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ON SOME NONSTATIONARY, NONLINEAR
RANDOM PROCESSES AND THEIR
STATIONARY APPROXIMATIONS
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Abstract

In this paper our object is to show that a certain class of nonstationary random processes
can locally be approximated by stationary processes. The class of processes we are
considering includes the time-varying autoregressive conditional heteroscedastic and
generalised autoregressive conditional heteroscedastic processes, amongst others. The
measure of deviation from stationarity can be expressed as a function of a derivative
random process. This derivative process inherits many properties common to stationary
processes. We also show that the derivative processes obtained here have alpha-mixing
properties.
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1. Introduction

Linear time series models are often used in time series analysis and it is usually assumed that
the underlying process is stationary. However, it may be that the assumption of stationarity is
sometimes unrealistic, especially when we observe the process over long periods of time. Sev-
eral nonstationary models have been introduced (see, for example, Priestley (1965) and Cramér
(1961)), but many asymptotic results available for stationary time series are not immediately
applicable to nonstationary time series. To circumvent this, Dahlhaus (1997) used a rescaling
technique to define the notion of local stationarity. By using a time-varying spectral density
function, Dahlhaus (1997) defined locally stationary processes. However, so far these methods
have been used exclusively for the analysis of nonstationary linear processes. Here our object
is to analyse nonstationary, nonlinear random processes.

In the last 20 years, nonlinear time series methods have received considerable attention,
although they have mainly been restricted to stationary processes. Standard nonlinear models
include autoregressive conditional heteroscedastic (ARCH) models (Engle (1982)), generalised
ARCH (GARCH) models (Bollerslev (1986)), bilinear models (Subba Rao (1977), Terdik
(1999)), and random-coefficient processes (Nicholls and Quinn (1982)). Often these stationary,
nonlinear processes have a state space representation; see, for example, Brandt (1986), Bougerol
and Picard (1992a), and Straumann and Mikosch (2006).

In this paper we consider nonstationary, nonlinear processes with state space representations
and time-dependent parameters. In particular, we consider the nonstationary process {Xt,N }
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which admits the time-varying state space representation

Xt,N = At

(
t

N

)
Xt−1,N + bt

(
t

N

)
, t = 1, . . . , N, (1.1)

where, for each t, Xt,N and bt (t/N) are p-dimensional nonstationary random vectors and
At (t/N)} is a (p × p)-dimensional nonstationary random matrix.

In Section 2 we will show that, under suitable conditions on the nonstationary random vectors
{bt (t/N) : t ∈ Z} and matrices {At (t/N) : t ∈ Z}, {Xt,N } can locally be approximated by the
stationary process {Xt (u)} given by

Xt (u) = At (u)Xt−1(u) + bt (u), (1.2)

where u is fixed and {bt (u) : t ∈ Z} and {At (u) : t ∈ Z} are respectively p-dimensional
stationary random vectors and (p×p)-dimensional stationary random matrices. We will prove
that Xt (u) can be regarded as a stationary approximation of Xt,N for values of t/N close to u. In
Section 3 we define the derivative process which is a measure of the deviation of Xt,N from the
stationary process Xt (u) and obtain an exact bound for this deviation, using a stochastic Taylor
series expansion. We also show that the derivative process satisfies a stochastic differential
equation. Using the derivative process, we consider some probabilistic results (such as mixing
properties) associated with the observed process and the Taylor series expansions. In Section 5
we consider the particular example of the time-varying GARCH process, and show that all the
results stated above apply to it. We mention that other processes, such as the time-varying
random-coefficient autoregressive and GARCH processes also have the representation (1.1)
and obey the results here. The idea of a stationary approximation with a derivative process was
established for time-varying ARCH processes by Dahlhaus and Subba Rao (2006).

2. Nonlinear time-varying processes

2.1. Assumptions

In this section we state our assumptions and notation.
Let ‖x‖m and ‖A‖m respectively denote the �m-norms of the vector x and matrix A. Let

‖A‖spec denote the spectral norm, where ‖A‖spec = sup‖x‖2=1 ‖Ax‖2. Suppose that Bi,j

denotes the (i, j)th element of the matrix B. Let |B|abs denote the absolute matrix (or vector,
as appropriate) of B, where (|B|abs)i,j = |Bi,j |. We say that A ≤ B if Ai,j ≤ Bi,j for all i

and j . Let λspec(A) denote the largest absolute eigenvalue of the matrix A, and let supu A(u)

be defined as supu A(u) = {supu |A(u)i,j | : i = 1, . . . p, j = 1, . . . , q}. To simplify notation
we will denote the �2-norm of a vector x (or of a matrix) as ‖x‖ ≡ ‖x‖2.

The Lyapunov exponent associated with a sequence of random matrices {At : t ∈ N} is
defined as

inf

{
1

n
E(log ‖AtAt−1 · · · At−n+1‖spec) : n ∈ N

}
.

We make the following assumption.

Assumption 2.1. For every N , the stochastic process {Xt,N } has a time-varying state space
representation defined as in (1.1), where, for all u ∈ [0, 1], the random matrices {At (u)} and
random vectors {bt (u)} satisfy the following assumptions.
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(i) There exists an M ∈ N such that, for each r ∈ {1, . . . , M}, there exists a sequence of
independent, identically distributed, positive random matrices {At (r) : t ∈ Z} such that

|At (u)|abs ≤ At (r) if u ∈
[
r − 1

M
,

r

M

)

and, for some δ < 0, the Lyapunov exponent of {At (r) : t ∈ Z} is less than δ. There
exists a stationary sequence {b̃t } such that supu |bt (u)|abs ≤ b̃t . Furthermore, for each
k ∈ {1, . . . , M} and for some ε > 0, E(‖b̃t‖ε

1) < ∞ and E(‖At (r)‖ε
1) < ∞.

(ii) There exist a β ∈ (0, 1] and matrices {At } such that, for all u, v ∈ [0, 1], the matrices
{At (·)} and vectors {bt (·)} satisfy

|At (u) − At (v)|abs ≤ C|u − v|βAt , |bt (u) − bt (v)|abs ≤ C|u − v|β b̃t ,

with b̃t as defined in (i) and C a finite constant. Furthermore, E(‖At‖ε) < ∞ for some
ε > 0.

