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Abstract. Symmetric S-unimodal functions with positive Liapunov exponent of the
critical value have an invariant measure absolutely continuous with respect to
Lebesgue measure.

Introduction
An important branch in one-dimensional dynamics is the research of the invariant
measure absolutely continuous with respect to Lebesgue measure.

Collet and Eckmann [3] proved the existence of such a measure for S-unimodal
mappings which (apart from some weak regularity assumptions) satisfy the two
following conditions:
There are two constants A > 1 and K >0 such that for all neN

(Cl) \(d(n/dx)(f(c))\>K\n;
(C2) if/"(z) = * then \(d(D/dx)(z)\^K\";

where /"=/•>• • • °f n times and c is the unique critical point of/
Moreover, Collet [1] proved that this measure is unique and ergodic.
In this paper we shall deal with the function / e C3, / : [0,1 ] -»[p, 1 ], which satisfies

the following assumptions:
(A0) / is S-unimodal; that means that there exists a unique ce (0,1) such that

/ is increasing on (0, c) and decreasing on (c, 1) and S/<0 where 5/=

= 0;
( A 3 ) / ( x ) = / ( l - x ) for x e (0,1).

The regularity assumptions in [3] are a weaker form of (A0)-(A2). In fact, we
choose the stronger form in order to omit some technical lemmas. Instead of (A2)
one can require the existence of a restrictive central point. The only significantly
new assumption is (A3), the symmetry of/, needed in the proof of lemma 9. (A3)
is satisfied by usually considered families of functions such as the example f(x) =

The result of this paper is proposition 13 which states that under (A0)-(A3), (Cl)
implies (C2). From the results of [1] and [3] we have:

THEOREM. Iff satisfies (A0)-(A3) and (Cl) then f has an invariant measure absolutely
continuous with respect to Lebesgue measure. This measure is unique and ergodic.
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One would expect this theorem to be helpful in computer experiments, as (Cl) is
much easier to check than (C2).

Preliminaries
In this section we quote without proof some useful lemmas.

We shall use the following notation: / ' = / and for n 2 1, fn+x = /" ° / xn =/"(*),
= d(f)/dx.

LEMMA 1 (see [2, II.4]). / /S/<0 and Sg<0 then S(/°g)<0 and S/"<0. S/<0
implies that \f\ has no positive local minima.

We call the interval / a sink for/if there is an n such that/"(/)<= / and Df\, #0.

LEMMA 2 (see [2, II.4]). If /satisfies (A0) and (Cl) then f\(f(c)j(c)) has no sinks
and no attractive periodic orbits.

Remark 3. By lemma 2 we may assume later on that |/'(0)|> 1.

LEMMA 4 (see [3], lemma 2.2]). There are two constants m>0 and M>0 such that

m\x - c\ =£ |/ '(x)| ^ Af |x - c\

and

m, ,, 1 1 M, ,2
— |xr —c| < |x , -c , |<y |x-c | .

We define x' by /(x') =/(x) and x V x if x * c and c' = c. We shall use (a, b) to
denote the interval with the endpoints a and b independent of their order, that
means not necessarily a < b.

LEMMA 5 (see [3], Lemma II.5.6.]). Let

K" = {x: x, it (x, x') for i = 1 , . . . , « -1 and xn e (x, x')}-

Every connected component of K" is of the form (p, q') withpn =pandqn = q. Moreover

LEMMA 6 (see [1, lemma 2.6]). / / S / < 0 and Dfn\(xy)*0 then

\xn-yn\>(Dr(x)Dfn(y))l\x-y\.

Estimates
In this section we assume tacitly in all lemmas that / satisfies (A0)-(A3) and (Cl).

First we prove a technical lemma. It will be useful at the very end of the paper,
but we put it here in order to avoid interruptions during the estimations.

LEMMA 7. Let ge C2(u, v); g'(u) = g'(v) = 0 and there is a unique we(u, v) with
g"(w) = 0. Define for a fixed x e (u, v) afunction h(t); te(u,v) by

f ( ) g()
t-x

Then \h(t)\ has only one local extremum in (u, v) and it is a maximum. Hence for
astsb,\h(t)\s:min(\h(a)\,\h(b)\).
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Proof. Let us first consider the case g'>0. Assume xe(u, w). The situation with
xe(w,v) can be handled similarly, g' > 0 implies h > 0 and g"|(UjW) > 0 and g"|(w r) < 0.
We have for t^x

hV)_d/g(t)-g(x)\_g'(t)-h(t)
dt\ t-x ) t-x

Thus /i'(w) = - / i (u ) / (u -x)>0and h'(v) = -h(v)/(v-x)<0. We conclude that h
has at least one local maximum in (u, v). Now we shall prove the uniqueness of
this extremum.

