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The Seven Dimensional Perfect Delaunay
Polytopes and Delaunay Simplices

Mathieu Dutour Sikirić

Abstract. For a lattice L of Rn , a sphere S(c, r) of center c and radius r is called empty if for any
v ∈ L we have ∥v − c∥ ≥ r. _en the set S(c, r) ∩ L is the vertex set of a Delaunay polytope P =

conv(S(c, r) ∩ L). A Delaunay polytope is called perfect if any aõne transformation ϕ such that
ϕ(P) is a Delaunay polytope is necessarily an isometry of the space composed with an homothety.

Perfect Delaunay polytopes are remarkable structures that exist only if n = 1 or n ≥ 6, and
they have shown up recently in covering maxima studies. Here we give a general algorithm for
their enumeration that relies on the Erdahl cone. We apply this algorithm in dimension seven,
which allows us to ûnd that there are only two perfect Delaunay polytopes: 321 , which is a Delaunay
polytope in the root lattice E7 , and the Erdahl Rybnikov polytope.

We then use this classiûcation in order to get the list of all types of Delaunay simplices in dimen-
sion seven and found that there are eleven types.

1 Introduction

A lattice L is a set of the form L = Zv1 + ⋅ ⋅ ⋅ + Zvn ⊂ Rn with (v1 , . . . , vn) being
independent. For such L a sphere S(c, r) of center c and radius r is called empty if
for any v ∈ L we have ∥v − c∥ ≥ r. A polytope P is called a Delaunay polytope if
it is full-dimensional and if the vertex-set of P is S(c, r) ∩ L with S(c, r) an empty
sphere. A Delaunay polytope is called perfect if any aõne transformation ϕ such that
ϕ(P) is a Delaunay polytope is necessarily an isometry of the space composed with
an homothety.

In [11,23] it was proved that for dimension n ≤ 5 the only possible perfect Delaunay
polytope is the interval [0, 1]. Also in [11] it was proved that the Gosset’s polytopes 221
and 321, which are Delaunay polytopes of E6 and E7, are perfect. From the construc-
tion of inûnite sequences in [14,19,24,27] we know that for any dimension n ≥ 6 there
exist perfect Delaunay polytopes. In [14] for any n ≥ 6 we deûne a Delaunay polytope
EDn of a lattice LDn . _e lattice LDn is formed by lamination over the root lattice
Dn−1, and we proved in [22] that EDn is the unique Delaunay polytope of maximum
circumradius of LDn and compute its covering density.

In [8] we proved that ED6 = 221 is the unique perfect Delaunay polytope in di-
mension 6. _is work uses a new approach in order to prove the following theorem.
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_eorem 1.1 _e 7-dimensional perfect Delaunay polytopes are the Gosset polytope
ED7 = 321 and the Erdahl and Rybnikov polytope ER7 [24, 25].

Proof See Section 9.

Perfect Delaunay polytopes are of importance for the theory of Covering Maxima.
A covering maximum is a lattice L such that its covering density is reduced if it is
perturbed. In [22] it was proved that a lattice L is a covering maximum if and only
if the Delaunay polytopes of maximum circumradius are perfect and eutactic (see
[22] for the deûnition). _is characterization echoes Voronoi’s theorem [44] for the
characterization of lattices ofmaximumdensity in terms of perfection and eutacticity.
In [22] we proved that LDn is one such covering maxima. Based on _eorem 1.1 and
partial enumerations in dimensions 8, 9, and 10 we state the following conjecture.

Conjecture 1.2 For each n ≥ 6, the lattice LDn deûned in [14] has maximal covering
density among all covering maxima.

_eMinkowski conjecture [34, p. 18] on the product of inhomogeneous forms has
inspired a lot of research. Recently, it has been proved for n ≤ 8 in [29–32] by com-
putational methods based on Korkine–Zolotarev reduction theory. Other theoretical
approaches have been attempted in [37, 42] by Dynamical System _eory. In partic-
ular, the following theorem was proved in [42, Corollary 1.3].

_eorem 1.3 If Conjecture 1.2 holds for a dimension n ≥ 1, then Minkowski’s conjec-
ture holds for dimension n.

As a consequence of the work of this paper, we have that Minkowski’s conjecture
is correct in dimension 7, thereby conûrming [29].

We prove_eorem 1.1 by using the Erdahl cone, which is deûned as the set of poly-
nomial functions f of degree at most 2 such that f (x) ≥ 0 for x ∈ Zn . We used this
cone in [22] for the study of covering maxima. We have then to do a kind of dual
description computation with the problem that the number of deûning inequalities is
inûnite, we have no local polyhedrality result as in the perfect form case (see [41] for
details), and we are interested in only a subset of the extreme rays (see _eorem 3.3
for the list of possible kinds of extreme rays of the Erdahl cone).

In [8] we used a diòerent approach, i.e., hypermetrics that allowed us to ûnd all
the 6-dimensional perfect Delaunay polytopes. But this approach relied on previous
work [2, 38] on 6-dimensional Delaunay simplices that we could not extend easily to
dimension 7. _us, it appears that the only way to classify the perfect 7-dimensional
Delaunay polytopes is to use the Erdahl cone. Moreover, we are able to use this clas-
siûcation in order to get the classiûcation of Delaunay simplices.

_eorem 1.4 Up to arithmetic equivalence there are eleven types of seven-dimensional
Delaunay simplices. _e full list is given in Table 1.

Proof See Section 10.
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i Representative S i vol(S i) ∣Stab(S i)∣ Nb interval
1 e0 , . . . , e6 , e7 1 40320 127
2 e0 , . . . , e6 , (1, 1, 1, 1, 1, 1, 2) 2 40320 63
3 e0 , . . . , e6 , (0, 0, 1, 1, 1, 1, 2) 2 1440 63
4 e0 , . . . , e6 , (1, 2, 2, 2, 2, 2, 3) 3 5040 42
5 e0 , . . . , e6 , (1, 1, 1, 2, 2, 2, 3) 3 1152 42
6 e0 , . . . , e6 , (0, 1, 1, 2, 2, 2, 3) 3 240 41
7 e0 , . . . , e6 , (1, 1, 1, 1, 1, 3, 4) 4 1440 27
8 e0 , . . . , e6 , (1, 1, 1, 1, 2, 2, 4) 4 240 31
9 e0 , . . . , e6 , (1, 1, 1, 2, 2, 3, 4) 4 144 31
10 e0 , . . . , e6 , (1, 1, 3, 3, 3, 4, 5) 5 72 24
11 e0 , . . . , e6 , (1, 1, 1, 1, 2, 3, 5) 5 48 24

Table 1: Representative of Delaunay simplices in dimension 7. e1 , . . . , e7 is the stan-
dard basis of Z7 and e0 = 0. vol(S) is n! times the Euclidean volume of S. ∣ Stab(S)∣ is
the size of the lattice automorphism group preserving S. “Nb interval” is the number
of Delaunay polyhedra of the type {0, 1} ×Z6 in which S i is contained.

In contrast to perfect Delaunay polytopes, the lattices simplices of this list (except
the trivial simplex) had not been discovered before. A similar studywas undertaken in
[33] for the set of shortest vectors of lattices. In view of this work it seems reasonable to
think that the classiûcation of Delaunay simplices is possible in dimension 8. Of equal
importance, the classiûcation of perfect Delaunay polytopes in dimension 8 could be
done, and a conjectural list of the 27 known possibilities is available in [15].

In Section 2 a generalization of delaunay polytopes, i.e., Delaunay polyhedra, are
considered; their basic structure and relation to the Erdahl cone are introduced here.
_e facial structure of the Erdahl cone is reviewed in Section 3, in particular, not all
extreme rays of the Erdahl cone are related to Delaunay polyhedra [23]. We also ex-
plain how the hypercube [0, 1]n corresponds to the cut polytope in the Erdahl cone.
Section 4 is not used in later sections. In it we construct a retraction of the Erdahl
cone on the faces deûned by Delaunay polyhedra. In Section 5 we establish the link
between the Erdahl cone and the classic L-type theory. In Section 6we do the same for
the hypermetric cone. In Section 7 we give the connectivity and ûniteness results on
which our enumeration algorithm relies. _en we present in Section 8 our enumera-
tion method, which is modelled on the Voronoi algorithm for perfect forms [35] and
on the adjacency decompositionmethod [5]. In Section 9 we give the results obtained
in the classiûcation of 7-dimensional perfect Delaunay polyhedra. In Section 10 we
use this classiûcation to classify the 7-dimensional types of Delaunay simplices.

2 Delaunay Polyhedra

Denote by E2(n) the vector space of polynomials of degree at most 2 on Rn and by
AGLn(Z) the group of aõne integral transformations on Zn . _e Erdahl cone is de-
ûned as

Erdahl(n) = { f ∈ E2(n) such that f (x) ≥ 0 for x ∈ Zn}.
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It is a convex cone of dimension (n + 1)(n + 2)/2 on which the group AGLn(Z)
acts. All deûning inequalities f (x) ≥ 0 are equivalent under AGLn(Z), and therefore
Erdahl(n) is not polyhedral.

