estimator β̂(u) would
be inconsistent when the covariates are correlated with the fixed effects. In the next
section, we will be precise about the appropriate order of λ that guarantees uniform
consistency of the estimator.

3. PRELIMINARY RESULTS

In this section, we first introduce the setups and summarize the main results of
the paper. We then show that the estimator lies in a restricted set with probability
approaching one (w.p.a.1), so that all the subsequent analysis can be conducted
within that set.

3.1. Preliminaries and Preview of the Main Results

We take the fixed effect approach by treating all the (realized) individual
and time fixed effects, and thus L0(u), for all u ∈ U , as parameters to
be identified and estimated (Moon and Weidner, 2015). Recall that WL =
({Fk(u)}k=1,..., r̄,u∈U,{�k(u)}k=1,..., r̄,u∈U ). All the subsequent analysis and stochastic
statements, including (conditional) probabilities and expectations, are implicitly
conditional on (WL,�L), where �L is the following event:

‖L0(u)‖∞ ≤αNT,∀u ∈ U and (3.1)

1√
NT

‖L0(u
′)−L0(u)‖F ≤ζL|u′ −u|,∀u,u′ ∈ U (3.2)

for some constant ζL > 0. For the ease of notation, we omit conditioning on
(WL,�L) henceforth. Throughout the paper, we maintain the assumption that
P(�L) → 1. All the error bounds and uniform consistency also hold uncondition-
ally under this assumption since all the probability bounds obtained in this paper
are independent of the realization of L0(u).
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Remark 4. We allow αNT to grow with N and T. If αNT has order log(NT),
L0(u) in all the models in Examples 1–3 satisfies equation (3.1) w.p.a.1 if all the
individual and time fixed effects are sub-Gaussian. Note that this does not rule out
the case where Yit itself has a heavy tail.

Remark 5. Equation (3.2) is needed to prove uniform consistency. One can
verify that L0(·) in Example 1 satisfies equation (3.2) if the conditional quantile
function of ε, qεi|�o(·), is Lipschitz continuous almost surely with a Lipschitz
constant uniform in i. For Example 2, L0(·) satisfies condition (3.2) w.p.a.1 if qε(·)
is Lipschitz continuous and if

∑
i,t(
∑r̄2

m=1 Fb
tm�b

im)2/NT converges in probability
to a constant. Note that condition (3.2) rules out some cases where the set of the
effective fixed effects changes on U . To see this, suppose in Example 3, there exists
a jumping point u0 ∈ U such that r(u) < r(u′) for any u < u0 ≤ u′. Suppose the
individual and time fixed effects do not depend on u and the first r(u) of them at
u′ are the same as those at u. Then

1√
NT

‖L0(u
′)−L0(u)‖F =

√√√√√ 1

NT

∑
i,t

⎛
⎝ r(u′)∑

k=r(u)+1

Ftk�ik

⎞
⎠

2

,

which may converge in probability to a positive constant if the law of large numbers
holds for it. Nevertheless, this assumption is not restrictive even in this situation
when there are only a finite number of such jumping points in (0,1): Let {u0,k :
k = 1,2, . . . ,K}(K < ∞) be the set of such jumping points with u0,k < u0,k+1, for
all k = 1, . . . ,K − 1. If equation (3.2) holds (w.p.a.1) for compact interval Uk ⊂
(u0,k,u0,k+1) for each k, we can then establish uniform error bound over each Uk

and uniform bound over
⋃K

k=1Uk is immediately obtained.

Under some other assumptions, this paper shows that (i) (β0(u),L0(u)) are
identified for all u ∈ U over a restricted set, a subset of the parameter space where
the estimator (β̂(u),L̂(u)) defined by (2.3) lies w.p.a.1, and (ii) for some constant
Cerror > 0, the estimator satisfies the following inequality w.p.a.1:

sup
u∈U

(
‖β̂(u)−β0(u)‖2

F + 1

NT
‖L̂(u)−L0(u)‖2

F

)
≤ γ 2, (3.3)

where

γ = Cerrorα
2
NT

(
(1+Cλ)∨√log(NT)

)(√p log((p+1)NT)

NT
∨
√

r̄

N ∧T

)
, (3.4)

where Cλ is some positive number or sequence of (N,T) that will be introduced
in Section 5 and both αNT ≥ 1 and Cλ > 0 are allowed to grow to infinity with N
and T. The error bound implies uniform consistency of the estimator given a fixed r̄
and a fixed or slowly growing p, αNT , and Cλ. Based on this result, we also propose
a consistent estimator of the number of the effective interactive fixed effects r(u),
for each u ∈ U .
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Now, we derive the restricted set for identification. Properties of the set are
crucial to the derivation of the uniform error bound as well.

3.2. The Restricted Set

We first exploit implications from the definition of the estimator to show that the
estimator lies in a restricted set that is smaller than the full parameter space. All
the subsequent analysis can be conducted in it. Recall that WX := (X1, . . . ,Xp).
We make the following assumption. Note that the statements are also implicitly
conditional on WL as mentioned earlier.

Assumption 1. (i) Let V(u) := Y −∑p
j=1 Xjβ0,j(u)−L0(u). For all u ∈U , entries

in matrix V(u) are independent conditional on WX and strictly decreasing in u
almost surely. (ii) There exists a constant CX > 0 such that max1≤j≤p ‖Xj‖2

F ≤ CXNT
w.p.a.1.

Entries in V(u) being strictly decreasing in u almost surely implies that for
almost all realizations of the Xj,its, Yits are continuously distributed. The inde-
pendence requirement in part (i) is for simplicity so that some inequalities for
random matrices can be easily applied in the proof. The same assumption when
U is a singleton can be found in Ando and Bai (2020) and Chen et al. (2021)
as well. Moderate serial correlation in Vit(u) can be allowed at a cost of more
technical conditions. On the other hand, certain serial correlation in the covariates
is allowed, and p is allowed to grow with N and T. For instance, one can verify that
Assumption 1(ii) holds if maxj=1,...,p;i,t E(X4

j,it) < c for some c > 0 with Xj,it

independent across i for all j and p = o(N). This rules out some nonstationary
regressors with increasing moments such as a random walk Xj,it ∼ N(0,t).3

Under Assumption 1, we can show that the estimation error (�̂β(u),�̂L(u)) :=
(β̂(u)−β0(u),L̂(u)− L0(u)) lies in a cone uniformly in u ∈ U w.p.a.1. The cone
has useful properties for later use. To characterize the cone, let us introduce
some notations. Let R(u)�(u)S(u)′ be a singular value decomposition of L0(u).
Following Candès and Recht (2009), let �(u) := {M ∈ R

N×T : ∃A ∈ R
r(u)×T and

B ∈ R
N×r(u) s.t. M = R(u)A + BS(u)′}. Denote the orthogonal projection of an

arbitrary N×T matrix W onto this space and its orthogonal complement byP�(u)W
and by P�(u)⊥W, respectively, then

P�(u)W =R(u)R(u)′W +WS(u)S(u)′ −R(u)R(u)′WS(u)S(u)′, (3.5)

P�(u)⊥W =(IN −R(u)R(u)′
)

W
(
IT −S(u)S(u)′

)
, (3.6)

where IN and IT are the N ×N and T ×T identity matrices, respectively.

