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ABSTRACT

Let k be a perfect field of characteristic p > 0 and let W be the ring of Witt vectors of k.
In this article, we give a new proof of the Frobenius descent for convergent isocrystals
on a variety over k relative to W. This proof allows us to deduce an analogue of the
de Rham complexes comparison theorem of Berthelot [Z-modules arithmétiques. I1.
Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) 81 (2000)] without assuming a
lifting of the Frobenius morphism. As an application, we prove a version of Berthelot’s
conjecture on the preservation of convergent isocrystals under the higher direct image
by a smooth proper morphism of k-varieties.

1. Introduction

1.1 Let k be a perfect field of characteristic p > 0. A good p-adic cohomology theory on a variety
over k is the rigid cohomology developed by Berthelot [Ber86, Ber96a]. The coefficients for this
theory are (over-)convergent F-isocrystals: they play a similar role of the lisse {-adic sheaves in
l-adic cohomology. In [Ber86, 4.3] and [Tsu03], Berthelot and Tsuzuki conjectured that under
a smooth proper morphism of varieties over k, the higher direct image of an (over-)convergent
(F-)isocrystal is still an (over-)convergent (F-)isocrystal analogue to the (-adic case. Various
cases and variants of this conjecture have been proved by Tsuzuki [Tsu03], Shiho [Shi07b],
Etesse [Etel2], Caro [Carl5], etc. We refer to an article of Lazda [Laz16] for a survey of these
results and the relation between them. The goal of this article is to prove a version of Berthelot’s
conjecture for convergent isocrystals in the context of convergent topos developed by Ogus
(Theorem 1.9).

1.2 In [Ogu84, Ogu07], Ogus introduced a crystalline-like site: convergent site, and defined a
convergent isocrystal as a crystal on this site. Let us briefly recall his definition.

Let W be the ring of Witt vectors of k, K its fraction field and X a scheme of finite type
over k. We denote by Conv(X/ W) the category of couples (T, u) consisting of an adic flat formal
W-scheme of finite type ¥ and a k-morphism u from the reduced subscheme T} of the special fiber
of T to X. Morphisms are defined in a natural way. A family of morphisms {(%;, u;) = (T,u) }ier
is a covering if {¥; — T}icr is a Zariski covering.

The functor (T, u) — I'(Tyar, ﬁg[%]) is a sheaf of rings that we denote by Ox k. An Ox k-
module amounts to giving the following data:

(i) for every object (¥,u) of Conv(X/ W), an ﬁcg[%}—module Fz of Tyar;
(ii) for every morphism f : (T1,u1) = (T2, u2) of Conv(X/ W), an O, -linear morphism cy :
f(Fz) = P

satisfying a cocycle condition for the composition of morphisms as in [BO15, 5.1].
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A convergent isocrystal on Conv(X/W) is a coherent crystal of & x-modules .# on
Conv(X/ W), i.e. for every object (T, u) of Conv(X/ W), %z is coherent and, for every morphism
f of Conv(X/W), the transition morphism c; is an isomorphism. We denote by Isof(X/W)
the category of convergent isocrystals on Conv(X/W). If X is smooth over k, there exists
a canonical functor ¢ from ISOT(X / W) to the category of crystals of Ox,w-modules on the
crystalline site Crys(X/ W) up to isogeny [Ogu07, 0.7.2]. Its essential image satisfies certain
convergent conditions (cf. [Ber96a, 2.2.14)).

1.3 In [Ogu84, 4.6], Ogus showed that the category Isof (X/ W) satisfies the descent property
under a proper and surjective morphism of k-schemes. Then, if X’ denotes the base change of
X by the Frobenius morphism of k, the functorial morphism of convergent topoi induced by the
relative Frobenius morphism Fy/, : X — X " gives an equivalence of categories:

Xk .cony © 150T(X'/ W) 5 Isof (X/ W) (1.3.1)

that we call Frobenius descent.

A convergent F-isocrystal on Conv(X/ W) is a couple (&, ¢) of a convergent isocrystal &
on Conv(X/ W) and an isomorphism ¢ between & and its pullback via the absolute Frobenius
morphism of X (cf. §5.14 for a precise definition).

1.4 To study the higher direct image of convergent (F-)isocrystals, we need the notion of
convergent topos over a p-adic base developed by Shiho [Shi02, Shi07a].! Let & be an adic flat
formal W-scheme of finite type, Sy the reduced subscheme of its special fiber and X an Sp-scheme.
We define the convergent site Conv(X/&) of X relative to & and the category Iso' (X/&) of
convergent isocrystals on Conv(X/&) as in §1.2 (cf. Definition 3.1 and § 3.16). Shiho generalized
Ogus’ proper surjective descent for convergent isocrystals in this setting [Shi07b, 7.3].

We denote by (X/&)conv.tppt the topos of fppf sheaves on the category Conv(X/&) (§3.4).
As a first step towards Berthelot’s conjecture, we show the following result.

THEOREM 1.5 (Theorem 5.2). Suppose that the Frobenius morphism Fg, : So — So is flat.
Let X be an So-scheme locally of finite type, X' = X xg, s So and Fy/s, : X — X' the
relative Frobenius morphism. The functorial morphism of topoi Fx/s, conv : (X/&)conv,fppt —
(X"/6)conv.tppf Is an equivalence of topoi.

Our proof is inspired by a site-theoretic construction of the Cartier transform of Ogus—
Vologodsky due to Oyama [OVO07, Oyal7] and its lifting modulo p™ developed by the
author [Xul9]. By Gabber-Bosch—Gortz’s faithfully flat descent theory for coherent sheaves
in rigid geometry [BG98|, we obtain a new proof of the Frobenius descent (1.3.1).