We denote by ⋅ the standard scalar product on Rn deûned by x ⋅ y = xT y. For a
symmetric matrix A and x ∈ Rn we deûne A[x] = xTAx. We write any f ∈ E2(n) in
the form

f (x) = Cst( f ) + 2Lin( f ) ⋅ x +Quad( f )[x]
with Cst( f ) ∈ R, Lin( f ) ∈ Rn and Quad( f ) a n × n symmetric matrix. We deûne Sn

to be the set of symmetric matrices, Sn
>0 the set of positive deûnite matrices, and Sn

≥0
the set of positive semideûnite matrices. We also deûne Erdahl>0(n) to be the set of
f ∈ Erdahl(n) with Quad( f ) ∈ Sn

>0. If f ∈ Erdahl(n), then Quad( f ) ∈ Sn
≥0.

A sublattice ofZn is a subgroup ofZn . An aõne sublattice is one of the form x0 +L
with x0 ∈ Zn and L a sublattice of Zn . A lattice L ⊂ Zn is called saturated if (L⊗R) ∩
Zn = L. If L1 and L2 are two sublattices of Zn , we write L1⊕Z L2 = Zn if L1 ∩ L2 = {0}
and L1 ∪ L2 generates Zn over Z. In that case both L1 and L2 are saturated.

Deûnition 2.1 Let us ûx n ≥ 1 and deûne the following.
(i) A Delaunay polyhedron D is a set of the form D = PL′(D) + L(D) ⊂ Zn with

● conv(PL′(D)) a Delaunay polytope of an aõne sublattice L′ of Zn ,
● L(D) a sublattice of Zn and
● L′ ⊕Z L(D) = Zn .

(ii) A Delaunay simplex set S is a Delaunay polyhedron with ∣S∣ = n + 1.
(iii) A repartitioning set R is a Delaunay polyhedron with ∣S∣ = n + 2.

_e isotropy lattice L(D) is uniquely determined by D, and its dimension is called
the degeneracy rank of D denoted degrk(D). Note that D is the vertex set of a convex
body only when L(D) = 0. Also, a Delaunay polyhedron is full-dimensional, i.e., the
smallest aõne saturated lattice containing D is Zn itself.

_e set PL′(D) is included in L′ and depends on L′. For any two choices L′1 and
L′2 there exist a bijective aõne map ϕ∶ L′1 → L′2 with ϕ(PL′1(D)) = PL′2(D). When we
consider properties that do not depend on the integral representation, we drop the
lattice and write P(D).
For f ∈ Erdahl(n) we write

Z( f ) = {x ∈ Zn such that f (x) = 0} .

In the classical geometry of numbers, the essential tool is the quadratic form Q
instead of the quadratic function. _e following establish a direct link between them.

Deûnition 2.2 For a Delaunay simplex set S ⊂ Zn and Q ∈ Sn , there exists a unique
function f ∈ E2(n) such that
● f (x) = 0 for x ∈ S,
● Q = Quad( f ).
_is function is denoted fS ,Q and depends linearly on Q.

_e key reason for using Delaunay polyhedra is the following theorem.
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_eorem 2.3 (i) If D is a Delaunay polyhedron, then there exist a function f ∈
Erdahl(n) such that D = Z( f ).

(ii) If f ∈ Erdahl(n), then either Z( f ) is empty or there exist a k-dimensional satu-
rated aõne lattice L ⊂ Zn such that Z( f ) is a Delaunay polyhedron of L.

Proof (i) Let us take a Delaunay polyhedron D = PL′(D)+L(D)with PL′(D) being
a Delaunay polyhedron of a lattice L′ with L′ ⊕Z L(D) = Zn . Let us denote by S(c, r)
the sphere around PL′(D) and write L′ = Zv1 + ⋅ ⋅ ⋅ +Zvk . _e function

f ′∶Zn Ð→ R
x = (x1 , . . . , xn) z→ ∥∑n

i=1 x iv i − c∥2 − r2

belongs to Erdahl(k). More precisely, f ′(x) = 0 if and only if∑k
i=1 x iv i ∈ PL′(D). For

x ∈ Zn we write x = x1 + z with x1 ∈ L′ and z ∈ L(D) and write f (x) = f ′(x1). It is
easy to prove that f ∈ Erdahl(n) and Z( f ) = D.

(ii) _is is [23, Corollary 2.5].

We deûne the rational closure Sn
rat,≥0 to be the set of positive semideûnite forms

whose kernel is deûned by rational equalities.

Corollary 2.4 If f ∈ Erdahl(n) is such that Z( f ) is a Delaunay polyhedron, then
Quad( f ) ∈ Sn

rat,≥0.

Proof Let us write D = Z( f ) and take a lattice L′ ⊂ Zn with L′ ⊕Z L(D) = Zn .
We write any x ∈ Zn as x = x1 + z with x1 ∈ L′ and z ∈ L(D). _ere is a quadratic
function f1 on L′ such that f (x) = f1(x1) and Z( f1) = PL′(D). _us, Quad( f1) is
positive deûnite, and since L(D) is an integral lattice, the matrix Quad( f ) belongs to
Sn
rat,≥0.

Given a set V ⊂ Zn we will need to be able to test whether or not it is a Delaunay
polyhedron. Algorithm 1 does this iteratively for a ûnite point set by solving larger
and larger linear programs until a conclusion is reached. _e algorithm can be easily
adapted to the case of a point set of the form R + L with L a lattice and R ûnite. _e
corresponding algorithm for perfect form is given in [33, Algorithm 1].

If D is a n-dimensional Delaunay polyhedron, then we deûne

Aut(D) = {ϕ ∈ AGLn(Z) ∶ ϕ(D) = D}.
When using Algorithm 1 it is best to impose that the sought function f is invariant
under Aut(D), since it simpliûes the search and a Delaunay polyhedron admits an
invariant function (see Corollary 2.6).
Before stating our result on the description of Aut(D), we review the notion of

semidirect product. Given a group G, we call G a semidirect product and write G =
N ×H if N is a normal subgroup of G, H a subgroup G = NH and N ∩H = {e}.

_eorem 2.5 If D is a n-dimensional Delaunay polyhedron of degeneracy degree d,
then we have the isomorphism

Aut(D) = ⟨(Zd)1+n−d ⋊GLd(Z)⟩ ⋊Aut(P(D)).
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Data: A ûnite set V ⊂ Zn of full aõne rank
Result: A quadratic function f ∈ Erdahl>0(n) such that Z( f ) = V if it exists

and false otherwise
Svert ← V .
Svect ← ∅.
repeat

v ← random element of Zn

Svert ← Svert ∪ {v}
until _e set {evv for ∈ Svert} has rank (n + 1)(n + 2)/2;
while no solution has been reached do

Form the linear program

minimize f ∈E2(n) Tr(Quad( f ))
subject to f (v) = 0 for v ∈ V

f (v) ≥ 1 for v ∈ Svert − V
Quad( f )[v] ≥ 1 for v ∈ Svect

if _e linear program is infeasible then
return false

end
f0 ← a rational optimal solution.
if f0 ∈ Erdahl(n) and Z( f0) = V then

return f0
end
if Quad( f0) ∉ Sn

>0 then
Find a vector v ∈ Zn with Q( f0)[v] ≤ 0
Svect ← Svect ∪ {v}

end
if Quad( f0) ∈ Sn

>0 and f0 ∉ Erdahl(n) then
Find a vector v ∈ Zn with f0(v) < 0
Svert ← Svert ∪ {v}

end
if f0 ∈ Erdahl(n) and Z( f0) /= V then

Find a vector v ∈ Z( f0) − V .
Svert ← Svert ∪ {v}

end
end

Algorithm 1: Testing Delaunay realizability of a ûnite set of points

Proof Let us take a basis v = (v i)1≤i≤d of L(D). Any automorphism of D will send v
to another basis of L(D), and this determines a component GLd(Z) of the automor-
phism group. Let us write L′ for an aõne sublattice of Zn such that L′⊕Z L(D) = Zn .
Such aõne sublattice are determined by 1+n−d vectors in L(D), and this determines
the component (Zd)1+n−d of the automorphism group. _e last component comes
from the fact that the automorphisms have to preserve the polytope conv(P(D)).
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Wedenote byAò(D) the normal subgroup (Zd)1+n−d⋊GLd(Z) given in the above
theorem.

Corollary 2.6 A Delaunay polyhedron D admits a function f ∈ Erdahl(n) with
Z( f ) = D that is invariant under Aut(D).