Remark 6. Let the T × r(u) matrix F0(u) and the N × r(u) matrix �0(u)

be the true effective fixed effects at u. Define the orthogonal projection

3We thank an anonymous referee for suggesting this example.
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matrices as M�0(u) := IN − �0(u)[�0(u)′�0(u)]−1�0(u)′ and MF0(u) = IT −
F0(u)[F0(u)′F0(u)]−1F0(u)′. One can verify that P�(u)⊥W = M�0(u)WMF0(u)

and P�(u)W = W −M�0(u)WMF0(u). Therefore, we can interpret P�(u)⊥W as the
part of W that can be (linearly) explained neither by F0(u) nor by �0(u), while
P�(u)W as the part of W that can be explained either by F0(u) or by �0(u).

Lemma 1. Under Assumption 1, for CX defined in Assumption 1, there exists a
constant Cop > 0 such that for λ = (1+Cλ)Cop

√
N ∨T/NT where Cλ > 0 and can

be either a constant or can grow to infinity, by letting

κ1(λ) := 1+2/Cλ and κ2(λ) := 5
√

2CXp(N ∧T) log((p+1)NT)/(CλCop),

(3.7)

we have

sup
u∈U

(∥∥∥P�(u)⊥�̂L(u)

∥∥∥∗
−κ1(λ)

∥∥∥P�(u)�̂L(u)

∥∥∥∗
−κ2(λ)

∥∥∥�̂β(u)

∥∥∥
F

)
≤ 0,w.p.a.1.

(3.8)

Proof. See Section S.B.1 of the Supplementary Material. �
By Lemma 1, define cone Ru by

Ru :=
{
(�β,�L) ∈ R

p ×R
N×T :

∥∥P�(u)⊥�L
∥∥∗ ≤ κ1(λ)

∥∥P�(u)�L
∥∥∗ +κ2(λ)

∥∥�β

∥∥
F

}
.

Let D := R
p × {�L ∈ R

N×T : ‖�L‖∞ ≤ 2αNT}. Recall that L = {L ∈ R
N×T :

‖L‖∞ ≤ αNT}. Under �L, by L̂(u) ∈L and by Lemma 1, we have (�̂β(u),�̂L(u)) ∈
Ru ∩D for all u ∈ U w.p.a.1. Let �0 := {(β(u),L(u)) ∈ R

p ×L : (β(u)−β0(u),

L(u)−L0(u)) ∈ Ru ∩D}. Therefore, (β̂(u),L̂(u)) lies in the restricted set �0 for
all u ∈ U w.p.a.1.

The key property of Ru is that for any element (�β,�L) ∈Ru and for any u ∈U ,
‖�L‖∗ and ‖�L‖F can be of the same order, a property that low-rank matrices also
share4. To see why this is true, note that by equation (3.5), the rank of P�(u)�L is
at most 3r(u) for all u. Hence, for all u ∈ U ,

‖P�(u)�L‖∗ ≤√3r(u)‖P�(u)�L‖F ≤√3r(u)‖�L‖F ≤√3r(u)‖�L‖∗,

where the first and the last inequalities are by the relationship between
the nuclear norm and the Frobenius norm. The second inequality is due to〈
P�(u)�L,P�(u)⊥�L

〉 = 0 and by the Pythagoras formula. As a consequence,
supposing, for instance, Cλ = 1 and thus λ = 2Cop

√
N ∨T/NT , elements in Ru

then satisfy
1

4
√

3r̄

(
‖�L‖∗ −5

√
2CXp(N ∧T) log((p+1)NT)‖�β‖F/Cop

)
≤‖�L‖F ≤‖�L‖∗,

(3.9)

4Note that this property is nontrivial because in general the nuclear norm ‖�L‖∗ can be as large as
√

N ∧T‖�L‖F .
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which implies that if
√

p(N ∧T) log((p+1)NT)‖�β‖F/‖�L‖∗ = o(1), ‖�L‖∗ and
‖�L‖F are of the same order. This property is useful both to show identification
and to derive the uniform rate of convergence.

Remark 7. Note that since the estimation error (�̂β(u),�̂L(u)) is in Ru w.p.a.1,
‖�̂L(u)‖F and ‖�̂L(u)‖∗ can also be of the same order w.p.a.1. Let the singular
values of �̂L(u) be σ̂k(u),k = 1, . . . ,N ∧T . By the definition of the Frobenius and
the nuclear norms, it thus says

∑
k σ̂ 2

k (u) and (
∑

k σ̂k(u))2 are of the same order
w.p.a.1. Therefore, although it is unclear whether the nuclear norm penalty makes
some singular values of �̂L(u) to be exact zero so that �̂L(u), and in turn, L̂(u),
is low-rank, the singular values, in descending order, must decay in order. For
instance, if the leading singular values have order

√
NT , then the number of such

singular values must be O(1) and the order of the remaining singular values must
be smaller than it.

The cone Ru in Lemma 1 is similar to those obtained in the broad literature
of nuclear norm penalized estimation under different objective functions (see,
e.g., Agarwal et al., 2012; Negahban and Wainwright, 2012; Chernozhukov et al.,
2019; Athey et al., 2021). When there are no regressors, these results essentially
say the following: The estimation error, when orthogonally projected onto the
space where the true low-rank component lies, dominates its projection onto
the orthogonal complement in order. Different from the mentioned literature, we
establish uniformity in Lemma 1 under a nonsmooth objective function.

4. IDENTIFICATION OVER THE RESTRICTED SET

In this section, we establish identification of (β0(u),L0(u)) for all u ∈ U over
the restricted set �0. Identification is in the sense that (β0(u),L0(u)) is uniquely
determined over �0 uniformly over u ∈U by the joint distribution of (Y,X1, . . . ,Xp)

implicitly conditional on the true fixed effects. This notion of identification is often
adopted in the literature of panel data models with interactive fixed effects, for
instance, Moon and Weidner (2015, 2019).