For convenience, from now on we let At (u) = 0 for u ≤ 0 and
∏−k

i=0 Ai = I (if k ≥ 1), the
identity matrix.

Assumption 2.1(i) means that the random matrices {At (u)} are dominated by random
matrices which have a negative Lyapunov exponent. As will become clear below, this implies
that {Xt,N } has a unique causal solution. Assumption 2.1(ii) is used to approximate {Xt,N }
locally by a stationary process.

2.2. The stationary approximation

Using the arguments of Bougerol and Picard (1992b, Theorem 2.5), we can show that the
unique causal solution of {Xt,N } is almost surely

Xt,N =
∞∑

k=0

At

(
t

N

)
· · · At−k+1

(
t − k + 1

N

)
bt−k

(
t − k

N

)
. (2.1)

One of our main results is the theorem below, where we show that Xt,N can locally be
approximated by the stochastic process Xt (u). We let

Yt =
∞∑

k=1

M∑
r=1

k−1∏
j=0

At−j (r)b̃t−k. (2.2)

Theorem 2.1. Suppose that Assumption 2.1 holds, let Xt,N , Xt (u), and Yt be as defined
in (1.1), (1.2), and (2.2), respectively, and suppose there exists an ε > 0 such that

sup
t,N

E(‖Xt,N‖ε
1) < ∞, sup

u
E(‖Yt‖ε

1) < ∞. (2.3)

Then we have ∣∣∣∣Xt,N − Xt

(
t

N

)∣∣∣∣
abs

≤ 1

Nβ
Vt,N , (2.4)

|Xt (u) − Xt (w)|abs ≤ |u − w|βWt , (2.5)

|Xt,N − Xt (u)|abs ≤
∣∣∣∣ t

N
− u

∣∣∣∣
β

Wt + 1

Nβ
Vt,N , (2.6)
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where

Vt,N = C

∞∑
k=1

k

k−1∏
j=0

At−j (i1){At−k|Xt−k−1,N |abs + b̃t−k}, (2.7)

Wt = C

∞∑
k=1

M∑
r=1

k−1∏
j=0

At−j (r){At−kYt−k−1 + b̃t−k}, (2.8)

and i1 is such that (i1 − 1)/M ≤ t/N < i1/M . Moreover, Vt,N converges almost surely and
the series {Wt }t is a well-defined stationary process.

Proof. See Appendix A.

The most notable result in the theorem above is (2.6), which states that the deviation between
the nonstationary process Xt,N and the stationary process Xt (u) depends on the difference
|t/N − u|, that is,

|Xt,N − Xt (u)|abs ≤
∣∣∣∣ t

N
− u

∣∣∣∣
β

Op(1) + 1

Nβ
Op(1). (2.9)

A simple application of the theorem above is the evaluation of the sampling properties of
local averages of time-varying processes. For example, suppose that |t0/N − u0| < 1/N and
that we average Xt,N over a neighbourhood whose length, (2M + 1), increases as N increases
although M/N → 0. Then, using the theorem above, we have

1

2M + 1

M∑
k=−M

Xt0+k,N = 1

2M + 1

M∑
k=−M

Xt0+k(u0) + Bt0,N , (2.10)

where

‖Bt0,N‖1 ≤ 1

2M + 1

M∑
k=−M

((
k

N

)β

‖Wt0+k‖1 + 1

Nβ
‖Vt0+k,N‖1

)
.

To evaluate the limit of this sum, which involves showing that Bt0,N converges asymptotically
to 0, we require the existence of moments of Xt,N and its related processes. We consider this
in the section below.

2.3. Existence of moments

It is worth noting that the local approximation of {Xt,N } by a stationary process requires
relatively weak assumptions on the moments of {At (u)} and {bt (u)}. However, under stronger
assumptions on the moments of {At (u)} and {bt (u)}, we will show that E(‖Xt,N‖n

n) is uniformly
bounded in t and N .

Define the matrix [A]n as [A]n = {E(|Ai,j |n)1/n : i = 1, . . . , p, j = 1, . . . , q}. We now
give conditions for E(‖Xt,N‖n

n) < ∞ and E(‖Xt (u)‖n
n) < ∞ to hold.

Proposition 2.1. Suppose that Assumption 2.1 holds and let Xt,N , Xt (u), Vt,N , and Wt be as
defined in (1.1), (1.2), (2.7), and (2.8), respectively. Suppose, for all r ∈ {1, . . . , M} and some
n ∈ [1, ∞), that E(‖b̃t‖n

n) < ∞, and, for some δ > 0, that λspec([At (r)]n) < 1 − δ. Then

sup
t,N

E(‖Xt,N‖n
n) < ∞, sup

t,N

E(‖Vt,N‖n
n) < ∞,

sup
u

E(‖Xt (u)‖n
n) < ∞, E(‖Wt‖n

n) < ∞.
(2.11)
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On some nonstationary, nonlinear random processes 1159

If the conditions of Proposition 2.1 are satisfied, then condition (2.3) is satisfied with ε = n;
hence, the local stationarity conclusions of Theorem 2.1 immediately follow.

We now apply the above results to the local averages example in (2.10). Under the assumption
that all the conditions in Proposition 2.1 are satisfied with n = 1, we have

Bt0,N ≤
(

M

N

)β

Op(1) + 1

Nβ
Op(1)

and

1

2M + 1

M∑
k=−M

Xt0+k,N = 1

2M + 1

M∑
k=−M

Xt0+k(u0) + Op

((
M

N

)β

1 + 1
Nβ

)
.

Therefore, if the process Xt0+k(u0) were ergodic, we would have Bt0,N
p−→ 0 and

1

2M + 1

M∑
k=−M

Xt0+k,N
p−→ E(Xt0+k(u0)),

where M → 0 and M/N → 0 as N → ∞. The results in the following section allow us to
obtain a tighter bound for Bt0,N .

3. The derivative process and its state space representation

In the previous section we showed that time-varying processes can locally be approximated
by stationary processes. In this section, under additional conditions on {At (u)} and {bt (u)} we
improve the approximation in (2.9) and show that a Taylor series expansion of the time-varying
process in terms of stationary processes can be derived (see Theorem 3.2). In order to do this,
we define the derivative process and show that it also has a state space representation.