Proof Let us write L′ ⊕Z L(D) = Zn . A vector x ∈ Zn is decomposed as x = x1 + z
with x1 ∈ L′ and z ∈ L(D). Any function f with Z( f ) = Dmust have Quad( f )[z] = 0
and Lin( f ) ⋅ z = 0. _erefore, there exist a function f1 on L′ such that f (x) = f1(x1).
So, f is invariant under Aò(D). _e group acting on f1 is Aut(PL′(D)), which is
ûnite. _e function

f ′1 (x1) = ∑
u∈Aut(PL′(D))

f (u(x1))

is Aut(PL′(D)) invariant. _us, we get a function f ′(x) = f ′1 (x1) invariant under
Aut(D).

If D and D′ are two Delaunay polyhedra such that D ⊂ D′, then we deûne the
stabilizer group

Stab(D,D′) = {ϕ ∈ AGLn(Z) ∶ ϕ(D) = D and ϕ(D′) = D′}
= Aut(D) ∩Aut(D′).

We have the following results.

_eorem 2.7 Let D and D′ be two Delaunay polyhedra satisfying D ⊂ D′.
(i) We have L(D) ⊂ L(D′) and Aò(D) ⊂ Aò(D′).
(ii) _ere exist a ûnite group G1 ⊂ Aut(P(D)) such that

Stab(D,D′) = Aò(D) ⋊G1 .

In particular, Aò(D) is a ûnite index subgroup of Stab(D,D′)

Proof We have L(D) ⊂ L(D′). Let us take a Z-basis {e1 , . . . , ed} of L(D) and com-
plement it by adding {ed+1 , . . . , ed′} to a basis of L(D′). We can ûnd f1 , . . . , fn−d′
so that the e i and f j form a basis of Zn . _e group Aò(D′) is generated by trans-
lations along f1 , . . . , fn−d′ and GLd′(Z). _e group generated by translations along
{ed+1 , . . . , ed′} and GLd(Z) directly embeds into GLd′(Z), and this determines the
group inclusion. So (i) holds.
By (i) we have the inclusion Aò(D) ⊂ Stab(D,D′). Let us choose a lattice L′ with

L′ ⊕Z L(D) = Zn . _en if u ∈ Stab(D,D′) ⊂ Aut(D), we can ûnd an unique element
n ∈ Aò(D) such that un−1 stabilizes L′. _us, un−1 belongs to Aut(PL′(D)). _e
image deûnes the group G1. _e ûnite index property follows.

3 Facial Structure of the Erdahl Cone

_e standard scalar product on Sn is ⟨A, B⟩ = Tr(AB). We equip Erdahl(n) with the
inner product

( f , g) = Cst( f )Cst(g) + 2Lin( f ) ⋅ Lin(g) + ⟨Quad( f ), Quad(g)⟩
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and for each x ∈ Zn we deûne the evaluation function evx by evx(y) = (1 + x ⋅ y)2

such that ( f , evx) = f (x).
A convex cone C is deûned as a set invariant under addition and multiplication by

positive scalars. _en C is called full-dimensional if the only vector space containing it
isRm ; C is called pointed if no linear subspace of positive dimension is contained in it.
Let C be a full-dimensional pointed convex polyhedral cone inRm . Given f ∈ (Rm)∗,
the inequality f (x) ≥ 0 is said to be valid for C if it holds for all x ∈ C. A face of C is a
pointed polyhedral cone {x ∈ C ∶ f (x) = 0}, where f (x) ≥ 0 is a valid inequality.
A face of dimension 1 is called an extreme ray of C; a face of dimension m − 1 is

called a facet of C. _e set of faces of C forms a partially ordered set under inclusion.
We write F ⊲ G if F ⊂ G and dim F = dimG − 1. Two extreme rays of C are said to be
adjacent if they generate a two-dimensional face of C. Two facets of C are said to be
adjacent if their intersection has dimension m − 2. Any (m − 2)-dimensional face of
C is called a ridge, and it is the intersection of exactly two facets of C.
By the Farkas–Minkowski–Weyl _eorem (see e.g., [40, Corollary 7.1a]), a con-

vex cone C is polyhedral if and only it is deûned either by a ûnite set of generators
{v1 , . . . , vN} ⊆ Rm or by a ûnite set of linear functionals { f1 , . . . , fM} ⊆ (Rm)∗:

C = {
N

∑
i=1

λ iv i ∶ λ i ≥ 0} = {x ∈ Rm ∶ f i(x) ≥ 0} .

Every minimal set of generators {v1 , . . . , vN ′} deûning a polyhedral cone C has the
property

{R+v1 , . . . ,R+vN ′} = {e ∶ e extreme ray of C}.
Every minimal set of linear functionals { f1 , . . . , fM′} deûning C has the property that
{F1 , . . . , FM′} with Fi = {x ∈ C ∶ f i(x) = 0} is the set of facets of C. _e problem of
transforming a minimal set of generators into a minimal set of linear functionals (or
vice versa) is called the dual description problem.

In our work, we have to deal with Delaunay polyhedra with an inûnite number of
vertices, and we cannot apply the Farkas–Minkowski–Weyl theorem to them nor of
course existing dual-description so�ware [1, 26].

Deûnition 3.1 Let D ⊂ Zn be a Delaunay polyhedron.
(i) We deûne the vector space

Space(D) = { f ∈ E2(n) such that f (x) = 0 for x ∈ D}.
(ii) _e dimension of Space(D) is called the perfection rank rankperf(D) and D is

perfect if rankperf(D) = 1.

Proposition 3.2 Let D ⊂ Zn be a Delaunay polyhedron.
(i) Space(D) ∩ Erdahl(n) is a face of Erdahl(n) of dimension dimSpace(D).
(ii) If D is perfect, then Space(D) ∩ Erdahl(n) is an extreme ray of Erdahl(n).

Proof Let p = dimSpace(D) and let g1 , . . . , gp be a basis of Space(D). Since D is a
Delaunay polyhedron, there exists a function f ∈ Erdahl(n) such that D = Z( f ). For
each 1 ≤ i ≤ p there exist λ i > 0 such that λ i f + g i ∈ Erdahl(n), and so (i) follows. (ii)
follows directly from (i).
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For a perfect Delaunay polyhedron D, we denote by fD a generator of the extreme
ray Space(D) ∩ Erdahl(n).

_eorem 3.3 ([23, _eorem 2.1]) _e generators of extreme rays of Erdahl(n) are
(i) the constant function f = 1,
(ii) the functions of the form fa ,β(x) = (a1x1 + . . . anxn + β)2 with (a1 , . . . , an) not

collinear to an integral vector,
(iii) the functions of the form fD with D a perfect Delaunay polyhedron.

_is theorem indicates that the structure of the extreme rays of Erdahl(n) is more
complicated than for a polytope. Since we are interested only in the third class of
extreme rays, some reduction will be necessary, and it turns out that we can work out
everything with Delaunay polyhedra.

In this paper we will work with both spaces of functions in E2(n) and with point
sets of Delaunay polyhedra.

Deûnition 3.4 Given a Delaunay polyhedron D,
(i) the cone of admissible functions is deûned as

Erdahlsupp(D) = { g ∈ E2(n) ∶ g(x) ≥ 0 for all x ∈ D} ;

(ii) the cone of evaluation functions is deûned as

Erdahl∗supp(D) = { ∑
x∈D

λx evx with λx ≥ 0} .

_eorem 3.5 Let D be a Delaunay polyhedron of perfection rank r.
(i) Erdahlsupp(D) is the product of a pointed convex cone CD with Space(D).

_e dual of CD is Erdahl∗supp(D).
(ii) Any Delaunay polyhedron D′ ⊂ D of perfection rank r + 1 gives a facet of

Erdahl∗supp(D).
(iii) If L(D) = 0, then facets of Erdahl∗supp(D) correspond to Delaunay polyhedra D′ ⊂

D of perfection rank r + 1.

Proof (i) If f and − f both belong to Erdahlsupp(D), then f (x) = 0 for x ∈ D and
so f ∈ Space(D). So, Erdahlsupp(D) is the sum of Space(D) and a closed convex
cone. _e duality result follows from [3, Part IV.5]) for closed full-dimensional convex
cones.

(ii) Let f ∈ Erdahl(n) such that Z( f ) = D′. _us, we have f (x) = 0 on D′ and
f (x) > 0 on D − D′, and so f deûnes a facet of Erdahl∗supp(D).

(iii) If L(D) = 0, then for any facet of Erdahl∗supp(D) we can ûnd a set D′ ⊂ D and
a function f ∈ E2(n) with f (x) = 0 for x ∈ D′ and f (x) > 0 for x ∈ D − D′. _ere
exist a function g ∈ Erdahl(n) such that D = Z(g). _en we can ûnd λ > 0 such that
f + λg ∈ Erdahl(n). _en we have D′ = Z( f + (λ + 1)g), and so D′ is a Delaunay
polyhedron.

_eorem 2.1 of [23] shows that if L(D) /= 0, there are other facets of Erdahl∗supp(D)
than the ones from Delaunay polyhedra.

https://doi.org/10.4153/CJM-2016-013-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-013-7


1152 M. Dutour Sikirić

Proposition 3.6 If D is a n-dimensional perfect Delaunay polyhedron with degener-
acy degree d, then P(D) has at least

(n − d + 2
2

) − 1

points.