Identification on �0, a subset of the whole parameter space Rp ×L, is sufficient
for consistency (similar to Belloni and Chernozhukov, 2011). Under the event
(β̂(u),L̂(u)) ∈ �0, which happens w.p.a.1 by Lemma 1, the estimator is equivalent
to the one under the same objective function as (2.3) with the parameter space
replaced by �0. Consistency of the latter only requires identification on �0, so
identification on �0 is sufficient for our estimator as well.

4.1. Assumptions

Assumption 2. There exists a δ > 0 such that the conditional density fVit(u)|WX

satisfies

f := inf
s∈[−δ,δ],u∈U
1≤i≤N,1≤t≤T

fVit(u)|WX (s) > 0 a.s.
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Note that δ in Assumption 2 can be arbitrarily small. A sufficient condition for
Assumption 2 to hold is that fVit(u)|WX (0) > 0 uniformly in i,t and u ∈ U and the
functions {fVit(u)|WX }i,t,u are equicontinuous at 0 for all realizations of WX . This
assumption can be shown to be weaker than the assumptions on the conditional
density in Ando and Bai (2020), Chen et al. (2021), and Belloni et al. (2023). See
Section S.A.2 of the Supplementary Material for a detailed discussion. Allowing
the conditional density to reach zero and/or to be nondifferentiable in some regions
is useful in economic and financial applications when, for instance, the number of
interactive fixed effects changes across quantile levels. For example, Ando and Bai
(2020) find that the numbers of common factors for stock returns are different at
the 0.05th and the 0.95th quantiles. Example 4 illustrates why a changing number
of interactive fixed effects may lead to a zero or nondifferentiable density function.
Moreover, not requiring the density to have a bounded derivative entertains some
applications where the conditional density functions are wiggly.

Example 4. Let Yit = �1iF1t +�2iF2t1(Uit > 0.5)+ G(Uit), where G is some
strictly increasing and differentiable function. Suppose �2iF2t > 0. By definition,
Vit(u) = G(Uit) + �2iF2t1(Uit > 0.5) − G(u) − �2iF2t1(u > 0.5). Note that, for
any u ∈ (0,1), Vit(u) is not supported on the interval (G(0.5)−G(u)−�2iF2t1(u >

0.5),G(0.5)+�2iF2t − G(u)−�2iF2t1(u > 0.5)]. This interval never contains 0
for all u, so our assumption is satisfied for all u except for u = 0.5. However, for any
u, the density of Vit(u) is equal to 0 in this interval and is thus not bounded away
from zero on all compact intervals, and it is nondifferentiable at the boundaries of
the interval.

Assumption 3. Parameter Cλ in Lemma 1 is O
(√

log(NT)
)

. The αNT in the

parameter space L in equation (2.3) is no smaller than 1, can grow to infinity with
N and T, and makes 1/γ → ∞ where γ is defined in equation (3.4). Besides, either
one of the following two conditions holds: (i) maxj=1,...,p;i,t |Xj,it| ≤ √

CX a.s. where
CX is the same as in Assumption 1, and p = o((N ∧T)/(log(NT)α2

NT)). (ii) There
exists a positive constant Cϕ and an increasing continuous function ϕ : [0,∞) →
[0,∞) such that ϕ(x) ≥ x2+η for some η > 0 for all x ≥ 0 and

max
j=1,...,p;i,t

Eϕ(|Xj,it|) < Cϕ and p ·

⎛
⎜⎜⎝ p

ϕ

( √
N∧T√

(p+1) log(NT)αNT

)
⎞
⎟⎟⎠

η
η+2

= o(1). (4.1)

Assumption 3 restricts Cλ = O
(√

log(NT)
)

so that the penalty is not unnec-

essarily large that slows down the rate of convergence (see γ in equation (3.4)).
Assumption 3 describes two cases for the number and the tails of the regressors.
Case (ii) allows for unbounded regressors whose moments that are at least slightly
higher than the second-order exist. Note that a necessary condition for the second
part in equation (4.1) to hold is still p = o((N ∧T)/(log(NT)α2

NT)), same as Case
(i). The actual number of regressors allowed depends on how thin the tails of the
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regressors are; a large p is allowed under a large η. When ϕ is the exponential
function, for instance, the Xj,its are sub-Gaussian, one can pick a sufficiently large
η so that p can be as large as O((N ∧T)1−ε/(log(NT)α2

NT)) for an arbitrarily small
ε > 0. When Xj,it only has, for instance, finite fourth moment, by letting η = 2 and

ϕ(x) = x4, we have p = o
([

(N ∧T)/(α2
NT log(NT))

]2/5
)

= o(N), so Assumption

1(ii) holds if Xj,it is independent across i for all j.

Assumption 4. (i) For any vector τ ∈ R
p, there exists a constant C�X > 1 such

that for some arbitrarily small ε > 0,

inf
u∈U

⎛
⎜⎝E

∥∥∥∥∥∥P�(u)⊥

⎛
⎝ p∑

j=1

Xjτj

⎞
⎠
∥∥∥∥∥∥

2

F

− (C�X + ε0)
2 3r(u)κ1(λ)2

E

∥∥∥∥∥∥P�(u)

⎛
⎝ p∑

j=1

Xjτj

⎞
⎠
∥∥∥∥∥∥

2

F

⎞
⎟⎠≥ 0.

(4.2)

(ii) The smallest eigenvalue of the p×p matrixE
(
XitX′

it

)
is no smaller than some

σ 2
min > 0 for all i and t.

The purpose of Assumption 4 is as follows: We can show that Assumptions 2
and 3 imply that the expected difference in the objective function E[ρu(V(u) −∑p

j=1 Xj�β,j − �L) − ρu(V(u))] can be lower bounded by a linear function of
E‖∑p

j=1 Xj�β,j + �L‖2
F. Assumption 4(i) further guarantees that, under some

restrictions,

E

∥∥∥∥∥∥
p∑

j=1

Xj�β,j +�L

∥∥∥∥∥∥
2

F

≥ CRSC

⎛
⎜⎝E

∥∥∥∥∥∥
p∑

j=1

Xj�β,j

∥∥∥∥∥∥
2

F

+‖�L‖2
F

⎞
⎟⎠ (4.3)

for (�L,�β) ∈ Ru ∩ D for some CRSC > 0. Finally, the usual no-perfect
multicollinearity condition Assumption 4(ii) lower bounds E‖∑p

j=1 Xj�β,j‖2
F by

σ 2
minNT‖�β‖2

F.
Equation (4.3) is a version of the restricted strong convexity in the machine

learning and statistics literature on low-rank matrix recovery or nuclear norm
penalized estimation (e.g., Negahban and Wainwright, 2011, 2012; Agarwal et al.,
2012; Negahban et al., 2012; Chernozhukov et al., 2019; Belloni et al., 2023;
etc.). Our Assumption 4(i) provides a lower-level and more interpretable sufficient
condition for it under our setup. It essentially says that for any linear combination
of the regressors, the part that can not be explained by the true fixed effects must be
sufficiently larger than the part that can be explained either by the true individual or
the time fixed effects. Indeed, we can show that under Assumption 4(i), any linear
combination of the regressors lies away from the cone where �L lies in. Hence, it
is not possible for E‖∑p

j=1 Xj�β,j +�L‖2
F to be zero unless both �β and �L are

both zero. See Lemma S.B.3 in the Supplementary Material for details.