The Taylor expansion of a given time-varying process in terms of stationary processes
is of particular importance in theoretical investigations, since classical results for stationary
sequences such as ergodic theorems and central limit theorems can fruitfully be used. In
applications, it is unlikely that the stationary derivative process will be observed. It is more
likely that the derivatives of the parameters {At (t/N)} will either be known or can be estimated.
However, the state space representation motivates our definition of the time-varying derivative
process. If the derivatives {Ȧt (t/N)} (defined below) are known, the time-varying derivative
process can be obtained from the original time-varying process.

Here we focus our discussion on the first derivatives of the process. However, under suitable
conditions all the results stated here apply to higher-order derivative processes as well.

Suppose that A(u) is a p × q random matrix; we let

Ȧt (u) =
{

∂A(u)i,j

∂u
: i = 1, . . . , p, j = 1, . . . , q

}
.

We make the following assumption.

Assumption 3.1. For every N , the stochastic process {Xt,N } has a time-varying state space
representation defined as in (1.1), {At (i)}, {b̃t }, and {At } are defined as in Assumption 2.1,
and {At (u)} and {bt (u)} satisfy the following assumptions.

(i) The process {Xt,N } satisfies Assumption 2.1 with β = 1.
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(ii) Let β ′ > 0. For some C ≤ ∞, the matrices {At (·)} and vectors {bt (·)} satisfy

|At (u) − At (v)|abs ≤ C|u − v|At , |bt (u) − bt (v)|abs ≤ C|u − v|b̃t ,

|Ȧt (u) − Ȧt (v)|abs ≤ C|u − v|β ′
At , |ḃt (u) − ḃt (v)|abs ≤ C|u − v|β ′

b̃t ,

sup
u

|Ȧt (u)|abs ≤ CAt (r), sup
u

|At (u)|abs ≤ CAt (r) if u ∈
[
r − 1

M
,

r

M

)
,

and supu |ḃt (u)|abs ≤ Cb̃t and supu |bt (u)|abs ≤ Cb̃t , where C < ∞. Therefore, {At (u)}
and {bt (u)} belong to the Lipschitz class Lip(1 +β ′). This is a kind of Hölder continuity
of order 1 + β ′ for random matrices.

We now define the process {Ẋt (u)}, which we call the derivative process. By formally
differentiating (1.2) with respect to u, we have

Ẋt (u) = Ȧt (u)Xt−1(u) + At (u)Ẋt−1(u) + ḃt (u). (3.1)

As we shall show below, an interesting aspect of the above difference differential equation is that
its existence requires only weak assumptions on the derivative matrix Ȧt (u). In other words,
given that Xt,N is well defined, the existence of Ȧt (u) is sufficient for the derivative process
also to be well defined. This will become clear when we rewrite Ẋt (u) as a state space model.
Let Xt (2, u)
 = (Ẋt (u)
, Xt (u)
). It is then clear that {Xt (2, u)} has the representation

Xt (2, u) = At (2, u)Xt−1(2, u) + bt (2, u), (3.2)

where

At (2, u) =
⎛
⎝At (u)

dAt (u)

du

0 At (u)

⎞
⎠ , bt (2, u) =

(
ḃt (u)

bt (u)

)
. (3.3)

Motivated by the definition of the time-varying stationary process, we now define the time-
varying derivative process. We call {Xt,N (2)} a time-varying derivative process if it satisfies

Xt,N (2) = At

(
2,

t

N

)
Xt−1,N (2) + bt

(
2,

t

N

)
, (3.4)

with {Xt,N (2)
} = {(Ẋt,N

, Xt,N


)}. The main reason for defining this process is that it can
be used to estimate the derivative process {Ẋt (u)}, which may not be observed and in practice
may be difficult to estimate.

Let

b̃t (2) =
(

Cb̃t



b̃t



)
, At (2, r) =

(
At (r) CAt (r)

0 At (r)

)
, At (2) =

(
At CAt

0 At

)
,

(3.5)
where C is as defined in Assumption 3.1.

We now show that it is the triangular form of the transition matrix that allows the results of
Section 2.2 to be directly applied to the derivative process. In order to do this, in the following
lemma we show that if the sequence {At (u)} has a negative Lyapunov exponent, then the
sequence {At (2, u)} also has a negative Lyapunov exponent.
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Lemma 3.1. Suppose that Assumption 3.1 is satisfied. Then, for r = 1, . . . , M , we have

inf

{
1

n
E(log ‖At (2, u) · · · At−n+1(2, u)‖spec)

}
< 0, (3.6)

inf

{
1

n
E(log ‖At (2, r) · · · At−n+1(2, r)‖spec)

}
< 0. (3.7)

Proof. See Appendix A.

From the above result we can show that (3.2) and (3.4) have unique causal solutions similar
to (2.1). The following theorem also follows from Lemma 3.1.

Theorem 3.1. Suppose that Assumption 3.1 holds and let {Xt,N (2)} be as defined in (3.4).
Then the process {Xt,N (2)} satisfies Assumption 2.1 with transition matrices {At (2, u) : t ∈
Z, u ∈ (0, 1]} and innovations vectors {bt (2, u) : t ∈ Z, u ∈ (0, 1]}.

Proof. Under Assumption 3.1, we have |At (2, u)|abs ≤ At (2, r) if u ∈ ((r − 1)/M, r/M],
and supu |bt (2, u)|abs ≤ b̃t (2). Furthermore, according to Lemma 3.1, the random matrix se-
quences {At (2, u)} and {At (2, r)} have negative Lyapunov exponents. Hence, all the conditions
of Assumption 2.1 are satisfied, and we have the result.

Now, with an additional weak assumption on the moments of {Xt,N (2)}, Theorem 2.1 can
also be applied to the processes {Xt,N (2)} and {Xt (2, u)}. Let

Yt (2) =
∞∑

k=1

M∑
r=1

k−1∏
j=0

At−j (2, r)b̃t−k(2). (3.8)

Corollary 3.1. Suppose that Assumption 3.1 holds. Let Xt,N (2), Xt (2, u), At (2, r), At (2),
b̃t (2), Wt , and Yt (2) be as defined in (3.4), (3.2), (3.5), (2.8), and (3.8), respectively, and
suppose that there exists an ε > 0 such that

sup
t,N

E(‖Xt,N (2)‖ε
1) < ∞, E(‖Yt (2)‖ε

1) < ∞.