COROLLARY 1.6 (Proposition 5.7). Keep the hypotheses of Theorem 1.5. The direct image and
inverse image functors of Fx s, cony induce equivalences of categories quasi-inverse to each other:

Isol (X/6) = Isof (X'/&). (1.6.1)

! Actually, Shiho developed a theory of a log convergent site and log convergent cohomology over a p-adic base
with log structure.
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1.7 Keep the notation of Theorem 1.5 and suppose that there exist smooth liftings X of X

and X’ of X’ over & (in particular, X is smooth over Sy). We denote by Q;/G the Ox-module

of differentials of X relative to &. Given a convergent isocrystal & € Ob(Iso' (X/6)), there
exists an integrable connection V : & — &% ®g, Q; /e on the coherent ﬁx[%]—module Ex
(Proposition 3.17). We denote by &% ®4, Q% /& the associated de Rham complex. We deduce from
Theorem 1.5 the following result about comparing de Rham complexes for the Frobenius descent.

~

COROLLARY 1.8 (Corollary 5.9). Keep the above notation and let f : X — Sy be the canonical
morphism. There exists a canonical isomorphism between de Rham complexes of & and of

FX/SO,conv*(@[d) in D(Xéar’ fﬁl(ﬁe)%
‘FAX'/S"(P*(gé€ Qo ﬁ.’:{/@) - (FX/So,conv*(@([}))%’ ®ﬁx’ Q.x//g- (181)

In [Ber96b], Berthelot introduced a sheaf 21 of differential operators over X and described
(over-)convergent isocrystals in terms of arithmetic 2f-modules. If there exists a lifting
F : X — X' of the relative Frobenius morphism F /Sy, he used F' to establish a version of
Frobenius descent for arithmetic 2f-modules and a comparison result for de Rham complexes
(cf. [Ber00, 4.2.4 and 4.3.5]). The above results can be viewed as a counterpart of Berthelot’s
results for convergent isocrystals without assuming a lifting of Frobenius morphism.

Our main result is the following.

THEOREM 1.9 (Corollary 8.3). Let g: X — Y be a smooth proper morphism of k-schemes locally
of finite type. The higher direct image of a convergent isocrystal (respectively F-isocrystal) on
Conv(X/ W) (§1.3) is a convergent isocrystal (respectively F-isocrystal) on Conv(Y/W).

Our proof relies on a preprint of Shiho [Shi07a] on relative crystalline cohomology of
convergent isocrystals.

In [Ogu84], Ogus described R geony «(O x/K) in terms of relative crystalline cohomology.
Morrow showed that R’ geony«(€ x/K) coincides with the higher direct images in crystalline
cohomology when Y is smooth [Mor19]. Our approach follows a similar line of their work.

In a recent preprint of Di Proietto, Tonini and Zhang [DTZ18], they showed that the higher
direct image of an isocrystal (crystal on the crystalline site (X/ W)erys up to isogeny) via gerys
is still an isocrystal when Y is smooth. Our result is compatible with theirs via the functor ¢
(§1.2). However, two results are independent and are proved in different methods.

1.10 In the following, we explain the structure of this article and the strategy for proving
Theorem 1.9.

Section 2 contains general notation and a review of isocrystals on crystalline sites. In § 3, we
recall the definition of the convergent topos over a p-adic base and results on the cohomology
of convergent isocrystals following Shiho [Shi07a]. In §4, we show that under a smooth proper
morphism of smooth k-schemes X — Y, the higher direct image of a convergent isocrystal on
Conv(X/ W) is a ‘p-adic convergent isocrystal’ on Conv(Y/ W), i.e. it satisfies the property of a
coherent crystal in a certain subcategory of Conv(Y/ W) (Proposition 4.8). Section 5 is devoted
to the Frobenius descent (Theorem 1.5 and Corollary 1.6). Using Dwork’s trick and Theorem 1.5,
we deduce Theorem 1.9 in the case where Y is smooth over k (Theorem 5.10). In § 6, we briefly
review Raynaud’s approach to rigid geometry following Abbes’ book [Abb10]. Section 7 is devoted
to a modification of convergent topos which allows us to apply the faithfully flat descent in rigid
geometry in the full extent. Based on previous results and Ogus’ proper surjective descent, we
complete the proof of Theorem 1.9 in the non-smooth case in §8.

2182

https://doi.org/10.1112/50010437X19007590 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007590

ON HIGHER DIRECT IMAGES OF CONVERGENT ISOCRYSTALS

2. Preliminary

2.1 In this article, p denotes a prime number, k denotes a perfect field of characteristic p, W
the ring of Witt vectors of k and K the fraction field of W.

Let X be an adic formal W-scheme. For any n > 1, we denote by X,, the reduction modulo
p™ of X. If we use a gothic letter X to denote an adic formal W-scheme, the corresponding roman
letter X will denote its special fiber X;.

We denote by S the category whose objects are adic formal W-schemes of finite type [Abb10,
2.3.13] and morphisms are adic morphisms [Abb10, 2.2.7]. By [EGAI, 6.1.5(v)], morphisms of S
are of finite type. We denote by S¢ the full subcategory of S consisting of flat formal W-schemes
of finite type.

2.2 Let &/ be an abelian category. We denote by <7 the category with the same objects as ./
such that the set of morphisms is given for any object M, N of & by

Hom&y@ (M, N) = HOIHQQV(JW7 N) ®7 Q.
For any object M of </, we denote its image in 2y by My.

2.3 Let X be an object of S. For any 0x-module %, we set ﬁ’[%] =7 ®z, Qp.

We denote by Coh(0x) (respectively Coh(ﬁ’x[%])) the category of coherent Oy-modules
(respectively ﬁx[%]—modules). The canonical functor Coh(0%) — Coh(ﬁx[%]) defined by % —
ﬁ[%] induces an equivalence of categories Coh(0x)g — Coh(ﬁ’x[%]) [AGT16, I11.6.16].