Proof _e isotropy lattice L(D) has dimension d, and we can choose a complement
lattice L′ such that L′⊕Z L(D) = Zn . If f is a quadratic function with Z( f ) = D, then
f is determined by its restriction to L′. Hence f belongs to a vector space of dimension
(n−d+2

2 ), and this gives the minimal number of determining inequalities.

A surprising relation has been found between the Erdahl cone of the hypercube
{0, 1}n and the cut polytope, which is classic polytope of combinatorial optimiza-
tion [12]. Write N = {1, . . . , n}; if S ⊂ N , then the cut metric δS on N is deûned as
follows:

δS(i , j) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∣{i j} ∩ S∣ = 1,
0 otherwise.

We have δS = δN−S , and the cut polytope CUTPn is deûned as the convex hull of the
cut metrics δS . _e cone deûned by the cut polytope is deûned as

CCUTPn = { ∑
S⊂{1,. . . ,n}

λS(1, δS) with λS ≥ 0} .

_e facets of the cone CCUTPn are in one-to-one correspondence with the facets of
the polytope CUTPn .

_eorem 3.7 _e polyhedral cone Erdahl∗supp({0, 1}n) is linearly equivalent to
CCUTPn+1.

Proof _e hypercube [0, 1]n is deûned as the convex hull in 2n of vectors v =
(v1 , . . . , vn) with v i ∈ {0, 1}. For every such vector the evaluation function is

evv(x) = 1 + 2(v ⋅ x) + (v ⋅ x)2 .

_us, we can associate with evv the vector

( 1, (v i)1≤i≤n , (v iv j)1≤i≤ j≤n) .

Since v2
i = v i for v i ∈ {0, 1} this vector family is linearly equivalent to

( 1, (v i)1≤i≤n , (v iv j)1≤i< j≤n) for v ∈ {0, 1}n .

With the same v we can associate the vector v = (0, v1 , . . . , vn) and the set

S = {i ∈ {0, . . . , n} ∣ v i = 1} ⊂ {0, . . . , n}.

_e cut metric δS on {0, . . . , n} is characterized by (δS(i , j))0≤i< j≤n and since
δS(i , j) = (v i − v j)2, the family of pairs (1, δS) is linearly equivalent to the family
of evaluation map evv .
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It is interesting to note that the symmetry group of the hypercube [0, 1]n is of size
2nn!, but that the symmetry group of the cut polytope CUTPn+1 is of size 2n(n + 1)!
for n /= 3 [10, 12].

4 The Delaunay Polyhedra Retract

For f ∈ Erdahl(n), we deûne Vect Z( f ) to be the vector space spanned by diòerence
of elements of Z( f ). We deûne Vf = Vect Z( f ) + KerQuad( f ). For a given f ∈
Erdahl(n)we call proper pair a pair (g , h) ∈ E2(n)2 such that g ∈ Erdahl(n), h(x) ≥ 0
for x ∈ Rn and f = g + h.

Lemma 4.1 Let f ∈ Erdahl(n).
(i) For a proper pair (g , h), Z( f ) ⊂ Z(g) and KerQuad(h) ⊂ Vf .
(ii) _ere exists a proper pair (g , h) with KerQuad(h) = Vf .

Proof If x ∈ Z( f ), then one sees that necessarily h(x) = g(x) = 0. So, h(x) = 0
for x ∈ conv(Z( f )), which implies Vect Z( f ) ⊂ KerQuad(h). Also, it is clear that
for any vector v ∈ KerQuad( f ), we have Quad(g)[v] = Quad(h)[v] = 0. Hence, (i)
holds.

Let us denote by ZKerQuad( f ) the smallest subspace of Rn having an integral
basis containing KerQuad( f ). By [23, Decomposition Lemma 3.1] there exist a g ∈
Erdahl(n) with KerQuad(g) = ZKerQuad( f ) and a positive semideûnite form Q1
such that

f (x) = g(x) + Q1[x].
Let V (resp. W) denote an integral supplement of KerQuad( f ) in ZKerQuad( f )
(resp. ZKerQuad( f )in Zn). Denote by ϕ1, . . . , ϕm some aõne functions on Zn such
that ϕ i(ZKerQuad( f )) = 0 and

{x ∈W ∣ ϕ1(x) = ⋅ ⋅ ⋅ = ϕm(x) = 0} = Vect Z( f ) ∩W .

_en for є > 0 small enough, the function g1 − є∑m
i=1 ϕ i(x)2 is still in Erdahl(n). So,

one gets that the pair ( f − h, h) with h(x) = Q1[x] + є∑m
i=1 ϕ i(x)2 is proper and (ii)

is true.

Let us call W an integral supplement of Vf . Denote by Quad( f )∣W the qua-
dratic form Quad( f ) restricted to W . A proper pair (g , h) is called extremal if
detQuad(h)∣W is maximal among all proper pairs. Lemma 4.1.(i) implies that the
notion of being extremal is independent of the chosen subspace W , while Lemma
4.1.(ii) implies that there is at least one form of non-zero determinant.

_eorem 4.2 Let f ∈ Erdahl(n).
(i) If (g , h) is an extremal proper pair for f , then Z( f ) is a Delaunay polyhedron.
(ii) _ere exists a unique extremal proper pair (g , h).

Proof Let us take an integral supplement W as above and suppose, to avoid trivial-
ities, that W /= ∅. So, by restricting f to W , we can assume that Quad(h) is positive
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deûnite:
f (x) = g(x) + h(x)

with h(x) ≥ 0 for x ∈ Rn . _is condition on h is equivalent to

Ah = (Cst(h) Lin(h)T

Lin(h) Quad(h))

being positive deûnite. Hence we consider the following semideûnite programming
problem. Find the Ah ∈ Sn+1

≥0 maximizing detQuad(h) and satisfying, for all x ∈ Zn ,

f (x) ≥ Ah[(1, x)] = h(x).
We also write g = f − h.

Suppose that Z(g) is not a Delaunay polyhedron and that Quad(h) is positive
deûnite. _en Z(g) does not generates Rn as an aõne space and so there exists an
aõne function ϕ such that ϕ(Z(g)) = 0. _en there exist α > 0 such that the pair
( f − h′ , h′) with h′ = h + αϕ2 is still proper. Since detQuad(h′) > detQuad(h), the
pair is not extremal and (i) holds.

Let us takeN = n(n+1)/2 points v i ∈ Zn such that the family {(1, v i)(1, v i)T}1≤i≤N
is of full rank. _e inequalities g(v i) ≥ A[(1, v i)] ≥ 0 imply that all coeõcients of A
are bounded. _us, the problem is actually to minimize the convex function h ↦
− log detQuad(h) over a compact convex set, hence existence follows.

Since − log det is a strictly convex function, we know that if we have two optimal
solutions h1 and h2 then Quad(h1) = Quad(h2). Let us denote by D1 = Z(g1) and
D2 = Z(g2) the corresponding Delaunay polyhedra. _e function hmid = (h1 + h2)/2
is also an optimal solution of the problem. We have Z(gmid) = D1 ∩D2. _e set D1 ∩
D2 is necessarily a Delaunay polyhedron, since otherwise we could still increase the
determinant by the above construction and this would contradict the optimality. But
if Z( f ) is a Delaunay polyhedron, then the terms Cst( f ) and Lin( f ) are determined
by Quad( f ). So, one gets h1 = h2 and the uniqueness is proved on the restriction to
W . But Lemma 4.1(i) implies that once Quad(h) is known onW then it is known on
Zn . By the condition h ≥ 0, the linear part is known as well.

Note that in the above determinant maximization problem a ûnite set of inequali-
ties suõces to determine the optimal solution. _is follows from the fact that since we
aremaximizing the determinantwe can assume that the lowest eigenvalue ofQuad(h)
is bounded away from 0, i.e., that there exist c > 0 such that Quad(h) ≥ cIn .
For f ∈ Erdahl(n), we write proj( f ) = g and proj′( f ) = h with (g , h) the unique

extremal pair associated to f . From the unicity of extremal pairs we also get that proj
and proj′ commute with the action of AGLn(Z).

Conjecture 4.3 _e function proj is continuous.

Let us deûne Erdahld p(n) to be the set of f ∈ Erdahl(n) such that Z( f ) is a De-
launay polyhedron. _e above conjecture would imply that the set Erdahld p(n) is
simply connected, and this could be of interest for topological applications. However,
we were not able to prove the conjecture, and instead we prove connectedness results
in later sections that are suõcient for our purposes.
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5 Relation with L-types Theory

In this sectionwe reframe classical L-type theory from [45] (see also [41] for amodern
account) in terms of Erdahl cones and state several key lemmas.

Deûnition 5.1 Let Q ∈ Sn
rat,≥0. _e Delaunay polyhedra tessellation DPT(Q) de-

ûned by Q is the set of Delaunay polyhedra D such that there exist a f ∈ Erdahl(n)
with
● Z( f ) = D,
● Quad( f ) = Q.

