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The Structure of the Unit Group of the
Group Algebra F2kD8

Leo Creedon and Joe Gildea

Abstract. Let RG denote the group ring of the group G over the ring R. Using an isomorphism between

RG and a certain ring of n× n matrices in conjunction with other techniques, the structure of the unit

group of the group algebra of the dihedral group of order 8 over any finite field of chracteristic 2 is

determined in terms of split extensions of cyclic groups.

1 Introduction

Let RG denote the group ring of the group G over the ring R. When a ring S contains

the identity 1S, an element a of S is invertible if and only if there exists an element

s ∈ S such that a · s = s · a = 1S. The set of all the invertible elements of S forms a

group called the unit group of S, denoted by U(S). The homomorphism ε : RG → R

given by

ε

(

∑

g∈G

agg

)

=

∑

g∈G

ag

is called the augmentation mapping of RG. The normalized unit group of RG de-

noted by V (RG) consists of all the invertible elements of RG of augmentation 1. It is

a well-known fact that U(RG) ∼= U(R)×V (RG). For further details and background

see Polcino Milies and Sehgal [10]. In [11], a basis for V (FpG) is determined where

Fp is the Galois field of p elements and G is an abelian p-group.

We are interested in the structure of U(FG) where F is a field of characteristic 2

and G is a finite 2-group. If G is a finite 2-group and F is a field of characteristic

2, then V (FG) is a finite 2-group of order |F|
|G|−1

. The structure of the unit group

of the group algebra F2D8 is established in [12], where D8 is the dihedral group of

order 8. In [7], the unit group of Fpm G is described where |Fpm G| < 210.

The map ∗ : KG −→ KG defined by

(

∑

g∈G

agg

)∗

=

∑

g∈G

agg−1

is an antiautomorphism of KG of order 2. An element v of V (KG) satisfying v−1
=

v∗ is called unitary. We denote by V∗(KG) the subgroup of V (KG) formed by the

unitary elements of KG. In [1], a basis for V∗(FG) is established, where F is any finite

field and G is an abelian p-group. In [3], V. Bovdi and A. L. Rosa determine the order
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of V∗(F2k D8) where D8 = 〈x, y | x4
= 1, y2

= 1, yx = x−1 y〉. Since D8 is extra

special, V∗(F2k D8) is normal in V (F2k D8) by Bovdi and Kovács [2].

Let Mn(R) be the ring of n×n matrices over R. Using an isomorphism between RG

and a subring of Mn(R) and other techniques, we establish the structure of U(F2k D8).

The main result is that the unit group of F2k D8 is isomorphic to

[

(((C2
k ×C4

k) ⋊ C4
k) ×C2

k) ⋊ C2k )
]

×C2k−1.

The techniques described in this paper can be easily implemented using the LAGUNA

package [4] for the GAP system [13].

1.1 Background

Definition 1.1 A circulant matrix over a ring R is a square n×n matrix of the form

circ(a1, a2, . . . , an) =















a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2

...
...

...
. . .

...

a2 a3 a4 . . . a1















where ai ∈ R.

For further details on circulant matrices, see Davis [6].

Fix a labeling of elements of G by indices {1, 2, . . . , n}, so G = {g1, g2, . . . , gn}.

Then the matrix















g1
−1g1 g1

−1g2 g1
−1g3 . . . g1

−1gn

g2
−1g1 g2

−1g2 g2
−1g3 . . . g2

−1gn

g3
−1g1 g3

−1g2 g3
−1g3 . . . g3

−1gn

...
...

...
. . .

...

gn
−1g1 gn

−1g2 gn
−1g3 . . . gn

−1gn















is called the matrix of G (with respect to this labeling) and is denoted by M(G). Let

w =

∑n
i=1 αgi

gi ∈ RG where R is a ring. Then the matrix















αg1
−1g1

αg1
−1g2

αg1
−1g3

. . . αg1
−1gn

αg2
−1g1

αg2
−1g2

αg2
−1g3

. . . αg2
−1gn

αg3
−1g1

αg3
−1g2

αg3
−1g3

. . . αg3
−1gn

...
...

...
. . .

...

αgn
−1g1

αgn
−1g2

αgn
−1g3

. . . αgn
−1gn















is called the RG-matrix of w and is denoted by M(RG, w). The following result can

be found in [9].
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Theorem 1.2 Given a labeling of the elements of a group G of order n, there is a ring

isomorphism between RG and the n × n G-matrices over R. This isomomorphism is

given by σ : w 7→ M(RG, w).

Example 1.3 Let D2n = 〈x, y | xn
= 1, y2

= 1, yx = x−1 y〉 and

κ =

n−1
∑

i=0

aix
i +

n−1
∑

j=0

b jx
j y ∈ Fpk D2n,

where ai , b j ∈ Fpk , p is a prime and m ∈ N0, then σ(κ) =

(

A B
BT AT

)

, where A =

circ(a0, a1, . . . , an−1) and B = circ(b0, b1, . . . , bn−1).