Remark 8. The bound on the smallest eigenvalue σ 2
min is assumed to be a

constant for simplicity. This is the case when p is fixed or p is increasing with
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(N,T) but, for instance, E(XitX′
it) is diagonal. See also the examples in Belloni and

Chernozhukov (2011). In general, if p grows to infinity, σ 2
min can diminish to zero.

Since the error bound γ decreases in σ 2
min (see the proof of Theorem 2 for details),

the rate of convergence of our estimator will be slower in that case.

4.1.1. On Low-Rank Regressors. In the literature of interactive fixed effects
where the individual and time fixed effects (�0(u),F0(u)) are treated as separate
parameters, a commonly used identification condition is that all the regressors
are high-rank (e.g., Bai, 2009; Moon and Weidner, 2015; see also Ahn, Lee,
and Schmidt (2001) for an example of nonidentification when there are both a
low-rank common component and a time-invariant regressor with time-varying
coefficients).

Moon and Weidner (2019) find that nuclear norm penalized estimation allows
for low-rank regressors5 in mean regressions under an identification condition
similar to Assumption 4. We show that this insight carries over to quantile
regression.

To see it, let x be an NT × p matrix, where the jth column is the vectorized Xj.
We show in Section S.B.2 of the Supplementary Material that Assumption 4(i) is
equivalent to that for all u ∈ U , the following holds:

E

(
x′ (MF0(u)⊗M�0(u)

)
x− (C�X + ε0)

23r(u)κ1(λ)2

1+ (C�X + ε0)23r(u)κ1(λ)2 x′x
)

is positive semidefinite.

(4.4)

Now, we can compare equation (4.4) with an identification condition that only
allows for high-rank regressors, Assumption ID in Moon and Weidner (2015).
Assumption ID assumed that E[x′ (MF ⊗M�0

)
x] is positive definite for all

F ∈ R
T×r for some r ≥ r(u). Since the requirement is imposed on all F instead

of only on the true time fixed effects F0, it requires that the regressors still have
variation after projecting onto the true individual fixed effects and arbitrary time
fixed effects. Therefore, low-rank regressors are not allowed. In contrast, in our
assumption, E[x′ (MF0(u)⊗M�0(u)

)
x] only looks at projections onto the true time

and individual fixed effects. Therefore, low-rank regressors can be allowed as long
as they cannot be fully explained by the true fixed effects, for instance, a regressor
that also has a factor structure and the factors and factor loadings are orthogonal
to the true fixed effects. On the other hand, we require that after projecting out
the true fixed effects, the regressors still have sufficiently large variation while
the condition in Moon and Weidner (2015) only requires that there is variation
remaining. Therefore, Assumption 4(i) is neither stronger nor weaker than the

5Here, a low-rank regressor refers to the situation where the N ×T data matrix of this regressor is low-rank. Across
regressors, perfect multicollinearity is not allowed so full rank of the variance matrix EXitX′

it is still required by
Assumption 4(ii).
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identification condition in the literature where the interactive fixed effects are
estimated separately.

4.2. Identification

Theorem 1. Under Assumptions 1–4, there exists a constant CRSC > 0 such that
for all fixed and sufficiently large N and T,

inf
u∈U

(�β,�L)∈D∩Ru

(
E

⎡
⎣ρu

⎛
⎝V(u)−

p∑
j=1

Xj�β −�L

⎞
⎠−ρu (V(u))

⎤
⎦

− (1∧ δ)2f CRSC
(
NT‖�β‖2

F +‖�L‖2
F

)
4
(
2αNT + (αNT‖�β‖F/γ ∨1)

)2

)
≥ 0. (4.5)

Therefore, (β0(u),L0(u)) are identified over �0 for all u ∈ U . The number of
interactive fixed effects r(u) is also identified for all u ∈U . Constant CRSC increases
in C�X and Cλ but is upper bounded. Its exact form is in the proof.

Proof. See a proof sketch and the formal proof in Section S.B.2 of the Supple-
mentary Material. �

Theorem 1 proves identification of the true parameters over the restricted set �0.
Identification in this subset is sufficient for the purpose of consistent estimation
because we have shown in Lemma 1 that the estimator falls into it w.p.a.1. Once
L0(u) and thus r(u) are identified, the fixed effects F0(u) and �0(u) are also
identified up to rotation or normalization. For instance, Bai (2009) shows that
F0(u) and �0(u) are uniquely determined (up to a columnwise sign change)
given L0(u) under the normalization that F0(u)′F0(u)/T = Ir and �0(u)′�0(u) is
diagonal, where Ir is the r × r identity matrix.

Two remarks are in order.

Remark 9. The theorem requires sufficiently large N and T. This will be
satisfied automatically when proving consistency as we will then send N and T
to infinity.

Remark 10. The constant CRSC increases in C�X because the latter controls the
distance from (�β,

∑p
j=1 Xj�β,j) to cone Ru. When the regressors lie further away

from the cone, we obtain a larger lower bound. Meanwhile, CRSC also increases
in Cλ because a larger Cλ leads to smaller κ1(λ) and κ2(λ) defined in equation
(3.7), and the cone then becomes smaller and is thus easier to be separated from
(�β,

∑p
j=1 Xj�β,j).

Before we end this section, we discuss the major theoretical difficulty in proving
Theorem 1. In the proof, we first lower bound the expectation in (4.5) by a
linear function of E‖∑p

j=1 Xj�β,j + �L‖2
F, then invoke Assumption 4 to further

bound it by the lower bound in the theorem. The difficulty in the first step
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arises from the high-dimensionality of �L. For illustration, consider a simple case
without covariates. The expectation under consideration can then be simplified as
E
[
ρu (V(u)−�L)−ρu(V(u))

]
. By Knight’s identity (Knight, 1998) and by the

definition of Vit(u), it can be rewritten as

∑
i,t

∫ �L,it

0

(
FVit(u)(s)−FVit(u)(0)

)
ds, (4.6)

where FVit(u) is the cumulative distribution function of Vit(u). The key problem is as
follows. The magnitude of some �L,its, even under our constraint ‖�L,it‖∞ ≤ 2αNT

and even when ‖�L‖2
F/NT → 0, can be as large as 2αNT which is allowed to grow

to infinity. Hence, if one adopts the standard argument in quantile regression to
first-order Taylor expand FVit(u)(s) around 0 (supposing FVit(u)(·) is differentiable
on (0,s)), we get FVit(u)(s) − FVit(u)(0) = sfVit(u)(s̃(s)), where fVit(u) is the density
function of Vit(u) and the mean value s̃(s) lies between 0 and �L,it. Now that s̃(s)
can be also as large as 2αNT , fVit(u)(s̃(s)) may approach to zero as 2αNT grows if one
only assumes the density is continuous at zero and fVit(u)(0) > 0. So its infimum
could be 0 and a strictly positive lower bound does not obtain.