Then ∣∣∣∣Xt,N (2) − Xt

(
2,

t

N

)∣∣∣∣
abs

≤ 1

Nβ ′ Vt,N (2),

|Xt (2, u) − Xt (2, w)|abs ≤ |u − w|β ′
Wt (2),

|Xt,N (2) − Xt (2, u)|abs ≤
∣∣∣∣ t

N
− u

∣∣∣∣
β ′

Wt (2) + 1

Nβ ′ Vt,N (2), (3.9)

and ‖Wt‖1 ≤ ‖Wt (2)‖1, where Vt,N (2) is similar to Vt,N defined in (2.7), but with At−j (i1),
Xt−k−1,N , and At−j replaced by At−j (2, i1), Xt−k−1,N (2), and At (2), respectively, and

Wt (2) = C

M∑
r=1

∞∑
k=1

k−1∏
j=0

At−j (2, r1){At−k(2)|Yt−k−1(2)|abs + b̃t−k(2)}. (3.10)

Moreover, Vt,N (2) converges almost surely and the series {Wt (2)} is a well-defined stationary
process.
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Proof. Under Assumption 3.1 and according to Theorem 3.1, all the conditions in Theo-
rem 2.1 are satisfied, giving the result.

Our object is to use the derivative process to obtain an exact expression for the difference in
(2.6). To do this we first show that the derivative process is almost surely Hölder continuous.

Corollary 3.2. Suppose that Assumption 2.1 holds. Let {Xt (2, u)} and {Wt (2)} be as defined
in (3.2) and (3.10), respectively. Then

Ẋt (u) =
∞∑

k=0

k−1∑
r=0

[r−1∏
i=0

At−i (u)

]
Ȧt−r (u)

[ k−1∏
i=r+1

At−i (u)

]
bt−k(u)+

∞∑
k=1

[k−1∏
i=0

At−i (u)

]
ḃt−k(u),

(3.11)
is almost surely the unique well-defined solution to (3.1). Furthermore,

sup
u,v

|Ẋt (u) − Ẋt (v)|abs ≤ |u − v|β ′
Wt (2), (3.12)

and almost surely all paths of Xt (u) belong to the Lipschitz class Lip(1 + β ′).

Proof. By expanding (3.2) and using standard results of Brandt (1986), we can show that
(3.11) holds. To show that the right-hand side of (3.11) is the derivative of Xt (u), we note that
both ‖Xt (u)‖1 and the sums of the absolute values of the three terms on the right-hand side
of (3.11) are almost surely bounded. Thus, we can exchange the summation and derivative,
and it immediately follows that (3.11) is the derivative of Xt (u).

Equation (3.12) follows immediately from Corollary 3.1, and by using (3.11) and (3.12) we
have Xt (u, ω) ∈ Lip(1 + β ′) for all ω ∈ N c, where N is a set of measure 0.

We now give a stochastic Taylor series expansion of {Xt,N } in terms of stationary processes.

Theorem 3.2. Let Xt,N (2) and Xt (2, u) be as defined in (3.4) and (3.2), respectively. Suppose
that the assumptions of Corollary 3.1 hold. Then

Xt,N = Xt (u) +
(

t

N
− u

)
Ẋt (u) + Op

(∣∣∣∣ t

N
− u

∣∣∣∣
β ′+1

1 + 1
N

)
(3.13)

= Xt (u) +
(

t

N
− u

)
Ẋt,N + Op

(∣∣∣∣ t

N
− u

∣∣∣∣
β ′+1

1 + 1
N

)
. (3.14)

Proof. Let N1 be a set of zero measure such that Xt,N (ω), Wt (2, ω) (defined in Corol-
lary 3.1), and Yt (2, ω) converge for all ω ∈ N c

1 . Then, using Corollary 3.2, we have Xt (u, ω) ∈
Lip(1 + β ′) if ω ∈ N c

1 . By using (2.4), making a Taylor series expansion of Xt (t/N, ω) about
u, and using the mean value theorem, we obtain

Xt,N (ω) = Xt (u, ω) +
(

t

N
− u

)
Ẋt (u, ω) +

(∣∣∣∣ t

N
− u

∣∣∣∣
1+β ′

+ 1

N

)
RN(ω),

where ‖RN(ω)‖1 ≤ ‖Vt,N (ω)‖1+‖Wt (2, ω)‖1. Therefore, since P(N c
1 ) = 1 we obtain (3.13).

We use (3.9) and repeat the method given above to prove (3.14).

Observe that (3.13) means the nonstationary process {Xt,N } can be written as a linear
combination of stationary processes.

We now show that, underAssumption 3.1 and the conditions of Proposition 2.1, the moments
of the derivative process are uniformly bounded.
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Proposition 3.1. Suppose that Assumption 3.1 holds. Let Xt (2, u), Xt,N (2), Vt,N (2), and
Wt (2) be as defined in Corollary 3.1. Suppose, for each r ∈ {1, . . . , M} and some n ∈ [1, ∞),
that E(‖b̃t‖n

n) < ∞, and, for some δ > 0, that sup1≤r≤M λspec([At (r)]n) < 1 − δ.
Then the expectations E(‖Xt,N (2)‖n

n), E(‖Vt,N (2)‖n
n), E(‖Xt (2, u)‖n

n), E(‖Yt (2)‖n
n), and

E(‖Wt (2)‖n
n) are all uniformly bounded with respect to t , N , and u (as relevant).

Proof. Since, for each r ∈ {1, . . . , M}, At (2, n) is a block upper-triangular matrix, we
observe that λspec([At (2, r)]n) = λspec([At (r)]n). Therefore, the proof of Proposition 2.1 can
be used to prove this result also.