If Q is positive deûnite, then the Delaunay polyhedra tessellation is the classical
Delaunay polytope tessellation; i.e., all Delaunay polyhedra occurring are actually
vertex sets of Delaunay polytopes. _e number of translation classes of Delaunay
polyhedra is always ûnite. _ese Delaunay polyhedra tessellations were considered
in [20, Section 2.2]. Eõcient algorithms for the enumeration of Delaunay polytope
tessellations are given in [21].
From this, one can deûne the L-type which are parameter spaces of Delaunay poly-

tope tessellations.

Deûnition 5.2 Let us take a Delaunay polyhedra tessellation T. _en the L-type
LT(T) is deûned as the closure of the set of quadratic formsQ such thatDPT(Q) = T.
It is well known (see [41, 45] for proofs) that L-types are polyhedral cones.

A L-type is called primitive if it is ofmaximal dimension; this is equivalent to saying
that all its Delaunay polyhedra are Delaunay simplex sets.

_e set of all L-types for all possible Delaunay tessellations deûnes a tessellation of
the cone Sn

rat,≥0.
Given two Delaunay polyhedra tessellation T and T′, we say that T′ is a reûnement

of T if every Delaunay polyhedron of T′ is included in a single Delaunay polyhedron
of T. _en T′ is a simplicial reûnement if all its Delaunay polyhedra are Delaunay
simplex sets.

Proposition 5.3 Any Delaunay polyhedra tessellation T admits at least one simplicial
reûnement.

Proof Let us denote by L(T) the space L(D) of theDelaunay polyhedraD occurring
in the tessellation and by Q ∈ Sn

rat,≥0 the form realizing it. Let us take a lattice L′ such
that L′ ⊕Z L(T) = Zn . We write x ∈ Zn as x = x1 + z with x1 ∈ L′ and z ∈ L(T). D is
a Delaunay polyhedron for the quadratic function f ∈ Erdahl(n). Necessarily, f is of
the form f (x) = f1(x1) with f1 a quadratic function on L′. Let us denote by (D i)i∈I
the Delaunay polyhedra occurring in the tessellation. Let us take a basis w1 , . . . ,wm
of L(T) and deûne linear forms ϕ i on Zn such that ϕ i(w j) = δ i j and ϕ i(L′) = 0. _e
quadratic form

Q′[x] = Q[x] +
m

∑
i=1

(ϕ i(x))
2
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is positive deûnite, and the Delaunay polyhedra tessellationDT corresponding to Q′

is formed by the Delaunay polyhedra

D i +
m

∑
k=1

{ak , ak + 1}wk with 1 ≤ i ≤ r and ak ∈ Z.

In particular, T2 is a reûnement of T.
Since the L-type domain form a tiling of Sn

rat,≥0, the form Q′ belongs to at least one
primitive L-type LT(T2). _is L-type deûnes a Delaunay polyhedra tessellation by
simplices, which is a reûnement of T2 and so of T.

Let us take a primitive L-type T. Any facet F of T is determined by a pair of Delau-
nay simplex sets S1 and S2 in the Delaunay tessellation that determine a repartitioning
set. We say that two facet-deûning repartitioning sets are in the same class if they de-
ûne the same facet F of T. If R is a repartitioning set, then conv(R) admits exactly
two triangulations (see [41, Section 4.3.2]). One says that two primitive L-types are
adjacent if their intersection is a codimension 1 face in the cone Sn

>0. When we move
from one L-type to another L-type, the Delaunay tessellation is changed and this is
done combinatorially by the repartitioning sets. _at is, some Delaunay simplex sets
are merged into repartitioning sets and the triangulation is changed to the other tri-
angulation, thus yielding another L-type.

Given a Delaunay polyhedron D a Delaunay polyhedra tessellation T is called
D-proper if D is the union of the Delaunay polyhedra D′ contained in D. We have
the following lemma.

Lemma 5.4 Let D be a Delaunay polyhedron. _e graph formed by the primitive
L-types whose corresponding Delaunay polyhedra tessellations are primitive and D-
proper is connected.

Proof Let us consider a function fD ∈ Erdahl(n) such that Z( fD) = D. We can
consider the triangulations induced by positive deûnite quadratic forms on D itself.
By the theory of regular triangulations (see [7] for an account), this set is connected.
Any triangulation Tpart on D induced by a positive deûnite quadratic form Q can

be extended to a triangulation T of Zn . It suõces to replace Q by Q + λQuad( fD)
for λ suõciently large. _e reason is that Quad( fD) will not change the Delaunay
triangulation for Delaunay simplex sets contained in D.

Now given a primitive L-type LT whose Delaunay polyhedra tessellation T is
D-proper, we denote by S its set of Delaunay simplex sets included in D. We con-
sider the following cone C(S):

C(S) = {Q ∈ Sn
rat,≥0 ∣ fS ,Q(x) ≥ 0 for S ∈ S and x ∈ Zn − S} .

_is cone is convex and is an union of primitive L-types. _us, this set of L-types is
connected. _e connectedness follows by combining the above results.

Delaunay polytopes are restricted to the set D.
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n 1 2 3 4 5 6 7
PossVol(n) {1} {1} {1} {1} {1, 2} {1, 2, 3} {1, 2, 3, 4, 5}

Table 2: Possible volume of lattice Delaunay simplices. See [2] for the proof for n ≤ 6
and Section 10 for the proof for n = 7.

_eorem 5.5 Consider a Delaunay polyhedron D and two Delaunay simplex sets S
and S′ in D. _en there exists a sequence {S = S0 , S1 , . . . , Sm = S′} of Delaunay simplex
sets with S i ⊂ D for 0 ≤ i ≤ m such that S i ∪S i+1 is a repartitioning set for 0 ≤ i ≤ m− 1.

Proof Let us take fD ∈ Erdahl(n) a function such that Z( fD) = D. Take fS , fS′ to
be the corresponding functions for S and S′. Denote by T the Delaunay polyhedra
tessellation deûned by Quad( fD), which obviously has D as one of its components.

Whenwe perturb Quad( fD), we are changing the Delaunay tessellation. However,
if we take є > 0 small enough, we can ensure that the Delaunay polyhedra tessella-
tionsDPT(Quad( fD + є fS)) andDPT(Quad( fD + є f ′S)) are D-proper. By applying
Proposition 5.3 we can ûnd simplicial reûnement of those two tessellations, which we
name TR and TR′ and are both D-proper. We call LT and LT ′ the corresponding
primitive L-types.
By Lemma 5.4 there exists a path between LT and LT ′ that uses only D-proper

L-types. By following this path, we can change S into another Delaunay simplex set
S2 in TR′.
Denote by f1 , . . . , fr the facets of LT ′. Every such facet corresponds to a family of

repartitioning sets. We say that two Delaunay simplex sets included in D are adjacent
if their union is a repartitioning set that gives a facet of LT ′. _eDelaunay polyhedron
D is a coarsening obtained by merging all simplices, so the above deûned graph is
connected. _is means that we can ûnd a path from S2 to S′.

6 Relation with Hypermetric Theory

We deûne the volume vol(S) of a Delaunay simplex set S to be n! Vol(conv(S)) with
Vol the Euclidean volume. _is rescaled volume is an integer and satisûes vol(S) ≤ n!.
_e possible rescaled volumes PossVol(n) are given in Table 2 for n ≤ 7 and a super-
exponential lower bound onmaxPossVol(n) is proven in [39]. _e best known upper
bound [12, Proposition 14.2.4] is

(6.1) maxPossVol(n) ≤ n! 2n

(2n
n )

.

Deûnition 6.1 Let us take two n-dimensional Delaunay polyhedron D, D′ with
D ⊂ D′. We can deûne the generalized hypermetric cone

Hyp(D,D′) = { f ∈ E2(n) ∣ f (x) = 0 if x ∈ D and f (x) ≥ 0 if x ∈ D′}

We have the inclusion Hyp(D,D′) ⊂ Erdahlsupp(D′) and Hyp(D,D′) is a priori
deûned by an inûnity of inequalities.
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As a direct application we can express the L-type domains as intersection of gen-
eralized hypermetric cones.

Proposition 6.2 Let T be a Delaunay polyhedra tessellation. _en we have

LT(T) = ⋂
D∈T

QuadHyp(D,Zn).

Proposition 6.3 _e coneHyp(D,D′) is polyhedral.

Proof Let us take a Delaunay simplex set S = {v0 , . . . , vn} ⊂ D, which exists by
Proposition 5.3. If we prove the polyhedrality of Hyp(S ,D′), then Hyp(D,D′) is
polyhedral as well, since it is obtained fromHyp(S ,D′) by adding equalities f (x) = 0
for x ∈ D − S.

