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Abstract. We present Rigid Field Hydrodynamic simulations of the magnetosphere of σ Ori E.
We find that the X-ray emission from the star’s magnetically confined wind shocks is very
sensitive to the assumed mass-loss rate. To compare the simulations against the measured X-ray
emission, we first disentangle the star from its recently discovered late-type companion using
Chandra HRC-I observations. This then allows us to place an upper limit on the mass-loss rate
of the primary, which we find to be significantly smaller than previously imagined.
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1. Introduction
The B2Vpe star σ Ori E has long been known to possess a strong (∼ 10 kG), dipolar

magnetic field (e.g., Landstreet & Borra 1978). It is widely believed that the star’s strong,
relatively hard X-ray emission (e.g., Sanz-Forcada et al. 2004; Skinner et al. 2008) arises
when wind streams, channeled and confined by the strong field, collide with each other
and shock-heat to millions of Kelvin. To test this hypothesis, Townsend et al. (2007)
formulated a new Rigid Field Hydrodynamic (RFHD) approach for simulating the time-
dependent wind flow along field lines, which are assumed rigid in accordance with the
star’s very large magnetic confinement parameter, η∗ ∼ 107 (see ud-Doula & Owocki
2002).

2. RFHD Analysis
We have modified the RFHD code described in Townsend et al. (2007) to incorporate

energy transport by field-parallel electron thermal conduction. We have also introduced
an algorithm that limits the time-step to the smallest characteristic time scale of the
differing processes (hydrodynamic and energetic) in the simulation; this is to improve
coupling between these processes.

The most notable result from these modifications is an overall cooling of the magne-
tosphere, relative to simulations based on previous versions of the RFHD code. This is
due to thermal conduction, which transfers heat from the hot, low-density post-shock
regions to the cool, high-density equatorial accumulation disk, where it can be radiated
away efficiently. As a consequence, typical magnetospheric temperatures do not reach the
levels reported by Townsend et al. (2007).

A further significant finding, illustrated in Fig. 1, is that the X-ray differential emission
measure (DEM) is very sensitive to changes in the mass-loss rate, as parametrized via
the Q̄ introduced by Gayley (1995) to characterize the overall opacity available for line
driving in the Castor, Abbott & Klein (1975) wind formalism.
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Figure 1. The time-averaged DEM from three
20 Msec RFHD simulations of σ Ori E, each dif-
fering only in the choice of opacity parameter Q̄.
Increasing Q̄ (bottom curve to top curve) leads
to disproportionately stronger X-ray emission,
and also hardens the spectrum.

Figure 2. Lucy-Richardson deconvolution
of the Chandra HRC-I image of σ Ori E.
The lower-left circle marks the position of
the primary, and the upper-right circle the
position of the companion as measured by
Bouy et al. (2009).

3. Observational Comparison
When comparing our simulated DEMs against X-ray observations of σ Ori E, we must

contend with the possibility of emission from the late-type companion claimed by Bouy
et al. (2009). Using a Lucy-Richardson deconvolution of the Chandra HRC-I observations
of the star (PI: S. Wolk), we find that approximately two-thirds of the observed X-rays
(during quiescence) come from a source at the same offset and position angle as the
proposed companion (see Fig. 2). This both confirms the companion’s existence, and
indicates that only one-third of the observed X-rays originate from the primary.

Complementary Chandra ACIS-I observations (Skinner et al. 2008) indicate an overall
X-ray emission measure (0.2− 3 keV) of ∼ 2× 1053 cm−3 , so the emission measure of the
primary should be on the order 7× 1052 cm−3 . This is approximately half that predicted
by our Q̄ = 200 simulation, indicating that the mass loss rate of the primary must be
less than the ∼ 2.4×10−11 M� yr−1 derived from this simulation. Standard CAK theory
predicts significantly higher mass-loss rates for a B2V star, on the order of 10−9 M� yr−1 ;
thus, we conclude that there is something unusual about the wind of the σ Ori E primary.
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