We resolve the issue by restricting ‖�L‖∞ ≤ 2αNT , achieved by adopting a
compact parameter space L for the matrix component as in equation (2.3). Then
as we show in Section S.B.4 of the Supplementary Material that each integral in
the summation (4.6) is decreasing in the absolute upper limit, we can lower bound

the integral by
∫ (1∧δ)�L,it/2αNT

0

(
FVit(u)(s)−FVit(u)(0)

)
ds, where δ is the constant in

Assumption 2. For this integral, even if �L,it is diverging, |�L,it|/2αNT ≤ 1 so
(1∧ δ)�L,it/2αNT must lie in the region where the conditional density is positive.
Then, first-order Taylor expanding FVit(u)(s) around 0 yields a positive quadratic
lower bound.

We also develop an alternative approach (see Section S.A.1 of the Supplemen-
tary Material) which relaxes the parameter space L to be RN×T at the cost of more
technical conditions. We provide a detailed comparison in Section S.A.2 of the
Supplementary Material to compare the two approaches with the literature.

5. ASYMPTOTIC RESULTS

In this section, we derive the uniform rate of convergence of our estimator.

Assumption 5. There exists a nonnegative ζX = O(
√

p) such that

‖β0(u
′)−β0(u)‖F ≤ζX|u′ −u|,∀u,u′ ∈ U . (5.1)

This assumption is the same as in Belloni and Chernozhukov (2011), and is made
to obtain uniformity; it trivially holds when U is a singleton. The coefficients in
Example 1 automatically satisfy Assumption 5 with ζX = 0, whereas in Example
2, the assumption holds if the quantile function qε(·) is Lipschitz continuous on U .
Note that since β0(u) contains p components, we need to allow ζX to have order

√
p.
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Theorem 2. Under Assumptions 1–5 and the condition for λ in Lemma 1, there
exists a constant Cerror > 0 such that the following holds w.p.a.1:

sup
u∈U

‖β̂(u)−β0(u)‖2
F + 1

NT
‖L̂(u)−L0(u)‖2

F ≤ γ 2

:= C2
errorα

4
NT

[
(1+Cλ)

2 ∨ log(NT)
](p log((p+1)NT)

NT
∨ r̄

N ∧T

)
. (5.2)

The constant Cerror decreases in σ 2
min, f , C�X, and Cλ, and is lower bounded by a

positive constant. Its exact formula is in the proof.

Proof. See Section S.B.3 of the Supplementary Material. �

Theorem 2 implies uniform consistency of our estimator of β0(u) and L0(u)

over U for a fixed r̄ and slowly growing αNT and p. The key determinants of the
rate of convergence are p log((p + 1)NT)/NT and 1/(N ∧ T). This part is similar
to the nuclear norm penalized mean regression literature (Chernozhukov et al.,
2019; Moon and Weidner, 2019; Athey et al., 2021). We will discuss this part in
further detail in this section. Other determinants of the error bound include the
number of interactive fixed effects (r̄), the size of Ru ∩D (i.e., the magnitude of
αNT and Cλ), and the strength of identification (f , σ 2

min and C�X). The way that
these parameters affect the error bound is expected: A larger r̄ results in a relatively
higher-rank common component, making the estimation problem more difficult.
Stronger identification (a larger C�X , a larger σ 2

min and/or a larger f ) and a smaller
relevant parameter space (a smaller αNT and a larger Cλ) makes it easier to separate
the estimation errors �̂β,j(u)s and �̂L(u).

The error bound also implies that the optimal rate for Cλ is
√

log(NT). This is
because it will then make (1+Cλ)

2 and log(NT) equal in order while minimizing
Cerror compared to a constant Cλ because Cerror decreases as Cλ increases. With
this Cλ, λ then has order

√
log(NT)(N ∨T)/NT .

5.1. On the Rate of L̂(u) and a Rank Estimator

Under our restriction on the order of p in Assumption 3, p log((p+1)NT)/(NT) =
o(1/(N ∧T)). Then, if αNT = O(log(NT)) and Cλ = O(

√
log(NT)), the error bound

on L̂(u) in Theorem 2 is nearly optimal implied by Agarwal et al. (2012) in the
following sense. Agarwal et al. (2012) study a model where an observable N × T
matrix Y is the sum of a low-rank matrix, a sparse matrix and a noise matrix of i.i.d.
Gaussian entries. To apply their result to our model, consider a special case, where
u = 0.5 and Y = L0 +V , where V is an N ×T matrix of i.i.d. N(0,v2) entries. This
model both satisfies the conditional quantile model (2.2) studied in this paper at
u = 0.5 with β(0.5) = 0 and qY|L0(0.5) = L0, and also satisfies their setup with the
sparse component being exactly zero. Their Theorem 2 (p. 1195) shows that the
lower bound on the minimax risk in the squared Frobenius norm over the family
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{L0 : rank(L0) ≤ r̄,‖L0‖∞ ≤ αNT} has the order 1/(N ∧T). The order of this lower
bound and our upper bound are equal up to a factor of α4

NT log(NT).
From the error bound on L̂(u), we can obtain the order of the singular values of

the estimation error �̂L(u) by Weyl’s theorem. Let σ1(u) ≥ ·· · ≥ σr(u)(u) > 0 be
the nonzero singular values of L0(u), and σ̂1(u) ≥ ·· · ≥ σ̂N∧T(u) be the singular
values of L̂(u). We have the following corollary.

Corollary 1. Under the conditions in Theorem 2, the following holds w.p.a.1:

sup
u∈U

{
max

{|σ̂1(u)−σ1(u)|, . . . ,|σ̂r(u)(u)−σr(u)(u)|,σ̂r(u)+1(u), . . . ,σ̂N∧T(u)
}}

≤√
NTγ := Cerrorα

2
NT

[
(1+Cλ)∨√log(NT)

]√
(p log((p+1)NT))∨ (r̄(N ∨T)),

(5.3)

where Cerror is the same as in Theorem 2.

