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Abstract. The implications of the Zeldovich model (baryons interacting through a massive vector 
field) for the problem of superluminal sound propagation and ferromagnetic transition are examined. 
In a classical baryon gas at high densities correlation effects lead to the pressure increasing faster than 
the energy, ultimately resulting in superluminal sound; crystallization phase transition appears 
however at comparable densities, thus competing with the onset of superluminal sound. For a high 
density fermi gas the domains of ferromagnetic transition are delineated, indicating a minimal and 
maximal density below and above which no ferromagnetic transition can be expected. The latter is 
further affected by relativistic effects requiring a different approach to the calculation of exchange 
energy and of the ferromagnetic phase. 

1. Introduction 

The study of matter at ultra-high density poses some questions of fairly general 
character, the answers to which are expected to be virtually independent of the details 
of the interaction between the particles. Zeldovich's model has been devised (Zeldovich, 
1962) and employed (Bludman and Ruderman, 1968) to investigate such questions. 
The model describes the interaction between nucleons with the aid of a massive vector 
field. The resulting repulsive short range potential is taken at its face value (without 
corrections resulting from the exchange of several mesons) and can be used both 
classically and quantum mechanically. It has been recently speculated (see the paper 
by Bethe in this volume) that it is indeed in the domain of very strong coupling where 
such a model provides a fairly reliable approach and a superposition of Zeldovich-like 
potentials has been used in several attempts (Leung and Wang in this volume) to 
describe realistically nuclear matter at ultrahigh (Q> 1 0 1 5 g c m " 3 ) densities. Although 
our justification for using the Zeldovich model is not that we expect it to be a realistic 
nuclear potential, in order to fix ideas we might stipulate that we are dealing with 
densities « > l f m ~ 3 ( e > 1 . 6 x l 0 1 5 g c m ~ 3 ) with a vector meson of mass ~ 7 7 0 MeV 
(for co meson ^ = 784 MeV) corresponding to a range of interaction J U _ 1 = 0.26 fm 
and a coupling constant g2/hc= 10~20 . 

In this paper we investigate the puzzle of superluminal sound propagation and the 
problem of ferromagnetic transition; we also comment on the question of high density 
crystallization. These points we studied in the context of the Zeldovich model: it is 
hoped that the investigation of the various aspects of a single model is illuminating, 
even though no immediate connection with concrete physical systems can be estab­
lished. 

2. Superluminal Sound Propagation 

2.1. E Q U A T I O N O F STATE 

As calculations for the equation of state for neutron matter at supernuclear and near-
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relativistic densities led to such high pressures that p (pressure) became comparable 
to e (energy density, including rest mass), the question of sound velocity acquired some 
interest. To be sure, results indicating substantially superluminal sound velocities 
emerged (as in Barker et al., 1967, for example), but it was argued that they were due 
to nonrealistic hard core potentials, inconsistent use or complete neglect of relativity, 
etc., and it was generally held that in the ultrarelativistic l imitp^s/3 should be obeyed, 
the equality being reached asymptotically. Correspondingly, since the speed of sound 
is determined by 

it follows that the maximum sound speed would have been limited to cs^c/ y/3. 
It has been demonstrated by Zeldovich (1962) that the consistent relativistic use 

of his model does not support this contention. Indeed, in the Hartree approximation 
which was used by Zeldovich both the maximum limiting p/e and cs/c ratios approach 
one, viz., 

This result originates from the presence of the positive Hartree terms for a one-
component system with repulsive short range interaction. The Hartree terms are of 
the order 0(n2) as compared to 0(n) for the kinetic terms, and hence at extremely high 
densities the Hartree terms dominate, resulting in the asymptotic equation of state: 

extreme relativistic densities. Similar results on zero sound in a relativistic quantum 
gas described by the Zeldovich model were obtained by Kalman (1967). 

Bludman and Ruderman (1968) went beyond the Hartree approximation by includ­
ing correlations among particles in a crystal lattice. They showed that under these 
circumstances both ratios in (2) exceed unity and ultrabaric equation of state (p>s) 
and superluminal sound (cs>c) obtained at sufficiently high densities. 