We now return to the local averages example in (2.10) and obtain a tighter bound for the
remainder Bt0,N . Using (3.13), we have

1

2M + 1

M∑
k=−M

(Xt0+k,N − Xt0+k(u0)) = 1

2M + 1

M∑
k=−M

k

N
Ẋt0+k(u0) + Rt0,N (3.15)

where

‖Rt0,N‖1 ≤ 1

2M + 1

M∑
k=−M

( |k|1+β ′

N1+β ′ + 1

N

)
(‖Wt0+k(2)‖1 + ‖Vt0+k,N‖1).

It follows from (3.15) that the size of the remainder or bias due to nonstationarity depends on the
magnitude of the derivative processes {Ẋt (u)}. Furthermore, if the conditions of Proposition 3.1
are satisfied with n = 2, then E(‖Bt0,N‖2

2)
1/2 = O(M/N + 1/N). However, we can reduce

this bound by assuming that the derivative process satisfies some mixing conditions (note that
conditions are given in Section 4 which guarantee that the derivative process be strongly mixing).
Let us suppose that {Ẋt (u)}t is a short-memory process; then

1

2M + 1

M∑
k=−M

k

N
Ẋt0+k(u0) =

√
M

N
Op(1).

Therefore, if
√

M/N � (M/N)1+β ′
, we have

E(‖Bt0,N‖2
2) = E

(∥∥∥∥ 1

2M + 1

M∑
k=−M

[Xt0+k,N − Xt0+k(u0)]
∥∥∥∥

2

2

)
≤ O

([
M

N

]1+β ′

+ 1

N

)2

.

In addition, if the second derivatives {Ät (u)} and {b̈t (u)} were to exist, then the process {Ẍt (u)}
could be defined in the same way as {Ẋt (u)} and we would have

1

2M + 1

M∑
k=−M

[Xt0+k,N − Xt0+k(u0)] ≈ 1

2M + 1

M∑
k=−M

k2

N
Ẍt0+k(u0).

From the above we can see that the sum of second derivatives is the dominating term in the
remainder Bt0,N . Therefore, using E(‖Bt0,N‖2

2) and

var

[
1

2M + 1

M∑
k=−M

Xt+k(u)

]
,

we are able to evaluate the mean squared error of the local average and thus obtain the optimal
segment length M .
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4. Mixing properties of the derivative process

We now consider the mixing properties for the stationary derivative process {Xt (2, u)}.
To establish geometric mixing of {Xt (2, u)}, we use Tweedie (1983, Theorem 4(ii)), which
requires the φ-irreducibility of the derivative process. We here state a state space version of
this theorem given in Basrak et al. (2002).

Lemma 4.1. (Basrak et al. (2002, Theorem 2.8 and Remark 2.9).) Suppose that the ma-
trices {At } and the vectors {bt } are independent, identically distributed processes such that
E(log ‖At‖spec) < 0, and that there exists an ε > 0 with E(‖At‖ε

spec) < ∞. If the process
{Xt } satisfies Xt = AtXt−1 + bt and is φ-irreducible, then it is geometrically ergodic and,
hence, strongly mixing with a geometric rate.

To show that {Xt (2, u)} is a geometrically ergodic process we require the following lemma.

Lemma 4.2. Suppose that Assumption 2.1 holds and that At (2, u) is as defined in (3.3). Then

E(‖At (2, u)‖ε
spec) < ∞ (4.1)

and the sequence {At (2, u)} has a negative Lyapunov exponent.

Proof. Under Assumption 2.1 and according to (A.4) with n = 1, we have ‖At (2, u)‖spec ≤
C‖At (2, u)‖spec and, thus, E(‖At (2, u)‖spec) ≤ 2C′ E(‖At (u)‖spec) < ∞, which gives (4.1).
From (3.6) we see that {At (2, u)} has a negative Lyapunov exponent.

We now use this lemma to prove the strong mixing with geometric rate of the stationary
derivative process.

Theorem 4.1. Suppose that Assumption 3.1 holds (with d = 1) and let the process {Xt (2, u)}
defined in (3.2) be φ-irreducible. Then {Xt (2, u)} is geometrically ergodic and, thus, strongly
mixing with a geometric rate.

Proof. We first show that the conditions of Lemma 4.1 are satisfied; the result then follows.
According to Lemma 4.2, there exist an m > 0 and a δ < 0 such that

1

m
E(log ‖At (2, u) · · · At−m+1(2, u)‖spec) ≤ δ.

We iterateXt (2, u)m times and define themth iterate process {Xm,t (2, u)}, whereXm,t (2, u) =
Xmt (2, u) and

Xm,t (2, u) = Cm,t (2, u)Xm,t−1 + dm,t (2, u),

where Cm,t (2, u) = Amt (2, u) · · · Am(t−1)+1(2, u) and

dm,t (2, u) =
m−1∑
k=1

Amt (2, u) · · · Amt−k(2, u)bt−k(2, u) + bt (2, u).

From (4.1), we see that E(‖Cm,t (2, u)‖spec) < ∞.
From the above it is clear that {Xm,t (2, u)} satisfies the conditions of Lemma 4.1 and is

therefore geometrically ergodic. It follows that {Xt (2, u)} is also geometrically ergodic.

A process which is strongly mixing with a geometric rate has many interesting properties.
We now state one such property.
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Corollary 4.1. Let {Xt (2, u)} be as defined in (3.2). Suppose that Assumption 3.1 holds (with
d = 1), that {Xt (2, u)} is φ-irreducible, and that E(‖Xt (2, u)‖2) < ∞. Then we have

∞∑
k=0

| cov(Xt (2, u)i, Xt+k(2, u)i)| < ∞ for i = 1, . . . , 2p,

where Xt (2, u)i denotes the ith element of the vector Xt (2, u).

Proof. From Theorem 4.1, we see that {Xt (2, u)} is geometrically ergodic; therefore, by
using Davidson (1994, Corollary 14.3), we have the result.

It follows from Corollary 4.1 that {Xt (u)} and {Ẋt (u)} are short-memory processes.

5. An example: the time-varying GARCH process

In this section we show that the time-varying GARCH (tvGARCH) process admits the
representation (1.1), and that the results in the previous section apply to it. We mention both
that the results below also apply to the time-varying ARCH process, as it is a special case of
the tvGARCH process, and that the conditions stated here are slightly more general than the
conditions given in Dahlhaus and Subba Rao (2006). Let �p×q denote a (p × q)-dimensional
matrix with (�p×q)i,j = 1 for all i and j , and let Ip denote the (p × p)-dimensional identity
matrix.