2.4 Let ¥ and Z be two sites, 2 (respectively @) the category of presheaves of sets on €
(respectively &) and u : € — 2 a functor. We have a functor

U9 >C, G4 =Fou.

It admits a right adjoint @, : € — 2 [SGA4, 15.1].

If u: % — 2 is a cocontinuous (respectively continuous) functor and .# (respectively ¥) is
a sheaf on € (respectively Z), then u,(F) (respectively u*(¥)) is a sheaf on Z (respectively €)
[SGA4, I 1.2, 2.1 and 2.2].

Let ¢ (respectively 2) be the topos of the sheaves of sets on % (respectively Z) and
u: € — Z a cocontinuous functor. Then u induces a morphism of topoi g : ¢ — 9 defined by
g« = Uy and ¢g* = a o u*, where a is the sheafification functor (cf. [SGA4, III 2.3)).

PROPOSITION 2.5 [Oyal7, 4.2.1]. Let € be a site,  a site whose topology is defined by a

pretopology, € (respectively &) the topos of sheaves on € (respectively ) and u : € — 2
a functor. Assume that:

(i) w is fully faithful;
(ii) w is continuous and cocontinuous;

(iii) for every object V of 9, there exists a covering {u(U;) — V };cr of V in & with objects U;
of €.

Then the morphism of topoi g : % — 9 defined by ¢g* = u* and g, = u, (2.4) is an equivalence
of topoi.
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2.6 In the following, & denotes an object of S® and X an S-scheme.

We equip pOg with the canonical PD-structure v. Recall that the crystalline site Crys(X/S)
is defined as follows [BO15, 7.17]: an object is a quadruple (U,T,t,0) consisting of an open
subscheme U of X, a scheme T over &,, for some integer n > 1, a closed immersion ¢ : U — T
and a PD-structure 6 on Ker(0p — Op) compatible with 4. A morphism from (U, T",/,¢") to
(U,T,,0) of Crys(X/&) consists of an open immersion U’ — U and an &-morphism 7" — T
compatible with ¢/, ¢ and the PD-structures. A family of morphisms {(U;,T;) — (U, T)}ier is
a covering if each morphism 7; — T is an open immersion and |T'| = (J;c;|T3|. We denote by
(X/S)crys the topos of sheaves of sets on Crys(X/&).

The presheaf of rings defined by (U,T') — I'(T, Or) is a sheaf that we denote by ﬁ;}g For
an ﬁ;}’g—module Z and an object (U, T) of Crys(X/&), we denote by #p the evaluation of &

at (U,T) [BO15, 5.1].

DEFINITION 2.7 ([BO15, 6.1], [Shi07a, 1.8]). (i) We say that an ﬁ;;’é—module F is a crystal if,
for every morphism f : (U, T") — (U, T) of Crys(X /&), the transition morphism f*(#r) — Fp
is an isomorphism.

(ii) We say that a crystal % is a crystal of ﬁ;}’é—modules of finite presentation if Fp is an
Or-module of finite presentation for every object (U,T) of Crys(X/&).

(iii) We denote by %(ﬁ?fg) the category of crystals of ﬁ;}'é—modules of finite presentation.

Objects of Cf(ﬁgg/yé)Q (§2.2) are called isocrystals.
2.8 Crystals have an equivalent description in terms of modules equipped with hyper-PD-
stratification and of modules with integrable connection. Let us briefly recall these notions.

Let X be an adic formal G-scheme of finite type and X? = ¥ xg X. Let G be an adic formal
X2-scheme and let q1,q2 : G — X be the canonical projections. A formal X-groupoid structure
over & on G are three adic morphisms a: GxxG - G,t : X - G and n: G - G, where
the fibered product G xx G is taken on the left (respectively right) for the X-structure defined
by g2 (respectively q1), satisfying the compatibility conditions for groupoids (cf. [Xul9, 4.7]).
We set 13 = a and ¢i12, q23 : G X3 G — G, the projections in the first and second components,
respectively.

Let G be a formal X-groupoid over & and M an Ox-module. An Og-stratification on M is
an Og-linear isomorphism ¢ : ¢5(M) = ¢} (M) satisfying +*(¢) = idys and the cocycle condition
0iale) 0 a33(e) = a33(2).

2.9 Suppose that X is smooth over S and admits a smooth lifting X over &. We denote by
Px/s the adic formal X2-scheme defined by the PD-envelope of the diagonal immersion X — X2
compatible with the canonical PD-structure v (§2.6). By the universal property of the PD-
envelope, the formal X2-scheme Py /& is equipped with a formal X-groupoid structure (§2.8).
Given an object % of %(ﬁ;}g) (Definition 2.7), the coherent Ox-module Fx = im Ty, is
equipped with an Op,, /s -stratification and then an integrable connection relative to &. Moreover,

the following categories are canonically equivalent (see [BO15, 6.6] and [Sta, 07JH]).
(i) The category %(ﬁ;}g)
(ii) The category of coherent Ox-modules equipped with an Op, /G-S‘cratiﬁcation.

(iii) The category of coherent Ox-modules equipped with a topologically quasi-nilpotent
integrable connection relative to & [BO15, 6.1].
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PRrROPOSITION 2.10 ([Ogu07, 0.7.5], [Shi07a, 1.23]). Keep the assumption of §2.9. Let M be a

coherent ﬁx[%]—module and € an Op, -stratification on M. There exist a coherent Ox-module
M?® and an Op,  -stratification € on M° such that (MO[%],EO ®1id) is isomorphic to (M, ¢).

DEFINITION 2.11 [SGAG6, I 1.3.1]. Let (.7, A) be a ringed topos. We say that an A-module M
of 7 is locally projective of finite type if the following equivalent conditions are satisfied:

(i) M is of finite type and the functor .#Zom4 (M, —) is exact;

(ii) M is of finite type and every epimorphism of A-modules N — M admits locally a section;
(iii) M is locally a direct summand of a free A-module of finite type.