It has been argued by Ruderman (1968) that the source of the acausal behavior -
which is at the root of the appearance of superluminal sound propagation - is 
connected with the inherent instability of a classical one-particle or many-particle 
system interacting with its own radiation field (cf. the problem of the classical runaway 
electron discussed in Rohrlich, 1965). In the detailed dynamical description of the 
system this indeed casts doubt on the validity of choosing and constructing Green 
functions in the customary way (Bludman and Ruderman, 1968; Ruderman, 1968); 
it is difficult to see, however, how such an argument will affect direct thermodynamical 
considerations. (Whether the conventional thermodynamic or statistical approach is 
valid when the retarded interaction between particles is dominant is, however, 
questionable. A study of the appropriate kinetic theory would be desirable.) 

Pie < 1 , 
c s/c < 1. (2) 

lim p e. (3) 

This leads to lim / l_> 0 0c s->c, implying possible existence of luminal sound speed at 
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Here we wish to report on our study of whether the introduction of correlations in 
the original Zeldovich model, where particles are in a gaseous (plasma) state, leads to 
superluminal rather than luminal sound propagation. The use of the word 'plasma' 
is indeed appropriate in the present context, since the behavior and the proper 
description of a system we are contemplating (a gas of 'charged' classical elementary 
particles at a finite temperature, interacting through a massive vector field) and that of 

Fig. 1. Various domains in the parameter plane: for fixed values of the coupling constant and of the 
range of the field the parameter along the horizontal axis designates the density and the one along the 
vertical axis designates the temperature. The numbers enumerate the domains of different physical 
behaviors. Different shadings distinguish between the plasma domain (A), the classical lattice domain 

(B), the domain of fermi gas behavior (C), and the domain of quantum crystal behavior. 

a classical electrodynamic plasma have much in common. To be sure, we are dealing 
with a system with a large coupling constant, but since we are studying the competitive 
roles, of Hartree and correlation effects, the plasma approach provides a good 
qualitative description of and a reliable physical insight into the fundamental behavior 
of the system. 

Our answer to the question of whether superluminal sound appears in the present 
model is in the affirmative: we do get cs>c when correlations become strong enough, 
although our method is not quantitatively reliable in the domain where this is ob­
tained. We also acquire detailed descriptions of how correlation effects modify the 
sound speed, the equation of state and the stability of the plasma state. 
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We now outline the essential ideas and steps of our derivation. The distribution 
function, F(x, p, / ) , of a plasma in a 'self-consistent field approximation' is governed 
by the Vlasov equation: 

d d d) 
- + v—- + 0E- — }F(x,p, 0 = 0 , (4) 
at ox dp) v ' 

where E„ is derived from the equations 

(n-fi2)Alt = -4njlt, 

J = 9 J v F ( x , p, t) dp, 

, (5) 
Q = g F(x, p, r )dp , 

E = - A . 

From this system, the 'dielectric' response-function e of the system is obtained as: 

c o 2 - k2 colm f dF°/8p 
e(k, co) = 1 + k 2 -2 -° dp 

co — k — fi k J i * ' C , l k V (6) 
2 A 9 n 

CD0 = 47T , 
m 

where F° is the equilibrium distribution function. By invoking the fluctuation-
dissipation theorem (Kubo, 1957; Sitenko, 1967; Golden and Kalman, 1969), the 
pair-correlation function G(k) becomes related to the imaginary part of the static 
response function e(k, 0). We obtain (Kalman and Lai, 1972b) 

K 4 1 
G ( k ) = " 4 ^ 2 + , c 2 + / , 2 ' 

K2 = 4ng2nP, { , ) 

P=\jkT. 

The pair-correlation function leads to expressions for all the relevant thermodynamic 
quantities. Independently, the grand partition function is calculated by the cluster ring 
summation as in Brout and Carruthers (1963). This independent method verifies the 
thermodynamic results obtained earlier. The equation of state is given ultimately by 

* (") = I [3 + j8mG0 (Pm)1 n + \ (^j n2 - ~ [ ( K 2 + ^ - ^ , 

and 
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Expansions in density n reveal ultrabasic behavior (p>e) at high densities. At infinite 
densities, the Zeldovich result is recovered. 

To calculate sound speed c s , one can handle the partial derivatives by the Jacobian 
method (Landau and Lifshiftz, 1959), which leads to 

8T)vl\dTjv [dV 
dsjs 1 / E 

V \ P + V 

(10) 

Alternatively, (dp/de)s can be calculated from the thermodynamic functions p (n, /?), 
e(n, /?), and S(n, /?) by expressing ft in terms of n at constant entropy S. Then, 
keeping S constant, we have 

^ = [ dp [> , / ? (* , S)]j j^e{n,nn, S ) ] j ^ 

At high densities, superluminal behavior emerges, because (10) or (11) yield 

= 1 +iii2gpl/2n-1,2n-1/2 + 0 ( > T 1 ) . (12) (dp\ 
[del 

As «-»oo, Zeldovich's result is again recovered, viz., 

lim ( — ) 1. (13) 

These results are qualitatively similar to those obtained by Bludman and Ruderman 
(1968). 