By the mean value theorem we have for some tx e (f, x) and t2e (t, f,)

t-x t-x

From tt e (t, x) it follows that sgn h\t) = sgn g"(t2). Therefore h(t) is increasing for
te (u, w) as then t2e (t, x) <= (u, w). Thus if ft'Co) = 0 then foe (w, v). Then

/ | ( f )

Since by our assumption we have x < w < t0 and g"(t0) < 0, h"(t0) is negative and h
has a local maximum at t0. The point t0 is unique since if there was another maximum
at say t' ̂  t0, h would have a minimum between t' and t0 which by previous
considerations is impossible.

If x = w then h is increasing on (u, w) and decreasing on (w, v) and has maximum
at t = w.

This proves the case g' > 0. In order to complete the proof let us consider the
case g' < 0. Then

The function (—g) satisfies the assumptions of lemma 7 and (-g) '>0. By the
previous part of the proof we can state that \h(t)\ has only one local maximum in
(",»). •
Definition 1. We say that the interval (c, b) satisfies *(n) if fen = c and D/"|(cb) 5* 0.

We say that the interval (a, b) satisfies **(n) if bn = c, and Of"|(al>)^0 and

Remark 8. If (a, fe) satisfies **(«) then for some r<n, ar = c and (an br) satisfies
*(n - r). This follows from the fact that Df"(x) = Df"~r(xr) • Df(x). We omit the
details.

LEMMA 9. For every n and every interval (c,b),if(c,b) satisfies *(n) then \cn — bn\ >
\c-b\.

Proof. Suppose the contrary. Then there exists an n and an interval (c, b) satisfying
*(«) such that | c n -b n |< | c -b | . By symmetry we have |cn-(b')n |<|c-fe' | and (c, b')
satisfies *(n). Since bn = (b')n = c we have either/"(c, b)<= (c, b) or/"(c, fe')c (c, ft')-
Hence / has a sink which contradicts lemma 2. •
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Definition 2. We say that p is the central point for/" iff(p)=p and D/"|(pc)>0.

LEMMA 10. Let (c, b) satisfy *(n). Then
(i) f" has a central point p;
(ii) (c,b)C(p,p');

(iii) there exists qe (6, b') such that qn = q;
(iv) (q',p) and (q,p') are connected components of K_" (K" was defined in

lemma 5).

Proof. For definiteness take c<b. We may assume that /" is decreasing on (c, b),
otherwise we take/" on (b',c). Therefore we have cn> bn = c and bn — c<b. Hence
there exists a q e (c, b) such that gn = q. f" is decreasing on (c, b) so it has no other
fixed point in this interval.

We claim that n is the prime period of q. Suppose the contrary. Let k < n be the
prime period of q. Then qk = q and qn = q we have n = ks, for some s<n. f is
decreasing on (c,b) implies fk decreasing on (c, b) so s is odd and s > 3 . Let us
consider f2k(c). Clearly c2k ^ c. f2k is increasing on (c, b) and by lemma 2 has no
fixed point in this interval other than q.

If c2k> c then by lemma 1 Df2k{q)< 1 which contradicts lemma 2.
If c2k<c then as q2k = q>c there is a ZG(C,9 ) with z2ic

 = c. This contradicts
D/"|(<,b)7^ 0. Both contradictions complete the proof that n is the prime period of q.

Since f has no other fixed points in (b,b'), this implies that qii{q,q') for
1 < i < « - 1 . Thus in some neighbourhood of q there are points of K_" and by lemma
5 q is one endpoint of some component of JC". Let p' be the other endpoint of the
same component. By lemma 5 p' = pn and it is easy to check that p' is the required
central point. •

PROPOSITION 11. Iff satisfies (A0)-(A3) and (Cl) then there are two constants Kx>0
and \j> 1 such that for every (c, b) satisfying *(«),

Proof. Let us consider / " on f(c, b) = (cu £>,). By lemma 1 there is a q e (c, b) such
that qt G (c,, bi) and f(q) = qx. By symmetry we may assume that qn = q. By lemmas
2, 4, 6 and (Cl) we have

(a) |c+1 - qn+l\ = |/"(Cl) -f
n{qx)\ ^ (Dric^Dfiq^c, - qx\

>K\n/2™\c-q\2.