Suppose that a v ∈ D′ deûnes a relevant inequality. _en there exists a function
f such that f (x) = 0 for x ∈ S ∪ {v} and f (x) > 0 for x ∈ D′ − S ∪ {v}. Since D′
is a Delaunay polyhedron, there exists a function g such that g(x) = 0 for x ∈ D′
and g(x) > 0 for x ∈ Zn − D′. _en we can ûnd λ > 0 such that f (x) + λg(x) > 0
for x ∈ Zn − S ∪ {v}. As a consequence, the polytope conv(S ∪ {v}) is a Delaunay
polytope. _is implies that for any i ∈ {0, . . . , n}, the Delaunay simplex set Sv , i =
{v , v0 , . . . , v i−1 , v i+1 , . . . , vn} has vol(Sv , i) ≤ n! (see the proof of [12,_eorem 14.2.1]).
Hence, the coeõcients of v are bounded by a bound depending only on S, and this
proves that Hyp(S ,D′) is polyhedral.

For a Delaunay simplex set S of volume 1, the cone Hyp(S ,Zn) is called the hy-
permetric cone and is studied in [12]. For other simplices, they are called Baranovski
cone in [41]. _e facets of the Baranovski cones are determined up to dimension 6 in
[38]. _ere is a correspondence between facets of Hyp(S ,D) and repartitioning sets
P with S ⊂ P ⊂ D. _at is, the inequality f (x) ≥ 0 deûnes a facet of Hyp(S ,D) if and
only if S ∪ {x} is a repartitioning set.

7 Connectivity Results

For a given Delaunay polyhedron D, let us write

Cr ,d(D) = {D′ ⊂ D ∣ D
′ a Delaunay polyhedron with

rankperf(D′) = r and dim L(D′) ≤ d } .

If A and B are sets of Delaunay polyhedra, then the graph Gr(A,B) is the graph
on A with two Delaunay polyhedra D1 ,D2 ∈ A adjacent if and only if D1 ∩ D2 ∈ B.

_eorem 7.1 If D is aDelaunay polyhedron of perfection rank r and degeneracy degree
d, then Cr+1,d(D) is decomposed into a ûnite number of orbits under Aut(D).

Proof Without loss of generality, we can write D = P + Zd . Let us write D′ ⊂ D
as D′ = P′ + L′ with k = dim L′. By applying an element of Aut(D), we can assume
that L′ = Zk . So, without loss of generality, we can assume that L′ = 0. Let us take
a Delaunay simplex set S in D′; its volume is bounded by maxPossVol(n). Again by
usingAut(D)we can ûnd a constantC′ such that the absolute value of the coordinates
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of S in P + Zd are bounded by C′. _e polyhedrality of the cones Hyp(S ,D) implies
the ûniteness.

Lemma 7.2 If C is a polyhedral cone, F is a face of C and e, e′ are two extreme rays
that are not contained in F, then e and e′ are connected by a path that does not intersect
F.

Proof By taking the intersection C ∩H with H a suitable hyperplane, we can trans-
form C into a polytope P and e, e′ into vertices of P. We can ûnd an aõne function ϕ
such that ϕ(x) ≥ 0 is a valid inequality on P and ϕ(x) = 0 deûnes the face F ∩H of P.
By maximizing the function ϕ over P and using the simplex algorithm (see [40,46]),
we can ûnd paths p(v , vopt), p(v′ , vopt) from v, v′ to an optimal vertex vopt such that
ϕ is monotone on both paths. Since ϕ(v) > 0 and ϕ(v′) > 0, such paths avoid the face
F and joined together give the required path.

_eorem 7.3 If D is a Delaunay polyhedron of perfection rank r and degeneracy
degree d ≥ 1, then

Gr(Cr+1,d(D),Cr+2,d−1(D))
is connected.

Proof Consider two Delaunay polyhedra Da and D′a in D of perfection rank r + 1.
Let us take two Delaunay simplex sets S, S′ contained in Da , D′a . By using _eo-
rem 5.5 we can ûnd a chain of simplices (S i)0≤i≤m with S i ⊂ D, S0 = S and Sm = S′.
Denote by R i = S i ∪ S i+1 the repartitioning set. Let e−1, em be the extreme rays in
Hyp(S0 ,D), Hyp(Sm ,D) corresponding to Da , D′a , respectively. For each Delaunay
simplex set S i , we consider the cone Hyp(S i ,D). _e extreme rays correspond to
Delaunay polyhedra of rank r + 1. If a Delaunay polyhedron D′ ⊂ D has degeneracy
degree d, then, necessarily, L(D′) = L(D). We deûne the restricted trace function to
be

ϕ( f ) = Tr(Quad( f )∣L(D)) .
A function f ∈ Erdahlsupp(D) has Z( f ) ∩ D of degeneracy degree d if and only if
ϕ( f ) = 0. _e hyperplane ϕ( f ) = 0 determines a face Fi of the cone Hyp(S i ,D). _e
intersection is

Hyp(S i ,D) ∩Hyp(S i+1 ,D) = Hyp(R i ,D).
_us, we can ûnd a ray e i in Hyp(R i ,D), which is not contained in Fi . Since
Hyp(S i ,D) is polyhedral, by Lemma 7.2 there exists a path from e i−1 to e i in
Hyp(S i ,D) that avoids the face Fi . So, by putting all these paths together, we get
the required connectivity result.

Lemma 7.4 If D1 and D3 are two Delaunay polyhedra of perfection rank r and r + 2
with D3 ⊂ D1, then there exist exactly two Delaunay polyhedra D2,1 and D2,2 such that
D3 ⊂ D2, i ⊂ D1 with rankperf(D2, i) = r + 1.

Proof Since D3 is a Delaunay polyhedron, there exists a Delaunay simplex set S ⊂
D3. _e Delaunay polyhedra D3, D1 correspond to faces F3, F1 of dimension r + 2, r
in the cone Hyp(S ,Zn). It is well known from polytope theory [46,_eorem 2.7.(iii)]
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that there are exactly two faces F2,1, F2,2 containing F1 and contained in F3. _ose
give the corresponding Delaunay polyhedron.

By using this theorem, we are able to compute inductively the Delaunay polyhedra
in Zn . _e property with the degeneracy degree ensures that we are able to eòectively
reduce the complexity of the computation at each step, and thus we are reduced in
the end to computation with Delaunay polyhedra of degeneracy 0, i.e., polytopes for
which polytopal methods exist.

8 Algorithms

In [5] a general survey is presented of methods for computing dual description of
highly symmetric polytopes with many facets. Among the methods presented there,
we want to adapt the Recursive Adjacency Decomposition Method to our situation,
i.e., to a case with an inûnite group and an inûnity of deûning inequalities.

8.1 Computing Aut(D)

In this subsection we explain the techniques needed to compute Aut(D), compute
StabD′(Aut(D)), and split orbits. In the decomposition of _eorem 2.5, the only
component that is not clear is Aut(D1), i.e., the computation of the automorphism
group of a Delaunay polytope. For that purpose the methods of [21] that we are using
is the method of isometry groups can be used.

Deûnition 8.1 Let D be a Delaunay polyhedron. Take a lattice L′ with L′⊕ZL(D) =
Zn . Take a basis w1 , . . . ,wr of L′. Denote by v1 , . . . , vm the expression of the vertices
of PL′(D) in the basis (w i).
We deûne the matrix Q by Q = ∑m

i=1 ( 1
v i ) (1, v t

i). From there we deûne the distance
function fD ∶Zn ×Zn ↦ R by
● fD(x , x′) = ϕ(x)Q−1ϕ(x′)T

● with ϕ(x) = (1, u1 , . . . , ur) if x = u1w1 + ⋅ ⋅ ⋅ + urwr + z and z ∈ L(D).

_e construction of the matrix Q and its inverse above is relatively standard. We
used it ûrst in [43], and further work on this was done in [4, 5].

_e interest of this construction is that it allows to compute automorphism groups.

_eorem 8.2 Let D be a Delaunay polyhedron. _e following hold.
(i) If u ∈ Aut(D), then we have fD(u(x), u(y)) = fD(x , y) for x , y ∈ D.
(ii) If L′ is a sublattice such that L′ ⊕Z L(D) = Zn and u is a permutation of PL′(D)

such that fD(u(x), u(y)) = fD(x , y) for x , y ∈ D, then u is induced by an aõne
rational transformation of L′ ⊗R.

Proof (i) By its construction, if z ∈ L(D), then we have fD(x + z, y) = fD(x , y).
_us if u ∈ Aò(D) then u preserves fD . On the other hand, if u ∈ Aut(PL′(D)), then
we can see by summation that u preserves fD . _e proof is available, for example, in
[5, 43].

