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1. INTRODUCTION

Structural breaks are common in economic time series dynamics. Shocks induced
by institutional changes, such as the transition from a fixed to a floating exchange
rate mechanism, the initiation of new currencies, the introduction of new account-
ing standards, or the outbreak of the COVID-19 pandemic, may cause the structural
parameters in an economic model to vary over time. Besides, policy switches,
preference changes, and technological progress can also lead to structural changes.
Many empirical studies have documented the structural instability of economic
time series data (e.g., Stock and Watson, 1996; Hansen, 2001; Zhang, Osborn, and
Kim, 2008; Rossi, 2013).

Structural breaks in time series have drawn considerable attention. Both econo-
metricians and statisticians have devoted a vast amount of effort to this field.
Most works investigate structural breaks in linear regression models. Examples
include Bai’s (1996) test for parameter constancy in linear regression model via
the empirical distribution function (EDF), Bai and Perron’s (1998) approach for
multiple structural breaks in linear regression models, Qu and Perron’s (2007)
work for a system of equations, Chen and Hong (2012) nonparametric tests
for smooth structural changes, Hall, Han, and Boldea’s (2012) test for abrupt
structural breaks, and Chen’s (2015) test for smooth structural changes, both in
linear regression models with endogeneity. The aforementioned studies mainly
focus on estimation and testing for structural breaks in mean. They may easily
miss a structural break in higher-order moments. For instance, when a structural
break occurs in conditional variance, tests for structural breaks in conditional mean
may fail to detect it. To examine the stability of a time series completely, one
should consider structural changes in distribution. In the forecasting literature,
density forecasts can provide more insight for macroeconomic risk management
than point forecasts; see, e.g., Diebold, Gunther, and Tay (1998) and Diebold,
Hahn, and Tay (1999). However, due to the instability of macroeconomic and
financial time series data (Rossi, 2013), density forecasts may deliver suboptimal
predictions under structural breaks (e.g., Rossi and Sekhposyan, 2013; González-
Rivera and Sun, 2017). In financial risk management, detecting structural breaks
in the tail distribution of financial returns is important for assessing the probability
of extreme events (e.g., Koedijk, Schafgans, and de Vries 1990; Quintos, Fan,
and Phillips, 2001; Lin and Kao, 2008). In addition, when studying nonlinear
dependence of financial variables, it is necessary to test the constancy of copulas,
which may change when the joint distribution has structural breaks (e.g., Busetti
and Harvey, 2011; Manner, Stark, and Wied, 2019).

Aside from the remarkable progress on structural breaks in mean, attention has
been paid to distributional changes. Among them, Cowell (1985) introduces a
system of axioms to measure distributional changes. Dümbgen (1991) estimates a
structural break in distribution and develops the corresponding asymptotic theory
for independent random variables. Yakir (1997) considers the problem of raising
the alarm as soon as possible for a distributional change of independent random
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variables. Inoue (2001) proposes two nonparametric tests for an unknown break in
the distribution of a time series via the EDF. Qu (2008) proposes two tests for
structural breaks in regression quantiles. Selk and Neumeyer (2013) propose a
Kolmogorov–Smirnov test to check whether the innovation distribution changes
in a nonparametric autoregression via the EDF. Zou, Yin, Feng, and Wang (2014)
propose a nonparametric maximum likelihood approach for multiple structural
breaks based on independent data. Zhou, Fu, and Zhang (2017) propose two
nonparametric tests based on the empirical likelihood function and likelihood
ratio to detect a distributional change for independent observations. Although the
aforementioned studies provide useful tools for detecting distributional changes,
the majority of them focus on testing for distributional change for independent
observations with a single break. Making inference, such as determining the
number of breaks, is useful in practice. If breaks are detected accurately, one
can then split the whole sample into several subsamples and regard the data in
each subsample as a stationary process. In this way, one can infer the regime-
switch behavior of economic dynamics. For instance, it is crucial to determine
which regime, the forward- or backward-looking behavior, dominates the short-
run inflation dynamics in the New-Keynesian Phillips curve (e.g., Galí and Gertler,
1999). After identifying structural breaks, one can then investigate this important
issue in subsamples (e.g., Zhang et al., 2008).

This paper proposes an empirical characteristic function (ECF) approach to
estimating and testing for multiple structural breaks in the joint distribution of a
multivariate time series. Furthermore, it develops a sequence of derivative tests to
investigate structural breaks in various aspects of the joint distribution. By equiv-
alence between a cumulative distribution function (CDF) and the corresponding
CF, structural breaks in distribution are equivalent to structural breaks in the CF.
Given an observed time series sample, we can estimate and test structural breaks
using the ECF. The ECF is a powerful analytic tool and has been widely used in
econometrics literature, such as testing for stationarity and normality (Epps, 1987,
1988), testing for independence and conditional independence (Pinkse, 1998;
Hong, 1999; Hong and Lee, 2003; Su and White, 2007; Wang and Hong, 2018),
estimating parameters (Singleton, 2001; Jiang and Knight, 2002; Knight and Yu,
2002; Chacko and Viceira, 2003), and testing for strict stationarity (Hong, Wang,
and Wang, 2017). There is also a growing literature on detecting structural breaks
in distribution using ECFs. For example, Hušková and Meintanis (2006) propose
tests to detect a distributional structural change for independent observations.
Hušková and Meintanis (2008) construct tests for the multivariate k-sample prob-
lem for independent data. Hlávka, Hušková, Kirch, and Meintanis (2012) develop
an online procedure to monitor structural breaks in the error distribution of an
autoregressive time series. Hlávka, Hušková, and Meintanis (2017) develop tests
to detect a change point for multivariate independent observations and time series
observations in vector autoregressive models. Hlávka, Hušková, and Meintanis
(2020) propose two-sample break-detection procedures for vectorial observations
based on ECFs. The existing relevant literature has made a remarkable contribution
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to the topic of distributional structural breaks. In this paper, we also use an ECF
approach to develop a new test for structural breaks in distribution. Unlike the
aforementioned literature that mainly focuses on a single structural break for
independent data, we consider multiple distributional structural changes of time
series data. As an essential feature of our approach, we transform the CF-based
structural break problem to a generalized regression representation which has
an interesting interpretation as a time series functional data regression. Berkes,
Gabrys, Horváth, and Kokoszka (2009) propose a functional CUSUM-type test to
check a single break in the mean function under the assumption of independent
and identically distributed error functions. Aue, Gabrys, Horváth, and Kokoszka
(2009) derive the limiting distribution of a breakpoint estimator under the same
setting. Hörmann and Kokoszka (2010) discuss detecting a shift in mean for
weakly dependent functional data. Aston and Kirch (2012) focus on an epidemic
change model for weakly dependent functional data. Aue, Rice, and Sönmez
(2018) propose a method to detect and date structural breaks in functional data
without dimension reduction. Unlike the existing literature on functional data
analysis that usually assumes the error function to be identically distributed, the
covariance structure of the generalized error function in our generalized regression
framework is not identically distributed over time under structural breaks. As a
result, our asymptotic results, especially the asymptotic local power of our test,
are more complicated.

Our paper complements the existing studies on distributional changes with
several important features. First, we estimate breaks by minimizing a sum of
squared generalized residuals. Using the ECF, we can convert structural breaks in
distribution into structural breaks in a generalized regression. Thus, by extending
Bai and Perron’s (1998) approach for structural breaks in a linear regression to the
generalized regression, we can consistently estimate the break fractions and derive
the convergence rates of the break fraction estimators for time series data. We note
that our asymptotic results differ substantially from the classical literature such as
Bai and Perron (1998). The key is that the structural breaks in distribution will
affect the covariance structure of the generalized error function in our generalized
regression framework. This complicates our asymptotic analysis and distinguishes
our asymptotic results from the existing literature on structural breaks.

Second, we propose a sup-F type test for the null hypothesis of no distributional
change against the alternative hypothesis of a fixed number of breaks in the joint
distribution of a multivariate time series. The proposed test has nontrivial power
against a class of local alternatives that converge to the null hypothesis at the rate
of

√
T , where T is the number of time series observations. We also show that the

dimension of time series data does not affect the asymptotic power of our test. It
implies that our approach is particularly suitable for testing structural breaks in a
multivariate time series.

Third, when the null hypothesis of no structural break in distribution is rejected,
we suggest a Bayesian information criterion (BIC)-type information criterion and
a sequential testing procedure to estimate the number of breaks. Our simulation
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studies show that both procedures perform well in consistently estimating the
true number of breaks. Zou et al. (2014) also show the consistency of BIC
in determining the number of breaks. However, their theory is developed for
independent data.

Fourth, by the moment-generating property of a joint CF when moments exist,
we develop a class of derivative tests to gauge possible sources of structural breaks,
including breaks in univariate distribution, univariate moments, and conditional
moments (e.g., conditional mean or conditional variance). Compared to the EDF-
based approaches such as Inoue (2001), our ECF approach can provide insight into
the pattern of structural breaks.

In an empirical study, we apply our approach to exchange rate returns of Euro,
Japanese Yen, Chinese Yuan, and Canadian Dollar. We find strong evidence of
structural breaks in distribution and locate the break dates. Our tests also suggest
that the documented structural breaks occur in variance and higher-order moments.

We organize the paper as follows. In Section 2, we introduce our ECF-based esti-
mation method for distributional breaks and investigate the asymptotic properties
of the estimated break fractions. In Section 3, we propose a joint test for structural
breaks and derive the asymptotic distributions under the null and local alternative
hypotheses, respectively. We propose two methods to determine the number of
breaks in and develop a class of derivative tests to infer patterns of structural breaks
in Section 5. We study the finite sample performance of the proposed estimation
procedure and tests in Section 6 and conduct an empirical application to exchange
rate returns in Section 7. Section 8 concludes. The proofs of the main results and
additional simulation results are relegated to the Supplementary Material.

Throughout this paper, i denotes the imaginary number such that i = √−1.
For a scalar a, �a� denotes its integer part. For an m × n complex-valued matrix
A = (aij), where aij is the (i,j)th entry for i = 1, . . . ,m;j = 1, . . . ,n, we denote
its complex conjugate by A∗ = (a∗

ji), its transpose by A′ = (aji), its real part
by Re(A) = (Re[aij]), and its euclidean norm by ‖A‖ = (

∑m
i=1

∑n
j=1 a2

ij)
1/2. The

operators “
p→,” “

d→,” and “⇒” denote convergence in probability, convergence in
distribution, and weak convergence, respectively.

2. ESTIMATION AND LIMITING DISTRIBUTION

2.1. Estimation

Let {Yt}T
t=1 be a d-dimensional time series sample, and the corresponding CDFs

be {F0
Yt
(y)}T

t=1, where d ≥ 1 is a fixed integer. Throughout, we denote the true
value of a parameter with a superscript “0.” Suppose there exist M0 breaks in the
distribution of Yt, namely {T0

1, . . . ,T
0
M0}, and the corresponding break fractions

are {r0
1, . . . ,r

0
M0}, where r0

j = T0
j /T for j = 1,2, . . . ,M0. We let the collection of

variables {YT0
j−1+1, . . . ,YT0

j
} in the jth subsample be strictly stationary for j =

1,2, . . . ,M0 + 1, where we adopt the convention that T0
0 = 0 and T0

M0+1
= T .
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That is, the CDFs of {Yt}T
t=1 are assumed to be identical within each time segment

[T0
j−1 +1,T0

j ]:

F0
Yt

(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F0
1(y), for t = 1, . . . ,T0

1,

F0
2(y), for t = T0

1 +1, . . . ,T0
2,

...
...

F0
M0+1

(y), for t = T0
M0 +1, . . . ,T,

where {F0
j (y)}M0+1

j=1 characterize the M0 + 1 regimes of the time series sample
{Yt}T

t=1. We note that the aforementioned assumption can be violated if structural
breaks produce a trend in the data and the drift impacts the distribution of Yt within
a subsample. We rule out that case in our setting. In general, the number of breaks
M0 can be regarded as an unknown parameter. However, we treat it as known in
this section and will propose data-driven procedures to determine the number of
breaks in Section 4.

Let φ0
t (u) ≡ E(eiu′Yt) be the CF of Yt at time t. Given the equivalence between a

CDF and its corresponding CF, it follows

φ0
t (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ0
1 (u), for t = 1, . . . ,T0

1,

ψ0
2 (u), for t = T0

1 +1, . . . ,T0
2,

...
...

ψ0
M0+1

(u), for t = T0
M0 +1, . . . ,T,

where {ψ0
j (u)}M0+1

j=1 are the M0 +1 regimes of the CFs {φ0
t (u)}T

t=1 specified by the
true break dates {T0

1, . . . ,T
0
M0}. When there exist M0 structural breaks, the CF φ0

t (u)

behaves like a step function of a rescaled time index t/T ∈ (0,1] for each u ∈ R
d.

This motivates us to consider the following time-varying generalized regression

eiu′Yt = φ0
t (u)+ εt(u), (2.1)

where εt(u) is a generalized error function such that E [εt(u)] = 0, E|εt(u)|2 =
1 − |φ0

t (u)|2, and cov[εt(u),εt(v)] = E [εt(u)εt(v)∗] = φ0
t (u − v) − φ0

t (u)φ0
t (−v).

Since the CF always exists for any distribution, (2.1) is a natural representation
of a multivariate time series in the frequency domain. It facilitates the analysis of
structural breaks in the distribution of a multivariate time series. For each fixed u,
(2.1) is equivalent to a decomposition of a complex-valued random variable eiu′Yt

into its unconditional mean E(eiu′Yt) and a disturbance εt(u). Hence, we can relate
the distributional change point issue with the strand of literature on testing and
estimating multiple structural breaks in a regression framework (e.g., Bai, 1994;
Bai and Perron, 1998).