By lemmas 10 and 5 we have \qn - bn\ > \q - b\ and hence

Therefore we have by the inequality (a)

(b) \cn+i-qn+i\
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On the other hand, again by lemma 4 we can estimate

(c) \cn+1-qn+1\ = \f(cn)-f(qn)\^\f(cn)-f(bn)\
M

= l/(cn)-/(c)|<y|cn-bn|2

From the inequalities (b) and (c) we have

The assertion follows for A, = An/4 and Kx = (Km/4M)K •
Remark 12. Under the assumptions of proposition 11 there is a Ao> 1 such that for
every n and every (c, b) satisfying *(n) we have

cn-bn

c-b

Proof. By lemma 9 and proposition 11 we have

c-b 1/n

Ao = inf —
n c — b

PROPOSITION 13. We assume that f satisfies (A0)-(A3) and (Cl). Then for every n
and every (a, b) satisfying **(n) with bn = c we have

an-bn

a-b

and

A(n)

B(n)

where AT = min (Ao, 1/(0)1*) > 1.

Proof. We prove A(n) and B(n) simultaneously by induction on n. For n = 1 **(1)
is equivalent to *(1) and A(l) is true by remark 12. Let (b, c) satisfy *(1), for
definiteness let b < c. We have by lemma 1 either

\Df(b)\>\Df(x)\

\Df(b)\>
b-c

for x e (b, c), and then

>AT by A(l);

or
\Df(b)\ > |D/(x)| for x e (0, b), and then

Hence B(l) is true.

Inductive step: Now we assume that A(fc) and B(fc) are true for k<n. We shall first
prove A(n) for all (a, b) satisfying **(«) and then we shall use A(«) to prove B(n).

Let (a, b) satisfy **(n) with ar = bn = c for some r < n. Then

a-b ar-br a-b
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By Remark 8 (an br) satisfies * ( n - r ) and by remark 12 we can estimate the first 
quotient by A j _ r . 

We have to estimate the second quotient. Let (u, v) be the maximal interval 
containing (a, b) such that Dfl^^^O. We have two possibilities: 

(1°) {u, v}n{0,1} = 0 . Thus Df{u) = Dfr(v) = 0. Then both (u,a) and (a, v) 

satisfy **(r) and by A(r ) we have 

ur-ar 

u — a 
> A j and 

vr-ar 

v-a 
> A R

R . 

(2°) {u, « } n { 0 , 1 } 5 * 0 . For definiteness let M = 0. Then (a, v) satisfies **(r) and 

by A(r ) and B(r ) we have 

vr-ar 

v — a 
• K r

T and | D f ( a ) | > A r

T , 

hence by lemma 6 

ur-a. 

u — a 
> ( D T ( O ) D f ( a ) ) * * A'T as | D f (0)| = | D / ( 0 ) | ' > A^ 

We are ready to use lemma 7 with g=fr, x = a, t = b. We have 

= \h(b)\>min ( |*(«) | , |*(») | ) ^ Ar

T . 
a — o 

This completes the estimate of the second quotient and the proof of A(n ) . We can 

now prove B(n) . 

Let be(a,d) where (a,d) is the maximal interval with Df"\^ad)-^0. We again 

use lemma 7 with g =f, (u, v) = (a, d ) and x = b. We have 

| i y - ( 6 ) | = | f c ( 6 ) | a m i n ( | A ( « ) | , | A ( d ) | ) . 

By A(n) for (a, 6) we have \h(a)\>A.T- If ¿ ¿ { 0 , 1 } then also by A(n) for (fc, d ) , 

| A ( d ) | > A T . If d e { 0 , 1 } say d = 0 then by lemma 6 we have 

| f t ( d ) | > ( D T ( 0 ) D r ( b ) ) i 

Observe that |D/" ( fc ) |> 1 as otherwise by lemma 1 | £? f | ( a > f ,) l — 1 which contradicts 

A(n ) . Thus in all cases \h(d)\>\r and we can conclude that | D T ( & ) | > A T . This 

proves B(n) and completes the proof of proposi t ion 13. • 

In order to return to the condition (C2) let z be such that z„ = c. We can find a 

point a such that (z, a) satisfies **(«) . Now (C2) follows from B(n) . 

R E F E R E N C E S 

[1] P. Collet. Ergodic properties of some unimodal mappings of the interval. Preprint, Institut Mittag-

Leffler, Report no. 11, 1984. 
[ 2 ] P. Collet & J.-P. Eckmann. Interated Maps on the Interval as Dynamical Systems. Birkhauser: Basel, 

Boston, Stuttgart, 1980. 

[3] P. Collet & J.-P. Eckmann. Positive Liapunov exponents and absolute continuity for maps of the 

interval. Ergod. Th. & Dynam. Sys. 3 (1983), 13-46. 

https://doi.org/10.1017/S0143385700003199 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003199