(ii) _e reverse implication is also available from [5, 43].
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Let us denote by AutQ(P(D)) the group of rational transformations preserving
P(D). By_eorem 8.2.(ii) we have Aut(P(D)) = AGLr(Z)∩AutQ(P(D))with r the
dimension of L′. _e computation of AutQ(P(D)) is done eõciently by using known
partition backtracking so�ware such as [36]; see [4, 5] for more details. In the cases
considered in this paper, the number of vertices is quite small and this computation
is very easy.
A Delaunay polytope is called generating if diòerence between its vertices generate

Zn . If a Delaunay polytope is non-generating, then it is actually a Delaunay poly-
topes for more than one lattice. If P(D) is generating, then we have Aut(P(D)) =
AutQ(P(D)), and we are done. Otherwise, we can apply some of the strategies listed
in [4, Section 3.1]. Here, the situation is particularly simple, and the simplest strategy
of iterating over the group elements and keeping the integral ones works very well.
Also note that the above methods with only slight modiûcations work for testing the
equivalence of Delaunay polyhedra.

8.2 Computing Stabilizers

We now give methods for computing stabilizers of Delaunay polyhedra, more pre-
cisely of the transformations preserving two polyhedra D ⊂ D′, which occurs in our
computations.

Let us select a lattice L′ such that L′ ⊕Z L(D) = Zn . Denote by G1 the group
occurring in _eorem 2.7.

Let us deûne the function fD ,D′ on PL′(D) by fD ,D′(x , y) = ( fD(x , y), fD′(x , y)) .
By_eorem 8.2, the elements of the groupG1 must preserve the function fD ,D′ . _us,
we can use the partition backtrack algorithmof Section 8.1 to get the groupAut( fD ,D′)
of permutations preserving fD ,D′ .

_en we obtain the group G1 by keeping only the elements that are in AGLn(Z)
and preserve D′. _is is possible since the group Aut( fD ,D′) is ûnite and of moderate
size in most cases. All the algorithms above have equivalents for testing equivalence,
and, of course, what has been done for pairs D ⊂ D′ of Delaunay polyhedra can be
extended to triples D ⊂ D′ ⊂ D′′.

8.3 Splitting Orbits

Suppose that we have an orbit Gx of an element x under a group G. For a subgroup
H ⊂ G we wish to decompose Gx into orbits Hx i . Such an orbit splitting decom-
position Gx = ⋃m

i=1 Hx i with x i = g ix is equivalent to a double coset decomposition
G = ⋃m

i=1 Hg i StabG(x).
In the case of interest to us, we haveG = Aut(D),H = Aut(D)∩Aut(D′) for D, D′

Delaunay polyhedra with D ⊂ D′ and x a Delaunay polyhedron included in D. Since
a priori Aut(D) is inûnite, we cannot apply standard tools from computer algebra
so�ware such as GAP [28]. By the ûniteness result _eorem 4.2.(ii) we can ûnd a coset
decomposition G = ⋃m

i=1 Hg i . However, it is not a double coset decomposition; i.e.,
we can have Hg i /= Hg j but still have Hg ix = Hg jx. _erefore, we need to eliminate
duplicate in order to do the orbit splitting.
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8.4 The Flipping Algorithm

Suppose that D1 ⊂ D2 ⊂ D3 are Delaunay polyhedra having

rankperf D1 = 1 + rankperf D2 = 2 + rankperf D3 .

By Lemma 7.4 we know that there exists a unique Delaunay polyhedron D′2 having
D1 ⊂ D′2 ⊂ D3 and D2 /= D′2.

We can ûnd functions f i ∈ Erdahl(n) such that Z( f i) = D i . We can also assume
that CD i = R f i ⊕ CD i+1 for i = 1, 2. We need to ûnd f ′2 ∈ Erdahl(n) such that Z( f ′2) =
D′2.

If L(D3) = 0, then D3 is a polytope; i.e., it has a ûnite number of vertices, and
the algorithm is called the gi� wrapping procedure [5, 6, 43]. If L(D3) /= 0, we have
to modify the algorithm in order to take care of the fact that we have an inûnity of
vertices by writing an iterative algorithm. _is is quite similar to the �ipping in the
Voronoi algorithm [41].

Data: Delaunay polyhedra D1, D2, D3 with D i = Z( f i), f i ∈ Erdahl(n),
D1 ⊂ D2 ⊂ D3 and

rankperf D1 − 2 = rankperf D2 − 1 = rankperf D3 .

Result: f ′2 ∈ Erdahl(n), Delaunay polyhedra D′2 = Z( f ′2), D′2 /= D2 and
D1 ⊂ D′2 ⊂ D3

V← ∅
repeat

v ← random element of Z( f3)
V← V ∪ {v}
L← ( f1(w), f2(w)) for w ∈ V

until L has rank 2;
repeat

{(α1 , β1), (α2 , β2)} ← generators of extreme rays of L.
f ′2 ← {α1 f1 + β1 f2 , α2 f1 + β2 f2} −R f2.
if there is a v ∈ Z( f3) with f ′2(v) < 0 then

V← V ∪ {v}.
L← ( f1(w), f2(w)) for w ∈ V

end
until f ′2 ≥ 0 on Z( f3);
repeat

f ′2 ← f ′2 + f3
until f ′2 ≥ 0 on Zn ;
f ′2 ← f ′2 + f3

Algorithm 2: Flipping algorithm

_e non-negativity test for f ′2 on Zn is done by solving a closest vector problem.
_e non-negativity test on D3 is done by decomposing it into {v1 + L(D3)} ∪ ⋅ ⋅ ⋅ ∪
{vm + L(D3)}. _e non-negativity is tested by m closest vector problems. _e ûnal
operation on f ′2 is done to ensure that f ′2(x) > 0 if x ∉ Z( f3).
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8.5 The Recursive Adjacency Decomposition Method

Given a Delaunay polyhedron D of perfection rank r the algorithm of this section will
give the orbits of Delaunay polyhedraD′ ⊂ D of perfection rank r+1. If degrk(D) = 0,
then the computation of the orbits of Delaunay polyhedra can be achieved by _eo-
rem 3.5(iii).

If degrk(D) > 0, we have to proceed diòerently. By _eorem 7.3 we can limit our-
selves to Delaunay polyhedra with degrk(D) ≤ degrk(D) − 1. _e algorithm takes
one initial Delaunay polyhedron of perfection rank r + 1 and computes the adjacent
Delaunay polyhedron of perfection rank r + 1. If an obtained Delaunay polyhedron is
not equivalent to an existing one, then we insert it into the list. We iterate until all or-
bits have been treated. _e computation of the adjacent Delaunay polyhedra adjacent
to a Delaunay polyhedron D′ requires the computation of orbits the Delaunay poly-
hedra contained in D′. _us, we have a recursive call to the algorithm. Fortunately,
the degeneracy degree diminish by at least 1 so there is no inûnite recursion.

_e mapping from F1 to F2 is done using the orbit splitting procedure. Finding
D′′ from D2, D′, and D is done using the �ipping procedure.

_ere is a degree of choice in the initial Delaunay polyhedron Dinit. _e standard
choice is if D = P(D) + L(D) with L(D) = Zv1 + ⋅ ⋅ ⋅ + Zvdegrk(D) to take Dinit a
Delaunay polyhedron of the form

Dinit = P(D) + {0, v1} +Zv2 + ⋅ ⋅ ⋅ +Zvdegrk(D) .

_e schematic of the algorithm is shown in Algorithm 3.

9 Perfect Delaunay Polytopes in Dimension 7

In the enumeration of an inhomogeneous perfect form in dimension 7, we need to de-
scribe the Delaunay polytopes that will occur. _e list of perfect Delaunay polyhedra
in dimension 7 is thus the following:
(a) {0, 1} ×Z6,
(b) 221 ×Z with 221 the Schlä�i polytope,
(c) 321 the Gosset polytope [12],
(d) ER7 the polytopes discovered by Erdahl and Rybnikov [24, 25].
_e geometry of the Schlä�i and Gosset polytopes are described in more detail in
[12, 15].
An aõne basis of a n-dimensional Delaunay polytope D is a family of n+ 1 vertices

v0 , . . . , vn such that for any vertex v of D there exist λ i ∈ Z such that v = ∑n
i=0 λ iv i .

_e perfect Delaunay polytopes of dimension 7 have an aõne basis, but it is possible
that in higher dimension there are perfect Delaunay polytopes without an aõne basis.
It is known that in dimension at least 12, there are Delaunay polytopes with no aõne
basis [18]. Also, the perfect Delaunay polytopes of dimension 7 are generating. Note
that in [19] we found some non-generating perfect Delaunay polytopes for n ≥ 13. We
have rankperf({0, 1}n) = n (see, for example, [12, 13]).

