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THE ISOMORPHISM PROBLEM FOR A CLASS OF
PARA-FREE GROUPS
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In 1962 Gilbert Baumslag introduced the class of groups GtJ for natural numbers i,j, defined by the
presentations G,j = <a,b, t; a~' = [b1, a][b1, t]>. This class is of special interest since the groups are para-free,
that is they share many properties with the free group F of rank 2.

Magnus and Chandler in their History of Combinatorial Group Theory mention the class Gu to
demonstrate the difficulty of the isomorphism problem for torsion-free one-relator groups. They remark that
as of 1980 there was no proof showing that any of the groups Gt/ are non-isomorphic. S. Liriano in 1993
using representations of Gu into PSL(2,p*), k s N, showed that C,, and GWJ0 are non-isomorphic. In this
paper we extend these results to prove that the isomorphism problem for Gu, i e N is solvable, that is it can
be decided algorithmically in finitely many steps whether or not an arbitrary one-relator group is isomorphic
to Gn. Further we show that G,, ?* G,, for all i > 1 and if i,k are primes then Gt, = G t , if and only if
/ = *.'

1991 Mathematics subject classification: Primary 20E05, 20E06, 20E07.

1. Introduction

In [2] Gilbert Baumslag introduced the class of groups G,, for natural numbers i, j ,
defined by the presentations

GiJ=<a,b,t;a->=[bi,a][bJ,t]>. (1)

(The above presentation above is slightly different than Baumslag's presentation since
we use [x, y] = xyx~xy~l and he uses [x, y] = x~ly~lxy). This class is of special interest
since the groups are para-free, that is they share many properties with the free group F
of rank 2 (see [1]). In particular

(1) If yn(G,j) are the terms of the lower central series of Gu, then for all n,
G/,y/yn(Gu) ^ F/yn(F) and further the intersection over all n of the yn(Gu) is {1}.

(2) Gij/G'ij^F/F" where G"UI respectively F" represents the second derived
subgroup.

The following properties are also true of the G,y (see [2] and [7]):

(3) G,j has a normal subgroup with an infinite cyclic quotient group
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(4) G,j is 2-free but not free

(5) Gtj is residually torsion-free nilpotent

(6) G,j is hyperbolic in the sense of Gromov.

Magnus and Chandler [3] in their History of Combinatorial Group Theory mention
the class GUj to demonstrate the difficulty of the isomorphism problem for torsion-
free one-relator groups. They remark that as of 1980 there was no proof showing that
any of the groups G(J are non-isomorphic. S. Liriano [7] used representations of G,;
into PSL(2, pk), k e N, to show that G,, and G3030 are non-isomorphic. In this note we
extend these results on GUj somewhat, by using Nielsen cancellation methods together
with the techniques developed in [5] to prove that the isomorphism problem for
G,,, i e N, is solvable, that is it can be decided algorithmically in finitely many steps
whether or not an arbitrary one-relator group is isomorphic to G,,. Further we show
that G,, j£ Gxl for all i > 1 and if i, k are primes then G,, ^ Gkl if and only if i = k.

2. Preliminaries

Notice first that Gtj can be expressed as an HNN group

GUj = <a,b, t; r ' a[b', a]b't = b> >.

If in addition j = 1 then <b> and <a[b', a]b> are maximal cyclic in <a,b;>. In [4,5]
techniques were developed to handle exactly such types of HNN constructions. Using
the extension of Nielsen cancellation methods to HNN groups developed by Peczynski
and Reiwer [10] it was proved in [4]:

Theorem A. Let F be a free group and < U >, < V> maximal cyclic subgroups of F.
Then any two-generator subgroup of the HNN group K = <F,t;t~lUt = V> is either
free, abelian or a Klein bottle group <x, y; x~lyx = y"1 >.

Further results on the three-generator subgroups of HNN groups of the form of
Theorem A were obtained in [5] with restrictions on the subgroup generated by U, V.
A two-generator subgroup N =<x,y> of a group H is maximal if it is not a proper
subgroup of any other two-generator subgroup of H; it is strongly maximal if it is
maximal and for each g e H there is an h e H such that <x, gyg~J > C <x, hyh~l > and
< x, hyh~} > is a maximal two-generator subgroup of H. Recall also that a group G is
n-free if every n-generator subgroup must be free. From [5] we then have the following
which is a summary of several results in that paper.

