The Structure of the Unit Group of the Group Algebra $\mathbb{F}_{2^{k}} D_{8}$

Leo Creedon and Joe Gildea

Abstract. Let $R G$ denote the group ring of the group G over the ring R. Using an isomorphism between $R G$ and a certain ring of $n \times n$ matrices in conjunction with other techniques, the structure of the unit group of the group algebra of the dihedral group of order 8 over any finite field of chracteristic 2 is determined in terms of split extensions of cyclic groups.

1 Introduction

Let $R G$ denote the group ring of the group G over the ring R. When a ring S contains the identity 1_{S}, an element a of S is invertible if and only if there exists an element $s \in S$ such that $a \cdot s=s \cdot a=1_{S}$. The set of all the invertible elements of S forms a group called the unit group of S, denoted by $\mathcal{U}(S)$. The homomorphism $\varepsilon: R G \rightarrow R$ given by

$$
\varepsilon\left(\sum_{g \in G} a_{g} g\right)=\sum_{g \in G} a_{g}
$$

is called the augmentation mapping of $R G$. The normalized unit group of $R G$ denoted by $V(R G)$ consists of all the invertible elements of $R G$ of augmentation 1. It is a well-known fact that $\mathcal{U}(R G) \cong \mathcal{U}(R) \times V(R G)$. For further details and background see Polcino Milies and Sehgal [10]. In [11], a basis for $V\left(\mathbb{F}_{p} G\right)$ is determined where \mathbb{F}_{p} is the Galois field of p elements and G is an abelian p-group.

We are interested in the structure of $\mathcal{U}(F G)$ where F is a field of characteristic 2 and G is a finite 2-group. If G is a finite 2 -group and F is a field of characteristic 2, then $V(F G)$ is a finite 2-group of order $|F|^{|G|-1}$. The structure of the unit group of the group algebra $\mathbb{F}_{2} D_{8}$ is established in [12], where D_{8} is the dihedral group of order 8. In [7], the unit group of $\mathbb{F}_{p^{m}} G$ is described where $\left|\mathbb{F}_{p^{m}} G\right|<2^{10}$.

The map $*: K G \longrightarrow K G$ defined by

$$
\left(\sum_{g \in G} a_{g} g\right)^{*}=\sum_{g \in G} a_{g} g^{-1}
$$

is an antiautomorphism of $K G$ of order 2. An element v of $V(K G)$ satisfying $v^{-1}=$ v^{*} is called unitary. We denote by $V_{*}(K G)$ the subgroup of $V(K G)$ formed by the unitary elements of $K G$. In [1], a basis for $V_{*}(F G)$ is established, where F is any finite field and G is an abelian p-group. In [3], V. Bovdi and A. L. Rosa determine the order

[^0]of $V_{*}\left(\mathbb{F}_{2^{k}} D_{8}\right)$ where $D_{8}=\left\langle x, y \mid x^{4}=1, y^{2}=1, y x=x^{-1} y\right\rangle$. Since D_{8} is extra special, $V_{*}\left(\mathbb{F}_{2^{k}} D_{8}\right)$ is normal in $V\left(\mathbb{F}_{2^{k}} D_{8}\right)$ by Bovdi and Kovács [2].

Let $M_{n}(R)$ be the ring of $n \times n$ matrices over R. Using an isomorphism between $R G$ and a subring of $M_{n}(R)$ and other techniques, we establish the structure of $\mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right)$.

The main result is that the unit group of $\mathbb{F}_{2^{k}} D_{8}$ is isomorphic to

$$
\left.\left[\left(\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right) \times C_{2}^{k}\right) \rtimes C_{2^{k}}\right)\right] \times C_{2^{k}-1}
$$

The techniques described in this paper can be easily implemented using the LAGUNA package [4] for the GAP system [13].