As the density in the plasma state is increased beyond the plasma domain, symptoms 
of van der Waals type phase transition manifest themselves through the non-monotonic 
behavior of the pressure and energy density as functions of density. Whether the 
ensuing phase transition leads to a liquid or crystal structure cannot, of course, be 
determined at this point. Once the phase transition occurs the plasma approximation 
scheme evidently breaks down and no further prediction concerning the value of the 
sound velocity can be made. In the 'plasma domain' where our results are rigorously 
justified, neither ultrabaric equation of state nor superluminal sound result from 
(10), (11), and (12). 

2.2. H I G H E R O R D E R C O R R E L A T I O N S 

In order to somewhat refine our estimates, we consider the higher-order correlations 
by taking into account the 'watermelon' diagrams in the expansion of the partition 
function (Abe, 1959). These diagrams are of the order p3/2n1/2g3. The higher-order 
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correlations contribute to the free energy F the correction term Fc given by 

00 

m = 3 

Explicit evaluation of this infinite series of cluster integrals leads to corrections of 
pressure and energy density, 

p . - _ _ ^ g 3 A + - - T + - ; ? T 7 

c P c 48;r(/c2 + ^ 2 ) ' 
A = Kfig2 and /l = ( K 2 + (i2)1'2 fig2, y = Euler constant . 

(15) 

Since higher-order correlation terms are small refinements to the ring results, they do 
not cause any significant alteration in our previous finding concerning the physical 
behavior of the system. 

The correction term to the sound speed is obtained as 

'djA 1 | ~ 5 / l o g 3 2 \ 13"] K 3 ( K3 \ 

where y is Euler's constant. This result shows that as long as ( / C J 8 ^ 2 ) K 3 / I _ 1 < 1, the 
correction is an insignificantly small negative term and the sound speed is overestimated 
in the ring approximation. There is no substantial modification of the phase transition 
criterion either. 

2.3. C O M M E N T S A N D C O N C L U S I O N S 

As demonstrated in our model calculations, the emergence of ultrabaric behavior and 
superluminal sound stems from the fact that while correlations reduce both the 
pressure and energy density, the former is less affected thus increasing the value of 
d/?/de. As the density and thus correlations are increased, phase-transition competes 
with the emergence of superluminal sound. Ultrabaric behavior occurs after super­
luminal sound, since at low densities energy density is always greater than pressure p, 
and hence the p(n) curve has to climb at a steeper rate than s(n) in order to catch up 
with the latter. 

It is instructive now to compare the densities where the superluminal and the ultra­
baric behaviors occur with the critical density for the phase transition. For (9) and 
(11) we find that p/e= 1 for 

9 1 
6 * 3 - " ' (17) 
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and dp/ds—l for 

9 1 
603-ng*p 

(18) 

So far as the phase transition is concerned, a somewhat more detailed examination of 
(9) leads to 

" • " • " I ^ " 3 ' ( 1 9 ) 

where « c r i t is the density at the critical point on the phase transition curve (Figure 2). 
The more detailed behavior of these quantities is illustrated in Figure 2. The general 

N//i 3
 x IO3 —* 

Fig. 2. Domains of phase transition ultrabaric and superluminal behavior. Note that they occur at 
comparable densities, but there are ultrabaric and superluminal domains outside the phase transition 

region at higher temperatures. 

conclusion is that the ultrabaric and superluminal behaviors at high temperatures 
occur outside the phase transition domain, but in the region where short range 
correlations are important ; thus the 'plasma' approximation is not really appropriate 
in this region. The qualitative conclusion, however, that the superluminal and ultra­
baric behaviors do take place in the density and temperature domains indicated should 
not be affected by the more accurate description of correlations. 
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3. Ferromagnetic Transition 

3.1. N O N R E L A T I V I S T I C 

The Zeldovich model provides an economic approach by which we can study the 
qualitative features of and the conditions for the ferromagnetic phase transition in a 
fairly realistic interaction model for nuclear matter at high densities. In particular, as 
the density approaches the relativistic region the spin-spin and transverse interaction 
(inherent in the vector character of the model) substantially modify the role of the 
exchange energy. 