When 7 has enough points and, for every point z of .7, the stalk of A at x is a local
ring, the locally projective A-modules of finite type are locally free A-modules of finite type
[SGAG6, T 2.15.1].

LEMMA 2.12. Let X be a smooth formal W-scheme, M a coherent Ox-module and V an

integrable connection on M relative to W. Then M[%] is a locally projective ﬁx[%]—module
of finite type (2.11). In particular, given a coherent ﬁx[%]—module with an Op, , -stratification
(M,e) (respectively an object & of %(ﬁ;ﬁv)), M (respectively c%g[%]) is a locally projective
ﬁx[%]—module of finite type.

Proof. The first assertion is a standard result (cf. [Kat70, 8.8] and [Ked10, 1.2]). Then the second
assertion follows from §2.9 and Proposition 2.10. O

2.13 We denote by ux/g crys 1 (X/6)erys = Xzar the canonical morphism of topoi [BO15, 5.12]
and by gx/e crys the composition

9X/6,crys (X/G)crys — Xzar = Gzar,

which is ringed by ﬁ;gé and Og. We call R*® gX/G,Crys*(_) the relative crystalline cohomology.

For an isocrystal & = Fg with .Z € Ob(%(ﬁ;}é)), we set (§2.1)

1 1

R? gX/G,crys*(@(a) =R gX/G,crys*(g) |:p:| ) RgX/G,crys*(éa) = RgX/G,crys*(g) |:p:| :

It is clear that the above definition is independent of the choice of .%.
When X is smooth and proper over S and & is separated, Shiho proved that the relative
crystalline cohomology R? gx /e crys« (&) is a coherent Og|; ]-module [Shi07a, 1.15]. Moreover, he

1
P
showed a base-change result for relative crystalline cohomology (cf. [Shi07a, 1.16 and 1.19]).
3. Convergent topos and convergent isocrystals

In this section, & denotes an adic flat formal W-scheme of finite type and X denotes an S-scheme.
For any scheme T', we denote by Ty the reduced subscheme of T

DEFINITION 3.1 ([Ogu84, 2.1], [Shi07a, 2.4]). We define a category Conv(X /&) as follows.

(i) An object of Conv(X/6) is a pair (¥, u) consisting of an adic formal &-scheme of finite
type which is flat over W and an S-morphism u : Ty — X.
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(ii) Let (¥',u) and (%, u) be two objects of Conv(X/&). A morphism from (¥, ') to (T, u)
is a G-morphism f : ¥ — T such that the induced morphism fy : Tj — Tp is compatible with
v’ and u.

We denote an object (T, u) of Conv(X /&) simply by ¥ if there is no risk of confusion.
It is clear that if X — Y is a nilpotent immersion of S-schemes, the category Conv(X /&) is
canonically equivalent to Conv(Y/8).

3.2 Let f: (%,u) — (T,u) and g : (¥",4") — (T,u) be two morphisms of Conv(X/&). We
denote by 3 the closed formal subscheme of T’ x5 €" defined by the ideal of p-torsion elements
of Oy . The fibered product of f and g in Conv(X /&) is represented by 3, which is flat over
W, equipped with the composition Zy — T}, xq, Ty — X induced by v’ and u”.

If either ¥/ — T or ¥ — ¥ is flat, then 3 is equal to T xg T".

3.3 Let T be an object of S. We denote by Zar 5 (respectively T,;) the Zariski site (respectively
topos) of ¥.

We say that a family of morphisms {f; : ¥; — T};cr of S is an fppf covering if each morphism
fi is flat and if |T| = (U, fi(|Zi]). Since T is quasi-compact, each fppf covering of T admits a
finite fppf subcovering of . Note that fppf coverings in S are stable by base change and by
composition.

We denote by Fft 5 the full subcategory of S,z consisting of adic flat formal T-schemes and
by Tgpe the topos of sheaves of sets on Fft g, equipped with the topology generated by fppf
coverings.

Given a morphism f : ¥ — T of S, the canonical functor Fft s — Fft o (respectively
Zar s — Zary) defined by 9 — 9 xz %’ is continuous and left exact. For 7 € {zar, fppf}, it
induces the functorial morphism of topoi f; : ¥ — %,.

3.4 We say that a family of morphisms {(%;,u;) — (T, u)}lier of Conv(X/6) is a Zariski
(respectively fppf) covering if the family of morphisms {T; — T};c of S is a Zariski (respectively
fppf) covering. By § 3.3, Zariski (respectively fppf) coverings in Conv(X/&) form a pretopology.
For 7 € {zar, fppf}, we denote by (X/&)conv,r the topos of sheaves of sets on Conv(X/&),
equipped with the T-topology.

Remark 3.5. The above definition of a convergent site is slightly different from that of [Ogu84,
ShiO7a], where the authors considered a category whose objects are triples (¥, Z, u), where ¥ is
the same as above, Z is a closed subscheme of definition of ¥ such that Ty — ¥ factors through Z
and u : Z — X is an S-morphism. However, it follows from Proposition 2.5 that the convergent
topoi (with Zariski topology) defined in two different ways are equivalent and we freely use
results of [Shi07a] in our setting.