1.1 Background

Definition 1.1 A circulant matrix over a ring R is a square $n \times n$ matrix of the form

$$
\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ldots & a_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{2} & a_{3} & a_{4} & \ldots & a_{1}
\end{array}\right)
$$

where $a_{i} \in R$.
For further details on circulant matrices, see Davis [6].
Fix a labeling of elements of G by indices $\{1,2, \ldots, n\}$, so $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$. Then the matrix

$$
\left(\begin{array}{ccccc}
g_{1}^{-1} g_{1} & g_{1}^{-1} g_{2} & g_{1}^{-1} g_{3} & \ldots & g_{1}-1 \\
g_{n} \\
g_{2}{ }^{-1} g_{1} & g_{2}{ }^{-1} g_{2} & g_{2}{ }^{-1} g_{3} & \ldots & g_{2}^{-1} g_{n} \\
g_{3}-1 g_{1} & g_{3}^{-1} g_{2} & g_{3}^{-1} g_{3} & \ldots & g_{3}^{-1} g_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
g_{n}{ }^{-1} g_{1} & g_{n}{ }^{-1} g_{2} & g_{n}{ }^{-1} g_{3} & \ldots & g_{n}{ }^{-1} g_{n}
\end{array}\right)
$$

is called the matrix of G (with respect to this labeling) and is denoted by $M(G)$. Let $w=\sum_{i=1}^{n} \alpha_{g_{i}} g_{i} \in R G$ where R is a ring. Then the matrix

$$
\left(\begin{array}{ccccc}
\alpha_{g_{1}-1} g_{1} & \alpha_{g_{1}-1} g_{2} & \alpha_{g_{1}-1} g_{3} & \ldots & \alpha_{g_{1}-1} g_{n} \\
\alpha_{g_{2}-1} g_{1} & \alpha_{g_{2}-1} g_{2} & \alpha_{g_{2}-1} g_{3} & \ldots & \alpha_{g_{2}-1} g_{n} \\
\alpha_{g_{3}-1}-1 g_{1} & \alpha_{g_{3}-1} g_{2} & \alpha_{g_{3}-1 g_{3}} & \ldots & \alpha_{g_{3}-1 g_{n}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{g_{n}-1} g_{1} & \alpha_{g_{n}-1} g_{2} & \alpha_{g_{n}-1 g_{3}} & \ldots & \alpha_{g_{n}-1 g_{n}}
\end{array}\right)
$$

is called the $R G$-matrix of w and is denoted by $M(R G, w)$. The following result can be found in [9].

Theorem 1.2 Given a labeling of the elements of a group G of order n, there is a ring isomorphism between $R G$ and the $n \times n G$-matrices over R. This isomomorphism is given by $\sigma: w \mapsto M(R G, w)$.

Example 1.3 Let $D_{2 n}=\left\langle x, y \mid x^{n}=1, y^{2}=1, y x=x^{-1} y\right\rangle$ and

$$
\kappa=\sum_{i=0}^{n-1} a_{i} x^{i}+\sum_{j=0}^{n-1} b_{j} x^{j} y \in \mathbb{F}_{p^{k}} D_{2 n},
$$

where $a_{i}, b_{j} \in \mathbb{F}_{p^{k}}, p$ is a prime and $m \in \mathbb{N}_{0}$, then $\sigma(\kappa)=\left(\begin{array}{cc}A & B \\ B^{T} & A^{T}\end{array}\right)$, where $A=$ $\operatorname{circ}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ and $B=\operatorname{circ}\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$.

The next result can be found in [5].
Theorem 1.4 Let A, B, C, and D be $n \times n$ matrices. Then $\operatorname{det}\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)=\operatorname{det}(A D-B C)$ if C and D commute.

The next two results can be found in [8].
Proposition 1.5 Let $A=\operatorname{circ}\left(a_{0}, a_{2}, \ldots, a_{p^{m}-1}\right)$, where $a_{i} \in \mathbb{F}_{p^{k}}, p$ is a prime and $m \in \mathbb{N}_{0}$. Then

$$
\operatorname{det}(A)=\sum_{i=0}^{p^{m}-1} a_{i} p^{m}
$$

Proposition 1.6 Let $A=\operatorname{circ}\left(a_{1}, a_{2}, \ldots, a_{p^{m}}\right)$ and $B=\operatorname{circ}\left(b_{1}, b_{2}, \ldots, b_{p^{m}}\right)$, where $a_{i}, b_{j} \in \mathbb{F}_{p^{k}}, p$ is a prime and $m \in \mathbb{N}_{0}$. Then

$$
\operatorname{det}(A \pm B)=\operatorname{det}(A) \pm \operatorname{det}(B)
$$

Theorem $1.7 \mathcal{U}\left(\mathbb{F}_{2^{k}} C_{2}\right) \cong C_{2}{ }^{k} \times C_{2^{k}-1}$.
Proof Let $C_{2}=\left\langle x \mid x^{2}=1\right\rangle$. Clearly $\left|V\left(\mathbb{F}_{2^{k}} C_{2}\right)\right|=2^{k}$. Let $\alpha=a+b x \in V\left(\mathbb{F}_{2^{k}} C_{2}\right)$, where $a, b \in \mathbb{F}_{2^{k}}$. Then $\alpha^{2}=a^{2}+b^{2}=(a+b)^{2}=1$, since $\alpha \in V\left(\mathbb{F}_{2^{k}} C_{2}\right)$. Therefore $V\left(\mathbb{F}_{2^{k}} C_{2}\right)$ has exponent 2.