In terms of computation, the overwhelming majority of the time is spent comput-
ing the rank 2 faces of {0, 1} × Z6. By the recursive approach chosen, the method
requires the computation of the facets of Erdahl∗supp({0, 1}7), and so by _eorem 3.7
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Data: Delaunay polyhedron D of perfection rank r
Result: Set F = {D1 , . . . ,Dm} of Delaunay polyhedron of perfection rank r + 1

inequivalent under AutD
if degrk(D) = 0 then

U ← orbits of facets of Erdahl∗supp(D).
F ← orbits of Delaunay polyhedron from _eorem 3.5.(iii).

else
T ← {Dinit} with Dinit ∈ Erdahl(n), rankperf Z(Dinit) = r + 1 and
degrk(Dinit) = degrk(D) − 1.
F ← ∅.
while there is a D′ ∈ T with degrk(D′) ≤ degrk(D) − 1 do

F ← F ∪ {D′}.
T ← T ∖ {D′}.
F1 ← orbits of Delaunay polyhedra of perfection rank r + 2 in D′ under
AutD′.
F2 ← orbits of Delaunay polyhedra of perfection rank r + 2 in D′ under
Stab(D′ ,D).
for D2 ∈ F2 do

ûnd Delaunay polyhedron D′′ ⊂ D of perfection rank r + 1 with
D2 = D′ ∩ D′′.
if D′′ is not equivalent under AutD to an element of F ∪ T then

if degrk(D′′) = degrk(D) then
F ← F ∪ { f ′}

else
T ← T ∪ { f ′}

end
end

end
end

end
Algorithm 3: Enumeration of inequivalent sub Delaunay polyhedra

of the facets of CUTP8. We actually computed the list of orbits of facets of CUTP8
(and some other graph cut polytopes) in [9]. In dimension 8 the partial enumeration
algorithm of [16] found 27 perfect Delaunay polytopes, and it is likely that the list is
complete. But to prove its completeness by using the method of this work would re-
quire the determination of all facets of CUTP9, and this is very diõcult [6]. In [16]
a partial enumeration of perfect Delaunay polytopes was done with only Delaunay
polyhedra with L(D) = 0 being considered. _e two perfect Delaunay polytopes of
dimension 7 were determined in this paper, and our enumeration proves that the list
is complete.

_e implementation is available from [17] and uses the GAP computer algebra sys-
tem [28].
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10 Classification of Delaunay Simplices in Dimension 7

Formula (6.1) gives 187 as an upper bound on the volume of Delaunay simplex sets.
With this upper bound we can devise an algorithm for enumeration of Delaunay sim-
plex sets, which will unfortunately prove ineõcient.

Remark 10.1 Suppose we have a list of types of Delaunay simplex sets in di-
mension n − 1. If S = {v0 , . . . , vn−1 , vn} is a Delaunay simplex set of dimension
n, then {v0 , . . . , vn−1} is a n − 1 dimensional Delaunay simplex sets of the lattice
v1 − v0 , . . . , vn−1 − v0.

Suppose we have an n − 1 dimensional Delaunay simplex set v0 = 0, v i ∈ Zn−1

for 1 ≤ i ≤ n − 1 of volume v. We write the n-dimensional simplex as v′0 = (v0 , 0),
v′1 = (v1 , 0), . . . , v′n−1 = (vn−1 , 0), and v′n = (x1 , . . . , xn−1 , xn) with xn > 0. _e volume
of the simplex deûned by (v′i) is vxn .
For a ûxed xn the number of possibilities for (x1 , . . . , xn−1) is xn−1

n /v.

_eDelaunay simplices of dimension 6were classiûed in [2], and sowe could apply
the algorithm of Remark 10.1. Unfortunately the number of possibilities to be applied
is very large, of the order of 1876, on which we have to apply Algorithm 1.

_erefore, we need a diòerent method.

Lemma 10.2 Let S be a Delaunay simplex set that is not contained in any perfect
Delaunay polyhedron diòerent from {0, 1} ×Zn−1. _e possibilities are the following:
(i) For n ≤ 4 the Delaunay simplices of volume 1.
(ii) For n = 5 the Delaunay simplex of volume 1 or 2.
(iii) For n = 6 or 7 there are no possibilities.

Proof Let us take a Delaunay simplex set S = {v0 , . . . , vn}. We can assume that v0 is
located at the origin by using translation if necessary. For each 1 ≤ i ≤ n let us deûne
ℓ i the linear form on Rn such that ℓ i(v i) = 1 and ℓ i(v j) = 0 for i /= i. Any Delaunay
polyhedronD isomorphic to {0, 1}×Zn−1 and such that S ⊂ D corresponds to a linear
form ℓ on Rn such that ℓ(v i) ∈ {0, 1} and

D = {x ∈ Zn ∣ ℓ(x) = 0 or 1}.

_e linear form ℓ is then called admissible, and the corresponding quadratic function
is qℓ(x) = ℓ(x)(ℓ(x) − 1).

Let us denote by S ⊂ {1, . . . , n} the set of points i such that ℓ(x) = 1. Clearly, one
can write ℓ = ∑i∈S ℓ i . A function ℓ is admissible if and only if ℓ is integral valued on
Zn . If it is not integral valued, then there exists a v ∈ Zn such that 0 < ℓ(v) < 1 which
implies that qℓ(v) < 0 which is not allowed. If it is integral valued, then D = Z(qℓ) is
equivalent to {0, 1} ×Zn−1. In the sequel, for a set S ⊂ {1, . . . , n}, we write

ℓS = ∑
i∈S

ℓ i and vS = ∑
i∈S

v i .

Let us deûne
S = {S ⊂ {1, . . . , n} ∣ ℓS is integral valued} .
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Let us denote by ZS the Z-span of the elements vS for S ∈ S. _is deûnes a lattice L
of Zn . Since S is contained only in Delaunay polyhedra isomorphic to {0, 1} × Zn−1

the set of the function qℓS is full-dimensional. _is implies that ∣S∣ ≥ n(n + 1)/2 and
that the lattice L is actually full-dimensional. Denote its index by h.

_e set of the function ℓS is also full-dimensional in (Zn)∗. Its index is

h/ vol(S) ≥ 1.

We are interested in the point sets of the form {0, 1}n ∩ L with L an aõne subspace
of Zn . By direct enumeration we obtain the full list of 3363 orbits of such points for
n = 7. By selecting the point sets whose cone of functions qℓS is full-dimensional, we
get an upper bound of 3 on the index h and so an upper bound of 3 on the possible
volumes of such simplices.

With volume at most 3 we can apply the algorithm implied by Remark 10.1. Each
facet of such a Delaunay simplex is also a Delaunay simplex of one dimension lower.
_erefore, we can use previous enumeration result to get a list of 796 possible can-
didates of 7-dimensional Delaunay simplices. We then use Algorithm 1 for checking
which of them are indeed Delaunay simplices. _is gives 6 cases (the ones of Table 1
of volume at most 3). Each one of them is also contained in a Delaunay polytope ER7
and so there is no such Delaunay simplices in dimension 7.
Dimension n ≤ 6 follows from known results.

Proof of_eorem 1.4 If S is a Delaunay simplex set, then Hyp(S ,Z7) is a full-di-
mensional polyhedral cone, i.e., deûned by a ûnite number of inequalities and having
a ûnite number of extreme rays. Any such extreme ray corresponds to a perfect De-
launay polyhedronD. We have ∣S∣ = 8, and S deûnes a face of the cone Erdahl∗supp(D).
By Lemma 10.2, S has to be contained in a Delaunay polyhedron of type 321, ER7,

or 221 ×Z.
_e perfect Delaunay polyhedron ER7 has 35 vertices. _is matches the lower

bound given by Proposition 3.6. As a consequence, any 8-element subset of ER7 de-
ûnes a face of Erdahl∗supp(ER7). _e automorphism group of ER7 has size 1440, and
by using it one can get easily the 9434 orbits of 8-element subsets of ER7. Actually, all
eleven types of simplices occur this way.

_e Gosset polytope 321 has 56 vertices, and the automorphism group is equal to
theWeyl group of the root lattice E7. We found 521 orbits of 8-element sets in 321; 474
of them correspond to faces of Erdahl∗supp(321).
For the perfect Delaunay polyhedron 221 ×Z we have to proceed diòerently, since

the number of points to be considered is inûnite. We have to enumerate the possible
8-point subsets of 221 × Z of volume at most 187 (Formula (6.1)) up to the action of
Aut(221 × Z). _e 8 points are expressed in the form v i = (w i , h i) with w i ∈ 221
and h i ∈ Z. _e set of points (w i)1≤i≤8 must deûne a 6-dimensional aõne space.
_us, 7 of them, say (w i)1≤i≤7, must be suõcient to deûne a 6-dimensional Delaunay
simplex set SSch. An exhaustive enumeration on the 27 vertices of 221 gives 31 types
up to isomorphism. _e volume vol(SSch) can be 1, 2, or 3. If the volume is 1, then we
can use an element of Aò(221×Z) and obtain h i = 0 for 1 ≤ i ≤ 7. For higher volumes,
the situation is more complicated, but by using Aò(221×Z) and linear algebra we can
reduce to vol(SSch) possibilities, i.e., 2 or 3. For the last point (v8 , h8), we have 27
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possibilities for v8 and a ûnite number for h8 due to the upper bound of 187. We then
apply Algorithm 1 to test realizability of the ûnite list of possible cases. _is gives us
the eleven possible simplices.

Acknowledgments _e author thanks Viacheslav Grishukhin and Achill Schür-
mann for useful discussion on this work.
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