3.6 Let (T,u) be an object of Conv(X/&) and 7 € {zar, fppf}. The canonical functor
Fft )z (respectively Zar g) — Conv(X/&), (f:% — %) (T, uo fo)
is cocontinuous and induces a morphism of topoi (§2.4)

st : % = (X/S)conv,r, VT € {zar, fppf}. (3.6.1)
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For any sheaf .7 of (X/&)conv,r, We set Fg = si(F), called the evaluation of % at T. For any
morphism f: T — T of Conv(X/&), we have a canonical morphism (§3.3)

By Pz — fr(Fz) (3.6.2)
and we denote its adjoint by

It is clear that yiq = id. If f is a morphism of Fft s (respectively Zar /3:), fr is the localization
morphism at ¥ and then 7 is an isomorphism. If g : ¥ — ¥’ is another morphism of
Conv(X /&), one verifies that y40r = 77 0 f(7g)-

PROPOSITION 3.7. For 7 € {zar,fppf}, a sheaf .# of Conv(X/S)conv,r Is equivalent to the
following data:

(i) for every object (¥,u) of Conv(X/&), a sheaf Fz of ;;
(ii) for every morphism f: (¥',u') — (%, u), a transition morphism vy (3.6.3)

subject to the following conditions.

(a) If f is the identity morphism of (T,u), then vy is the identity morphism.
b) If f : ¥ — ¥ is a morphism of Zar )z (respectively Fft ), then ¢ is an isomorphism.
/T /T f
¢) If f and g are two composable morphisms, then we have v, = v 0 fX(7,).
gof f T\ /g

Proof. Given a datum {%s,vs} as in the proposition, for any morphism f : ¥ — T of
Conv(X/6), the morphism 7¢ induces a morphism #z(¥) — Fo/(T'). In view of conditions
(a) and (c), the correspondence ¥ — Zz(T) defines a presheaf .# on Conv(X/S). In view
of condition (b), % is a sheaf and the above construction is quasi-inverse to §3.6. Then the
proposition follows. O

3.8 Note that the fppf topology on Conv(X/®) is finer than the Zariski topology. Equipped
with the fppf topology on the source and the Zariski topology on the target, the identical functor
id : Conv(X/6) — Conv(X/6) is cocontinuous and induces a morphism of topoi (§2.4)

a: (X/G)Conv,fppf - (X/G)conv,zar- (381)

If # is a sheaf of (X/&)conv,tppf, then a.(F) is equal to .F as presheaves. If ¢ is a sheaf of
(X/6)conv,zar, then o*(¥) is the sheafification of ¢ with respect to the fppf topology.

3.9 Let g: & — & be a morphism of S° (§2.1), X" an S’-scheme and f : X’ — X a morphism
compatible with g, i.e. the diagram

) QR T T

1

X—5——>06

is commutative. For any object (T, u) of Conv(X’/&"), (¥, fou) defines an object of Conv(X/S).
We obtain a functor that we denote by

¢ : Conv(X'/&") — Conv(X/6), (T,u)w— (%, fou). (3.9.2)

It is clear that ¢ commutes with the fibered product (§3.2).
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LEMMA 3.10. (i) Let (¥,u) be an object of Conv(X'/&") and g : (3, w) — ¢(%,u) a morphism of
Conv(X/&). Then there exist an object (3,v) of Conv(X'/&") and a morphism h : (3,v) — (T, u)
of Conv(X'/&") such that g = ¢(h).

(ii) Equipped with the Zariski topology (respectively fppf topology) (§3.4) on both sides,
the functor ¢ is continuous and cocontinuous.

Proof. (i) By considering compositions 3 — ¥ — &’ and Zy — Ty — X', we obtain an object
(3,v) of Conv(X’/&) and a morphism A : (3,v) = (T, u) of Conv(X’/&") such that g = ¢(h).

(ii) A family of morphisms {(%;,u;) = (%, u)}ier of Conv(X’'/&') is a Zariski (respectively
fppf) covering if and only if its image by ¢ is a Zariski (respectively fppf) covering. Since ¢
commutes with the fibered product, the continuity of ¢ follows from [SGA4, III 1.6].

Let {(%;,u;) = ©(T,u)}icr be a Zariski (respectively fppf) covering. By (i), there exists a
Zariski (respectively fppf) covering {(%;,v;) — (%, u)}icr mapping by ¢ to the given element.
Then ¢ is cocontinuous by [SGA4, III 2.1]. |

3.11 By §2.4 and Lemma 3.10, the functor ¢ (3.9.2) induces a morphism of topoi
fconv,T : (X,/Gl)conv,f - (X/G)COHV,T (3111)

such that the pullback functor is induced by the composition with ¢. For a sheaf .# of (X/&)cony,r
and an object T of Conv(X’/&"), we have (Proposition 3.7)

(fc*onv,T(g))T = gap(f)‘ (3112)

For any morphism h of Conv(X’/&’), the transition morphism of f,,, -(F) associated to g
(Proposition 3.7) is equal to the transition morphism of .% associated to <p(h).
By considering inverse image functors, one verifies that the following diagram commutes

(3.8.1):
fconv,
(X//Gl)conv,fppf i (X/G)conv,fppf
a’l la (3113)
(X//GI)COHV,ZM fconV’Zar (X/G)conv,zar
3.12 Let ¥ be an object of S and % a coherent Oz[:]-module. Since ¥ is quasi-compact, by

|

Gabber-Bosch—Gortz’s fppf descent for coherent Oz[;]-modules [Abbl0, 5.11.11], the presheaf

on Fft /g

1
P
(f T > ) > DT, f7u(F))
is a sheaf for the fppf topology. In particular, ﬁg[%] defines a sheaf of rings of Tp,,¢ that we still

denote by ﬁg[%]. We call abusively a coherent ﬁg[%] module of Tgpe a sheaf of Ty,pe associated
to a coherent ﬁg[%]—module.