Interestingly, we note that eiu′Yt is a functional process of u. It implies that
(2.1) is analogous to analyzing structural breaks in the mean of a functional time
series (e.g., Berkes et al., 2009; Hörmann and Kokoszka, 2010; Aue et al., 2018).
However, we emphasize that our generalized regression framework differs from
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the existing literature on functional data in two aspects. First, the generalized error
function in (2.1) is not identically distributed across time t since its covariance
structure is inherently influenced by break dates (e.g., var(eiu′Yt) = 1 −|φ0

t (u)|2).
Thus, the second moment of εt(u) shares the same break dates with the distribution
of Yt. A structure break implies not only a shift of the CF, but also a change in the
covariance structure of εt(u). As a result, our asymptotic local power analysis is
different and more complicated since the covariance structure of the test statistics
is much involved. In contrast, the existing literature on functional data usually
assumes the error function to be exogenously given. That is, the error function’s
covariance structure is not affected by structural breaks. For example, Berkes et al.
(2009) assume the error function to be independent and identically distributed
across time t. Hörmann and Kokoszka (2010) and Aue et al. (2018) require the
error function to be L4-m-approximable, which implies that the error function is
identically distributed. We note that our generalized error function εt(u) does not
satisfy the above assumptions when structural breaks occur. Second, unlike the
existing literature on functional data analysis that is motivated by analyzing an
observable functional data process, such as a temperature curve or an intraday
stock price curve, we do not require to observe a functional data process directly.
Neither do we require to observe the true CF φ0

t (u). We note that our estimators
and test statistics for structural breaks are solely based on the ECF, which can
be directly computed using the observed time series sample {Yt}T

t=1. Given each
observed Yt, eiu′Yt is directly computable for any u ∈ R

d. Then, the complex-
valued time series sample {eiu′Yt}T

t=1 can be constructed accordingly. We note that
{eiu′Yt}T

t=1 can be viewed as an observable continuous functional process of u ∈ R
d

given the observed time series sample {Yt}T
t=1. Under a collection of break dates

{Tj}M0

j=1, the ECF of Yt in each subsample {Yt}Tj
t=Tj−1+1 is just a sample average of

{eiu′Yt}Tj
t=Tj−1+1, for j = 1, . . . ,M0 + 1. The ECF is a consistent estimator for the

true CF when {Tj}M0

j=1 coincide with the true break dates. With the feasible ECF,
we note that observing the time series sample {Yt}T

t=1 is sufficient to adopt our
approach.

Given there are M0 breaks in φ0
t (u), and ψ0

j (u) is the true CF in each time
segment [T0

j−1 +1,T0
j ] for j = 1, . . . ,M0 +1, (2.1) can be rewritten as follows:

eiu′Yt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ0
1 (u)+ εt(u), for t = 1, . . . ,T0

1,

ψ0
2 (u)+ εt(u), for t = T0

1 +1, . . . ,T0
2,

...
...

ψ0
M0+1

(u)+ εt(u), for t = T0
M0 +1, . . . ,T .

We now discuss how to estimate the unknown break fractions {r0
j }M0

j=1. Suppose
ψ0

j (u) 
= ψ0
k (u), j 
= k for u in some nonnegligible subset of R

d and for j,k =
1, . . . ,M0 +1. Then for each M0-partition {rj}M0

j=1, where rj = Tj/T , j = 1,2, . . . ,M0,
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we can estimate the CF for Yt, t ∈ [Tj−1 + 1,Tj], by the ECF based on the jth
subsample:

ψ̃j(u) ≡ 1

Tj −Tj−1

Tj∑
t=Tj−1+1

eiu′Yt .

By the law of large numbers, ψ̃j(u) converges almost surely to ψ0
j (u) as Tj −

Tj−1 → ∞ and Tj = T0
j for each j = 1, . . . ,M0 (see, e.g., Feuerverger and Mureika,

1977). Note that the ECF ψ̃j(u) depends on the partition {rj}M0

j=1. For notational

simplicity, however, we continue to write it as ψ̃j(u). Similar to Bai (1994, 1997)
and Bai and Perron (1998), we impose some restrictions on the possible values of
break dates to ensure that the break dates are asymptotically distinct from each
other. Specifically, we define a set �0

ε for some small positive number ε > 0

such that �0
ε = {{rj}M0

j=1 : rj − rj−1 ≥ ε, for j = 1, . . . ,M0 +1}, where we follow the

convention that r0 = 0 and rM0+1 = 1. Then the estimated break fractions {r̂j}M0

j=1
solve the following optimization problem:

min
{r1,...,rM0 }∈�0

ε

M0+1∑
j=1

Tj∑
t=Tj−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̃j(u)

∣∣∣ 2W(u)du, (2.2)

where Tj = �Trj� for j = 1,2, . . . ,M0, and W(·) : Rd → R
+ is a nonnegative

symmetric weighting function. Compared to Bai and Perron (1998) who minimize
the sum of squared residuals in a linear regression, we call the objective function
in (2.2) the sum of squared generalized residuals (SSGR) of the generalized
regression in (2.1). Note that in order to pin down the break fractions in distribution,
we need to consider all u ∈ R

d. We thus require W(u) to have unbounded support.
With a proper choice of weighting function, the objective function can have a
closed-form expression by integrating u out, which is a salient feature of our
approach. Since the ECF can be directly computed for any u ∈ R

d without any
measurement error, the discrete sampling issue in functional data analysis is not
present in our setting. We do not need to consider discrete grids of u to obtain
the objective function in (2.2). Our idea is similar to the continuous ECF method
proposed by Knight and Yu (2002). We both avoid choosing discrete grid points
by considering a continuous weighting function for the nuisance parameter u. We
relegate the discussion of weighting functions to Section 3.

The proposed ECF approach has several appealing features. First, it is applicable
for a multivariate time series with relatively large dimension. Unlike the density
function-based approaches, the ECF does not require nonparametric smoothing.
Second, minimizing the SSGR works naturally well for multiple structural breaks.
Indeed, (2.2) is a K-means clustering issue that can determine the heterogeneity in
the mean of eiu′Yt . The key step is to determine the appropriate number of clusters.
Third, with a proper choice of weighting function W(u), the objective function
in (2.2) can be computed without numerical integration over u. One can then
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obtain consistent estimates {r̂j}M0

j=1 by grid search. Furthermore, our method does
not require the existence of the probability density, thus allowing the multivariate
time series Yt or some of its components to be discrete random variables. Last but
not the least, the ECF approach does not impose any moment restriction on Yt.
That is useful in detecting distributional changes in high-frequency financial time
series data since their higher-order moments may not exist (Loretan and Phillips,
1994).

2.2. Assumptions

To study the consistency and limiting distributions of the estimated break fractions
{r̂j}M0

j=1, where r̂j = T̂j/T for j = 1,2, . . . ,M0, we impose the following regularity
conditions.

Assumption A.1. (i) Let {Yt}T0
j

t=T0
j−1+1

,j = 1, . . . ,M0 +1, be the partition of the

time series sample {Yt}T
t=1 at the true break dates {T0

j }M0

j=1. For each j = 1, . . . ,M0 +
1, {Yt}T0

j

t=T0
j−1+1

is strictly stationary and (ii) {Yt}T
t=1 is strong mixing with mixing

coefficient α(s) = maxj αj(s) such that
∑∞

s=0(s+1)q/2−1α(s) < ∞ for some q > 2
and δ > 0, where αj(s) is the mixing coefficient for the jth subsample.

Assumption A.2. The weighting function W(·) : Rd → R
+ is nonnegative,

symmetric, and integrable with
∫
Rd ‖u‖4W(u)du < ∞.

Assumption A.3. The break dates T0
j = �Tr0

j � for 0 < r0
1 < r0

2 < · · · < r0
M0 < 1,

where r0 = 0 and rM0+1 = 1. There exists a small positive number ε > 0 such that
minj∈{1,...,M0+1}(r0

j − r0
j−1) ≥ ε.

Assumption A.4. Let εt(u) = eiu′Yt − ψ0
j (u) be the generalized error function

for t ∈ [T0
j−1 + 1,T0

j ]: (i) {εt(u)}T0
j

t=T0
j−1+1

satisfies E[εt(u)] = 0 and the general-

ized long-run variance function 	( j)(u,v) =∑∞
l=−∞ σ

( j)
l (u,v) with σ

( j)
l (u,v) =

E[εt(u)εt+l(v)∗]; (ii) (T0
j − T0

j−1)
−1/2∑T0

j−1+�(T0
j −T0

j−1)r�
t=T0

j−1+1
εt(u) ⇒ B( j)(u,r), where

B( j)(u,r) is a generalized Brownian motion on U × [0,1] with mean zero and
covariance kernel E[B( j)(u,r)B( j)(v,s)∗] = min{r,s}	( j)(u,v), and U⊂R

d denotes
a symmetric compact hypercube around the origin.

Assumption A.1(i) implies that the Yt’s are identically distributed within each

subsample {Yt}T0
j

t=T0
j−1+1

for j = 1, . . . ,M0 + 1. We note that such a condition

rules out the possibility that some drift arises in Yt after a break. We have to
impose strict stationarity in each subsample to establish our asymptotic theory.
Assumption A.1(ii) restricts the degree of temporal dependence in {Yt}T

t=1 and
is generally adopted in time series analysis. A variety of time series processes,
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such as autoregressive moving average, bilinear, and autoregressive conditional
heteroskedastic (ARCH) processes, satisfy the strong mixing condition (Fan and
Li, 1999). This implies that the weak dependence is bounded by the mixing

coefficient not only within each subsample {Yt}T0
j

t=T0
j−1+1

, but also across the whole

sample. Assumption A.1 does not require that the probability density of Yt exists.
Therefore, the components of Yt can be either continuous or discrete random
variables or a mixture of both. Furthermore, it does not impose any moment
restriction on Yt. This is appealing since financial time series data often exhibit
heavy tails and thus may not have finite higher-order moments.

Assumption A.2 imposes mild conditions on the weighting function W(u),
which ensure the existence of the integral in (2.2). Note that W(u) assigns weights
to various values of u such that (2.2) can detect breaks of all kinds. Intuitively, the
choice of weighting function will affect the finite sample power of the proposed
test since the magnitude of structural breaks may vary across u. Hence, one
should adopt a weighting function that assigns weights accordingly. However,
such an optimal weighting function depends on the distribution of Yt and the
very nature of structural breaks, which are usually unknown a priori. A possible
remedy is to conduct a two-step approach, where one can get the knowledge of
the structure breaks using some prespecified weighting function in the first step
and then obtain the data-dependent optimal weighting function in the second step.
However, such a procedure is rather involved and beyond the scope of the present
paper.

Assumption A.3 requires the break dates to be asymptotically distinct, which is
commonly adopted in the literature and vital for our asymptotic theory. Intuitively,
if two break dates are too close to each other, one cannot distinguish them since
there is not enough information in the corresponding segment. It indicates that
the sample size of each segment increases proportionately as T grows, which is
essential for the application of the law of large numbers and the central limit
theorem. In addition, r0 = 0 and rM0+1 = 1 indicate that r0

1 ≥ ε and r0
M0 ≤ 1 − ε,

implying that the breaks are bounded away from the boundaries of the sample.
Assumption A.4 allows for serial dependence of unknown form in the gener-

alized error function. Otherwise, it would imply that {Yt}T
t=1 is independent over

time. Because for any T0
j−1 +1 ≤ t 
= s ≤ T0

j ,

E
[
εt(u)εs(v)

∗]= E
[
ei(u′Yt−v′Ys)

]
−ψ0

j (u)ψ0
j (v)∗ = 0,

if and only if E[ei(u′Yt−v′Ys)] = E(eiu′Yt)E(e−iv′Ys), which implies independence
between Yt and Ys. This is of course too restrictive for a time series process. We
note that although the generalized error functions {εt(u)}T

t=1 have the same mean
E[εt(u)] = 0 across M0 +1 regimes, they are not identically distributed since their
second moment depends on the time-varying CF of Yt. Structural breaks in Yt

induce changes in the covariance structure of εt(u). Therefore, we have to impose
a functional central limit theorem for each time segment [T0

j−1 +1,T0
j ].
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2.3. Consistency and Limiting Distribution

We now show the consistency and asymptotic distributions of the estimated break
fractions.

THEOREM 2.1. Suppose Assumptions A.1–A.3 hold. Then as T → ∞,

r̂j
p→ r0

j , j = 1,2, . . . ,M0,

where {r̂j}M0

j=1 are the estimated break fractions that solve (2.2).

Theorem 2.1 implies that the solution to (2.2) consistently estimates the true
break fractions {r0

j }M0

j=1. This result is quite similar to Bai and Perron’s (1998)
Proposition 1 on estimation for break fractions in a linear regression model. Next
theorem provides convergence rate of the estimated break fractions.

THEOREM 2.2. Under Assumptions A.1–A.3, for every η > 0, there exists a
δ ∈ (0,∞), such that for T → ∞,

P
[∣∣T (r̂j − r0

j

)∣∣> δ
]
< η, j = 1,2, . . . ,M0.

We note that the rate-T convergence in probability holds for the estimated break
fraction r̂j, rather than the estimated break date T̂j. Our result is also equivalent to
P(|T̂j −Tj| > δ) ≤ η for each j = 1,2, . . . ,M0. This implies that the deviation of any
single estimated break date from the true break date is bounded by some constant
δ that is independent of T.

Given the consistency of the estimated break fractions, we further obtain the
standard root-T asymptotic normality of the feasible ECF ψ̂j(u), where

ψ̂j(u) ≡ 1

T̂j − T̂j−1

T̂j∑
t=T̂j−1+1

eiu′Yt .

THEOREM 2.3. Suppose Assumptions A.1–A.4 hold. Then as T → ∞,

√
T
[
ψ̂j(u)−ψ0

j (u)
]

⇒ (r0
j − r0

j−1)
−1/2B( j)(u,1), j = 1,2, . . . ,M0 +1,

for u ∈ U.

Theorem 2.3 implies that treating r̂j as the true parameter r0
j does not affect

the asymptotic distribution of the feasible ECF because of the rate-T convergence
of the estimated break fractions. Furthermore, based on the feasible ECF, we can
also obtain the corresponding estimated density function (e.g., Shephard, 1991).
Specifically, if Yt is a continuous random vector and its probability density function
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exists, then a consistent density estimator at the partition [T̂j−1 + 1,T̂j] can be
obtained by the inverse Fourier transform of ψ̂j(u), i.e.,

f̂Yj(y) = 1

2π

∫
Rd

e−iu′yψ̂j(u)du, y ∈ R
d.

We now show the asymptotic distribution of the estimated break fractions {r̂j}M0

j=1,
which is useful for constructing confidence intervals of the break dates. We assume
that the magnitudes of the breaks converge to zero as the sample size increases.
As pointed out by Bai (1994, 1997), when the magnitudes of the shifts are
nonzero constants that are independent of T, the limiting distribution of {r̂j}M0

j=1
is highly data-dependent and difficult to obtain. In addition, when the magnitude
of structural breaks is large, estimation of the break dates is quite precise as the
sample size increases. Thus, it is more meaningful to construct confidence intervals
for small breaks.