2 The Structure of $\mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right)$

Define the group epimorphism $\theta: \mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right) \rightarrow \mathcal{U}\left(\mathbb{F}_{2^{k}} C_{2}\right)$ given by

$$
\sum_{i=0}^{3} a_{i} x^{i}+\sum_{j=0}^{3} b_{j} x^{j} y \longmapsto \sum_{i=0}^{3} a_{i}+\sum_{j=0}^{3} b_{j} \bar{y}
$$

where $a_{i}, b_{j} \in \mathbb{F}_{2^{k}}$, where \bar{y} is the generator of the group C_{2}.
Define the group homomorphism $\psi: \mathcal{U}\left(\mathbb{F}_{2^{k}} C_{2}\right) \rightarrow \mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right)$ by $a+b \bar{y} \mapsto a+b y$. Then $\theta \circ \psi(a+b \bar{y})=\theta(a+b y)=a+b \bar{y}$. Therefore, $\mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right)$ is a split extension of $\mathcal{U}\left(\mathbb{F}_{2^{k}} C_{2}\right)$ by $\operatorname{ker}(\theta)$.

Therefore,

$$
\mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right) \cong H \rtimes \mathcal{U}\left(\mathbb{F}_{2^{k}} C_{2}\right) \cong H \rtimes\left(C_{2}^{k} \times C_{2^{k}-1}\right) \cong\left(H \rtimes C_{2}^{k}\right) \times C_{2^{k}-1}
$$

where $H \cong \operatorname{ker}(\theta)$. Note that

$$
|H|=\frac{2^{7 k}\left(2^{k}-1\right)}{2^{k}\left(2^{k}-1\right)}=2^{6 k}
$$

Proposition 2.1 H has exponent 4.

Proof Let

$$
\alpha=\sum_{i=0}^{3} a_{i} x^{i}+\sum_{j=0}^{3} b_{j} x^{j} y \in \mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right)
$$

where $a_{i}, b_{j} \in \mathbb{F}_{2^{k}}$. Then

$$
\begin{gathered}
\alpha \in H \Longleftrightarrow \sum_{i=0}^{3} a_{i}=1 \text { and } \sum_{j=0}^{3} b_{j}=0, \\
\alpha^{2}=\left(a_{0}+a_{2}\right)^{2}+\left(\sum_{j=0}^{3} b_{j}\right)^{2}+\left(b_{0}+b_{2}\right)\left(b_{1}+b_{3}\right) x+\left(a_{1}+a_{3}\right)^{2} x^{2} \\
+\left(b_{0}+b_{2}\right)\left(b_{1}+b_{3}\right) x^{3}+\left(a_{1}+a_{3}\right)\left(b_{1}+b_{3}\right) y+\left(a_{1}+a_{3}\right)\left(b_{0}+b_{2}\right) x y \\
+\left(a_{1}+a_{3}\right)\left(b_{1}+b_{3}\right) x^{2} y+\left(a_{1}+a_{3}\right)\left(b_{0}+b_{2}\right) x^{3} y
\end{gathered}
$$

Therefore every element of order 2 has the form $1+s+t x+s x^{2}+t x^{3}+u y+v x y+$ $u x^{2} y+v x^{3} y$, where $s, t, u, v \in \mathbb{F}_{2^{k}}$.

Then

$$
\alpha^{4}=\sum_{i=0}^{3} a_{i}^{4}+\sum_{j=0}^{3} b_{j}^{4}=\left(\sum_{i=0}^{3} a_{i}\right)^{4}+\left(\sum_{j=0}^{3} b_{j}\right)^{4}=1
$$

Proposition 2.2 Let $\alpha \in H$. Then $[\sigma(\alpha)]^{-1}=[\sigma(\alpha)]^{*}$, where $[\sigma(\alpha)]^{*}$ is the adjoint matrix of $\sigma(\alpha)$.