Proof. See Section S.B.3 of the Supplementary Material. �

Note that the nonzero singular values of L0(u) has order
√

NT if L0(u) is
formed by strong factors and factor loadings or if elements in L0(u) are O(1).
Although Theorem 2 and Corollary 1 are silent about whether the estimated low-
rank component L̂(u) is low-rank or not, Corollary 1 says that for large enough N
and T, since γ = o(1), there does exist a large gap between the largest r(u) and

the remaining ((N ∧T)− r(u)) singular values of L̂(u). Specifically, the first r(u)

singular values of L̂(u) are of order
√

NT , whereas the other singular values have
order

√
NTγ . This confirms the intuition in Remark 2.

This implication naturally leads to an estimator of r(u). Let r̂(u) =∑k 1(σ̂k(u) ≥
Cr) for an (N,T)-dependent Cr such that

√
NTγ = o(Cr) and Cr = o(

√
NT). The

following corollary establishes consistency of this estimator.

Corollary 2. Under the conditions in Theorem 2, for any u ∈ U , suppose all
the nonzero singular values of L0(u) are of order

√
NT, then P

(
r̂(u) = r(u)

)→ 1.

Proof. See Section S.B.3 of the Supplementary Material. �

Remark 11. Consistency can be shown to hold uniformly in u ∈ U , i.e.,
P(supu∈U |r̂(u) − r(u)| = 0) → 1, if the required order of the nonzero singular
values of L0(u) holds uniformly in u as well.

The result of Theorem 2 does not imply entrywise convergence of L̂0(u) to L0(u).
Given consistency in the average Frobenius norm, one may obtain entry-wise
consistency or consistency in the sup-norm if the entries in the estimation error
matrix �̂L have similar order, or in other words, the entries are well spread out.
Our proof strategy does not provide results on this aspect of the error matrix. Yet
from the simulation results in Section 6, ‖L̂(u)−L0(u)‖∞ does seem to converge
to 0 in the experiment.
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5.2. On the Rate of β̂(u)

Theorem 2 implies uniform consistency of β̂(u). Suppose αNT = O(log(NT)).
When p is fixed, the rate of convergence is slower than

√
1/NT , which is the rate

obtained in mean regressions when r(u) is known,6 and the interactive fixed effects
are estimated separately (e.g., Bai, 2009). This is perhaps due to penalization.
When p is allowed to grow with N and T, recall that Assumption 3 implies
p = o

(
(N ∧T)/(log(NT)α2

NT)
)
. So the rate of convergence can be nearly

√
p/NT

if N and T are of the same order.
To obtain a faster rate of convergence for β̂(u), one possibility is to use the

penalized estimator β̂(u) as a first-step estimator; using it as an initialization with
the rank estimator proposed in Section 5, one can adopt the iterative estimator
(1.2) described in the Introduction without penalization. Although this is back to
a nonconvex problem, the initial value is already lying in a small neighborhood of
the true parameter by uniform consistency. A few rounds of iterations even before
convergence is reached might correct the penalization bias and achieve a faster rate
(see Chernozhukov et al., 2019; Moon and Weidner, 2019 for mean regressions).
The benefits of adopting such a two-step procedure instead of a fully iterative
approach are threefold. First, it provides a consistent initial guess of β0(u) that
lies close to the true parameter. Second, as a by-product, the penalized estimation
step also provides a rank estimator which is needed for the iterative approach.
Third, from our Monte Carlos, we find that the penalized estimator computes very
fast compared to the estimator (1.2) under a fully iterative procedure, i.e., iterating
until convergence from some non-consistent initial guess. Hence, obtaining the
penalized estimator first, using it as an initial guess, and iterating only a few rounds
for problem (1.2) may gain overall computation efficiency compared to solving
(1.2) by the fully iterative procedure. Exploring these conjectures is left for future
research.

6. MONTE CARLO SIMULATIONS

In this section, we illustrate the finite sample performance of our estimator using
Monte Carlo simulations.

6.1. Data Generating Process

We consider the following data generating process (DGP), which is a special case
of Example 3 and is adapted from Ando and Bai (2020):

Yit = α +
p∑

j=1

Xj,itβj(Uit)+
5∑

k=1

1k(Uit)Fkt�ki(Uit)+ εit,

6The same rate can be achieved when r(u) is unknown but consistently estimated. See, for instance, footnote 5 in Bai
(2003).
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Figure 1. MSEβ .

where the Uits are independently drawn from Unif[0,1]. We set α = 2, p = 10 and
the coefficients satisfy

βj(Uit) =
{

−1+0.1Uit, if j is odd,

1+0.1Uit, if j is even.

The indicator functions 1k(·) : (0,1) �→ {0,1},k = 1, . . . ,5, satisfy

11(u) = 12(u) = 13(u) = 1,∀u ∈ (0,1), 14(u) = 1(u > 0.35), 15(u) = 1(u > 0.65).

We draw the time fixed effects F1t, . . . ,F5t independently from Unif[0,2]. We
generate the individual fixed effects as �ki(Uit) = χki +0.1Uit, where the χkis are
independently drawn from Unif[0,2] for k = 1, . . . ,5.

For the covariates, we first draw ηj,it, j = 1, . . . ,10, independently from Unif[0,2]
if j is odd and from Unif[0,1] if j is even. The covariates are generated by

Xj,it =
{

ηj,it +φ ·
(

F2
jt +χ2

ji

)
, j = 1, . . . ,5,

ηj,it +0.2 ·Xj−5,it, j = 6, . . . ,10.
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Figure 2. Bias2
β .

The parameter φ ∈ {0.1,0.2,0.3} governs the correlation between the covariates
and the fixed effects. Finally, εit is generated by G−1(Uit), where G is the cumu-
lative distribution function of either the standard normal distribution or Student’s
t-distribution with 2 degrees of freedom.

Since Xj,it and Fkt are positive for all i,t,j, and k almost surely and βj(·), �ki(·),
and G−1(·) are strictly increasing (almost surely) for all i,j, and k, Yit is strictly
increasing in Uit almost surely. Let 1N×T be an N × T matrix of all ones. The uth
conditional quantile of Y is thus qY|WX (u) =∑10

j=1 Xjβj(u)+L0(u), where

L0(u) =

⎧⎪⎨
⎪⎩
(
α +G−1(u)

)
1N×T +∑3

k=1 �k(u)F′
k, if u ≤ 0.35,(

α +G−1(u)
)

1N×T +∑4
k=1 �k(u)F′

k, if 0.35 < u ≤ 0.65,(
α +G−1(u)

)
1N×T +∑5

k=1 �k(u)F′
k, if u > 0.65.