3.13 We define a presheaf of rings ﬁx/g[%] on Conv(X/S) b

(T,u) > r<z, A m ) (3.13.1)

By fppf descent (§3.12), & X/G[%] is a sheaf for the fppf topology. Since the fppf topology is finer
than the Zariski topology, it is also a sheaf for the Zariski topology.
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For any object (T, u) of Conv(X/&), we have (ﬁx/g[%])f = 6"«;[%]. If 7 is an ﬁX/G[]%]—module
of (X/6)conv,rs F< is an ﬁg[%]—module of ;. For any morphism f : ¥ — ¥ of Conv(X/&), the
transition morphism ~; (Proposition 3.7) extends to an ﬁ’g/[%]—linear morphism (§3.12)
Cf f:(ﬁz\g) — f%\T/. (3.13.2)

In view of Proposition 3.7, we deduce the following description for & X/G[%]—modules.

PROPOSITION 3.14. For 7 € {zar, fppf}, an ﬁx/e[%]—module F of (X/6)conv,r Is equivalent to
the following data:

(i) for every object T of Conv(X/&), an ﬁg[%]—module Fz of Ty

(ii) for every morphism f: %" — T of Conv(X /&), an Og-linear morphism ¢y (3.13.2),
which is subject to the following conditions.

(a) If f is the identity morphism, then c; is the identity.

(b) If f : ¥ — T is a morphism of Zar 5 (respectively Fft ), then cy is an isomorphism.

(c) If f and g are two composable morphisms, then we have cgor = cf o fZ(cy).
DEFINITION 3.15. Let .# be an ﬁX/G[%]—module of (X/6)conv,r for 7 € {zar, fppf}.

(i) We say that # is coherent if for every object T of Conv(X/&), %= is coherent (§3.12).
(ii) We say that .# is a crystal if for every morphism f of Conv(X/8), ¢y is an isomorphism.

With the notation of §3.11, the morphism feony,r is ringed by ﬁX//G[%] and ﬁx/e[%]- The
inverse image functor of modules fZ,,, ; sends coherent & X/G[]%]—modules (respectively crystals)

to coherent Oy /Gl[%]—modules (respectively crystals).

3.16 Let & be a coherent crystal of ﬁx/g[%}—modules of (X/6)conv,zar- By fppf descent (§3.12),
& is also a sheaf for the fppf topology. In particular, the direct image and inverse image functors
of a (§3.8) induce an equivalence between the category of coherent crystals of & X/g[%]—modules
of (X/6)conv,zar and the category of coherent crystals of ﬁX/G[%]—modules of (X/6)conv fppt-

Following [Ogu84, ShiO7a|, for 7 € {zar,fppf}, a coherent crystal of & X/G[%]—modules of
(X/6)conv,r is called a convergent isocrystal of (X/S)conv,r- We denote the full subcategory
of ﬁX/G[%]—modules consisting of these objects by Iso (X/&).

We say that a convergent isocrystal & is locally projective if for every object T of Conv(X /&),

&% is locally projective of finite type (Definition 2.11).

PROPOSITION 3.17 ([Ogu07, 0.7.2], [Shi07a, 2.35]). Suppose that X is smooth over S. There
exists a canonical functor (Definition 2.7)

L :Isol (X/6) — C(0%e)0- (3.17.1)

The construction of ¢, that we will briefly recall in § 3.20, is based on the following construction

in formal geometry.
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3.18 Let Q) be an object of S® and &/ an open ideal of finite type of ) containing p [Abb10,
2.1.19]. We denote by )’ the admissible blow-up of ./ in 9 [Abb10, 3.1.2]. The ideal o/ Oy is
invertible [Abb10, 3.1.4(i)] and )’ is flat over W [Abb10, 3.1.4(ii)]. We denote by (/) the
maximal open formal subscheme of 2)’ on which

(A Ox)| X (o1 jp) = 0O%)|X (o1 /p) (3.18.1)

and we call it the dilatation of </ with respect to p [Abb10, 3.2.3.4 and 3.2.7]. Note that 9. /)
is the complement of Supp(</ Oy /pOy) in Y’ [EGALI, 0.5.2.2].

Let Z be a closed subscheme of Y and .# the ideal sheaf associated to the canonical morphism
Z — Q). For any n > 1, we denote by Tz ,(2)) the dilatation of .#™+p0y with respect to p [Ogu8,
2.5].2 By (3.18.1), there exists a morphism from the reduced subscheme of (Tz,,(2))1 to Z which
fits into the following diagram:

(Tz2n(D))1red — T2,n(D)
l i (3.18.2)
A 2

In particular, €z ,,(2)) defines an object of Conv(Z/ W).
The universal property of dilatation [Abb10, 3.2.6] can be reinterpreted in the following way.

PROPOSITION 3.19 [Xul9, 3.5]. Keep the notation and assumptions of § 3.18. Let T be an adic
flat formal W-scheme, T™) the closed subscheme of T defined by the ideal sheaf {x € Op|zP = 0}
and f : T — 9 an adic morphism. Suppose that there exists a morphism T — Z (respectively
T — Z) which fits into the following diagram:

T ——=%  (respectively T —— %)

b |l

Z—=9 Z——=9

Then there exists a unique adic morphism g : € — T71(2) (respectively g : T — T7,(2))
lifting f.

3.20 We briefly review the construction of ¢ (Proposition 3.17) in the case where X is separated
and admits a smooth lifting X over &.

We set Qx/e = Tx p(X?), the dilatation of the diagonal immersion X — X% = X xgX (§3.18).
Using its universal property (Proposition 3.19), one verifies that Qy /& is equipped with a formal
X-groupoid structure (§2.8) (cf. [Xul9, 4.11]).

Let & be an object of Isol (X/&). The canonical morphisms pi, ps : Qx/s — X give rise
to morphisms of Conv(X/&). Since & is a crystal, the composition of transition morphisms
e = ¢, 0 ¢p, defines an 0qy o-stratification on &% (§2.8).

Using 3.19, the canonical morphism Py g — X? induces a morphism of formal X-groupoids
Px/s = Qx/s (cf. [Xul9, 5.12]). By taking the inverse image, we obtain an Op,, . -stratification
on & and then a crystal of ﬁ;}é—modules of finite presentation up to isogeny by §2.9 and
Proposition 2.10. The construction is clearly functorial.