Let δT,j(y) = F0
j+1(y) − F0

j (y) = vTδj(y) be the magnitude of the break for the
CDFs between the ( j + 1)th regime and the jth regime, where vT → 0 is a scalar
satisfying vTT1/2 → ∞, and δj(y) is absolutely continuous and independent of
sample size T. Then, by Fourier transform, we have


T,j(u) = ψ0
j+1(u)−ψ0

j (u) = vT
j(u),

where 
j(u) ≡ ∫
Rd eiu′ydδj(y). To establish the limiting distribution of the estimated

break fractions, we impose the following condition.

Assumption A.5. (i) maxj supu∈Rd |
j(u)| < ∞ and (ii) let G( j)(u,η) denote
a two-sided generalized Brownian motion defined on U × [−C,C] for some
constant C > 0, such that G( j)(u,η) = G( j)

1 (u,η) when η ≥ 0 and G( j)(u,η) =
G( j)

2 (u, − η) when η < 0, where G( j)
1 (u,η) and G( j)

2 (u,η) are generalized Brow-

nian motions with the following covariance kernels E
[
G( j)

1 (u,η1)G( j)
1 (v,η2)

∗
]

=
min{η1,η2}	( j+1)(u,v) when η1,η2 ≥ 0, and E

[
G( j)

2 (u, −η1)G( j)
2 (v, −η2)

∗
]

=
min{−η1, −η2}	( j)(u,v), when η1,η2 < 0. Here, 	( j)(u,v) is defined in Assump-
tion A.4(ii).

Assumption A.5(i) restricts the magnitude of each break to be finite. The process
G( j)(u,η) defined in Assumption A.5(ii) is analogous to the two-sided Brownian
motion in Bai (1994). Both conditions are commonly adopted to derive the
asymptotic distribution of the estimated fractions. Meanwhile, given Assumptions

A.4 and A.5(ii), vT
∑T0

j−1+�ηv−2
T �

t=T0
j−1+1

εt(u) ⇒ G( j)(u,η) in U× [−C,C] when v2
TT → ∞

by invariance principle.

THEOREM 2.4. Suppose Assumptions A.1–A.5 hold. Let ψ0
j+1(u) − ψ0

j (u) =
vT
j(u) be the magnitude of the break for the CF from the jth regime to the
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( j + 1)th regime. Then for any vT = T−a with a ∈ (0, 1
2 ), and j = 1,2, . . . ,M0, as

T → ∞,

Tv2
T(r̂j − r0

j )
d→ argmax

η
�( j)(η)

and

SSGRM0(T0
j )−SSGRM0(T0

j +�ηv−2
T �) ⇒ �( j)(η),

where SSGRM0(T0
j + �ηv−2

T �) and SSGRM0(T0
j ) denote the sum of squared

generalized residuals based on partition {T0
1, . . . ,T

0
j + �ηv−2

T �, . . . ,T0
M0} and the

true break dates {T0
1, . . . ,T

0
M0}, respectively, and

�( j)(η)

=
{

2
∫
Rd Re
{
G( j)(u,η)
j(u)∗

}
W(u)du−|η|∫

Rd

∣∣
j(u)
∣∣2 W(u)du, if η < 0,

−2
∫
Rd Re
{
G( j)(u,η)
j(u)∗

}
W(u)du−|η|∫

Rd

∣∣
j(u)
∣∣2 W(u)du, if η > 0.

The limiting distribution can be viewed as a generalization of Bai and Perron’s
(1998) results to dependent functional data process with multiple breaks. We note
that analogous results have been obtained by Berkes et al. (2009) for an indepen-
dent functional data process and Aue et al. (2018) for a dependent functional data
process with a single break.

Note that the limiting distribution for each r̂j only depends on its break magni-
tude characterized by �( j)(η). In general, it is difficult to tabulate the asymptotic
critical values. To construct the confidence intervals for the estimated break
fractions, one can use a suitable bootstrap procedure. Alternatively, one can
standardize the estimator by estimating the long-run variance of G( j)(u,η) as
illustrated by Aue et al. (2018).

3. TESTS FOR STRUCTURAL BREAKS IN DISTRIBUTION

3.1. A Joint Test Against a Fixed Number of Breaks

In this subsection, we consider testing the null hypothesis of no structural breaks
against the alternative hypothesis of M structural breaks in distribution. Given a
prespecified number of breaks M, we test

H0 : φ0
t (u) = φ0(u), for all u ∈ R

d,

where φ0(u) is a time-invariant CF, against

HA : φ0
t (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ1(u), for t = 1, . . . ,T1,

ψ2(u), for t = T1 +1, . . . ,T2,
...

...
ψM+1(u), for t = TM +1, . . . ,T,
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for u in some nonzero Borel measurable subset of Rd, some partition {Tj}M
j=1, and

corresponding collection of CFs {ψj(u)}M+1
j=1 . To test H0 against HA, we construct

a generalized sup-F test statistic by comparing the SSGRs between the restricted
model (under H0) and the unrestricted model (under HA).

We denote the SSGR under HA with M structural breaks at {Tj}M
j=1 as

SSGRM(r1, . . . ,rM) =
M+1∑
j=1

Tj∑
t=Tj−1+1

∫
Rd

∣∣∣eiu′Yt − ψ̃j(u)

∣∣∣ 2W(u)du,

and the SSGR under H0 as

SSGR0 =
T∑

t=1

∫
Rd

∣∣∣eiu′Yt − ψ̃(u)

∣∣∣ 2W(u)du,

where ψ̃(u) = T−1∑T
t=1 eiu′Yt . Under H0, the ECFs ψ̃j(u) and ψ̃(u) should

both converge to the true time-invariant CF φ0(u) for any prespecified number
of breaks M and any partition {Tj}M

j=1. As a result, SSGRM(r1, . . . ,rM) should
be close to SSGR0 under H0. Nevertheless, under HA, the probability limit of
SSGRM(r1, . . . ,rM) will deviate from that of the SSGR0 under certain collections
of break dates {Tj}M

j=1. Our test statistic is thus given by

supF = sup
{r1,...,rM}∈�ε

FT(r1, . . . ,rM), (3.1)

where �ε = {{rj}M
j=1 : rj − rj−1 ≥ ε for j = 1, . . . ,M +1} for some small ε > 0, and

FT(r1, . . . ,rM) = SSGR0 −SSGRM(r1, . . . ,rM). (3.2)

We note that the test based on (3.1) does not require that the true number of
breaks M0 is known a priori. When M = M0, the partition under HA will coincide
with the true break dates {T0

j }M0

j=1. When M < M0, {Tj}M
j=1 will be a collection of M

breaks in {T0
j }M0

j=1 (e.g., Bai and Perron, 1998). Even when M > M0, it still holds
that SSGR0 will deviate from SSGRM(r1, . . . ,rM) for a certain collection of break
dates {Tj}M

j=1 when it contains (part of) {T0
j }M0

j=1. This guarantees the consistency of
our sup-F test against an unknown number of breaks.

3.2. Asymptotic Distribution

To derive the asymptotic distribution of the generalized sup-F test statistic in (3.1),
we impose the following condition analogously to Assumption A.4.

Assumption A.4*. (i) {εt(u)}T
t=1 satisfies E[εt(u)] = 0 and the generalized long-

run variance function 	(u,v) =∑∞
l=−∞ σl(u,v), where σl(u,v) = E[εt(u)εt+l(v)∗]

and (ii) T−1/2∑�Tr�
t=1 εt(u) ⇒ B(u,r), where B(u,r) is a generalized Brownian

https://doi.org/10.1017/S026646662200010X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200010X


548 ZHONGHAO FU ET AL.

motion on U× [0,1] with mean zero and covariance kernel E[B(u,r)B(v,s)∗] =
min{r,s}	(u,v), and U is a compact set defined in Assumption A.4.

Assumption A.4* can be regarded as a special case of Assumption A.4. Under
H0, the covariance kernel of εt(u) is the same across the whole sample. Hence,
the functional central limit theorem stated in Assumption A.4(ii) degenerates to
A.4*(ii). Note that Assumption A.4* allows for serial dependence of unknown
form in the generalized error functions.

THEOREM 3.1. Suppose Assumptions A.1, A.2, and A.4* hold. Let B(u,r) ≡
B(u,r)− rB(u,1) be a generalized Brownian bridge. Under H0, as T → ∞,

supF
d→ sup

{r1,....,rM}∈�ε

F(r1, . . . ,rM),

where

F(r1, . . . ,rM) =
M+1∑
j=1

1

rj − rj−1

∫
Rd

∣∣B(u,rj)−B(u,rj−1)
∣∣ 2W(u)du.

Our generalized sup-F test is similar to the sup-F test in Bai and Perron (1998),
except that the asymptotic distribution for our test statistic is not pivotal since it
depends on the unknown data generating process. As revealed by Assumption
A.4*(ii), the distribution of the generalized error function εt(u) depends on u.
To obtain an asymptotically pivotal test, we have to impose further restrictions
on the second moment of εt(u) so that we can integrate out u in the limiting
distribution. However, such restrictions will affect the alternative hypothesis since
the second moment of εt(u) depends on structural breaks in Yt. Therefore, we do
not standardize our test statistic and its limiting distribution is data-dependent. We
need to use some resampling methods to obtain the critical values in finite samples.
In contrast, by assuming homogeneity in regression errors (Assumptions A8 and
A9), Bai and Perron’s (1998) test statistic is asymptotically pivotal. Despite being
not asymptotically pivotal, our SSGR-based test statistic is easy to compute, since
SSGRM in the sup-F statistic is the value of the objective function specified by (2.2)
at the optimal estimated break dates {T̂j}M

j=1. Interestingly, by taking the derivatives
of the ECF with respect to u at the origin, our test can detect structural breaks at
various moments if they exist. We will further elaborate this point in Section 5.

We conclude this subsection by a local power analysis. Consider a class of local
alternatives:

HA(aT) : F0
j (y) = F0(y)+aTϑj(y),

where aT → 0 as T → ∞. F0(y) is a time-invariant CDF of Yt, ϑj(y) captures
the deviation of the jth regime from F0(y), and the rate aT controls the speed at
which the local alternative HA(aT) converges to the null hypothesis. Given the
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transformation between CDF and its CF, the above local alternative is equivalent
to the following representation

HA(aT) : ψ0
j (u) = φ0(u)+aTθj(u),

where φ0(u) is the time-invariant CF of Yt and θj(u) = ∫
Rd eiu′ydϑj(y).

THEOREM 3.2. Suppose Assumptions A.1–A.4 hold. Then under HA(aT) with
aT = T−1/2, as T → ∞,

supF
d→ sup

{r1,...,rM}∈�ε

FA(r1, . . . ,rM),

where

FA(r1, . . . ,rM)

=
M+1∑
j=1

1

rj − rj−1

∫
Rd

∣∣G(u,rj)−G(u,rj−1)+�(u,rj)−�(u,rj−1)
∣∣ 2W(u)du,

with G(u,rj)=
[∑l

k=1(r
0
k − r0

k−1)
1/2B(k)(u,1)+ (r0

l+1 − r0
l )

1/2B(l+1)

(
u,

rj−r0
l

r0
l+1−r0

l

)]
−

rj

[∑M0+1
k=1 (r0

k − r0
k−1)

1/2B(k)(u,1)
]
, and �(u,rj) =

[∑l
k=1(r

0
k − r0

k−1)θk(u)+
(rj − r0

l )θl+1(u)
]− rj

[∑M0+1
k=1 (r0

k − r0
k−1)θk(u)

]
.

The asymptotic distribution shown by Theorem 3.2 involves two processes
indexed by u and rj. The process G(u,rj) is random and it is the limiting process of

1√
T

∑Tj
t=1 εt(u)− rj

[
1√
T

∑T
t=1 εt(u)

]
. Under H0, G(u,rj) is a generalized Brownian

bridge and is identical to B(u,rj). However, under HA(aT), the generalized error

functions are different across subsamples specified by the true break dates {T0
j }M0

j=1.
Suppose Tj lies in the (l + 1)th subsample specified by the true break dates, i.e.,
r0

l < rj < r0
l+1. Then, by Assumption A.4, we have

1√
T

Tj∑
t=1

εt(u) =
l∑

k=1

⎡
⎢⎣ 1√

T

T0
k∑

t=T0
k−1+1

εt(u)

⎤
⎥⎦+ 1√

T

Tj∑
t=T0

l +1

εt(u)

⇒
l∑

k=1

(r0
k − r0

k−1)
1/2B(k)(u,1)+ (r0

l+1 − r0
l )

1/2B(l+1)

(
u,

rj − r0
l

r0
l+1 − r0

l

)
,

where the first term is a weighted sum of the limiting processes in the first l
subsamples and the second term is the limiting process in the (l+1)th subsample.
The process �(u,rj) is nonrandom, contributed by the local alternative component
aTθk(u). It shares the same structure as the process G(u,rj). Compared to the
existing literature that usually assumes that the limiting behavior of εt(u) is
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invariant to structural breaks in mean of a functional time series, our asymptotic
results under the local alternative have to take into account the underlying true
break dates.

Theorem 3.2 does not require that the number of breaks specified in the test is
identical to the true number of breaks. Even when one fails to pin down the correct
number of breaks, Theorem 3.2 still holds. This implies that our test is robust to
misspecification of the number of breaks. Theorem 3.2 also shows that our test
can detect HA(aT) at the parametric rate aT = T−1/2, which is the same as Bai
and Perron’s (1998) test for breaks in conditional mean and Inoue’s (2001) test
for a single break in distribution. Moreover, unlike Kapetanios’ (2009) test, which
requires smoothed nonparametric estimation for probability density functions, the
convergence rate of our test does not depend on the dimension of Yt. As a result,
our test avoids the “curse of dimensionality” problem when the dimension of Yt is
large.

3.3. Weighting Function

The weighting function W(u) plays a vital role in estimating and testing for
structural breaks in our framework. On the one hand, an appropriate choice of
weighting function can improve the finite sample power performance of the test
for structural breaks since the magnitude of structural breaks in the CF varies
across u. On the other hand, when the dimension of Yt is large, a weighting
function that can deliver a closed-form expression of SSGRs is highly desirable
from a computational point of view. In this subsection, we discuss some weighting
functions that can meet this requirement.