From the model, one can see that the rank of L0(u) and the set of effective fixed
effects vary in u. Also, the model allows the covariates to be correlated with L0(u).
Higher correlation (greater φ) would make it more difficult to separately estimate
β(u)s and the common component L0(u) since it tends to yield a smaller restricted
strong convexity constant CRSC. Finally, Yit is allowed to have heavy tails because
εit can be Student’s t-distributed.
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Figure 3. Varβ .

6.2. Evaluate the Performance

To illustrate the performance of the estimator, we conduct Monte Carlo simulations
with various sample sizes for φ ∈ {0.1,0.2,0.3} and u ∈ {0.2,0.3,0.4,0.5,0.6,0.7,
0.8}. For the sample size, (N,T) ∈ {(200,200),(300,300),(400,400),(200,400),

(400,200)}. The first three sample sizes with N = T allow us to see the convergence
of the estimator. The other two sample sizes with N �= T and N ∧ T = 200 allow
us to test the theory which suggests that the rate of convergence does not depend
on N ∨T under a fixed p.

We use multiple measures to evaluate the estimator’s performance. For the 10
coefficients βj(u)s, we compute their average squared bias Bias2

β , variance Varβ ,
and the mean squared error (MSE) MSEβ over 100 simulation replications. For
the low-rank component, we compute the average squared Frobenius norm of the
estimation error MSLL and the maximum deviation MaxDevL. Meanwhile, we also
look at the MSE of the estimated conditional quantile function q̂Y|WX (u) (Ando and
Bai, 2020).7

7Let β̂j,b(u) and L̂b(u) denote the estimator of βj(u) and L0(u) in the bth simulation replication. These
measures are defined as follows: Bias2

β := ∑p
j=1(

∑100
b=1(β̂j,b(u) − βj(u))/100)2/p. Varβ := ∑p

j=1[
∑100

b=1 β̂j,b(u)2/
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Figure 4. MSEL.

Note that MSEq can be small even if MSEL is large; the latter is also affected
by CRSC, which in turn, is affected by the correlation between the covariates and
L0(u) (determined by parameter φ). Hence, by comparing MSEq with MSEL across
different values of φ, we can see how the strength of identification affects the
results.

6.3. Implementation

We present the details about our algorithm in the Appendix A. The algorithm
is adapted from the Augmented Lagrangian Multiplier method proposed in Lin,
Chen, and Ma (2010), Candès et al. (2011), and Yuan and Yang (2013). The
method was originally designed for u = 0.5 with no covariates. We extend it
to accommodate any u ∈ (0,1) with covariates. From the simulation results,
the new algorithm works fast and well. For λ, here we simply set it to be
λ =√

log(NT)(N ∨T)/(4NT). This choice of λ corresponds to its optimal rate

100 − (
∑100

b=1 β̂j,b(u)/100)2]/p. MSEβ = Bias2
β + Varβ . MSEL := ∑100

b=1[
∑

i,t(L̂it,b(u) − L0,it(u))2/NT]/100.

MSEq := ∑100
b=1[‖∑p

j=1 Xj(β̂j,b(u) − βj(u)) + (L̂b(u) − L0(u))‖2
F/NT]/100. MaxDevL = ∑100

b=1 ‖L̂b(u) −
L0(u)‖∞/100.
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Figure 5. MSEq.

derived in the theory. Alternatively, one may use cross-validation or adopt the BIC
criterion proposed in Belloni et al. (2023) to select λ.

6.4. Results

Figures 1–6 present MSEβ , Bias2
β , Varβ , MSEL, MSEq, and MaxDevL under

different φ, u, (N,T) and the distribution of εit. All experiments were performed in
MATLAB 2019b under Windows 10 on a desktop computer with 10-core 2.8GHz
Intel i9 processor and 16 GB RAM using parallel computing. From the results, we
have the following key observations.

We can see that in all specifications, all these measures shrink toward zero as N
and T both increase for all u considered. The spikes at u = 0.4 and u = 0.7 are by
construction; due to the jump of the number of interactive fixed effects at quantile
levels 0.35 and 0.65 in our DGP, the conditional density of Vit(u) hits zero at these
two quantiles, resulting in large MSE.

When only N or T increases, we can see that the MSEL curves in Figures 4 for
(N = T = 200), (N = 200,T = 400), and (N = 400,T = 200) almost coincide,
confirming our theory which says the rate of convergence of L̂(u) largely depends
on the minimum between N and T only. We can see a similar pattern in MSEβ

(Figure 1) and Bias2
β (Figure 2) when φ is large (φ = 0.2,0.3), even though Varβ
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Figure 6. MaxDevL.

(Figure 3) decreases when only N or T increases. This is because Bias2
β dominates

in MSEβ due to penalization, so, again, the rate of convergence of β̂(u) only
depends on N ∧T under these φs. Yet, we can also see that when φ = 0.1, MSEβ

does shrink when only one of N and T increases. This suggests that the error bound
for β̂(u) is an upper bound and the actual rate of convergence of β̂(u) may be faster
when the regressors and the common component only have weak correlation. This
is left for future research.

Across different specifications, we can see that convergence is robust to heavy
tailed outcome variables, although at a given sample size, MSEβ and MSEL are all
greater than in the case where the outcome variable has a thinner tail. Meanwhile,
MSEβ and MSEL are smaller when φ is smaller, whereas MSEq (Figure 5) stays
relatively unchanged across different φ. This is expected because with a higher cor-
relation between the covariates and the low-rank common component, the constant
CRSC tends to be smaller, making it harder to separate the regressor matrices from
the common component, but MSEq, showing how well the conditional quantile is
fitted, does not rely on the quality of such separation.

Finally, although we do not have a theory on the convergence of ‖L̂(u) −
L0(u)‖∞, we can see from Figure 6 that ‖L̂(u)−L0(u)‖∞ also seems to converge
to zero with a rate of convergence only depending on N ∧T .
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In terms of computation speed, the computation time in these experiments
is from around 2–38 s. We also computed the iterative estimator (1.2) in the
Introduction under the true number of interactive fixed effects. Our estimator
computes much faster than it.

7. CONCLUDING REMARKS

In this paper, we study a conditional quantile panel data model with interactive
fixed effects. By exploiting the low-rankness of the matrix formed by the interac-
tive fixed effects, we propose a nuclear norm penalized estimator. The estimator
jointly estimates the coefficients and the low-rank matrix by solving a convex
problem. We derive a uniform error bound on the estimator and in turn, establish
uniform consistency. Based on the error bound, we also construct a consistent esti-
mator of the number of interactive fixed effects at any given quantile level. From
the Monte Carlo simulations, our estimator performs well and computes quickly.