Theorem B. Let K be as in Theorem A and suppose further that U is not conjugate in F
to either V or V~l. Let H = < x,, x2, x3 > C K. Then H is a free group of rank at most 3 or H
has a presentation with one defining relation for the generating system {x,,x2, x3}. If in
addition <U,V>isa strongly maximal subgroup ofF then K is 3-free.
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A careful analysis of the proofs of the results in Theorem B leads us the analysis
of the given class of para-free groups. We first review some of the ideas on Nielsen
reduction in HNN groups. Nielsen cancellation methods are in general a very powerful
tool for dealing with infinite groups. Nielsen theory was extended to free products with
amalgamation by Zieschang [15] and then refined a bit by Rosenberger [12,13] and
Kalia and Rosenberger [6]. It was carried over to HNN groups by Peczynski and
Reiwer [10].

Let
K = < B, t; rel.B, r % t = K_x >

be an HNN group with base group B, stable letter or free part t and associated
subgroups Kx, K,t (see [8] for additional information on the HNN construction). For
an element x e K a representation

with £, = ±1, ft, e B is said to be reduced if ef+1 = —e, implies that hi+l £ Kei+l.
Choose left transversals i?, of Kt and /?_, of K_t in B where Kx and K_{ are

represented by 1. Then each x e K may be uniquely represented as

x = llt
c<l2t

£2...lnt
e»b

with £( = ± 1 , b e B, /, e Rtl and et = e,+1 whenever /,+, = 1. The length L(x) of x is then
defined to be n.

As right t ransversals of KUK_U we take the inverses J?j"',l?l}. Then each xeK
has a reduced representat ion

x — i t r . . . i m r KXI rm.. . i r ,

with m > 0, e,, v( € {±1}, /, e R(l, r, e RZl, and kx = Ve/i2, huh2e B,e = ±1, if L(x) is
odd or kx e B if L(x) is even. In this representation /, t£| . . . lmtCm is called the leading half,
tVmrm...f'rl the rear half and kx the kernel of x respectively. The above reduced
representation is then called a symmetric form for x.

We now introduce an ordering on K. We assume that the groups are countable. This
is convenient and no restriction if one considers a given finite generating system in K,
for given a finite system a suitable order can always be chosen so that this system can
be carried by a Nielsen transformation in finitely many steps into what we will call a
Nielsen reduced system. Choose a total order of the transversals R,, R_{, and order
products /if*1... lmfm by using the lexicographic order on the sequences (llt ...,lm). Next
we extend this order to the set of pairs [g, g~1}, g e K, where the notation is chosen
such that the leading half of g precedes that of g'1 with respect to the above ordering.
Let {g,g~1} < {h,h~1} if either Ug) < UK) or L(g) = UK) and the leading half of g
strictly precedes that of h or L(g) = Uh) and the leading halves of g and h coincide
while the leading half of g~l precedes that of h~l. Hence if {g, g'1} < {h,h~1} and
{h, h~1} < [g, g~l) then at most the kernels of g and h may be different.

For g € K let the leading half of g**\ e(g) = ±1, precede that of g-™.
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A finite system {g gm] in K is called shorter than a system {hx,...,hm} if
{g?"\ g?™\ < {tf™. fcT*'} holds for all i e { 1 , . . . , m] and at least for one i € {1 m},
[hf", h^) < {g?"\ g^} fails to hold.

A system {gx,..., gm) in K is said to be Nielsen reduced or minimal with respect to
< if either {g\,...,gm} cannot be carried into a system {hx,...,hm) with ht= 1 for
some i e { l , . . . , m } or there is no system Nielsen equivalent to {gx,...,gm} which is
shorter. If the group K is countable, then each finite system, as in the case of a free
product with amalgamation, can be carried by a Nielsen transformation into a
minimal system. In general for a given finite system a suitable order can always be
chosen so that this finite system can be carried by a Nielsen transformation into a
minimal system.