We first note that the stochastic process {Xt,N } is called a tvGARCH(p, q) process if it
satisfies

Xt,N = Ztσt,N ,

σ 2
t,N = a0

(
t

N

)
+

p∑
i=1

ai

(
t

N

)
X2

t−i,N +
q∑

j=1

bj

(
t

N

)
σ 2

t−j,N , t = 1, . . . , N,

where {Zt } are independent, identically distributed random variables with E(Zt ) = 0 and
E(Z2

t ) = 1, and ai , 0 ≤ i ≤ p, and bj , 1 ≤ j ≤ q, are functions from [0, 1] to R. It is
straightforward to show that the tvGARCH process {X2

t,N } admits the state space representa-
tion (1.1) with

Xt,N

 = (σ 2

t,N , . . . , σ 2
t−q+1,N , X2

t−1,N , . . . , X2
t−p+1,N ),

bt (u)
 = (a0(u), 0, . . . , 0) ∈ R
p+q−2,

and

At (u) =

⎛
⎜⎜⎜⎜⎝

τt (u) bq(u) a(u) ap(u)

Iq−1 0 0 0

Z2
t−1 0 0 0

0 0 Ip−2 0

⎞
⎟⎟⎟⎟⎠ ,

a (p + q − 1) × (p + q − 1) matrix where τt (u) = (b1(u) + a1(u)Z2
t−1, b2(u), . . . , bq−1(u)),

a(u) = (a2(u), . . . , ap−1(u)), and Z2
t−1 = (Z2

t−1, 0, . . . , 0) ∈ R
q−1 (we assume without loss

of generality that p, q ≥ 2).
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5.1. The tvGARCH process and Assumption 2.1

Let us consider the tvGARCH(p, q) process. We will show that if E(Z2
t ) = 1 and the

parameters {ai(·)} and {bj (·)} are β-Lipschitz continuous (that is, |ai(u)− ai(v)| ≤ K|u− v|β
and |bj (u) − bj (v)| ≤ K|u − v|β , where K is a finite constant) and satisfy

sup
u

{ p∑
i=1

ai(u) +
q∑

j=1

bj (u)

}
< 1 − η, (5.1)

then Assumption 2.1 holds for the tvGARCH(p, q) process.
Using the β-Lipschitz continuity of the parameters, we first show that there exist matrices

At (r) which bound At (u) and satisfy Assumption 2.1(i). Let Kmax be such that supu,v |ai(u)−
ai(v)| ≤ Kmax|u − v|β and supu,v |bj (u) − bj (v)| ≤ Kmax|u − v|β . Define an ε such that
ε ≤ {η/(2Kmax(p + q))}1/β and ε−1 ∈ N. Let M(ε) = ε−1 and, for each r ∈ {1, . . . , M(ε)},
i = 1, . . . , p, and j = 1 . . . , q, define

αi(r) = {ai((k − 1)ε) + Kmaxε
β}, βj (r) = {bj ((k − 1)ε) + Kmaxε

β}. (5.2)

Therefore, from (5.1) and the above construction, we have sup(r−1)ε≤u<rε ai(u) ≤ αi(r),
sup(r−1)ε≤u<rε bj (u) ≤ βj (r), and

p∑
i=1

sup
(r−1)ε≤u<rε

ai(u) +
q∑

j=1

sup
(r−1)ε≤u<rε

bj (u) ≤
p∑

i=1

αi(r) +
q∑

j=1

βj (r) ≤ 1 − η

2
. (5.3)

Let

At (r) =

⎛
⎜⎜⎜⎜⎝

τ̃t (r) βq(r) α(r) αp(r)

Iq−1 0 0 0

Z2
t−1 0 0 0

0 0 Ip−2 0

⎞
⎟⎟⎟⎟⎠ , (5.4)

where τ̃t (r) = (β1(r) + α1(r)Z
2
t−1, β2(r), . . . , βq−1(r)), α(r) = (α2(r), . . . , αp−1(r)), and

(as above) Z2
t−1 = (Z2

t−1, 0, . . . , 0) ∈ R
p−1. Then it is clear that sup(r−1)ε≤u<rε |At (u)|abs ≤

At (r). To summarise, we have partitioned the unit interval into M(ε) intervals, such that all
the matrices At (u) in a given interval, say [(r − 1)ε, rε), are bounded above by the matrix
At (r). It is clear that, for each r , {At (r)} is an independent, identically distributed sequence of
random matrices. Since E(Z2

0) = 1 and
∑p

i=1 αi(r) + ∑q
j=1 βj (r) < 1 − η/2, it follows from

Lemma 5.1 that λspec(E(At (r))) ≤ (1 − η/2)1/(p+q−1). By using Kesten and Spitzer (1984,
Equation (1.4)), we can show that the sequence {At (r)} has a negative Lyapunov exponent.

Let b̃t

 = (supu a0(u), 0, . . . , 0) ∈ R

p+q−2. Since E(Z2
t ) = 1, for some K > 0 we have

E(log ‖At (r)‖spec) ≤ E(‖At (r)‖spec) ≤ K E(‖At (r)‖1) < ∞. Therefore, all the conditions
of Assumption 2.1(i) are satisfied.