2 The union of rigid space Uzt Tz,n ()" is the same as the tube of Z in 9 introduced by Berthelot (cf. [Ber96a,
1.1.2 and 1.1.10]).

2190

https://doi.org/10.1112/50010437X19007590 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X19007590

ON HIGHER DIRECT IMAGES OF CONVERGENT ISOCRYSTALS

3.21 There exists a canonical morphism of topoi wuyx/s @ (X/&G)convzar —> Xzar
(cf. [Ogu07, §4]). Suppose that S is separated and that X admits a smooth lifting f: X — &.
Let & be a convergent isocrystal of (X/&)conv,zar- By §2.9 and Proposition 2.10, there exists an

~

integrable connection on & relative to & and we denote by &x ®g, Q25 /& the associated de Rham
complex. Then there exists a canonical isomorphism in the derived category D(X,ar, f ' (O [%]))
[Shi07a, 2.33] R

Rux/e:(8) = Ex Doy O - (3.21.1)

Based on the above isomorphism, the finiteness and the base-change property of relative
crystalline cohomology (§2.13), Shiho showed the following results.

THEOREM 3.22 [Shi07a, 2.36]. Assume that & is separated and that X is smooth and proper over
S. Let & be a convergent isocrystal of (X/6)conv,zar and Geonv,zar © (X/S)conv,zar = (5/S)conv,zar
the functorial morphism. Then there exists a canonical isomorphism in the derived category of

ﬁg[%]-modules (§ 2.13 and Proposition 3.17)

(Rgconv,zar*(éd))ﬁi :> RgX/G,crys*(L(éa))‘ (3'22‘1)
In particular, (R’ Geonv,zar+(&'))e is coherent for any i > 0.

THEOREM 3.23 [Shi07a, 2.37]. Keep the assumption of Theorem 3.22 and suppose moreover that

& is locally projective (§3.16). Then (R geonv,zar«(&'))e Is a perfect complex of ﬁg[%]—modules.

THEOREM 3.24 [Shi07a, 2.38]. Let ¢ : &' — & be an adic morphism of adic separated flat
formal W-schemes of finite type, X' = X Xg &' and ¢convzar : (X'/6")conv,zar = (X/S)conv zar
the functorial morphism of convergent topoi (3.11.1). Then, for a locally projective convergent
isocrystal & of (X /&)conv,zar, We have a canonical isomorphism in the derived category of Og: [;17]—
modules:

L @:ar ( (R YJeonv,zar * (éo) ) (‘5) = (R géonv,zar * (@:onv,zar (éa) ))G’ . (324 1)
4. Higher direct images of a convergent isocrystal are p-adically convergent

4.1 In this section, we keep the notation of §3 and let ¢ : X — Y denote a morphism of
S-schemes.

Let T be an object of Conv(Y /&) and 7 € {zar, fppf}. By fppf descent for morphisms of formal
W-schemes [Abb10, 5.12.1}, the presheaf associated to T is a sheaf for the fppf (respectively
Zariski) topology that we denote by T. We set X7, = X xy Ty and we denote by

9x/%,r ¢ (XT()/S)COHV,T - (TO/‘Z)COHV,T7
wg - (XTO/(Z)COHV,T - (X/G)conv,fr

the functorial morphisms of topoi (3.11.1).
LEMMA 4.2 [Ber74, V 3.2.2]. There exists a canonical equivalence of topoi:

(X/G) @) - (XTO/z)conv,ﬁ (421)

*
Convv‘r/gconv,f

which identifies the localization morphism and ws.

The lemma can be verified in the same way as [Ber74, V 3.2.2].
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LEMMA 4.3 [Ber74, V 3.2.3]. For any ﬁX/G[I%]—module E of (X/8)conv,r, there exists a canonical
isomorphism in DT (%, ﬁg[%]).’

(R geonv,r+(E))x — (RQX/T,T*(W%(E)))T- (4.3.1)

Proof. Let E be an abelian sheaf of (X/&)cony,- and f : ¥ — T a morphism of Conv(Y/&) (§4.1).
The morphism f induces a functorial morphism of topoi ¢ : (XTé /T eonv,r = (X1,/%)conv,rs
which fits into the following commutative diagram:

(XTé /T/)conv,’r L) (XTO /f)conv,’r

gX/S,,T\L lgx/x,f (4.3.2)

(T(,)/T/)COHV,T (TO/T)COHV,T

fconv,T

We have wyr = wg o ¢. By Lemma 4.2, ¢ (respectively feonv,r) coincides with the localization
morphism on the sheaf gy L(T') (respectively T'). Then gx /g -.(wz(E)) is the sheaf associated
to the presheaf on Conv(7p/%):

(f: T = 2) = T((X1y /T )conv,r, wir (E)).
The sheaf (geonv,7«(E))z is associated to the presheaf

(f: T >3~ T(X/6) E|

conv.r/gtone » @) Elgzon, @)

By Lemma 4.2, we deduce a canonical isomorphism of T;:

(gconv,T*(E))T - (gX/T,T*G“U;(E)))T' (433)

Since wg coincides with a localization morphism, if I® is an injective resolution of E, wi(I*®)
is an injective resolution of wi(E). Then the isomorphism (4.3.1) follows from (4.3.3). O

Remark 4.4. Keep the notation of Lemma 4.3. Let f : ¥ — ¥ be a morphism of Conv(Y/&). It
induces morphisms of topoi (4.3.2). We consider canonical morphisms

FER gxjm (Wi (E))3) = (frome (R gx/z (Wi (E))w = R gx )3 ra (Wi (E))zr,  (4.4.1)

where the first morphism is the transition morphism of R 9x/5,+(wz(E)) associated to f and
the second one is an isomorphism because wg = wg 0 ¥, Y, feonv,r are localization morphisms
[SGA4, V 5.1].