The following is a slightly refined summary of the main results of Peczynski and
Reiwer [10].

Theorem C. [10] Let K = <£, B;rel.B,t~]Ktt = K_x> be an HNN group. If
{x , , . . . , x m } is a finite system of elements in K, then there is a Nielsen transforma-
tion from {x, , . . . ,xn i} to a system [yl,---,ym] for which one of the following cases
holds:

(i) y, = I for some i e { 1 , . . . , m]

(ii) Each w e < yx,..., ym > can be written as

w

«/v, = v(+1 with L(yyi) < L(w)for i=l q

(iii) Some subgroup of B contains p, p > 1 of the yt and some product of these y, is
conjugate to a non-trivial element ofKx.

The Nielsen transformation can be chosen in finitely many steps such that {yx,..., ym}
is shorter than {x, , . . . ,xm} or the lengths of the elements of {x1, . . . ,xm} are
preserved.

In addition to general Nielsen cancellation in HNN groups, important also to us
is the concept of an r-stable Nielsen equivalence class. Let F = <ax,..., an;>, n > 2,
be the free group of rank n with basis {a, , . . . , aB}. Let r e F , r / l , b e a freely reduced
word and suppose that there is no Nielsen transformation from {«,,. . . ,«„} to a
system {bx,...,bn} with r e < b t , . , > . We consider generating systems
{r, x , , . . . ,x , ,} of F and we say that in a Nielsen transformation (f> from [r,xx,...,xn}
to a system {r,yx,..., yn], r is not replaced if in all the elementary Nielsen transforma-
tions comprising <f>, r either remains unchanged, is replaced by r"1 or is put in a
different place in the relevant (n + 1)-tuple. We then refer to a Nielsen transformation
and the corresponding Nielsen equivalence class in which r is not replaced as r-
s table.
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3. Baumslag's para-free groups

We now consider the class of para-free groups introduced by Baumslag [2]. From
the introduction these have the presentations

Gu = <a,b, t; a'1 = [b\ a] [b>, t] > (1)

where i , ; e N. These groups share many properties with the free groups of rank 2
(see the Introduction). As remarked in the Introduction, Magnus and Chandler [3] in
their History of Combinatorial Group Theory mention the class Gu to demonstrate the
difficulty of the isomorphism problem for torsion-free one-relator groups. They note
that as of 1980 there was no proof showing that any of the groups Gtj are non-
isomorphic. S. Liriano [7] used representations of Gu into PSL(2, pk), k e N, to show
that G,, and G3O3O are non-isomorphic. Our main result is the following.

Theorem 1. Let i be a natural number. Then:

(1) the isomorphism problem for Gu is solvable, that is it can be decided algorithmically
infinitely many steps whether or not an arbitrary one-relator group is isomorphic to G,,;

(2) Gu « not isomorphic to G,A for i > 2;

(3) ifi, k are primes then

Gu = Gkl if and only if i = k;

(4) for all natural numbers i, Gu is Hopfian, every automorphism of Gu is induced by
an automorphism of the free group F* = F*(A, B, T) of rank 3, with respect to the
epimorphism A —*• a,B -*• fr, T—> t, and the automorphism group AutG^ is finitely
generated.

Proof. Suppose that G is an arbitrary one-relator group. If G = Gu, i > 1, then G
must have rank 3. Any isomorphism then leads to a generating system {x,,x2,x3} for
Gu. We then use the Nielsen cancellation method on this generating system to describe,
up to conjugation and certain algorithmically performed substitutions, the Nielsen
classes. This coupled with the Whitehead algorithm (which allows us to determine
when two elements of a free group are congruent via an automorphism) and the
solution of the conjugacy problem in free groups leads to the given solution of the
isomorphism problem.

To apply the Nielsen techniques consider the presentation (1) and notice that in
general G(J can be expressed as an HNN group

Gitl = <a,b, t; rla[b', a]b't = b1 >.