Proof Let

$$
\alpha=\sum_{i=0}^{3} a_{i} x^{i}+\sum_{j=0}^{3} b_{j} x^{j} y \in H
$$

where $a_{i}, b_{j} \in \mathbb{F}_{2^{k}}$. Then $\sigma(\alpha)=\left(\begin{array}{cc}A & B \\ B^{T} & A^{T}\end{array}\right)$ where $A=\operatorname{circ}\left(a_{0}, a_{1}, a_{2}, a_{3}\right), B=$
$\operatorname{circ}\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$. Using Theorem 1.4 and Propositions 1.5 and 1.6 it is clear that

$$
\begin{aligned}
\operatorname{det}(\sigma(\alpha)) & =\operatorname{det}\left(A A^{T}-B B^{T}\right) \\
& =\operatorname{det}\left(A A^{T}\right)+\operatorname{det}\left(B B^{T}\right) \\
& =\operatorname{det}\left(A^{2}\right)+\operatorname{det}\left(B^{2}\right) \\
& =(\operatorname{det}(A)+\operatorname{det}(B))^{2} \\
& =\left(\sum_{i=0}^{3} a_{i}^{4}+\sum_{j=0}^{3} b_{j}^{4}\right)^{2}=\left(\left(\sum_{i=0}^{3} a_{i}\right)^{4}+\left(\sum_{j=0}^{3} b_{j}\right)^{4}\right)^{2}=1
\end{aligned}
$$

since $\alpha \in H$.
Proposition 2.3 Let S be the subset of H consisting of elements of the form

$$
\left(1+\sum_{i=0}^{3} a_{i}\right)+\sum_{i=0}^{3} a_{i} x^{i}+\sum_{i=0}^{3} a_{i} y+\sum_{i=0}^{3} a_{i} x^{i} y
$$

where $a_{i} \in \mathbb{F}_{2^{k}}$ and $\sum_{i=0}^{3} a_{i}=1$. Then S is a group and $S \cong C_{2}{ }^{k} \times C_{4}{ }^{k}$.
Proof Let

$$
x_{1}=\left(1+\sum_{i=0}^{3} a_{i}\right)+\sum_{i=0}^{3} a_{i} x^{i}+\sum_{i=0}^{3} a_{i} y+\sum_{i=0}^{3} a_{i} x^{i} y
$$

and

$$
x_{2}=\left(1+\sum_{j=0}^{3} b_{j}\right)+\sum_{j=0}^{3} b_{j} x^{j}+\sum_{j=0}^{3} b_{j} y+\sum_{j=0}^{3} b_{j} x^{j} y
$$

where $a_{i}, b_{j} \in \mathbb{F}_{2^{k}}, \sum_{i=0}^{3} a_{i}=1$ and $\sum_{j=0}^{3} b_{j}=1$. Then
$x_{1} x_{2}=\left(1+\gamma+\sum_{i=0}^{3}\left(a_{i}+b_{i}\right)\right)+\sum_{i=0}^{3}\left(a_{i}+b_{i}+\gamma\right) x^{i}+\sum_{i=0}^{3}\left(a_{i}+b_{i}+\gamma\right) y+\sum_{i=0}^{3}\left(a_{i}+b_{i}+\gamma\right) x^{i} y$, where $\gamma=\left(a_{1}+a_{3}\right)\left(b_{1}+b_{3}\right)$. Therefore S is closed under multiplication and $|S|=2^{3 k}$. It can easily be shown that S is abelian.

Therefore $S \cong C_{2}{ }^{l} \times C_{4}{ }^{m}$ for some l and m. Consider $C_{2}{ }^{l} \times C_{4}{ }^{m}$. The number of elements of order 2 or 1 is $2^{l} 2^{m}=2^{l+m}$. Therefore the number of elements of order 4 is $2^{l} 4^{m}-2^{l+m}=2^{l+m}\left(2^{m}-1\right)$. Then

$$
x_{1}^{2}=1+\sum_{i=1}\left(a_{1}+a_{3}\right)^{2} x^{i}+\sum_{j=1}\left(a_{1}+a_{3}\right)^{2} x^{j} y \quad \text { and } \quad x_{1}^{2}=1 \Longleftrightarrow a_{1}=a_{3} .
$$

However, the number of elements in S of order 2 or 1 is $2^{2 k}$. Therefore the number of elements of S of order 4 is $2^{3 k}-2^{2 k}=2^{2 k}\left(2^{k}-1\right)$. Thus $l+m=2 k, m=k \Longrightarrow$ $l=m=k$ and $S \cong C_{2}{ }^{k} \times C_{4}{ }^{k}$.