We follow Hong et al. (2017) and consider the following normal weighting
function:

W(u) = (2πb)−
d
2 e− ‖u‖2

2b , (3.3)

where b > 0 is a scaling parameter. With this weighting function, (2.2) has the
following closed-form expression:

max
{r1,...,rM0 }∈�0

ε

M0+1∑
j=1

1

Tj −Tj−1

Tj∑
s=Tj−1+1

Tj∑
r=Tj−1+1

e− b‖Ys−Yr‖2
2 .

Such an expression can be regarded as a weighted generalized distance between
observations. Intuitively, the generalization from the distance between Ys and Yr

to their exponential squared distance can capture structural breaks in all higher-
order moments of Yt if they exist. For more discussion on this type of weighting
function, see Hušková and Meintanis (2008).
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Besides the normal weighting function, one can also use the product
Laplace(0,b) weighting function:

W(u) = (2b)−d e−
∑d

i=1 |ui|
b . (3.4)

With this weighting function, (2.2) becomes

max
{r1,...,rM0 }∈�0

ε

M0+1∑
j=1

1

Tj −Tj−1

Tj∑
s=Tj−1+1

Tj∑
r=Tj−1+1

d∏
i=1

1

1+b2|Yis −Yir|2 ,

where Yis is the ith entry of the d ×1 vector Ys for i = 1, . . . ,d.
Furthermore, we can follow Bierens and Wang (2012) and consider the uniform

weighting function

W(u) = 1

(2c)d for u ∈ U = [−c,c]d with some c > 0. (3.5)

Then, (2.2) has the following closed-form expression:

max
{r1,...,rM0 }∈�0

ε

M0+1∑
j=1

1

Tj −Tj−1

Tj∑
s=Tj−1+1

Tj∑
r=Tj−1+1

d∏
i=1

sin(c(Yis −Yir))

c(Yis −Yir)
.

Since limx→0
sinx

x = 1, we can replace sin(c(Yis−Yir))
c(Yis−Yir)

with 1 when Yis = Yir. We note
that when Yt has unbounded support, the uniform weighting function may lead to
power loss. However, by choosing a suitable value of c, one can adjust the test
statistic for various data generating processes. For more discussion, see Bierens
and Wang (2012).

3.4. A Resampling Procedure

Theorem 3.1 shows that the null asymptotic distribution of the proposed test is
not pivotal because it depends on the unknown data generating process. To obtain
the critical values of the proposed test, we propose the following moving block
bootstrap procedure (e.g., Künsch, 1989).

(i) Given the data set {Yt}T
t=1 and a prespecified number of breaks M, compute

SSGR0 and SSGRM(r̂1, . . . , r̂M), where {r̂j}M
j=1 is the collection of estimated

break fractions that solves (2.2). Then the test statistic supF = SSGR0 −
SSGRM(r̂1, . . . , r̂M).

(ii) Pick a block length 1 < lT < T such that l−1
T + lTT−1/2 = o(1), and construct

N ≡ T − lT + 1 sets of block data {Yn}N
n=1, where Yn = {Yn, . . . ,Yn+lT −1} is a

block data set with length lT .
(iii)Assuming KlT = T , draw i.i.d. integer-valued random variables I1, . . . ,IK such

that Ik, k = 1, . . . ,K, follows a discrete uniform distribution that assigns the
probability 1/N to each value in the set {1, . . . ,N}. Construct a bootstrap data
set �� = {Y�

1, . . . ,Y�
K}, where Y�

k = YIk for k = 1, . . . ,K.
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(iv) Using the bootstrap data set ��, compute the bootstrap test statistic supF� =
SSGR�

0 − SSGR�
M(r̂�

1, . . . , r̂
�
M), where SSGR�

0 and SSGR�
M(r̂�

1, . . . , r̂
�
M) are the

SSGRs under no structural breaks and under the estimated M breaks {r̂�
j }M

j=1,
respectively.

(v) Repeat steps (iii) and (iv) for a total of B times to obtain a collection of
B bootstrap test statistics {supF�

b}B
b=1. Then the bootstrap p-value for the

proposed test is given by

pB
J = 1

B

B∑
b=1

I
(
supF ≤ supF�

b

)
,

where I(·) is an indicator function.

To establish validity of the proposed moving block bootstrap, we impose the
following condition.

Assumption A.6. (i) The block length lT satisfies that l−1
T + lTT−1/2 = o(1) and

(ii) maxt E‖Yt‖q < ∞ for some q > 2, where ‖ · ‖q denotes the Lq-norm.

Assumption A.6(i) imposes some regularity conditions on the block length. It
requires that the block length increases to infinity as the sample size T grows but
at a slower speed. Assumption A.6(ii) imposes a moment condition on the time
series process {Yt}. We note that such a moment condition is used to ensure the
validity of the proposed resampling method.

THEOREM 3.3. Suppose Assumptions A.1–A.3, A.4*, and A.6 hold. Then
under H0, F�

T(r1, . . . ,rM) ⇒� F(r1, . . . ,rM) in probability as T → ∞. Under
HA(aT),P�(supF > supF�) → 1, provided that T1/2aTl−1/2

T → ∞ as T → ∞.
Here, ⇒� and P� denote the weak convergence and probability under the bootstrap
probability measure conditional on the observed time series sample {Yt}T

t=1.

Theorem 3.3 shows that the proposed moving block bootstrap provides an
asymptotic valid approximation to the limiting null distribution of the generalized
sup-F test statistic. While under HA(aT), the sup-F test statistic will diverge to
infinity at the speed of Ta2

T . Given that the bootstrap statistic diverges at the speed
of lT under HA, the asymptotic validity of the proposed resampling method is
guaranteed. We note that under a nonconverging global alternative, the order of
magnitude of our sup-F test statistic is OP(T). We will examine the finite sample
performance of this moving block bootstrap procedure in Section 6.

4. DETERMINING THE NUMBER OF BREAKS

When the generalized sup-F test in (3.1) rejects H0, it is crucial to determine the
true number of breaks M0. We now introduce a sequential testing procedure and
an information criterion to estimate M0.
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4.1. A Sequential Test

We first propose a sequential test of the null hypothesis of M(i.e., M0 = M) breaks
against the alternative hypothesis that an additional break exists. Through such a
sequential search, we can pin down the true number of breaks and obtain consistent
estimates for break fractions.

The idea of sequential testing is similar to the proposed generalized sup-F test.
We compare the difference between the SSGRs under the null hypothesis of M
breaks and under the alternative of M+1 breaks. They should converge to the same
limit under the null hypothesis but will diverge under the alternative. We first obtain
the estimated break dates {T̂j}M

j=1 by solving (2.2), and denote the corresponding

SSGR as SSGRM(T̂1, . . . ,T̂M). Suppose there exists an additional break. We can
then estimate it by minimizing SSGR conditioning on the existing break dates
{T̂j}M

j=1:

min
1≤j≤M+1

inf
τ∈�j,ε

SSGRM+1(T̂1, . . . ,T̂j−1,τ,T̂j, . . . ,T̂M),

where

�j,ε =
{
τ : T̂j−1 +�(T̂j − T̂j−1)ε� ≤ τ ≤ T̂j −�(T̂j − T̂j−1)ε�

}
for some pre-specified ε > 0. In fact, as Bai and Perron (1998) point out,
minimizing SSGR by searching an additional break conditioning on the existing
M breaks is equivalent to minimizing SSGR under M +1 unknown breaks. Hence,
the test statistic is defined as

FT(M +1|M) = SSGRM(T̂1, . . . ,T̂M)

− min
1≤j≤M+1

inf
τ∈�j,ε

SSGRM+1(T̂1, . . . ,T̂j−1,τ,T̂j, . . . ,T̂M).

Following the convention that T̂0 = 0 and T̂M+1 = T , we note that SSGRM+1

(T̂1, . . . ,T̂j−1,τ,T̂j, . . . ,T̂M) is understood as SSGRM+1(τ,T̂1, . . . ,T̂M) for j = 1, and
as SSGRM+1(T̂1, . . . ,T̂M,τ ) for j = M. They correspond to the cases when the
additional break is sought in the boundary regions.

Under the null hypothesis of M breaks, the generalized error functions {εt(u)}T
t=1

are not identically distributed, because their second moment depends on the CF of
Yt. Therefore, we shall establish the asymptotic distribution of the sequential test
statistic under Assumption A.4, which imposes a functional central limit theorem
for each time segment [T0

j−1 +1,T0
j ].

THEOREM 4.1. Suppose Assumptions A.1–A.4 hold. LetB( j)(u,r)≡ B( j)(u,r)−
rB( j)(u,1) be a generalized Brownian bridge, where B( j)(u,r) is as defined in
Assumption A.4(ii). Then under the null hypothesis of M structural breaks, as
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T → ∞,

FT(M +1|M)
d→ F(M +1|M),

where

F(M +1|M) = max
1≤j≤M+1

sup
ε≤r≤1−ε

∫
Rd

∣∣B( j)(u,r)
∣∣ 2

r(1− r)
W(u)du.

Due to the heterogeneity in the Brownian bridge B( j)(u,r) across each time
segment [T0

j−1 + 1,T0
j ], the asymptotic distribution for our sequential test statistic

differs from that of Bai and Perron (1998). For details, see Proposition 7 of Bai
and Perron (1998).

Suppose the true number of breaks is greater than the pre-specified number of
breaks M. Then there must be at least one break that is not consistently estimated.
Hence, at least one segment contains an unidentified break point. According to
Theorem 3.2, for this segment, the sup-F test statistic in (3.1) will diverge to
infinity as the sample size increases. As a result, the test statistic FT(M + 1|M)

will also diverge to infinity at the parametric rate, ensuring the consistency of our
sequential test.

The limiting distribution of the sequential test statistic depends on the unknown
data generating process. We need to use resampling methods to obtain its critical
values. We then propose the following moving block bootstrap for the sequential
test. Let 1 < l j

T < T̂j − T̂j−1 be a block length for the jth subsample such that l j
T → ∞

and l j
T = o(T1/2), for j = 1, . . . ,M +1.

(i) Given the data set {Yt}T
t=1 and the hypothesized number of breaks M, estimate

the break fractions {r̂j}M
j=1 and compute the test statistic FT(M +1|M).

(ii) For each subsample {Yt}T̂j

t=T̂j−1+1
specified by the estimated break dates, pick

a block length 1 < l j
T < T̂j − T̂j−1 such that (l j

T)−1 + l j
TT−1/2 = o(1), and

construct Nj ≡ T̂j − T̂j−1 − l j
T + 1 sets of block data {Y j

n }Nj
n=1, where Y j

n =
{YT̂j−1+n, . . . ,YT̂j−1+n+l j

T −1
} is a block data set with length l j

T .

(iii)Assuming Kjl
j
T = T̂j − T̂j−1, for j = 1, . . . ,M + 1, draw i.i.d. integer-valued

random variables I j
1, . . . ,I

j
Kj

such that Ik, k = 1, . . . ,Kj, follows a discrete
uniform distribution that assigns the probability 1/Nj to each value in the
set {1, . . . ,Nj}. Construct a bootstrap data set ��

j = {Y j,�
1 , . . . ,Y j,�

Kj
}, where

Y j,�
k = Y j

Ik
for k = 1, . . . ,Kj, and j = 1, . . . ,M +1. Combine the data contained

in each bootstrapped subsample j, and then obtain the following bootstrap
observations for the whole sample {��

1, . . . ,�
�
M+1}.

(iv) Compute the bootstrap test statistic F�
T(M + 1|M) based on the bootstrap

sample {��
1, . . . ,�

�
M+1}.

(v) Repeat steps (iii) and (iv) for a total of B times to obtain a collection of B
bootstrap test statistics {F�

T,b(M + 1|M)}B
b=1. The bootstrap p-value for the
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sequential test is given by

pB
S = 1

B

B∑
b=1

I
[
FT(M +1|M) ≤ F�

T,b(M +1|M)
]

.

Supposing Assumptions A.1–A.4 and A.6 hold, the validity of this procedure
can be established analogously to Theorem 3.3. We note that under the null
hypothesis H0 : M0 = M, the asymptotic distribution of the sequential test is
equivalent to the joint test for a single break.

4.2. An Information Criterion

In this subsection, we propose an alternative data-driven choice for M0 based on
an information criterion (IC). We assume that M0 is bounded from above by a
finite integer Mmax. We denote the optimal objective function value of (2.2) for a
fixed M as SSGRM = SSGRM(r̂1, . . . , r̂M). Here, we suppress the dependence of
the estimators on the estimated break fractions {r̂j}M

j=1. We further define

σ̂ 2(M) = SSGRM/T .

Then, we choose M̂ as

M̂ = arg min
0≤M≤Mmax

ln
[
σ̂ 2(M)

]+ρT(M +1), (4.1)

where ρT is a positive tuning parameter.

Assumption A.7. ρT → 0 and TρT → ∞ as T → ∞.

Assumption A.7 imposes standard conditions for the consistency of model
selection, implying that the penalty coefficient ρT cannot shrink to zero too fast as
T → ∞. Theorem 4.2 shows that the IC procedure defined by (4.1) can consistently
estimate the true number of breaks.

THEOREM 4.2. Suppose Assumptions A.1–A.4 and A.7 hold, and let M̂ be the
number of breaks determined by (4.1). Then as T → ∞,

P(M̂ = M0) → 1.

Theorem 4.2 implies that the IC procedure can determine the true number of
breaks with probability approaching one. To implement the IC procedure, one
needs to choose the tuning parameter ρT . Motivated by the BIC, we use ρT =
cρd ln(T)/T in our simulation studies and empirical application, where d is the
dimension of Yt, and cρ is a deep tuning parameter at the practitioner’s discretion.
In our simulation studies, we examine the performance of our IC procedure with
different cρ . Our results show that the choice of cρ matters only when the sample
size is small. As the sample size increases, its impact becomes negligible. For more
details, see Section 6.
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5. INFERENCE FOR THE PATTERN OF STRUCTURAL BREAKS

When the null hypothesis of no structural break in distribution is rejected, one
may need to gauge possible sources of the rejection, which can provide valuable
information for modeling stationary subsamples. For instance, one may be inter-
ested in estimating and testing for structural breaks in various moments of each
univariate time series or cumulants of a multivariate time series. The CF can
be used to generate moments (if exist) via differentiation, which is useful for
investigating structural breaks in various aspects of the joint distribution. Given the
ECF-based objective function (2.2), we can develop a class of derivative estimators
and tests to infer the pattern of structural breaks, such as structural breaks in
(un)conditional mean, variance, and higher-order moments, respectively.