If; = 1 then G,, has the presentation

Gu = < a, b, t;a~l = [bl, a] [b, t] >
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and in this case the associated subgroups <b> and <a[b', a]b> are maximal cyclic and
thus malnormal in <a,b;>. Therefore we may apply the Nielsen techniques developed
in [5]. We use the notation F = <a,b;>,c = a[b', a]b, d = cb'1 = ablab~'a~l, and recall
that in the free group F the conjugacy problem is solvable. Further recall that the
Whitehead algorithm (see [8]) allows us to determine when two elements (or more
generally two finite subsets) of a free group are congruent via an automorphism.

Now let {xi,x2,x3} be a generating system for Gu. From the results in [5] there is
a one-relator presentation for Gfl on {X|,x2, x3}. By analyzing the techniques developed
in [5] (the proof of Theorem 1 together with Proposition 1 of that paper) and after
replacing t~x by ht~l (or t~lh) and b by hbh~l (respectively c by h'lch), h e F, if
necessary, we need only consider the cases

(1) x,, x2 € F,ca e <x,, x2>, a > 1, and x3 = t or

(2) x,, x2 e F, x2 = b", a > 1, and x3 = t.

We consider first case (1). The Nielsen cancellation method in free groups easily
gives that c = a[b', a]b is primitive in each proper two-generator subgroup of F which
contains c. Hence by a result of Rosenberger (Lemma 2.1 of [14]) one necessarily has
<X! ,x 2 >=F, and {x,,x2>t} is Nielsen equivalent to {a, b, t) or some cy, y > 1 is
primitive in <x,, x2 >. If this latter case holds then we may assume that already x2 = cy

which reduces the problem to case (2) after a suitable conjugation in GM and again
applying Nielsen reduction. Hence we now consider case (2).

Let x,, x2 e F, x2 = b" for some a > 1 and x3 = t. By cancellation methods in HNN
groups we have necessarily that F = <x,,x2, c*>= <x,, b", c"> independently of
whether c e < x,, x2 > already or not. Further we must then have a = 1 since the factor
group F = <a,b;by = (a[b', a]b)y = 1 >, y > 2, is not cyclic (see [4]). Therefore we have
F = <x,, b, c> = <xu b, d>. We wish to show that, in a minimizing manner, {xltb, c]
is c-stable (see previous section) Nielsen equivalent to {a, b, c], and hence {x, b, t] is
Nielsen equivalent to {a, b, t], or if i > 2, {x,, b, c] is c-stable Nielsen equivalent to a
system {b, ab^a~\ c), and hence {x,,b, t] is Nielsen equivalent to {b, abfa~\ t], where
1 < P < i, P\i-

We consider the generating system {x,, b, c] and perform c-stable Nielsen
transformations from {x,, b, c] to other systems in a minimizing manner. For this we
regard F as the free product F = <a> * <b> of two infinite cyclic groups together
with the length L and an order with respect to this factorization. The reason for doing
this is that in this factorization L{c) = 6 whereas the free length of c is 2i + 4 which
can be quite large. We note that H = <b,o = <b,d> is free of rank 2, and there is
no cancellation between b and d = ab'ab^aT1 with respect to the above free product
factorization. In particular we have that H^F. We write x = x, and now use the
Nielsen cancellation method in the free product factorization for F to handle {x, b, c).
For each (x, e = ±1 and for each r e H w e can obtain

L(xV) > Ux) and

UX'TX1) > Ux) - Ur) + Ux).
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In particular the reduced form of x does not end with a power of b.
Consider first the case where L(x) > 5. Since F = <x,b,d> we must have either at

least one Uxfd') < L(d) = 5 or always Uxftf) > L(d) = 5, but at least once L(d"xdc) <
2Ud) - Ux) = 10 - L(x), ft, e = ±1. In the latter situation the left half and the right
half of the symmetric normal form of x are cancelled whence we obtain L{xyd?) < L(x)
for some /? ̂  0, y = ±1, which contradicts L(xV) > L(x); n, e = ±1; r e H. Therefore
we have Uxfd1) < 5 for some \i, e = ±1 and we may replace x by y — x"dc. Hence from
the beginning we may assume that L(x) < 5.