The next result can be found in [5].

Theorem 1.4 Let A, B, C, and D be n×n matrices. Then det
(

A B
C D

)

= det(AD−BC)

if C and D commute.

The next two results can be found in [8].

Proposition 1.5 Let A = circ (a0, a2, . . . , apm−1), where ai ∈ Fpk , p is a prime and

m ∈ N0. Then

det(A) =

pm−1
∑

i=0

ai
pm

.

Proposition 1.6 Let A = circ(a1, a2, . . . , apm ) and B = circ(b1, b2, . . . , bpm ), where

ai , b j ∈ Fpk , p is a prime and m ∈ N 0. Then

det(A ± B) = det(A) ± det(B).

Theorem 1.7 U(F2kC2) ∼= C2
k ×C2k−1.

Proof Let C2 = 〈x | x2
= 1〉. Clearly |V (F2kC2)| = 2k. Let α = a + bx ∈ V (F2kC2),

where a, b ∈ F2k . Then α2
= a2 + b2

= (a + b)2
= 1, since α ∈ V (F2kC2). Therefore

V (F2kC2) has exponent 2.

2 The Structure of U(F2kD8)

Define the group epimorphism θ : U(F2k D8) → U(F2kC2) given by

3
∑

i=0

aix
i +

3
∑

j=0

b jx
j y 7−→

3
∑

i=0

ai +

3
∑

j=0

b j y,

where ai , b j ∈ F2k , where y is the generator of the group C2.

Define the group homomorphism ψ : U(F2kC2) → U(F2k D8) by a + by 7→ a + by.

Then θ ◦ ψ(a + by) = θ (a + by) = a + by. Therefore, U(F2k D8) is a split extension

of U(F2kC2) by ker(θ).
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Therefore,

U(F2k D8) ∼= H ⋊ U(F2kC2) ∼= H ⋊ (C2
k ×C2k−1) ∼= (H ⋊ C2

k) ×C2k−1,

where H ∼
= ker(θ). Note that

|H| =

27k(2k − 1)

2k(2k − 1)
= 26k.

Proposition 2.1 H has exponent 4.

Proof Let

α =

3
∑

i=0

aix
i +

3
∑

j=0

b jx
j y ∈ U(F2k D8),

where ai , b j ∈ F2k . Then

α ∈ H ⇐⇒
3

∑

i=0

ai = 1 and

3
∑

j=0

b j = 0,

α2
= (a0 + a2)2 +

( 3
∑

j=0

b j

) 2

+ (b0 + b2)(b1 + b3)x + (a1 + a3)2x2

+ (b0 + b2)(b1 + b3)x3 + (a1 + a3)(b1 + b3)y + (a1 + a3)(b0 + b2)xy

+ (a1 + a3)(b1 + b3)x2 y + (a1 + a3)(b0 + b2)x3 y.

Therefore every element of order 2 has the form 1 + s + tx + sx2 + tx3 + uy + vxy +

ux2 y + vx3 y, where s, t, u, v ∈ F2k .

Then

α4
=

3
∑

i=0

ai
4 +

3
∑

j=0

b j
4
=

( 3
∑

i=0

ai

) 4

+

( 3
∑

j=0

b j

) 4

= 1.

Proposition 2.2 Let α ∈ H. Then [σ(α)]−1
= [σ(α)]∗, where [σ(α)]∗ is the

adjoint matrix of σ(α).

Proof Let

α =

3
∑

i=0

aix
i +

3
∑

j=0

b jx
j y ∈ H

where ai , b j ∈ F2k . Then σ(α) =

(

A B
BT AT

)

where A = circ(a0, a1, a2, a3), B =
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circ(b0, b1, b2, b3). Using Theorem 1.4 and Propositions 1.5 and 1.6, it is clear that

det(σ(α)) = det(AAT − BBT)

= det(AAT) + det(BBT)

= det(A2) + det(B2)

= (det(A) + det(B))2

=

( 3
∑

i=0

ai
4 +

3
∑

j=0

b j
4

) 2

=

(( 3
∑

i=0

ai

) 4

+

( 3
∑

j=0

b j

) 4) 2

= 1,

since α ∈ H.

Proposition 2.3 Let S be the subset of H consisting of elements of the form

(

1 +

3
∑

i=0

ai

)

+

3
∑

i=0

aix
i +

3
∑

i=0

ai y +

3
∑

i=0

aix
i y,

where ai ∈ F2k and
∑3

i=0 ai = 1. Then S is a group and S ∼
= C2

k ×C4
k.