5.1. Inference for Structural Breaks in Moments

Suppose the (p1, . . . ,pd)th order moments of the d-dimensional time series variable
Yt exist. Then taking the (p1, . . . ,pd)th order partial derivative of eiu′Yt with respect
to u = (u1, . . . ,ud) at the origin, we have

∂p1+···+pd eiu′Yt

∂up1
1 · · ·∂upd

d

∣∣∣∣∣
(u1,...,ud)=(0,...,0)

= ip1+···+pd Yp1
1t · · ·Ypd

dt ,

where Yit is the ith entry of the d × 1 vector Yt for i = 1, . . . ,d. Analogous to
estimating and testing structural breaks in distribution, we can analyze structural
breaks in the joint product moment E(Yp1

1t · · ·Ypd
dt ). In particular, if d = 1, we

can investigate structural breaks in certain moments of the univariate time series
{Yt}T

t=1. This is important since the economic implication of breaks in various
moments is different. For example, if Yt represents the return of a financial asset,
then structural breaks in the first moment implies shifts in the expected return,
while breaks in the second moment indicates changes in risk.

Taking the (p1, . . . ,pd)th order partial derivative of (2.1) with respect to u =
(u1, . . . ,ud) at the origin, we obtain

Yp1
1t · · ·Ypd

dt = E(Yp1
1t · · ·Ypd

dt )+νt, (5.1)

where νt = Yp1
1t · · ·Ypd

dt − E(Yp1
1t · · ·Ypd

dt ) characterizes the deviation of Yp1
1t · · ·Ypd

dt
from its expectation. Then we can consistently estimate the break fractions {r̂j}M

j=1

in E(Yp1
1t · · ·Ypd

dt ) by solving the following optimization problem

min
{r1,...,rM}∈�0

ε

M+1∑
j=1

Tj∑
t=Tj−1+1

[
Yp1

1t · · ·Ypd
dt − m̂j(Y1t, . . . ,Ydt)

]2
,

where m̂j(Y1t, . . . ,Ydt) = (Tj −Tj−1)
−1∑Tj

t=Tj−1+1 Yp1
1t · · ·Ypd

dt . With suitable moment

conditions on Yt, it is straightforward to show that {r̂j}M
j=1 converge in probability

to the true breaks, analogously to Theorem 2.1.
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The test statistic for the null hypothesis of no structural breaks in E(Yp1
1t · · ·Ypd

dt )

against the alternative hypothesis of M structural breaks is

supF(p1,...,pd) = sup
{r1,...,rM}∈�0

ε

F(p1,...,pd)

T (r1, . . . ,rM),

where

F(p1,...,pd)

T (r1, . . . ,rM) = SSGR(p1,...,pd)

0 −SSGR(p1,...,pd)

M (r1, . . . ,rM),

with

SSGR(p1,...,pd)

0 =
T∑

t=1

(
Yp1

1t · · ·Ypd
dt − 1

T

T∑
t=1

Yp1
1t · · ·Ypd

dt

)2

,

and

SSGR(p1,...,pd)

M (r1, . . . ,rM)

=
M+1∑
j=1

Tj∑
t=Tj−1+1

⎛
⎝Yp1

1t · · ·Ypd
dt − 1

Tj −Tj−1

Tj∑
t=Tj−1+1

Yp1
1t · · ·Ypd

dt

⎞
⎠

2

,

which represent the sum of squared residuals under the null hypothesis of no
structural breaks and the alternative hypothesis of M breaks, respectively. Under
regularity conditions analogous to Assumptions A.1, A.3, and A.4*, and suitable
moment restrictions, we can show that

F(p1,...,pd)

T (r1, . . . ,rM) ⇒
M+1∑
j=1

1

rj − rj−1

[
B(p1,...,pd)(rj)−B(p1,...,pd)(rj−1)

]2
,

where B(p1,...,pd)(r) = B(p1,...,pd)(r) − rB(p1,...,pd)(1) is a Brownian bridge and
T−1/2∑�Tr�

t=1 νt ⇒ B(p1,...,pd)(r) is a Brownian motion on [0,1] with mean zero
and covariance kernel E[B(p1,...,pd)(r)B(p1,...,pd)(s)] = min{r,s}	(p1,...,pd). Note that
	(p1,...,pd) is the long-run variance of νt.

The choice of derivative orders (p1, . . . ,pd) allows us to estimate and test for
structural breaks in various moments. For example, the choice of d = 1 and p = 1
yields Bai’s (1994, 1997) test for structural breaks in mean if the test statistic is
standardized properly. The case of p > 1 allows us to examine structural breaks in
higher-order moments.

5.2. Inference for Structural Breaks in Conditional Moments

With the development and prevalence of nonlinear and nonparametric regressions,
structural breaks in nonlinear or nonparametric regression has drawn increasing
attention. For example, Andrews and Fair (1988) study structural breaks in nonlin-
ear parametric regression by extending Chow’s (1960) test. Boldea and Hall (2013)
provide an econometric framework to identify breaks in nonlinear regressions.
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Although parametric models provide a parsimonious way to characterize the rela-
tionship among economic variables, they may suffer from model misspecification
and lead to inconsistent estimation or suboptimal prediction. Several studies have
considered structural breaks in nonparametric regression models, which avoid
restrictions on the functional form. For example, Müller (1992) derives a central
limit theorem for the estimators of the location and size of the break point. Wu and
Chu (1993) propose kernel-type estimators for the locations and sizes of jumps in
a fixed-design nonparametric regression. Loader (1996) proposes an estimator for
breaks based on one-sided nonparametric regression. Delgado and Hidalgo (2000)
study inference for the location and size of structural breaks in a nonparametric
regression model. Su and Xiao (2008) propose a CUSUM test for structural change
in dynamic nonparametric regression models. Fengler, Mammen, and Vogt (2015)
propose a test for structural breaks in a nonparametric additive model. Vogt (2015)
proposes a nonparametric time-varying conditional mean model by nonparametric
smoothing over both the regressor and the rescaled time index t/T ∈ (0,1]. Fu and
Hong (2019) test for smooth structural changes in a nonparametric time series
regression model via a frequency domain approach.

We now extend our approach to estimating and testing for structural breaks in
nonparametric regression via appropriate differentiation of the ECF. The salient
feature of our approach is that we avoid smoothed nonparametric estimation for
the unknown regression function and can detect a class of local alternatives that
converges to the null hypothesis at the parametric rate.

Consider the following conditional mean model:

Zp
t = g0

t (Xt)+νt, (5.2)

where Zt is a scalar dependent variable, Xt is a (d −1)×1 explanatory vector, and
g0

t (Xt) = E(Zp
t |Xt) is the conditional moment which may vary over time.

Suppose there exists M0 breaks in the functional form of g0
t (·). Then

Zp
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h0
1(Xt)+νt, for t = 1, . . . ,T0

1,

h0
2(Xt)+νt, for t = T0

1 +1, . . . ,T0
2,

...
...

h0
M0+1

(Xt)+νt, for t = T0
M0 +1, . . . ,T,

where g0
t (·) = h0

j (·) for t ∈ [T0
j−1 + 1,T0

j ] and j = 1, . . . ,M0 + 1 with {h0
j (Xt)}M0+1

j=1
being a collection of time-invariant square-integrable functions.

One can estimate the break fractions by solving the following optimization
problem

min
{r1,...,rM0 }∈�0

ε

M0+1∑
j=1

Tj∑
t=Tj−1+1

[
Zp

t − ĥj(Xt)
]2

,
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where ĥj(·) is an estimator for h0
j (·). If h0

j (·) has a parametric form such as
h0

j (·) = hj(·,β0) for some unknown parameter β0, we can estimate β0 and the break
fractions consistently by piecewise nonlinear least square estimation. Andrews and
Fair (1988) consider the inference in such nonlinear parametric models. However,
if the parametric function hj(·,β) is misspecified for some j = 1, . . . ,M0 + 1,
then the break fractions may not be consistently estimated. One can mitigate this
misspecification issue using smoothed nonparametric estimation of h0

j (·) in each
subsample. However, it would become rather tedious and may suffer from the curse
of dimensionality problem when the dimension of Xt is large.

Compared to the aforementioned methods, our ECF approach is free of model
misspecification and curse of dimensionality. Put Yt = (Zt,X′

t)
′ and let u = (u1,ω

′)′,
where ω = (u2, . . . ,ud)

′. Taking the pth order partial derivative of the CF of Yt with
respect to u1 and let u1 = 0, we have

∂pE(eiu′Yt)

∂up
1

∣∣∣∣∣
u1=0

= ipE(Zp
t eiω′Xt).

Multiplying eiω′Xt on both sides of (5.2) and taking expectation, we obtain

E(Zp
t eiω′Xt) = E

[
g0

t (Xt)e
iω′Xt
]
, (5.3)

where E(νt|Xt) = 0 implies that E(νteiω′Xt) = 0 a.s. for all ω ∈ R
d−1.

Suppose {Xt}T
t=1 is strictly stationary, or the collection of break dates in the

joint distribution of {Xt}T
t=1 is a subset of {T0

j }M0

j=1. Then (5.3) implies that we can
pin down the break dates in gt(·) by estimating structural breaks in the following
generalized regression

Zp
t eiω′Xt = ζ 0

t (p,ω)+ εt(p,ω),

where ζ 0
t (p,ω) = E[g0

t (Xt)eiω′Xt ]. Given the collection of break dates {T0
j }M0

j=1, we
have

Zp
t eiω′Xt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ 0
1 (p,ω)+ εt(p,ω), for t = 1, . . . ,T0

1,

ξ 0
2 (p,ω)+ εt(p,ω), for t = T0

1 +1, . . . ,T0
2,

...
...

ξ 0
M0+1

(p,ω)+ εt(p,ω), for t = T0
M0 +1, . . . ,T,

where ξ 0
j (p,ω) = E

[
h0

j (Xt)eiω′Xt

]
for t ∈ [T0

j−1,T
0
j ] and j = 1, . . . ,M0 +1.

Following analogous reasoning in estimating and testing for structural breaks
based on (2.1), we can consistently estimate break fractions {r0

j }M0

j=1 in {Zp
t eiω′Xt }T

t=1
by solving the following optimization problem

min
{r1,...,rM0 }∈�0

ε

M0+1∑
j=1

Tj∑
t=Tj−1+1

∫
Rd−1

∣∣∣Zp
t eiω′Xt − ξ̃j(p,ω)

∣∣∣ 2W(ω)dω, (5.4)
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where ξ̃j(p,ω) = (Tj −Tj−1)
−1∑Tj

t=Tj−1+1 Zp
t eiω′Xt . Furthermore, we can also show

that the estimated break fraction r̂j = T̂j/T converges to the true value at the rate
of T for j = 1, . . . ,M0. To proceed, we replace Assumptions A.1 and A.4 with the
following conditions:

Assumption A.1c. (i) {Xt}T
t=1 is a strictly stationary and α-mixing sequence with

mixing coefficients α(s) such that
∑∞

s=0(s+1)q/2−1α(s) < ∞ for some q > 2 and
δ > 0; (ii) νt is weakly stationary, with E(νt|Xt) = 0 and var(νt|Xt) = σ 2(Xt) < ∞;

and (iii) {h0
j (·) :Rd−1 →R}M0+1

j=1 is a collection of square-integrable functions such
that gt(·) = h0

j (·) for each t = T0
j−1 +1, . . . ,T0

j .

Assumption A.4c. Let εt(p,ω) ≡ Zp
t eiω′Xt − ξ 0

j (p,ω) be the generalized error
function for t ∈ [T0

j−1 + 1,T0
j ], j = 1,2, . . . ,M0 + 1, and U ⊂ R

d−1 denote a

symmetric compact hypercube around the origin: (i) {εt(p,ω)}T0
j

t=T0
j−1+1

satisfies

E[εt(p,ω)] = 0 and the generalized long-run variance function 	
(j)
p (ω1,ω2) =∑∞

l=−∞ σ
(j)
p,l (ω1,ω2) with σ

(j)
p,l (ω1,ω2) = E

[
εt(p,ω1)εt+l(p,ω2)

∗] and

(ii)
(

T0
j −T0

j−1

)−1/2∑T0
j−1+
⌊(

T0
j −T0

j−1

)
r
⌋

t=T0
j−1+1

εt(p,ω) ⇒ B(j)
p (ω,r), where B(j)

p (ω,r) is

a generalized Brownian motion on U × [0,1] with mean zero and covariance

kernel E
[
B(j)

p (ω1,r)B(j)
p (ω2,s)

∗
]

= min{r,s}	(j)
p (ω1,ω2).

Similar to Assumption A.1(ii), Assumption A.1c(i) restricts the temporal depen-
dence of Xt. Assumption A.1c(ii) imposes some regularity conditions on the true
regression error νt. It implies that Xt is exogenous and allows for conditional
heteroskedasticity. Assumption A.1c(iii) restricts that the unknown conditional
moment function h0

j (·) is square-integrable for each regime j. It is equivalent
to a moment restriction on Zp

t to ensure that (5.2) always exists. Assumption
A.4c is analogous to Assumption A.4 except that the generalized error func-
tion for testing and estimating structural breaks in distribution is replaced by
εt(p,ω).

Under Assumptions A.1c, A.2, and A.3, we can obtain similar conclusions
to those of Theorems 2.1 and 2.2 for the estimated break fractions. Adding
Assumptions A.4c and A.5, we can obtain the limiting distribution for break
fractions in conditional moments, which is the same as Theorem 2.4 except that
	( j)(u,v) is replaced with 	

(j)
p (u,v).

We note that Assumption A.1c requires that Xt is strictly stationary. It is possible
that the distribution of Xt has structural breaks. As a result, the optimization
problem given in (5.4) will deliver the union of the estimated dates for both Xt and
the conditional moment E(Zp

t |Xt). We regard this as a price to pay for our proposed
model-free approach. To mitigate this issue, one can first test and estimate breaks
in the joint distribution of Xt via the procedures developed in Sections 2 and 4, and
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then detect structural breaks via solving the optimization problem given by (5.4)
in Section 5.2. Ideally, a subset of break dates in E(Zp

t eiω′Xt) will coincide with the
estimated break dates of the distribution of Xt. Hence, one may rule them out and
treat the remaining break fractions as breaks for the conditional moments.