Therefore we now consider the case where L(x) < 5. Since x neither starts nor ends
with a power of b, we must have L(x) = 1 or L(x) = 3. Consider first L(x) = 3.
In this case then x = (fb^a7 for some non-zero integers a, /?, y. Assume that
L(x"dt) < L{d) = 5 for some //, e = ±1. Suppose for example L(xd) < 5. Then we have
necessarily y = - 1 , j? = - i and x<ra = (fb^ cTx ati aT*^ cTx = b~la~\ that is Uxd'") < L(x)
which contradicts that L(xV) > L(x); \i, e = ±1; r e H. The same type of analysis
works for the other possibilities for /x, e and hence we always have Ujfd1) > Lid). We
must have at least once L(d"xrf£) < 2L(d) — L(x) = 7 and then we have necessarily that
a = 1 and y = — 1. This implies then that x = atfa~\ Without loss of generality let
ft > 1. We must have \<P<i,p\i because for /? > 2, /?/i, the factor group
F = <a,b;tf = \> cannot be generated by b and ab'ab~'a~l. Let x = ab^a~l with
1 < /? < i, /?|i, and 7 = |. We then have the relation a — x~jdx] and hence
Gu = < x , M > . If /? = i then we have x"'(i = ( i W and L(x~'d) = 3 < Ud) = 5
which contradicts that Uxfd1) > L(d), fi,e = ±1, and therefore we may assume that

Hence let i > 2 and /? < i. Here {x, 6, c} is c-stable Nielsen equivalent, in a
minimizing manner, to {ft, ab^a~l,c} and hence {x, b, t] is Nielsen equivalent to
{b, atfa'1, t}. Using the relation a = x~~Jdx' = x'Ubt^b^x', where x = a&a'* we get
for this generating system {x, b,t},x = ab9a~x, the one-relator presentation

G(il =<x,b,t;R = l>

where K = x~lbtb~h~xxtbt~xb~lxlb~1' and i > 2,2 < ; < i, ;|i and /? = j . This completes
the case when L(x) = 3.

Now suppose Ux) — 1, that is, x = a" for some a ^ 0. We may assume that a > 1; but
then we must have a = 1, for if a > 2 the factor group F = <a, b; a" = 1 > cannot be
generated by b and ab'ab^aT1. Therefore here {x, b, c} is, in a minimizing manner,
c-stable Nielsen equivalent to [a, b, c] and hence, {x, b, t] is Nielsen equivalent to
{a, b, t}. We note also that this always holds if i = 1, that is in particular we have: If
{x,,x2, x3} is a generating system for Gtl then {X|,x2, x3} is Nielsen equivalent to
{a, b, t). In all cases the Whitehead method now leads to the solvability of the
isomorphism problem for the class GM, i e N. In particular it shows that GM is never
isomorphic to GiA with 1 > 2 because the latter group always has at least two different
Nielsen equivalence classes of generating triples while Gu has exactly one Nielsen
equivalence class of generating triples. By examining the effect of Whitehead moves in
the rank 3 free group F with ordered basis {X, Y, Z) on the words X[Y, X] [Y, Z ] , i eN

https://doi.org/10.1017/S0013091500024007 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024007


548 BENJAMIN FINE, GERHARD ROSENBERGER AND MICHAEL STILLE

and X-iYZY^Z^XZYZ^Y^X'Y-Pj > 2,2 < j < i, j\i and 0 = j , we see that they
have minimal free length among all words which we can obtain from them via
automorphisms of the free group F. Further for different i and k these corresponding
words have pairwise different length. Therefore the above also shows that if i, k are
distinct primes then G,, ^ GM.

The remaining statements in the theorem are now almost immediate. Let (b : G,, -*• G,,
be a homomorphism from Gu onto G(1) and set a' = <b(a), b' = (b(b), if = <b(t). Consider
the generating system {a1, b', t!}. Applying Nielsen transformations to this system with
respect to the equation t'~xd[b", a']b't/ = b' shows that {a1, V, t!) is Nielsen equivalent to
[a, b, t] and hence G,, is Hopfian. Further every automorphism of G,, is induced by an
automorphism of the rank 3 free group. Since the group of inner automorphisms is
finitely generated it follows that AutG,, is finitely generated (see [9]). This completes
the theorem.
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