Proposition 2.4 Let N be the subset of H consisting of elements of the form $1+p x+$ $p x^{3}+q y+r x y+r x^{2} y+q x^{3} y$, where $p, q, r \in \mathbb{F}_{2^{k}}$. Then N is a group, $N \cong C_{2}{ }^{k} \times C_{4}{ }^{k}$ and $N \triangleleft H$.

Proof Let

$$
\begin{aligned}
& n_{1}=1+p_{1} x+p_{1} x^{3}+q_{1} y+r_{1} x y+r_{1} x^{2} y+q_{1} x^{3} y \in Y \text { and } \\
& n_{2}=1+p_{2} x+p_{2} x^{3}+q_{2} y+r_{2} x y+r_{2} x^{2} y+q_{2} x^{3} y \in Y
\end{aligned}
$$

where $p_{i}, q_{r}, r_{l} \in \mathbb{F}_{2^{k}}$. Then

$$
\begin{aligned}
n_{1} n_{2}=1+\left(p_{1}+p_{2}+\gamma_{1}\right) x+\left(p_{1}+p_{2}+\right. & \left.\gamma_{1}\right) x^{3}+\left(q_{1}+q_{2}+\gamma_{2}\right) y+\left(r_{1}+r_{2}+\gamma_{2}\right) x y \\
& +\left(r_{1}+r_{2}+\gamma_{2}\right) x^{2} y+\left(q_{1}+q_{2}+\gamma_{2}\right) x^{3}
\end{aligned}
$$

where $\gamma_{1}=q_{1} q_{2}+r_{1} q_{2}+q_{1} r_{2}+r_{1} r_{2}$ and $\gamma_{2}=p_{1} q_{2}+p_{1} r_{2}+r_{1} p_{2}+q_{1} p_{2}$. Therefore N is closed under multiplication and $|N|=2^{3 k}$. It can easily be shown that N is abelian.

Let

$$
\begin{aligned}
& \alpha=1+p x+p x^{3}+q y+r x y+r x^{2} y+q x^{3} y \in N \text { and } \\
& h=\sum_{i=0}^{3} a_{i} x^{i}+\sum_{j=0}^{3} b_{j} x^{j} y \in H
\end{aligned}
$$

where $p, q, r, a_{i}, b_{j} \in \mathbb{F}_{2^{k}}$. Then

$$
\begin{aligned}
\sigma\left(h^{-1} \alpha h\right) & =\left(\begin{array}{cc}
E & F \\
F^{T} & E^{T}
\end{array}\right)^{*}\left(\begin{array}{cc}
A & B \\
B^{T} & A
\end{array}\right)\left(\begin{array}{cc}
E & F \\
F^{T} & E^{T}
\end{array}\right) \\
& =\left(\begin{array}{cc}
A & G \\
G^{T} & A
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
A=\operatorname{circ}(1, p, 0, p), & B=\operatorname{circ}(q, r, r, q) \\
E=\operatorname{circ}\left(a_{0}, a_{1}, a_{2}, a_{3}\right), & F=\operatorname{circ}\left(b_{0}, b_{1}, b_{2}, b_{3}\right) \\
G=\operatorname{circ}(q+\lambda, r+\lambda, r+\lambda, q+\lambda), & \lambda=(r+q)\left(a_{1}+a_{3}\right)
\end{array}
$$

Thus $N \triangleleft H$.
Also $\alpha^{2}=1+(r+q)\left(x+x^{3}\right)$. Therefore $\alpha^{2}=1 \Longleftrightarrow r=q$. Repeating the argument used in the previous lemma, $N \cong C_{2}{ }^{k} \times C_{4}{ }^{k}$.

Proposition $2.5 \quad H=N S$.
Proof By the second Isomorphism Theorem, $S / S \cap N \cong N S / N$. Thus $|N S / N|=2^{3 k}$ and $|N S|=2^{6 k}$. Therefore $H=N S$.
Theorem $\left.2.6 \mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right) \cong\left[\left(\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right) \times C_{2}{ }^{k}\right) \rtimes C_{2^{k}}\right)\right] \times C_{2^{k}-1}$.

Proof Clearly $N \cap S=1$, therefore $H \cong N \rtimes S$ and $\mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right) \cong\left((N \rtimes S) \rtimes C_{2}{ }^{k}\right) \times$ $C_{2^{k}-1}$.