We can detect structural breaks in a nonparametric time series regression via an
analogous joint test developed in Section 3 such that it can detect a class of local
alternatives at the parametric rate

√
T . Hence, it is asymptotically more efficient

than the existing tests for structural changes based on smoothed nonparametric
regression (e.g., Fengler et al., 2015; Vogt, 2015; Fu and Hong, 2019). This is an
advantage of our ECF approach, which avoids smoothed nonparametric estimation
and the curse of dimensionality. Moreover, since we do not impose any functional
form on the conditional mean model, our estimators and tests for structural breaks
are model-free. It avoids model misspecification induced by a nonlinear parametric
model as in Andrews and Fair (1988) and Boldea and Hall (2013).

6. SIMULATION STUDIES

We now study the finite sample performance of our proposed estimators and tests
via Monte Carlo.

6.1. Data Generating Processes

We generate data under the following data generating processes (DGPs):

DGP.S1: Yt = κt;
DGP.S2: Yt = 0.2Yt−1 +κt;
DGP.S3: Yt = √

htκt, ht = 0.2+0.3Y2
t−1;

DGP.S4: Yt ∼ N(μ,V), with μ = (0,0,0)′, and V =
⎛
⎝ 1 0.5 0.2

0.5 1 0.5
0.2 0.5 1

⎞
⎠;

DGP.S5: Yt = (Xt,Zt)
′ with Xt = 0.5Xt−1 + κt and Zt = 1 + 0.5Xt + ηt, ηt ∼

i.i.d.N(0,0.12);
DGP.P1 [A single structural break in mean]: Yt = κtI(t ≤ 0.5T) + (1 + κt)I(t >

0.5T);
DGP.P2 [A single structural break in variance]: Yt = κtI(t ≤ 0.5T) + 2κtI(t >

0.5T);
DGP.P3 [A single structural break in higher-order moments]: Yt = (1 +√

2κt)I(t ≤ 0.5T)+κ2
t I(t > 0.5T);

DGP.P4 [A single structural break in dependence]: Yt = (Xt,Zt)
′, Xt = 0.5Xt−1 +

κt, ηt ∼ i.i.d.N(0,0.12), and

Zt =
{

1+0.5Xt +ηt, if t ≤ 0.3T,

2+0.8Xt +ηt, otherwise;
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DGP.P5 [Multiple structural breaks in dependence]: Yt = (Xt,Zt)
′, Xt = 0.5Xt−1 +

κt, ηt ∼ i.i.d.N(0,0.12), and

Zt =
⎧⎨
⎩

1+X2
t +ηt, if 1 ≤ t ≤ 0.3T,

0.5+0.1Xt +ηt, if 0.3T +1 ≤ t ≤ 0.6T,

3+0.5Xt +ηt, if 0.6T +1 ≤ t ≤ T,

where {κt} is an i.i.d.N(0,1) sequence.
The null hypothesis of no structural breaks holds under DGPs.S1–S5. We use

these DGPs to study the size performance of the proposed joint test and derivative
tests. Specifically, DGPs.S2 and S3 allow us to examine the performance of our
tests under serial dependence and conditional heteroskedasticity, and DGPs.S4 and
S5 are designed to examine the performance of our tests under multivariate cases.
DGPs.P1–P5 provide various types of structural breaks. We use them to examine
the consistency of our estimator for break fractions as well as the power of our
tests. DGPs.P1 and P2 contain a single break in mean and variance, respectively,
whereas DGP.P3 has both time-invariant mean and variance but a single break in
higher-order moments. DGPs.P4 and P5 have a single break and multiple breaks,
respectively, in a multivariate context.

6.2. Determining the Number of Breaks

In this subsection, we examine the finite sample performance of the proposed
IC procedure and sequential tests in determining the number of breaks. We also
compare our approach with closely related methods for conditional mean models in
the literature, including Bai and Perron’s (1998) sequential tests, the conventional
BIC procedure, and Liu, Wu, and Zidek’s (1997, LWZ) information criterion
procedure.

As noted earlier, for our IC, we set the turning parameter ρT = cρd ln(T)/T
and examine the sensitivity of its performance to the choice of the deep turning
parameter cρ . We consider cρ = 1,1.5, and 2, but for space, we only report the
results for cρ = 1. The results with different choices of cρ are quite similar when
the sample size is large. For details, see the Supplementary Material. We also show
the performance of the proposed sequential testing procedure in determining the
number of breaks. We test the null hypothesis of M breaks against the alternative
of M + 1 breaks sequentially for M = 0,1, . . . ,Mmax. If we cannot reject the null
hypothesis for some specific value of M̄, then the sequential procedure stops and
M̄ is the selected number of breaks. Since the results of sequential tests depend on
the significance level, we adopt the most commonly used 5% and 10% significance
levels. We set the prespecified trimming parameter ε = 0.15, which is a common
choice in the literature. We also examine the performance of the methods under
study with ε = 0.1, and the results (not reported) are similar. Furthermore, we use
the normal weighting function in (3.3) with b = 1 to compute the SSGR. We also
examine the performance of our approach using the Laplace weighting function in
(3.4) and the uniform weighting function in (3.5).
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Since our tests are not asymptotically pivotal, we use the proposed moving block
bootstrap to obtain the critical values. Under each DGP, we simulate 1,000 data sets
with sample size T = 100,200, and 500, respectively. To estimate the true number
of breaks, we set Mmax = 5 for sequential tests and report the estimated number of
breaks when we fail to reject the alternative hypothesis at given significance levels.
For the choice of the block length, we adopt Politis and White’s (2004) automatic
block-length selection procedure. We also report the estimated number of breaks
using IC. To evaluate the performance of these methods, we consider the average
number of breaks and the percentage of correct selection over 1,000 replications.
Bai and Ng (2002) use the former measure when they determine the number of
common factors in a large dimensional factor model, while LWZ consider the latter
when they determine the number of breaks in a multivariate linear regression.

Table 1 reports the average number of breaks and the percentage of correct
selection over 1,000 replications with various methods of determining the number
of breaks. As shown in Table 1, both the IC and sequential tests perform fairly
well under DGPs.P1–P5. For linear regressions with structural breaks in mean as
specified by DGPs.P1 and P4, the percentage of correct selection by our IC is
slightly lower than those by BIC and LWZ when the sample size is small, but it
improves as the sample size grows. For structural breaks in variance and higher-
order moments under DGPs.P2 and P3, respectively, the number of breaks detected
by BIC and LWZ tend to be zero, and the percentages of correct selection shrink
to zero as the sample size increases. In contrast, our IC performs well under both
DGPs, and the percentage of correct selection is close to one. It is not difficult
to understand the failure of BIC and LWZ, which are constructed for detecting
structural breaks in linear regression models. As a result, they are unable to detect
structural breaks in higher-order moments. We also find that BIC and LWZ fail to
detect structural breaks in nonlinear conditional mean models. Both of them suffer
from a severe over-selection problem under DGP.P5. In contrast, our IC performs
well and is free of model misspecification. Similar results are documented for the
proposed sequential tests. As shown in Table 1, the percentage of correct selection
of our sequential tests is higher than Bai and Perron’s (1998) sequential tests under
DGPs.P1–P5, respectively.

6.3. Estimation for Break Dates

We use DGPs.P1–P5 to evaluate the performance of the proposed estimators for
break dates. We compare our estimation results with those proposed by Bai and
Perron (1998) and Inoue (2001). To measure the accuracy of the estimators, we
define the bias and root-mean-squared errors (RMSE) of the estimated break
fractions as

Bias = 1

MN

N∑
i=1

M∑
j=1

(r̂ji − r0
j ),
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Table 1. Performance of various methods in determining the number of breaks.

DGP T Average number of breaks Percentage of correct selection

BIC LWZ ST5 ST10 DIC DST5 DST10 BIC LWZ ST5 ST10 DIC DST5 DST10

P1 100 1.064 0.840 1.194 1.291 1.254 0.890 0.041 91.8 84.0 79.1 74.3 79.4 84.2 89.0

200 1.030 0.994 1.120 1.178 1.140 1.028 1.081 97.1 99.4 88.6 84.1 88.9 96.4 92.1

500 1.014 1.000 1.064 1.123 1.072 1.044 1.104 98.6 100 93.8 88.5 94.0 95.7 90.6

P2 100 0.306 0.007 0.165 0.238 0.842 0.699 0.869 8.1 0.7 10.5 14.3 66.4 66.0 74.3

200 0.185 0.001 0.107 0.182 1.014 1.014 1.071 5.1 0.1 8.5 12.8 92.3 94.6 92.1

500 0.098 0.000 0.059 0.119 1.025 1.049 1.104 3.2 0.0 4.9 9.5 97.7 95.3 90.0

P3 100 0.183 0.008 0.166 0.252 0.980 0.659 0.833 4.7 0.4 11.2 16.2 61.0 61.6 71.1

200 0.088 0.000 0.125 0.192 1.070 0.986 1.054 3.7 0.0 10.8 15.2 87.1 92.4 90.3

500 0.031 0.000 0.109 0.169 1.039 1.036 1.098 2.1 0.0 9.9 14.7 96.5 96.4 90.6

P4 100 1.060 1.000 2.020 2.225 1.093 0.970 1.164 94.6 100 40.1 33.7 91.1 84.9 82.2

200 1.017 1.000 1.412 1.544 1.081 1.077 1.169 98.4 100 68.5 59.9 92.2 92.3 84.6

500 1.005 1.000 1.175 1.268 1.048 1.067 1.132 99.5 100 83.6 75.8 95.7 93.5 87.5

P5 100 4.867 4.469 3.441 3.692 1.774 1.334 1.973 0.0 2.3 13.7 11.1 68.1 42.2 70.8

200 4.856 4.297 2.758 2.921 2.062 2.031 2.158 0.1 2.5 38.7 34.1 94.1 91.7 85.6

500 4.872 4.101 2.284 2.386 2.034 2.062 2.154 0.1 7.2 74.3 67.0 96.6 94.2 86.9

Notes: (i) BIC and LWZ denote the Schwarz criterion and the modified Schwarz criterion proposed in Liu et al. (1997); (ii) ST5 and ST10 denote Bai and Perron’s
(1998) sequential tests under 5% and 10% significance levels, respectively; (iii) DIC denotes the information criterion proposed in this paper; (iv) DST5 and DST10
denote the sequential tests proposed in this paper under 5% and 10% significance levels, respectively; and (v) the main entries report the results based on 1,000
replications.
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Table 2. Performance on estimating break dates.

This paper Inoue (2001) Bai and Perron (1998)

Bias RMSE Bias RMSE Bias RMSE

P1 T = 100 4.510 75.753 0.1900 57.412 4.690 57.678

T = 200 0.170 37.535 0.305 31.693 −0.705 28.796
T = 500 −0.760 12.470 −0.370 14.406 −0.612 10.654

P2 T = 100 21.750 107.953 23.380 104.866 156.490 232.856

T = 200 13.085 50.821 21.460 76.567 156.690 237.673

T = 500 4.886 20.257 13.124 41.878 165.258 234.759

P3 T = 100 −15.050 122.732 −23.740 91.318 −7.450 232.574

T = 200 −4.960 66.474 −16.455 60.490 −10.715 236.683

T = 500 −1.204 27.806 −9.058 27.138 −2.882 231.878

P4 T = 100 5.870 41.904 8.680 59.200 −0.030 1.049
T = 200 2.835 14.708 7.960 38.379 −0.010 0.806
T = 500 0.982 3.492 3.268 16.162 0.008 0.219

P5 T = 100 4.855 35.836 – – −22.790 51.931

T = 200 0.108 3.747 – – −13.680 35.491

T = 500 0.003 0.656 – – −4.109 16.482

Notes: The main entries report bias and RMSEs ×1,000. The bold entries highlight the smallest RMSE
in each case.

RMSE =
√√√√ 1

MN

N∑
i=1

M∑
j=1

(r̂ji − r0
j )

2,

where M is the number of breaks, N is the number of replications, r0
j is the true

value of the jth break fraction, and r̂ji is the estimator for the jth break fraction in
the ith replication.

Table 2 reports the bias and RMSE for the estimators of Bai and Perron (1998),
Inoue (2001), and ours, based on 1,000 replications. As shown in Table 2, both the
bias and RMSE of our estimator decline as the sample size T increases. Bai and
Perron’s (1998) estimator outperforms ours under DGPs.P1 and P4, which depict
linear regressions with structural breaks in mean. However, it does not perform as
well as our estimator under other DGPs, especially under DGPs.P2 and P3, which
exhibit structural breaks in variance and higher-order moments with time-invariant
mean. Note that our method is applicable to nonlinear regression models with
structural breaks under DGP.P5, where Bai and Perron’s (1998) estimator is less
accurate than ours. Inoue’s (2001) estimator is also reasonable under DGPs.P1–
P4. The RMSEs of his estimator are quite similar to ours under DGPs.P1–P3 when
the sample size is large. It is a little bit worse than ours under DGP.P4. However,
Inoue’s (2001) estimator is only designed for a single break model, so we do

https://doi.org/10.1017/S026646662200010X Published online by Cambridge University Press

https://doi.org/10.1017/S026646662200010X


566 ZHONGHAO FU ET AL.

0.3 0.4 0.5 0.6 0.7

100

200

300 P1, T =100

0.3 0.4 0.5 0.6 0.7

200

400
P1,T =200

0.4 0.6

250

500

750
P1,T =500

0.25 0.50 0.75

100

200
P2,T =100

0.25 0.50 0.75

100

200

300
P2,T =200

0.25 0.50 0.75

200

400

600
P2,T =500

0.25 0.50 0.75

100

200

P3,T =100

0.25 0.50 0.75

200

400
P3,T =200

0.25 0.50 0.75

200

400

600
P3,T =500

Figure 1. Histograms of estimated break fractions under DGPs.P1–P3.

not report the results for DGP.P5. We also plot the histograms of our estimated
break fractions under DGPs.P1–P3 in Figure 1. Under each DGP, the range of r̂j

becomes smaller as the sample size increases, which, combined with the RMSE
results in Table 2, indicates the convergence of the estimated break fractions to
the true values. We note that the trimodality that is commonly present in the finite
sample theory does not show up in the reported histograms. This is because the
considered DGPs have a large signal-to-noise ratio. If we decrease the break size
from 1 to 0.5 in mean under DGP.P1 and the break size from 2 to 1.5 in variance
under DGP.P2, then the trimodality appears in the corresponding histograms. As
is shown in Figure C.1 of the Supplementary Material, the trimodality is apparent
when the sample size T = 100. It indicates that our results are consistent with the
existing findings that the asymptotic distribution does not conform to the exact
distribution when the sample size is small. To better approximate the finite sample
distribution, it is possible to follow Jiang, Wang, and Yu (2018) to develop an in-
fill asymptotic theory. However, the analytical expressions for our estimators are
quite involved, and hence we have to pursue this important issue in subsequent
research.