Finally, it is clear that there exists a constant K such that

|At (u) − At (v)|abs ≤ K|u − v|βAt , |bt (u) − bt (v)|abs ≤ K|u − v|β b̃t ,

where At = (1 + Z2
t−1)�(p+q−1)×(p+q−1). Thus, Assumption 2.1(ii) is also satisfied.
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5.2. The tvGARCH process and the stationary approximation

We now define the stationary GARCH process {Xt(u)} which has the representation

Xt(u)2 =
{
a0(u) +

p∑
i=1

ai(u)Xt−i (u)2 +
q∑

j=1

bj (u)σt−j (u)2
}
Z2

t . (5.5)

In order to show that Xt(u)2 locally approximates X2
t,N , we need to verify the conditions of

Theorem 2.1. We have shown above that Assumption 2.1 is satisfied; hence, we now only need
to show the existence of the moments E(‖Xt,N‖ε

1) and E(‖Yt‖ε
1). We do this by verifying the

conditions of Proposition 2.1 for ε = n (although it is enough to prove the result for ε = 1).
Suppose that n ∈ [1, ∞) and let µn = {E(Z2n

t )}1/n. In addition, we assume that

µn sup
u

{ p∑
i=1

ai(u) +
q∑

j=1

bj (u)

}
< 1 − η (5.6)

for some η > 0. Using a similar construction to the above, we now construct matrices At (r)

for which At (u) ≤ At (r) for (r − 1)/M(ε) ≤ u < r/M(ε) and such that λspec([At (r)]n) ≤
(1 − η/2)1/(p+q−1), thus satisfying the conditions of Proposition 2.1. We then let ε =
(η/[2µnKmax(p + q)])1/β and, observing the inequalities in (5.3), define M(ε), αi(r), and
βj (r) (as in (5.2)), and At (r) (as in (5.4)) using the new ε. It is straightforward to show that

sup
u

µn

{ p∑
i=1

αi(r) +
q∑

j=1

βj (r)

}
< 1 − η

2
. (5.7)

To show that λspec([At (r)]n) ≤ (1 − η/2)1/(p+q−1), we will use the following result, which
is an adaptation of Bougerol and Picard (1992a, Corollary 2.2), where the result was proved
for µ = 1.

Lemma 5.1. Let µ > 1, let {ai : i = 1, . . . , p} and {bj : j = 1 . . . , q} be positive sequences,
and let

A =

⎛
⎜⎜⎜⎜⎝

τ bq a ap

Iq−1 0 0 0

µ 0 0 0

0 0 Ip−2 0

⎞
⎟⎟⎟⎟⎠ , (5.8)

where τ = (b1 + a1µ, b2, . . . , bq−1) ∈ R
q−1, a = (a2, . . . , ap−1) ∈ R

p−2, and µ =
(µ, 0, . . . , 0) ∈ R

q−1. Suppose that

µ

( p∑
i=1

ai +
q∑

j=1

bj

)
< 1 − δ,

where p, q ≥ 2 and δ > 0. Then λspec(A) ≤ (1 − δ)1/(p+q−1).

Now we construct the matrix A(r)∗, which is the same as A in (5.8) with ai , bi , and µ

replaced by αi(r), βi(r), and µn, respectively. It is clear that [A(r)]n ≤ A(r)∗. Now, from
Lemma 5.1 and (5.7), we then have λspec(A(r)∗) ≤ (1 − η/2)1/(p+q−1). Thus, the conditions
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of Proposition 2.1 are satisfied and we have supt,N E(‖Xt,N‖n
n) < ∞ (which implies that

supt,N E(X2n
t,N ) < ∞) and E(‖Yt‖n

n) < ∞.
Therefore, if (5.6) holds for some n ≥ 1, the conditions of Theorem 2.1 are fulfilled and we

have

X2
t,N = Xt(u)2 +

(∣∣∣∣ t

N
− u

∣∣∣∣
β

+ 1

Nβ

)
Rt,N , where sup

t,N

E(Rn
t,N ) < ∞.

5.3. The GARCH and derivative processes

We now consider the stationary derivative process associated with the tvGARCH process.
Formally differentiating (5.5) gives

dXt(u)2

du
= da0(u)

du
+

p∑
i=1

{
dai(u)

du
Xt−i (u)2 + ai(u)

dXt−i (u)2

du

}

+
q∑

j=1

{
dbj (u)

du
σt−j (u)2 + bj (u)

dσt−j (u)2

du

}
,

which was shown in Section 3 to admit a state space representation. By applying Theorem 3.2,
we obtain the Taylor series expansion

X2
t,N = Xt(u)2 +

(
t

N
− u

)
dXt(u)2

du
+

(∣∣∣∣ t

N
− u

∣∣∣∣
1+β ′

+ 1

N

)
.

Finally, if (5.6) holds then the conditions of Proposition 3.1 are satisfied and

E

((
dXt(u)2

du

)n)
< ∞.

6. Applications

The notion of stationary approximations and the derivative process can fruitfully be used in
many applications. The key is the representation, (3.13), of the nonstationary process in terms
of stationary processes. As indicated by the local averages example, by using this representation
classical results for stationary processes such as the ergodic theorem or central limit theorems
can (more or less easily) be used in the theoretical investigations of nonstationary processes.
An example was given in Dahlhaus and Subba Rao (2006, Theorem 3), where the properties
of a local likelihood estimator were investigated. The results of that paper can be used to
derive similar results for the models used as examples in the present paper (among others). The
derivative process in (3.13) then typically leads to bias terms due to the nonstationarity of the
process. Another application for the results in this paper is recursive online estimation for such
models. Problems of this type will be considered in future work.

Appendix A.

In this appendix we sketch some of the proofs of the results stated earlier. Full details can be
found in the technical report available from the author (and online at http://www.stat.tamu.edu/
∼suhasini/tvstate-space.ps).

Most the results in this paper are based on the following theorem, which is a nonstationary
version of Brandt (1986, Theorem 1) and Bougerol and Picard (1992b, Theorem 2.5). The
proof is similar to that of the latter, so we omit the details.
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Lemma A.1. Suppose that {At (i) : i = 1, . . . , M} satisfy Assumption 2.1(i). Let {dt } be a
random sequence which satisfies supt E(‖dt‖ε) < ∞ for some ε > 0, let the sequence {nr} be
such that n0 ≤ n1 ≤ · · · ≤ nM , let (s, t] denote the integer sequence {s + 1, s + 2, . . . , t}, and
let J t

r,k = [t − k, t] ∩ [nr−1, nr ]. Then, for any γ , 0 ≤ γ ≤ 1,

Yt =
∑
k≥1

kγ
M∏

r=1

∏
i∈J t

r,k

At−i (r)dt−k (A.1)

converges almost surely.

We use the lemma above to prove Theorem 2.1.

Proof of Theorem 2.1. By the triangle inequality, we have

|Xt,N − Xt (u)|abs ≤
∣∣∣∣Xt,N − Xt

(
t

N

)∣∣∣∣
abs

+
∣∣∣∣Xt

(
t

N

)
− Xt (u)

∣∣∣∣
abs

.