At non-relativistic densities the one-particle Hartree-Fock (HF) energy rj(\>) is 
given by (Lai, 1970; Kalman and Lai, 1971) 

, x h2k2 2ng2 f dk' 4ng2 

|k'|<fcF 

The Hartree term is spin independent. The competition between the kinetic and ex­
change terms determines whether the system favors a ferromagnetic state. If the spin 
populations N ± are unequal, the system is ferromagnetic with magnetization 
C = (N+ — N _ ) / ( N + + N _ ) . By comparing the average energy 

1 1 

£ ( 0 = ) , - ^ 3 * ( k ; 0 

per particle for ( = 0 and C#0, the lowest energy state at a given density can be 
determined. 

1 . 0 1 . 5 2 . 0 2 . 5 
Fig. 3. Various boundaries of ferromagnetic transitions plotted against a = 2mg2lnnh2 and x = Ikvlii. 
The dash-dot line corresponds to the quantum crystallization density as estimated on the basis of the 
calculation by Canuto and Chitre (in this volume). The heavy solid line corresponds to Ez = 0. 
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Starting with low densities the lowest energy state is at ( = 0 until the density is 
sufficiently high so that the location of min [ £ ( £ ) ] moves away from ( = 0. Thus the 
condition for the onset of partial magnetization is dE/dC | ; = z O = 0andd2E/dC2 | £=0 = 0. 
Total magnetization is attained when min [ £ ( £ ) ] is located at ( = 1, i.e., 

3£/3C|c=i=0 and d2Ejd^\=l > 0 . 

The results are shown in Figure 3. Ferromagnetism is favored at intermediate 
densities because in the low density regime where ft'1 is small compared to the 
interparticle distance d9 the system behaves like one with <5-function interaction while 
at high densities where \i~x>d the system resembles a Coulomb gas. 

Correlation induced phase transitions are obviously absent in the Hartree-Fock 
(HF) model. A HF-type phase transition (Gartenhaus and Stranahan, 1965a, b) is 
also absent in this case, since the presence of the Hartree terms maintains dp/dn 
positive, both in the normal and ferromagnetic state. 

3.2. R E L A T I V I S T I C F E R R O M A G N E T I S M 

At relativistic dersities ( ^ 1 0 1 5 g e m " 3 ) the problem of exchange energy in a fermi 
gas exhibits some unconventional features. The new physical aspects of the problem 
are the 'retardation, ' i.e., the explicit energy dependence of the interaction potential 
and the importance of the transverse interaction; in addition, certain formal difficulties 
arise because of the description of the system in terms of helicity rather than spin 
states (Salpeter, 1961; Zapolsky, 1960). 

As a result, the nonrelativistic exchange part of the H F Hamiltonian / / £ R is 
modified to / / £ as follows (Kalman and Lai, 1972a): 

/ p 2 s 2 ! T / N R _ P i S x 

p 2 5 2 

Pi*i 
P 2 * 2 

Pi$ i 
p 2 S 2 

Pl*l 
p 2 /z 2 

<KVuVi) 

< / > R ( P i , P 2 ) 

p 2 S 2 

Pl$l 
p2h2 

Pi*i 

p 2 /? 2 

Pl*l 
where 

< M P l > P 2 ) = 

< £ R ( P I > P 2 ) = 

9 

Ipi - p 2 r + M z 

g2(l - « ! - a 2 ) 

IPi - P 2 I 2 - [^(Pi) > ? ( P 2 ) ] 2 + / ' 2 

(21) 

(22) 

and S stands for spin, h for helicity. 
The properties of the relativistic exchange integrals are displayed in Figure 4. In the 

extreme relativistic region the exchange energy becomes positive in contrast to the 
negative value it has in the non-relativistic region. 

In Figure 5 we have indicated the boundary where the exchange energy changes sign. 
N o ferromagnetic behavior in the region to the right of the boundary can be expected 
and the likelihood for the ferromagnetic state corresponding to a lower energy 
diminishes as one approaches the boundary. The strong range-dependence of the 
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Fig. 4. Dependence of exchange energy Ex on the range pr1 of the field and the fermi momentum 
pF. At sufficiently high densities, exchange energy becomes positive. The small insert depicts the 

transition boundary of Ex. 
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density value where the transition occurs should be noted. For example, for an electron 
gas the exchange energy changes sign at about 15.6 nc (nc = m3c3/3n2h3

9 the critical 
density for relativistic degeneracy) while for n/m^0.8 this takes place around 
5.4 nc (nc = 5J x 1 0 1 5 g e m " 3 for a neutron gas); however around 5 x 1 0 1 5 g e m " 3 the 
relativistic decrease amounts to about 60% of the non-relativistically calculated value. 