We conjecture that after the penalized estimator and the rank estimator are
obtained, by using them as the initial value, a few rounds of iterations based on the
iterative estimator’s minimization problem would remove the bias and restore the
rate of convergence of the coefficient estimator that is slowed down by penaliza-
tion. Inference may also be available based on such post-penalization procedures.
Moreover, as we find that the penalization allows certain low-rank regressors, it
may be interesting to investigate how the performance of the estimator changes
when explicitly imposing the assumption that some or all the regressors are low-
rank. We leave these questions for future work.

A. Implementation of the Estimator

We adapt an augmented Lagrange multiplier (ALM) algorithm introduced in Lin et al.
(2010), Candès et al. (2011), and Yuan and Yang (2013). Rewrite the minimization problem
(2.3) as8

min
L,V,β

1

λNT
ρu(V)+‖L‖∗,

s.t.
p∑

j=1

Xjβj +L+V = Y .

The ALM method is based on the augmented Lagrangian

L (L,β,V,H) = 1

λNT
ρu(V)+‖L‖∗ +

〈
H,Y −

p∑
j=1

Xjβj −L−V

〉
+ μ

2

∥∥∥∥∥∥Y −
p∑

j=1

Xjβj −L−V

∥∥∥∥∥∥
2

F

,

(A.1)

8In theory, the estimator (2.3) proposed in Section 2 solves a constrained minimization problem with ‖L‖∞ ≤ αNT .
However, since αNT is allowed to grow to infinity with N and T, in practice, we can set αNT as a large positive number,
solve an unconstrained problem using the algorithm in this appendix, and check whether the obtained L̂(u) satisfies
the constraint. Moreover, we propose alternative assumptions in Section S.A.1 of the Supplementary Material; under
them, the constraint in the minimization problem can be dropped.
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where H ∈R
N×T is the Lagrangian multiplier of the linear constraint

∑p
j=1 Xjβj +L+V =

Y and μ > 0 is the penalty parameter for the violation of the constraint. By separability of
the parameters in L , the ALM method treats L, (β,V) and H as three blocks of parameters,
and iteratively updates each one of them at a time until converged. When updating (β,V),
inner-loop iterations are carried out by updating one of β and V at a time by treating the
other parameter as well as L and H fixed. Given the kth step L(k),(β(k), V(k)), and H(k)

((β(k), V(k)) as the accumulation point in the inner-loop iterations), ALM updates L, β, and
V by the first-order condition and H as follows:

L-minimization: 0 ∈ ∇‖L(k+1)‖∗ −
⎛
⎝H(k) −μ

⎛
⎝V(k) +

p∑
j=1

Xjβ
(k)
j +L(k+1) −Y

⎞
⎠
⎞
⎠,

(A.2)

(V,β)-minimization: Given the lth step update β(l) and V(l) in the inner loop,

V-minimization: 0 ∈ 1

λNT
∇ρu(V

(l+1))−
⎛
⎝H(k) −μ

⎛
⎝V(l+1) +

p∑
j=1

Xjβ
(l)
j +L(k+1) −Y

⎞
⎠
⎞
⎠,

(A.3)

β-minimization: 0 =
〈
H(k),Xj

〉
+μ

〈
Y −

p∑
j=1

Xjβ
(l+1)
j −L(k+1) −V(l+1),Xj

〉
,∀j = 1, . . . ,p,

(A.4)

H-minimization: H(k+1) = H(k) −μ

⎛
⎝V(k+1) +

p∑
j=1

Xjβ
(k+1)
j +L(k+1) −Y

⎞
⎠, (A.5)

where ∇ denotes the subgradient operator. It can be verified that the three first-order
conditions (A.2)–(A.4) have explicit solutions.

For equation (A.2), let R(k)diag({σ (k)
j }j)S

(k)′ be a singular value decomposition of the

matrix (Y − V(k) −∑p
j=1 Xjβ

(k)
j + H(k)/μ). According to Yuan and Yang (2013), the

solution to equation (A.2) is

L(k+1) = R(k)diag

(
max

{
σ

(k)
j − 1

μ
,0

})
S(k)′ . (A.6)

For equation (A.3), let �
(l)
V = H(k)/μ−∑p

j=1 Xjβ
(l)
j − L(k+1) + Y . For every i = 1, . . . ,N

and t = 1, . . . ,T ,
(
∇ρu

(
V(l+1)

))
it

= u1(V(l+1)
it > 0) + (u − 1)1(V(l+1)

it < 0). It can be

verified that the following is a solution:

V(l+1)
it =

⎧⎨
⎩

max
{
�

(l)
V,it − u

μλNT ,0
}
, if �

(l)
V,it ≥ 0,

−max
{
−�

(l)
V,it − 1−u

μλNT ,0
}
, if �

(l)
V,it < 0.

(A.7)

For equation (A.4), it is the first-order condition of a least square problem. Let �
(l+1)
β =

Y −L(k+1)−V(l+1)+H(k)/μ. Define the NT ×p matrix X = (vec(X1), . . . ,vec(Xp)). Then,

β(l+1) = (
X′X

)−1
(

X′vec
(
�

(l+1)
β

))
. (A.8)
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Finally, following Yuan and Yang (2013), we set μ = 0.25NT/‖Y‖1. The termination
criterion for the outer loop9 is set as ‖β(k+1) −β(k)‖2

F/p+‖L(k+1) −L(k)‖2
F/NT ≤ 10−6,

and for the inner loop is set as ‖β(l+1) − β(l)‖2
F/p ≤ 10−4. The following algorithm

summarizes these steps.

Algorithm 1: Nuclear Norm Penalized Quantile Regression by ALM.

initialize: β0 = 0,V0 = H0 = 0,μ = 0.25NT/‖Y‖1,λ =√
log(NT)(N ∨T)/(4NT).

while not converged do
compute L(k+1) as (A.6);
while not converged do

compute V(l+1) as (A.7);
compute β(l+1) as (A.8);

end
compute H(k+1) as (A.5);

end
output: β,L.

On the computation side, although Algorithm 1 has two loops, the most computation-
intensive part, i.e., computing L(k+1) which involves singular value decomposition, is
designed to only show up in the outer-loop. The inner loop only involves elementary
computation and solving a least square problem. We find in the simulation study that the
algorithm computes very fast.

On the theory side, Section S.B.5 of the Supplementary Material proves that the solution
to Algorithm 1 is a solution to the minimization problem (2.3) which defines our estimator.

SUPPLEMENTARY MATERIAL

Feng, J. (2023): Supplement to “Nuclear norm regularized quantile regression with
interactive fixed effects,” Econometric Theory Supplementary Material. To view,
please visit: https://doi.org/10.1017/S0266466623000129.
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