Let

$$
\begin{aligned}
& s=\left(1+\sum_{i=0}^{3} a_{i}\right)+\sum_{i=0}^{3} a_{i} x^{i}+\sum_{i=0}^{3} a_{i} y+\sum_{i=0}^{3} a_{i} x^{i} y \in S \text { and } \\
& n=1+p x+p x^{3}+q y+r x y+r x^{2} y+q x^{3} y \in N .
\end{aligned}
$$

Then

$$
\begin{aligned}
n^{s}=1+p x+p x^{3}+(& \left.q+(r+q)\left(a_{1}+a_{3}\right)\right) y+\left(r+(r+q)\left(a_{1}+a_{3}\right)\right) x y \\
& +\left(r+(r+q)\left(a_{1}+a_{3}\right)\right) x^{2} y+\left(q+(r+q)\left(a_{1}+a_{3}\right)\right) x^{3} y .
\end{aligned}
$$

Therefore $n^{s}=n$ if and only if $a_{1}=a_{3}$. If $a_{1}=a_{3}$, then $s^{2}=1$. Therefore the elements of order 2 in S act trivially on N and

$$
N \rtimes S \cong\left(C_{2}{ }^{k} \times C_{4}{ }^{k}\right) \rtimes\left(C_{2}{ }^{k} \times C_{4}{ }^{k}\right) \cong\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right) \times C_{2}{ }^{k} .
$$

Thus

$$
\left.\mathcal{U}\left(\mathbb{F}_{2^{k}} D_{8}\right) \cong\left[\left(\left(\left(C_{2}{ }^{k} \times C_{4}{ }^{k}\right) \rtimes C_{4}{ }^{k}\right) \times C_{2}{ }^{k}\right) \rtimes C_{2}{ }^{k}\right)\right] \times C_{2^{k}-1} .
$$

References

[1] A. A. Bovdi and A. Szakács, A basis for the unitary subgroup of the group algebra of units in a finite commutative group algebra. Publ. Math. Debrecen 46(1995), no. 1-2, 97-120.
[2] V. Bovdi and L. G. Kovács, Unitary units in modular group algebras. Manuscr. Math. 84(1994), no. 1, 57-72. doi:10.1007/BF02567443
[3] V. Bovdi and A. L. Rosa, On the order of the unitary subgroup of a modular group algebra. Comm. Algebra 28(2000), no. 4, 1897-1905. doi:10.1080/00927870008826934
[4] V. Bovdi, A. Konovalov, R. Rossmanith, and C. Schneider. LAGUNA - Lie AlGebras and UNits of group Algebras. http://www.gap-system.org/Packages/laguna.html
[5] M. Brooks, The Matrix reference Manual (online), 2005. http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html
[6] P. J. Davis, Circulant matrices. John Wiley \& Sons, New York-Chichester-Brisbane, 1979.
[7] L. Creedon, The unit group of small group algebras and the minimum counterexample to the isomorphism problem. Int. J. Pure Appl. Math. 49(2008), no. 4, 531-537.
[8] J. Gildea, On the order of $\mathcal{U}\left(\mathbb{F}_{p^{k}} D_{2 p^{m}}\right)$. Int. J. Pure Appl. Math. 46(2008), no. 2, 267-272.
[9] T. Hurley, Group rings and rings of matrices. Int. J. Pure Appl. Math. 31(2006), no. 3, 319-335.
[10] C. Polcino Milies and S. K. Sehgal, An introduction to group rings. Algebras and Applications, 1, Kluwer Academic Publishers, Dordrecht, 2002.
[11] R. Sandling, Units in the modular group algebra of a finite abelian p-group. J. Pure Appl. Algebra 33(1984), no. 3, 337-346. doi:10.1016/0022-4049(84)90066-5

Comp. 59(1992), no. 200, 689-701.
[13] The GAP Group, GAP—groups, algorithms, programming. Version 4.4.10, 2007. http://www.gap-system.org

[^1]
[^0]: Received by the editors May 1, 2008; revised February 16, 2009.
 Published electronically August 26, 2010.
 AMS subject classification: 16U60, 16S34, 20C05, 15A33.

[^1]: School of Engineering, Institute of Technology, Sligo, Ireland
 e-mail: creedon.leo@itsligo.ie
 gildea.joe@itsligo.ie