3.3. M E T H O D O L O G I C A L Q U E S T I O N S 

In the relativistic domain the system is properly described in terms of helicity eigen-
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states: the ferromagnetic state which requires the spin rather than the helicities to take 
up a certain value is not an eigenstate of the H F Hamiltonian (within positive energy 
states). The proper definition of the ferromagnetic state now can be accomplished by 
considering a coherent superposition \F} of helicity states which maximizes the 
expectation value <F | T 3 |F>. Setting 

| f> = ^ ^ 2 y T 7 l { I P t > + 6 | p i > } (23) 

one finds 
e / e 2 \ i / 2 

b = cot 0 + (—=• cos 2 0 + 1 (24) 
m \m ) 

with e = (p2 + m2)1/2 and 6 being the angle between P and the z-axis. The maximum 
magnetic moment per particle now becomes 

eh m2 ( e\fe2

 2 2 \ 1 / 2 

< ^ > m a x = — ^ 2 1 + - H cos 2 0 + sin 2 9 . (25) 
mc 2s \ mj \m J 

A further problem arises if one wishes to apply the H F approximation in a consistent 
fashion, which requires that the one-particle Hamiltonian (including the exchange 
term) be diagonalized. This is automatically satisfied in the nonrelativistic approxima­
tion where the \pS} base states diagonalize the exchange term [cf. (20)]. The latter 
however, is not diagonalized by the relativistic |pAr> (r designates the signature of the 
energy) base states: therefore a transformation to a new set of states, say | P # £ > , is 
required, 

\m>=lCXQtk,\phr>9 (26) 
exch 

in such a manner that the expansion coefficients C are to be determined self-consistently. 
This can be done by expressing the exchange Hamiltonian as 

E!W = E 0 ( P . P ' ) ^np.Xhrt „ ( P , P ' ) (27) 

h"r"s 

h't 
h"h" 

(1 - * x - % 2 ) 
h r , °n>r>,n»r» (28) 

with the aid of the density matrix Q 

0 » v . RR- = I C » v » X » . C „ , h . . Q » . (29) 
XQ 

The diagonalization of X provides the new base states \XQ> and thus the expansion 
coefficients C; since X is already an implicit function of the C-s through (28) and (29) 
this procedure provides the self-consistency condition for the C-s. This work is in 
progress: at the time of the writing of this paper we have no definitive result to 
report on. 
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4. Remarks on the Question of Crystallization 

The question of crystallization of matter at very high densities in the context of 
Zeldovich model is worth some further exploration. Some order-of-magnitude 
estimates can easily be given. The temperature-density region for a classical plasma 
state is such that the kinetic energy exceeds the potential energy and the particles 
behave collectively despite the short range of the field; these lead to the condition: 
(Pd2)1 <d<K~X < J U _ 1 . As shown in Figure 1, this condition can be satisfied at very 
high densities provided that the temperature is sufficiently high. On the other hand, the 
conditions for the existence of a classical crystal are such that the kinetic energy is less 
than the potential energy and the thermal energy is greater than the fermi energy; these 
lead to the conditions: (fig2)"1 <n1/3 and ( j ? ^ 2 ) _ 1 > ( « 2 / 3 + w 2 ) 1 / 2 (hc/g2). If the last 
inequality is reversed, the system becomes a quantum crystal. The appropriate 
temperature-density regions for these conditions are shown in Figure 1. The criterion 
for the existence of a quantum crystal can be given as 

i.e., the system should be in the 'Coulomb' region, but the interparticle distance should 
not be smaller than the 'Bohr radius. ' These conditions are not contradictory for 
strong coupling (g2/hc>fi/m) and will not be violated even for extreme relativistic 
regions. 

As the system approaches the critical density for phase transition the strong 
correlations will diminish the role of the exchange energy and in the crystalline state 
the fermi gas approach is obviously invalid. For the purpose of orientation, we have 
depicted in Figure 3 the line 

suggested by the results obtained for the actual solidification boundary by the recent 
computations of Canuto and Chitre (as given in this volume) with realistic nuclear 
potentials. 
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