We first derive a bound for |Xt,N − Xt (t/N)|abs. By expanding Xt,N and Xt (t/N), under
Assumption 2.1 we have

∣∣∣∣Xt,N − Xt

(
t

N

)∣∣∣∣
abs

=
∣∣∣∣At

(
t

N

){
Xt−1,N − Xt−1

(
t

N

)}∣∣∣∣
abs

=
∣∣∣∣At

(
t

N

){
At−1

(
t − 1

N

)
− At−1

(
t

N

)}
Xt−2,N

+ At−1

(
t

N

){
Xt−2,N − Xt−2

(
t

N

)}

+ At

(
t

N

){
bt−1

(
t − 1

N

)
− bt−1

(
t

N

)}∣∣∣∣
abs

≤ 1

Nβ
At (i1)bt−1 + 1

Nβ
At (i1)At−1|Xt−2,N |abs

+ At−1(i1)

∣∣∣∣Xt−2,N − Xt−2

(
t

N

)∣∣∣∣
abs

.

Now, by continuing the iteration above we obtain |Xt,N − Xt (t/N)|abs ≤ (1/Nβ)Vt,N , where
Vt,N is as defined in (2.7). Under Assumption 2.1 and from (2.3), we have

E(log ‖AtXt−1,N‖) < ∞.

Therefore, by using (A.1) with dt = AtXt−1,N + b̃t , we see that Vt,N converges almost surely.
Using a similar method to the above, we can show that

‖Xt (u) − Xt (w)‖1 ≤ |u − w|βWt ,

where Wt is as defined in (2.8). From Lemma A.1, we see that {Wt } converges almost surely.
Finally, (2.6) follows from (2.4) and (2.5).

Below we make frequent use of the following inequalities (which can proved by repeated use
of the Minkowski inequality). Suppose that A and {At } are (p × p)-dimensional independent
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random matrices and X a p-dimensional random vector independent of {At }. Then

E(‖AX‖n
n)

1/n ≤ K‖[A]n‖spec E(‖X‖n
n)

1/n,

‖[A1 · · · An]n‖spec ≤ K‖[A1]n · · · [Am]n‖spec,
(A.2)

for some finite constant K .

Proof of Proposition 2.1. We now show that E(‖Xt,N‖n
n) is uniformly bounded over t andN .

Since {At (i)} and {b̃t } are independent, from (A.2) we have

E

(∥∥∥∥
k−1∏
i=0

At−i

(
t − i

N

)
b̃t−k

∥∥∥∥
n

n

)1/n

≤ K

∥∥∥∥
k−1∏
i=0

[
At−i

(
t − i

N

)]
n

∥∥∥∥
spec

E(‖b̃t−k‖n
n)

1/n.

From the above and

|Xt,N |abs ≤
∞∑

k=0

k−1∏
i=0

∣∣∣∣At−i

(
t − i

N

)∣∣∣∣
abs

b̃t−k ≤
∞∑

k=0

M∏
r=1

∏
i∈Jr,k

At−i (r)b̃t−k,

where

Jr,l =
{
k ≥ 0 : t − k

N
∈

[
r − 1

M
,

r

M

)}
∩ {0, 1, . . . , l − 1},

we have

E(‖Xt,N‖n
n)

1/n ≤
∞∑

k=0

E

(∥∥∥∥
M∏

r=1

∏
i∈Jr,k

At−i (r)b̃t−k

∥∥∥∥
n

n

)1/n

≤
∞∑

k=0

M∏
r=1

∥∥∥∥
[ ∏

i∈Jr,k

At−i (r)

]
n

∥∥∥∥
spec

E(‖b̃t‖n
n)

1/n

≤
∞∑

k=0

M∏
r=1

‖[A0(r)]#(Jr,k)
n ‖spec E(‖b̃t‖n)

1/n, (A.3)

where #(Jr,k) denotes the cardinality of the set Jr,k . Since λspec([A0(i)]n) ≤ 1 − δ for i =
1, . . . , M , and as a result of Moulines et al. (2005, Lemma 12), there exists a K independent
of A0(r) and m such that ‖[A0(r)]mn ‖spec ≤ K(1 − δ/2)m. Therefore,

‖[A0(r)]#(Jr,k)
n ‖spec ≤ K(1 − δ/2)#(Jr,k).

By substituting the above into (A.3) and using
∑M

r=1 #(Jr,k) = k, we can show that

sup
t,N

E(‖Xt,N‖n
n) < ∞.

Using a similar method we can prove the other inequalities in (2.11).

Proof of Lemma 3.1. We now prove (3.6). Under Assumption 3.1, it is straightforward to
show that

|At (2, u) · · · At−n+1(2, u)|abs ≤ Bk(t, n),
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where

Bk(t, n) =
(

At (r) · · · At−n+1(r) CnAt (r) · · · At−n+1(r)

0 At (r) · · · At−n+1(r)

)

and u ∈ [(k − 1)/M, k/M). From this, we have

Bk(t, n)Bk(t, n)
 =
(

(Cn2 + 1)Rk(t, n) CnRk(t, n)

CnRk(t, n) Rk(t, n)

)
,

where
Rk(t, n) = (At (r) · · · At−n+1(r))(At (r) · · · At−n+1(r))


.

By choosing a C1 such that C1(n
2 + 1) ≥ (Cn2 + 1) and C1(n

2 + 1) ≥ Cn for all n, we obtain

Bk(t, n)Bk(t, n)
 ≤ C1(n
2 + 1)

(
Rk(t, n) Rk(t, n)

Rk(t, n) Rk(t, n)

)
.

It is clear that the largest eigenvalue of this matrix is C1(n
2 + 1)‖At (r) · · · At−n+1(r)‖spec.

Therefore, we have

‖At (2, u) · · · At−n+1(2, u)‖spec ≤ ‖Bk(t, n)‖spec

≤ C1(n
2 + 1)‖At (r) · · · At−n+1(r)‖spec. (A.4)

It immediately follows that the sequence {At (2, u)} has a negative Lyapunov exponent. The
proof of (3.7) is similar, so we omit this proof.
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