Proof Let

x1 =

(

1 +

3
∑

i=0

ai

)

+

3
∑

i=0

aix
i +

3
∑

i=0

ai y +

3
∑

i=0

aix
i y

and

x2 =

(

1 +

3
∑

j=0

b j

)

+

3
∑

j=0

b jx
j +

3
∑

j=0

b j y +

3
∑

j=0

b jx
j y,

where ai , b j ∈ F2k ,
∑3

i=0 ai = 1 and
∑3

j=0 b j = 1. Then

x1x2 =

(

1+γ+

3
∑

i=0

(ai +bi)

)

+

3
∑

i=0

(ai +bi +γ)xi +

3
∑

i=0

(ai +bi +γ)y+

3
∑

i=0

(ai +bi +γ)xi y,

where γ = (a1 +a3)(b1 +b3). Therefore S is closed under multiplication and |S| = 23k.

It can easily be shown that S is abelian.

Therefore S ∼
= C2

l × C4
m for some l and m. Consider C2

l × C4
m. The number of

elements of order 2 or 1 is 2l2m
= 2l+m. Therefore the number of elements of order 4

is 2l4m − 2l+m
= 2l+m(2m − 1). Then

x1
2
= 1 +

∑

i=1

(a1 + a3)2xi +
∑

j=1

(a1 + a3)2x j y and x1
2
= 1 ⇐⇒ a1 = a3.

However, the number of elements in S of order 2 or 1 is 22k. Therefore the number

of elements of S of order 4 is 23k − 22k
= 22k(2k − 1). Thus l + m = 2k, m = k =⇒

l = m = k and S ∼
= C2

k ×C4
k.
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Proposition 2.4 Let N be the subset of H consisting of elements of the form 1 + px +

px3 + qy + rxy + rx2 y + qx3 y, where p, q, r ∈ F2k . Then N is a group, N ∼
= C2

k ×C4
k

and N ⊳ H.

Proof Let

n1 = 1 + p1x + p1x3 + q1 y + r1xy + r1x2 y + q1x3 y ∈ Y and

n2 = 1 + p2x + p2x3 + q2 y + r2xy + r2x2 y + q2x3 y ∈ Y,

where pi , qr, rl ∈ F2k . Then

n1n2 = 1 + (p1 + p2 + γ1)x + (p1 + p2 + γ1)x3 + (q1 + q2 + γ2)y + (r1 + r2 + γ2)xy

+ (r1 + r2 + γ2)x2 y + (q1 + q2 + γ2)x3,

where γ1 = q1q2 +r1q2 +q1r2 +r1r2 and γ2 = p1q2 + p1r2 +r1 p2 +q1 p2. Therefore N is

closed under multiplication and |N| = 23k. It can easily be shown that N is abelian.

Let

α = 1 + px + px3 + qy + rxy + rx2 y + qx3 y ∈ N and

h =

3
∑

i=0

aix
i +

3
∑

j=0

b jx
j y ∈ H,

where p, q, r, ai , b j ∈ F2k . Then

σ(h−1αh) =

(

E F

FT ET

)∗ (

A B

BT A

)(

E F

FT ET

)

=

(

A G

GT A

)

,

where

A = circ(1, p, 0, p), B = circ(q, r, r, q),
E = circ(a0, a1, a2, a3), F = circ(b0, b1, b2, b3),
G = circ(q + λ, r + λ, r + λ, q + λ), λ = (r + q)(a1 + a3).

Thus N ⊳ H.

Also α2
= 1 + (r + q)(x + x3). Therefore α2

= 1 ⇐⇒ r = q. Repeating the

argument used in the previous lemma, N ∼
= C2

k ×C4
k.

Proposition 2.5 H = NS.

Proof By the second Isomorphism Theorem, S/S∩N ∼
= NS/N. Thus |NS/N| = 23k

and |NS| = 26k. Therefore H = NS.

Theorem 2.6 U(F2k D8) ∼= [(((C2
k ×C4

k) ⋊ C4
k) ×C2

k) ⋊ C2k )] ×C2k−1.
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Proof Clearly N ∩ S = 1, therefore H ∼
= N ⋊ S and U(F2k D8) ∼= ((N ⋊ S) ⋊ C2

k) ×
C2k−1.

Let

s =

(

1 +

3
∑

i=0

ai

)

+

3
∑

i=0

aix
i +

3
∑

i=0

ai y +

3
∑

i=0

aix
i y ∈ S and

n = 1 + px + px3 + qy + rxy + rx2 y + qx3 y ∈ N.

Then

ns
= 1 + px + px3 +

(

q + (r + q)(a1 + a3)
)

y +
(

r + (r + q)(a1 + a3)
)

xy

+
(

r + (r + q)(a1 + a3)
)

x2 y +
(

q + (r + q)(a1 + a3)
)

x3 y.

Therefore ns
= n if and only if a1 = a3. If a1 = a3, then s2

= 1. Therefore the

elements of order 2 in S act trivially on N and

N ⋊ S ∼
= (C2

k ×C4
k) ⋊ (C2

k ×C4
k) ∼= ((C2

k ×C4
k) ⋊ C4

k) ×C2
k.

Thus

U(F2k D8) ∼=
[

(((C2
k ×C4

k) ⋊ C4
k) ×C2

k) ⋊ C2
k)

]

×C2k−1.
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