6.4. Size and Power Performance of Tests

We now examine the finite sample performance of our tests in comparison with
Inoue’s (2001) test for a single break in distribution. In addition, we also consider
our derivative tests F(1)

T and F(2)
T , which can detect structural breaks in the first two
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Table 3. Size of tests under DGPs.S1–S5.

FT ,M = 1 FT ,M = 2 F(1)
T ,M = 1 F(2)

T ,M = 1 In01 BPhet

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 T = 100 6.1 11.7 5.6 11.5 5.1 10.0 4.6 9.3 4.1 7.7 7.8 14.5

T = 200 4.2 9.7 4.6 10.3 4.5 11.1 4.7 9.2 4.3 8.7 4.8 11.2

T = 500 5.2 10.1 5.7 10.8 5.8 12.3 6.8 12.4 3.3 6.6 5.2 10.6

S2 T = 100 7.5 13.5 6.4 16.6 7.2 14.9 5.8 11.5 6.6 12.0 10.4 16.7

T = 200 6.2 13.8 6.5 16.3 5.7 11.0 4.9 10.5 5.6 11.7 6.3 11.3

T = 500 5.4 11.7 7.5 14.2 7.3 13.1 6.6 12.9 6.2 10.6 3.6 9.6

S3 T = 100 6.3 12.1 7.2 13.6 5.4 11.3 12.3 19.8 4.7 9.1 10.2 17.4

T = 200 5.6 11.1 8.7 13.5 5.0 10.6 13.4 23.4 3.8 7.9 6.2 13.1

T = 500 4.1 10.5 7.5 13.9 3.8 8.2 14.0 22.0 3.5 7.9 4.7 10.2

S4 T = 100 3.4 7.2 2.4 5.6 3.6 7.8 2.6 8.0 4.3 9.2 18.8 27.0

T = 200 4.0 8.1 3.2 7.2 4.7 8.9 3.3 6.8 4.5 8.3 9.9 16.8

T = 500 4.5 9.7 3.8 9.0 4.5 8.4 3.8 8.3 3.9 9.1 7.9 13.5

S5 T = 100 7.4 13.5 5.6 14.7 9.2 18.1 6.8 14.2 7.4 15.9 16.2 25.1

T = 200 5.7 13.2 6.8 15.1 8.3 15.7 6.2 12.6 5.5 14.5 9.7 16.7

T = 500 5.0 12.5 7.3 14.1 8.0 15.2 6.2 13.7 5.6 12.8 6.0 14.0

Notes: (i) FT,M = 1 and FT,M = 2 denote the results of our joint test against the alternative
hypothesis of a single break and two breaks, respectively; (ii) F(1)

T ,M = 1 and F(2)
T ,M = 1 denote

the results of our derivative tests for structural changes in the first and second moments against a
single break, respectively; (iii) In01 denotes the results of Inoue’s (2001) test; (2) BPhet denote Bai and
Perron’s (1998) serial correlation and heteroskedasticity robust sup-F test. The main entries report the
percentage of rejections.

moments, respectively. We compare the derivative test F(1)
T with Bai and Perron’s

(1998) test for structural breaks in conditional mean.
For each DGP, we simulate 1,000 data sets with the sample size T = 100,200,

and 500, respectively. For our tests and Inoue’s (2001) test, we set the number of
bootstrapping B = 200. We set the trimming parameter ε = 0.15 for all the tests
under study. We also examine the performance of all the tests with ε = 0.10, and we
find the results (not reported here) are similar. In addition, to examine the impact
of the pre-specified number of breaks under the alternative on the performance of
our joint test for distributional breaks, we consider the number of breaks M = 1
and 2, respectively.

Table 3 reports the size of the tests under DGPs.S1–S5 at the 5% and 10% sig-
nificance levels. Our joint test with M = 1 and 2 has reasonable size performance
based on bootstrapped critical values, given that the empirical rejection rates are
close to the corresponding nominal significance levels. Our derivative tests F(1)

T and
F(2)

T also perform reasonably well, although F(2)
T tends to over-reject under DGP.S3,

which is an ARCH process. However, the over-rejection is alleviated as the sample
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Table 4. Power of tests under DGPs.P1–P5.

FT ,M = 1 FT ,M = 2 F(1)
T ,M = 1 F(2)

T ,M = 1 In01 BPhet

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 T = 100 88.6 96.6 65.2 85.1 93.6 98.3 4.5 11.3 88.3 92.7 98.7 99.3

T = 200 99.7 100 84.6 97.9 99.6 100 4.6 9.1 98.9 99.1 100 100

T = 500 100 100 100 100 100 100 4.9 9.6 100 100 100 100

P2 T = 100 67.9 81.1 55.7 71.3 9.0 14.7 84.6 94.5 29.3 46.9 18.1 28.5

T = 200 98.0 99.3 91.7 96.3 8.6 15.6 99.4 99.8 56.9 66.6 16.5 27.7

T = 500 100 100 100 100 10.9 17.2 100 100 72.3 72.4 13.3 22.3

P3 T = 100 63.7 77.1 49.3 64.3 5.8 9.7 10.1 17.2 31.3 44.3 10.1 17.2

T = 200 95.5 97.4 89.8 94.8 5.3 10.9 10.0 16.6 59.3 67.1 6.7 13.9

T = 500 100 100 100 100 5.7 10.2 9.2 17.9 69.4 69.4 5.2 10.5

P4 T = 100 90.7 98.3 76.3 94.4 20.6 39.8 8.7 19.0 56.0 87.5 100 100

T = 200 100 100 98.6 100 50.4 76.8 11.7 25.6 89.3 98.8 100 100

T = 500 100 100 100 100 99.1 100 44.4 65.5 100 100 100 100

P5 T = 100 86.0 99.0 86.2 99.1 12.0 23.3 3.7 8.2 9.7 49.6 81.7 83.7

T = 200 99.5 100 99.9 100 27.3 51.3 2.2 6.6 31.7 88.7 72.3 77.2

T = 500 100 100 100 100 92.7 98.6 5.2 25.4 98.5 100 70.9 80.6

Note: See the notes in Table 3.

size increases. Inoue’s (2001) test also has reasonable size performance. Based on
asymptotic critical values, Bai and Perron’s (1998) test tends to over-reject under
DGPs.S3–S5, especially when the sample size is small.

Table 4 reports the power of the tests under DGPs.P1–P5 at the 5% and 10%
significance levels. Our joint test FT for distributional breaks with M = 1 and
2 is powerful in detecting all the five DGPs and the empirical rejection rates
increase to one quickly as T grows. Note that DGPs.P1–P4 have a single structural
break, while DGP.P5 has two structural breaks. Thus, the number of breaks is
misspecified for DGPs.P1–P4 when we set M = 2 and for DGP.P5 when we set
M = 1. As shown in Table 4, our test is powerful and robust to the misspecification
of the number of breaks, which is consistent with Theorem 3.2. Inoue’s (2001)
test is also powerful, but the rejection rates are relatively lower than ours. It is
interesting to observe that F(1)

T is powerful in capturing various forms of structural
breaks in mean under DGPs.P1, P4, and P5, and is robust to structural breaks in
higher-order moments, such as under DGPs.P2 and P3. Similarly, F(2)

T performs
well in capturing structural breaks in variance under DGP.P2 and is robust to
structural breaks in mean and higher-order moments under DGPs.P1 and P3. On
the other hand, Bai and Perron’s (1998) test is most powerful under DGP.P1, which
has a structural break in mean. However, it has little power under DGPs.P2 and
P3, where structural breaks occur in variance and higher-order moments. This is
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consistent with the fact that Bai and Perron’s (1998) test is designed to capture
structural changes in mean.

6.5. The Choice of Weighting Function

The weighting function W(u) plays an important role in our framework. In this
subsection, we examine the impact of various choices of W(u). In particular, we
consider the three types of weighting function in Section 3.3, i.e., (a) the normal
weighting function N(0,1), (b) the Laplace weighting function L(0,1/

√
2), and (c)

the uniform weighting function U(−√
3,

√
3), respectively. The mean and variance

of these weighting functions have been standardized to 0 and 1 for each dimension.
As shown in Table 5, the size of our test is not sensitive to the choice of weighting

function W(u) as long as they are finite and integrable. Furthermore, Table 6 shows
that the choice of weighting function W(u) can affect the finite sample power of
our test under various DGPs. However, as the sample size increases, the proposed
test with different weighting functions achieves unity power quickly. This implies
that the impact of weighting function is little in large samples.

7. APPLICATION TO FOREIGN EXCHANGE RATES

The foreign exchange market is among the most important financial markets in the
world. It plays an important role in international trade, capital market stability, and
international portfolio management. The fluctuation of exchange rates affects the
domestic country’s economy. Hence, it is important to infer and forecast the pattern
of exchange rate variation. Moreover, as documented by the vast literature (e.g.,
Boothe and Glassman, 1987; Hsieh, 1988), the distribution of the exchange rate
returns usually exhibits a sharper peak and fatter tails than the normal distribution.
Therefore, the conditional mean model cannot fully describe the important features
of an exchange rate return dynamics. In addition, a large stream of literature also
shows that the exchange rates may suffer from structural breaks due to the reforms
of exchange rate system and other changing factors such as policy shifts.

In this section, we apply our approach to infer possible structural breaks
in exchange rate returns. Following Liu and He (1991) and Rime, Sarno, and
Sojli (2010), we check the stability of four exchange rates: EUR (Euro), JPY
(Japanese Yen), CNY (Chinese Yuan), and CAD (Canadian Dollar). The data are
measured by JPY, CNY, and CAD to one U.S. Dollar, and one U.S. dollar to EUR,
respectively. Similar to Inoue (2001), we use the weekly return series measured
by the log-difference of the average values of exchange rates within one week.
We also considered Wednesday returns, and the results are quite similar. All data
are collected from the website of the Federal Reserve Bank of St. Louis, spanning
from January 5, 2000 to July 10, 2019, with 1,018 observations for EUR, JPY,
and CAD. Since CNY switched from a fixed to a managed floating exchange rate
mechanism in July 21, 2005, we use the data that started from July 25, 2005 for
CNY. The time series plots of these exchange rate returns are given in Figure 2.
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Table 5. Size of tests under DGPs.S1–S5 with various weighting functions.

N(0,1),1 N(0,1),2 L(0, 1√
2
),1 L(0, 1√

2
),2 U(−√

3,
√

3),1 U(−√
3,

√
3),2

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

S1 T = 100 6.1 11.7 5.6 11.5 5.3 11.3 5.4 9.5 7.9 12.4 7.4 13.2

T = 200 4.2 9.7 4.6 10.3 3.6 9.2 3.8 9.0 5.2 10.7 5.1 10.6

T = 500 5.2 10.1 5.7 10.8 5.0 11.0 7.0 12.6 6.0 10.8 6.6 12.0

S2 T = 100 7.5 13.5 6.4 16.6 7.0 14.2 5.8 12.6 8.8 14.9 8.3 15.7

T = 200 6.2 13.8 6.5 16.3 7.1 12.8 7.0 12.8 7.3 14.7 7.4 14.8

T = 500 5.4 11.7 7.5 14.2 4.4 11.2 4.8 11.2 5.0 11.2 5.4 11.6

S3 T = 100 6.3 12.1 7.2 13.6 6.0 12.5 8.1 14.0 6.7 12.1 9.0 16.1

T = 200 5.6 11.1 8.7 13.5 6.1 12.2 6.4 11.4 6.6 10.8 6.8 14.4

T = 500 4.1 10.5 7.5 13.9 4.6 9.8 5.6 11.2 5.0 10.0 6.4 11.2

S4 T = 100 3.4 7.2 2.4 5.6 3.6 7.8 3.0 6.6 3.9 9.5 3.9 8.5

T = 200 4.0 8.1 3.2 7.2 5.1 11.3 3.2 9.1 6.1 11.2 4.3 11.5

T = 500 4.5 9.7 3.8 9.0 5.0 12.4 4.2 9.2 7.2 12.2 5.6 11.0

S5 T = 100 7.4 13.5 5.6 14.7 8.7 16.2 7.0 16.5 9.0 17.2 8.7 16.8

T = 200 5.7 13.2 6.8 15.1 8.0 15.4 7.0 15.7 7.1 14.4 8.2 15.9

T = 500 5.0 12.5 7.3 14.1 7.2 13.4 5.6 12.2 6.4 13.4 6.2 12.4

Notes: (i) N(0,b),M denotes our joint test with normal N(0,b) weighting function for the alternative hypothesis of M breaks; (ii) L(0,b),M denotes our joint test with
Laplace L(0,b) weighting function for the alternative hypothesis of M breaks; and (iii) U(−c,c),M denotes our joint test with uniform(−c,c) weighting function for
the alternative hypothesis of M breaks. The main entries report the percentage of rejections.
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Table 6. Power of tests under DGPs.P1–P5 with various weighting functions.

N(0,1),1 N(0,1),2 L(0, 1√
2
),1 L(0, 1√

2
),2 U(−√

3,
√

3),1 U(−√
3,

√
3),2

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

P1 T = 100 88.6 96.6 65.2 85.1 88.8 96.8 65.7 85.6 90.4 96.8 68.6 86.9

T = 200 99.7 100 84.6 97.9 99.1 100 88.3 98.5 99.3 99.9 91.0 98.6

T = 500 100 100 100 100 100 100 100 100 100 100 100 100

P2 T = 100 67.9 81.1 55.7 71.3 68.9 82.1 54.3 69.5 71.8 83.8 60.4 74.2

T = 200 98.0 99.3 91.7 96.3 97.6 99.3 92.4 96.8 97.1 98.9 92.7 96.0

T = 500 100 100 100 100 100 100 100 100 100 100 100 100

P3 T = 100 63.7 77.1 49.3 64.3 66.4 81.6 50.5 66.6 76.5 86.3 63.3 75.2

T = 200 95.5 97.4 89.8 94.8 96.2 98.7 89.5 95.3 97.8 99.0 93.2 97.4

T = 500 100 100 100 100 100 100 100 100 100 100 100 100

P4 T = 100 90.7 98.3 76.3 94.4 84.0 97.7 68.7 90.6 96.6 99.6 89.8 98.7

T = 200 100 100 98.6 100 99.3 100 95.6 99.7 100 100 99.2 100

T = 500 100 100 100 100 100 100 100 100 100 100 100 100

P5 T = 100 86.0 99.0 86.2 99.1 74.8 98.1 88.6 99.7 95.8 100 95.5 100

T = 200 99.5 100 99.9 100 98.2 99.8 99.5 100 99.6 100 99.9 100

T = 500 100 100 100 100 100 100 100 100 100 100 100 100

Note: See the notes in Table 5.
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Figure 2. Time series plots of exchange rate returns and break dates.

We first check structural breaks using our joint test and derivative tests. We also
use Bai and Perron’s (1998) tests for structural breaks in mean and Inoue’s (2001)
test for a structural break in distribution. For Bai and Perron’s (1998) tests, we
consider the sup-F test against M breaks, for M = 1,2, . . . ,Mmax, and the Dmax-F
and WDmax-F tests against an unknown number of breaks. The results of these
tests are similar and the conclusions are almost the same. For space, we only
report the Dmax-F test. For our joint test and derivative tests, we consider the
cases that M = 1 and M is determined by IC, respectively. We report the results
for the alternative hypothesis of a single break. We set the trimming parameter
ε = 0.05. We also consider the cases of ε = 0.1,0.15 and the results are similar.
The maximum number of breaks is set to Mmax = 5. The other settings are identical
to those in our simulation studies.

Table 7 reports the results of various tests at the 5% and 10% significance levels.
Our joint test significantly rejects the null hypothesis of no structural breaks in
distribution for all four exchange rate returns at the 10% significance level, and
all except JPY at the 5% significance level. Inoue’s (2001) test can only reject the
null hypothesis for EUR, CNY, and CAD at the 5% significance level, but does
not detect any structural changes in distribution for JPY. Bai and Perron’s (1998)
test can only detect structural changes for CNY at the 10% significance level. This
finding is consistent with the results of our derivative test F(1)

T . Since both the F(1)
T

test and Bai and Perron’s (1998) test can only capture structural changes in mean,
the results in Table 7 show that EUR, JPY, and CAD have no structural change
in mean. Furthermore, F(2)

T rejects the null hypothesis of no structural changes in
variance for EUR, JPY, and CAD at the 10% significance level, and CNY at the
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Table 7. Tests for structural breaks in exchange rate returns.

FT F(1)
T F(2)

T In01 BPhet

FT 5% 10% F(1)
T 5% 10% F(2)

T 5% 10% In01 5% 10% BPhet 5% 10%

EUR 11.35 8.41 7.34 5.12 13.83 10.53 22.65 24.22 17.13 0.10 0.09 0.06 4.52 10.17 8.78

JPY 7.37 8.03 7.30 5.67 13.55 11.97 13.15 14.54 11.59 0.06 0.07 0.06 4.83 10.17 8.78

CNY 54.35 18.89 17.15 24.29 30.80 24.13 84.03 37.01 26.69 0.54 0.20 0.16 9.32 10.17 8.78

CAD 12.08 7.59 6.38 6.39 10.70 9.41 19.07 20.74 16.54 0.08 0.07 0.06 4.82 10.17 8.78

Notes: (i) FT , F(1)
T , and F(2)

T denote the results of our joint test, and derivative tests for structural breaks in the first and second moments, respectively; (ii) In01 and BPhet
denote the results of Inoue’s (2001) test and Bai and Perron’s (1998) serial correlation and heteroskedasticity robust Dmax-F test, respectively; (iii) Columns under
FT , F(1)

T , F(2)
T , In01, and BPhet report the values of the corresponding test statistics; and (iv) Columns under “5%” and “10%” report the corresponding bootstrapped

critical values or asymptotic critical values. Bold entries indicate significance at the 10% significance level.
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Table 8. Number of breaks for exchange rate returns.

Distribution Yt Y2
t

DIC DST5 LWZ BIC ST5 LWZ BIC ST5

EUR 4 3 0 0 0 2 3 1

JPY 1 0 0 0 0 0 2 1

CNY 4 1 0 4 0 1 3 2

CAD 5 4 0 0 0 2 3 4

Notes: (i) DIC and DST5 denote the information criterion and the sequential tests proposed in this
paper under 5% significance level; (ii) BIC and LWZ denote the Schwarz criterion and the modified
Schwarz criterion proposed in Liu et al. (1997); (iii) ST5 denotes Bai and Perron’s (1998) sequential
tests under 5% significance level; and (iv) the main entries report the number of breaks determined by
the corresponding methods.

5% significance level. Hence, our derivative test F(2)
T documents the existence of

structural breaks in variance for all four exchange rate returns. Moreover, we note
that the signal of rejecting the null hypothesis of no structural break in distribution
is stronger than that of rejecting no structural break in variance. For example, for
both EUR and CAD, we can reject the null hypothesis of no structural break in
distribution at the 5% significance level, but can only reject the null hypothesis
of no structural break in variance at the 10% significance level. This implies that
there may exist structural breaks in higher-order moments.

Once we have detected structural breaks in distribution for exchange rate returns,
we need to move on to estimating the number and location of breaks. Table 8
reports the number of breaks determined by the proposed IC and sequential test
at the 5% significance level. For comparison, we also report the number of breaks
determined by LWZ and Bai and Perron’s (1998) sequential tests, and the number
of breaks in the first two moments of Yt. As shown in Table 8, our method detects
more breaks. In particular, the number of breaks detected in second moment is
less than that in distribution. Intuitively, this implies that structural breaks may
have occurred in higher-order moments of the exchange rate returns. Moreover, the
number of breaks determined by IC differs from that determined by our sequential
test.

The detected break dates are shown in Figures 2 and 3. We mark the break dates
determined by both our IC and sequential test at the 5% significance level with
solid lines, and those determined by IC only with dashed lines. These break dates
are related to some important economic events. For EUR, three break dates are
detected by the sequential test at 5% significance level, which are January 2002,
July 2008, and October 2011, respectively. An additional break in January 2009 is
detected by IC. Although Euro was introduced in January 1999, it was only used
as a “digital currency” before 2002. It was officially circulated as a new currency
in January 2002, which coincides with the first identified break date. The break
dates of July 2008 and January 2009 might have been caused by the 2008 financial
crisis. And the break date of October 2011 was related to the deterioration of the
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Figure 3. Time series plots of exchange rates and break dates.

Greek sovereign debt crisis. For JPY, we only find one break in April 2011, which
may be due to the 2011 Earthquake off the Pacific coast of Tohoku which occurred
in March 2011. We identify four break dates for CNY, which are October 2007,
July 2008, June 2010, and August 2015, respectively. In May 2007, the People’s
Bank of China (PBC) announced the intention to expand the daily fluctuation
range of CNY to USD from 0.3% to 0.5%. Since then, the CNY has increased its
fluctuations gradually, and this corresponds to the first break date of October 2007.
To cope with the impact of the 2008 financial crisis, PBC narrowed the fluctuation
range of CNY, and the CNY to USD rate was stable at around 6.85 during the
period from July 2008 to June 2010. On June 19, 2010, PBC decided to promote
the exchange rate reform further. These events coincide with the identified break
dates of July 2008 and June 2010. The last break date of CNY coincides with the
exchange rate reform occurring on August 11, 2015. For CAD, we detect structural
breaks in December 2002, October 2007, September 2008, October 2009, and
January 2012, respectively. The Canadian dollar is widely viewed as a commodity
currency. The first break date of December 2002 coincides with the period when
oil prices began to rise. And at the last break date of January 2012, the oil prices
fluctuated and started to fall from its peak. As a result, the Canadian dollar began to
appreciate from December 2002 and depreciate from January 2012. The other three
break dates (October 2007, September 2008, and October 2009) coincide with the
start, outbreak, and recovery of the U.S. subprime debt crisis. The CAD was very
volatile during the periods of September 2008 to October 2009 and tended to be
stable after October 2009.

As suggested by one referee, we also checked for possible structural breaks
in higher-order moments after accounting for changes in mean and variance. We
divided the whole sample into some subsamples according to the estimated break
dates using IC. Then we standardized the time series within each subsample.
Specifically, for each exchange rate return, we define Zt = (Yt − Ȳk

)
/
√

Vk if the
tth observation belongs to the kth regime, where Yt denotes the weekly exchange
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Table 9. Tests for structural breaks in the transformed time series.

Number of Breaks FT F(3)
T F(4)

T

DIC DST5 DST10 FT 5% 10% F(3)
T 5% 10% F(4)

T 5% 10%

EUR 1 1 1 10.32 7.12 6.49 3.94 11.13 10.02 19.68 15.27 11.18

JPY 1 0 1 8.39 8.41 7.15 5.50 12.30 8.83 4.49 13.47 10.59

CNY 3 1 1 19.17 9.21 8.76 22.63 881.09 540.11 22.19 2301.30 767.99

CAD 1 1 1 14.00 6.66 6.15 9.03 10.50 8.86 16.15 12.34 10.29

Notes: (i) DIC, DST5, and DST10 denote the information criterion and the sequential tests proposed
in this paper under 5% and 10% significance levels; (ii) FT , F(3)

T , and F(4)
T denote the results of our

joint test, and derivative tests for structural breaks in the third and fourth moments, respectively; (iii)
columns under FT , F(3)

T , and F(4)
T report the values of the corresponding test statistics; and (iv) columns

under “5%” and “10%” report the corresponding bootstrapped critical values. Bold entries indicate
significance at the 10% significance level.

rate return, and Ȳk and Vk are the sample mean and variance of the kth subsample,
respectively. Hence, we have purged the possible structural breaks in the first two
moments. If the detected breaks solely result from a changing mean or variance, the
transformed sample should become strictly stationary. We then tested for structural
breaks of the transformed series Zt using our joint test and derivative tests F(3)

T and
F(4)

T . Table 9 reports the number of breaks determined by our IC and sequential
tests at the 5% and 10% significance levels, and the results of various tests for
the transformed time series. As shown in Table 9, both our IC and sequential tests
identify additional structural breaks in the transformed series. Our joint test also
rejects the null of no distributional structural change for the transformed series.
Moreover, the derivative tests detect structural changes in the fourth moment for
EUR and structural changes in the third and fourth moments for CAD. We cannot
identify structural breaks in the third and fourth moments for JPY and CNY,
which may be due to the finite sample problem. Table 10 summarizes the sample
mean, variance, skewness, and kurtosis for all four exchange rate return series
during different periods. It shows that in addition to structural breaks in mean and
variance, the higher-order moments such as the third and fourth moments captured
by skewness and kurtosis vary across different time periods.

8. CONCLUSION

In this paper, we propose an ECF approach to estimating and testing multiple struc-
tural breaks in distribution with unknown break dates for a multivariate time series.
Based on the equivalence between CDF and CF, we can characterize structural
breaks in distribution by a pseudo generalized regression representation in the
frequency domain, which has an interesting interpretation of a complex-valued
functional time series regression. By minimizing the SSGR in the generalized
regression, we can consistently estimate the breaks and derive the convergence
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Table 10. Summary statistics for the exchange rate returns during different
periods.

Period Mean Variance Skewness Kurtosis

EUR 2000/1/1–2002/1/25 −0.1633 1.7437 0.3837 2.6565

2002/1/23–2008/7/11 0.1754 0.9290 −0.3774 3.1100

2008/7/14–2009/1/16 −0.7098 6.0386 0.9091 4.0264

2009/1/19–2011/10/28 0.0292 1.7151 −0.0007 2.7635

2011/10/31–2019/7/10 −0.0547 0.8112 −0.0970 3.5439

JPY 2000/1/1–2011/4/29 −0.0425 1.2754 −0.3350 3.5267

2011/5/2–2019/7/ 10 0.0657 1.0676 0.3716 5.8679

CNY 2000/1/1–2007/10/12 −0.0659 0.0125 −0.6634 5.2058

2007/10/15–2008/7/11 −0.2396 0.0441 −0.1129 2.1544

2008/7/14–2010/6/11 −0.0028 0.0166 1.6393 19.0296

2010/6/14–2015/7/31 −0.0355 0.0383 0.5142 6.4642

2015/8/3–2019/7/10 0.0496 0.2350 0.4054 5.2287

CAD 2000/1/1–2002/12/6 0.0641 0.3533 0.1866 3.4344

2002/12/9–2007/10/19 −0.1870 0.7543 0.1284 2.5776

2007/10/22–2008/9/12 0.1929 1.8651 0.1206 3.7408

2008/9/15–2009/10/23 −0.0007 5.6819 0.1835 3.2248

2009/10/26–2012/1/27 −0.0363 1.1365 0.5159 2.7087

2012/1/30–2019/7/10 0.0676 0.6813 0.0547 3.2788

Notes: The main entries report the sample mean, variance, skewness, and kurtosis.

rate for the estimated break fractions, which does not depend on the dimension of
the multivariate time series. We propose a sup-F type test for multiple structural
breaks. We also propose a BIC-type information criterion and a sequential testing
procedure to determine the number of breaks. As an advantage of using the
ECF, we can take derivatives of the ECF to develop a class of derivative tests to
gauge possible sources of structural breaks, which can deliver a similar version
of Bai’s (1994) test for breaks in mean as a special case of our approach. When
testing for breaks in nonparametric regression, a class of derivative tests avoids
smoothed nonparametric regression and is asymptotically more efficient than
existing tests such as Vogt (2015) and Fu and Hong (2019). We propose and justify
a moving block bootstrap procedure to obtain the critical values of the proposed
tests. Simulations studies show that our method successively estimates each break
fraction, and the proposed tests have reasonable size and excellent power. In an
application to the exchange rate markets, we find significant evidence of structural
breaks in distribution, which may be ignored by Bai and Perron’s (1998) test. It
appears that most structure breaks in exchange rate returns occur in variance and
higher-order moments rather than in mean.
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SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit: https://doi.org/
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