In view of the proof of Lemma 4.3, via (4.3.1), the above composition is compatible with the
transition morphism of R’ Jeonv,r«(E) associated to f:

f:((Rl Jconv,T* (E))T) — (Rz YGeonv, T+ (E))‘I’ (442)

COROLLARY 4.5 [BBM82, 1.1.19]. Let & be a convergent isocrystal of (X/&)conv,ppf- We have
(§3.8) ‘

Ria,(&) =0, Vi>l. (4.5.1)

The assertion can be verified in the same way as [BBMS82, 1.1.19].
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COROLLARY 4.6. Let & — & be a morphism of S° (§2.1), Y’ an S’-scheme and h: Y' — Y a
morphism compatible with S’ — S. We set X’ = X xy Y’ and we denote by ¢ : X’ — Y’ and
I : X' — X the canonical morphisms:

x Mo x

g’l o ig
y' oy
1

Then, for any Oxe|;]-module E of (X/&)conv,r, the base-change morphism

hZonv,T(R YGeonv, T (E)) :> R géonv,r* (h/ct)nv,T(E)) (461)

is an isomorphism.

Proof. Let T be an object of Conv(Y’/&"). We denote abusively the image of ¥ in Conv(Y/&)
by T. We set X7, = Ty xy X (= To Xy’ X’). By applying Lemma 4.3 to g and ¢’, one verifies
that the evaluations of the two sides of (4.6.1) at T are both isomorphic to (R gx g (ws(E)))z
and that (4.6.1) induces an isomorphism between them. Then the assertion follows. O

4.7 In the remainder of this section, we consider the case where & = Spf(W) and X,Y are
schemes over S = Spec(k). We denote by pConv(X/ W) the full subcategory of Conv(X/ W)
consisting of objects (T, u) such that u can be lifted to a k-morphism u : 7" — X. Given an
object T of pConv(X/W) and a morphism f : ¥ — T of Conv(X/W), then T is still
an object of pConv(X/ W). Objects of pConv(X/ W) are closely related to ‘p-adic enlargements’
in [Ogu84].

We end this section by showing the following result.

PROPOSITION 4.8. Suppose that Y is smooth over k and that g : X — Y is smooth and proper.
Let & be a convergent isocrystal of (X/W)conv,r for 7 € {zar,fppf} and i an integer > 0. We
have:

(i) for every object T of pConv(Y/ W) (§4.7), R’ geonv.r«(&)x is coherent (§3.12);

(ii) for every morphism f of pConv(Y/W), the associated transition morphism cy of
R’ geonv,+(&) is an isomorphism.

LEMMA 4.9. Suppose that X is smooth over k. A convergent isocrystal & of (X/ W)cony,zar 1S
locally projective (§3.16).

Proof. The question being local, we may assume that X admits a smooth lifting X over W. By
Lemma 2.12 and Proposition 3.17, &% is locally projective. Since every object T of Conv(X/ W)
locally admits a morphism to X, we deduce that & is locally projective. O

LEMMA 4.10. Keep the assumption of Proposition 4.8 and assume moreover that Y admits a
formal smooth lifting ) over W. Let & be a convergent isocrystal of (X/ W )cony zar. Then there
exists an ﬁp@/e -stratification on (R Geonv,zar(6'))y - In particular, (R? Geonv,zar+(6'))y s locally
projective of finite type (Definition 2.11).
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Proof. We take again the notation of §3.20 for  — Spf(W) and we set 3 = Qg/w, which
we consider as an object of Conv(Y/ W), and .# = R’ geony zar«(&). By Lemma 4.3, we have
canonical isomorphisms

Ty = (R gx/9 zar (@ ())y, T3 = (R gx/3 000 +(W3(E)))3- (4.10.1)

By Theorem 3.22, %y is coherent. The projections p1,p2 : 3 — 2) define two morphisms of
Conv(Y/ W) and induce two morphisms of topoi

(XZ0/3)COHV,Zar :) (X ><Y7p1 Z/B)conv,zar — (X/gj)conv,zara
(XZO/S)ConV,zar :> (X ><Y,pg Z/S)conv,zar - (X/Q‘j)conv,zar-

Since X is smooth over k, & is locally projective by Lemma 4.9. The projections pi,ps are
rig-flat [Abb10, 5.4.12]. By Theorem 3.24 and Remark 4.4, p;, p2 induce isomorphisms

Pi(Fy) > F5 < pi(Fy). (4.102)
P2 P1

By a standard argument, the isomorphism 0_11

» O Cpy defines an 0q, -stratification on Fy.
Taking pullback by Py, w — Qg/w (Proposition 3.17), we obtain an Op,,, ,-stratification on

ﬁ’gj. The second assertion follows from Lemma 2.12. O

4.11 In the following, we prove Proposition 4.8. By Lemma 4.9, & is locally projective. We set
Fi =R geony (&) and 4! = (R’ Ix/3,7+(W(£))) (§4.1). By Lemma 4.3, we have a canonical
isomorphism

Fle > 9l (4.11.1)

Proof of Proposition 4.8 for Zariski topology. (i) Since (¥,u) is an object of pConv(Y/ W), we
take a lifting u : T — Y of u and we set X7 = X Xy T. Then we have a canonical equivalence
(X10/%) conv,r = (X7/%)conv,r (Definition 3.1) and the assertion follows from Theorem 3.22.

(ii) The question being local, by Corollary 4.6, we may therefore assume that Y is affine and
admits a smooth lifting ) over W. Then ﬁziarm and gziar@ are locally projective of finite type
by Lemma 4.10.

We first prove the assertion (ii) for a morphism A : ¥ — ) of pConv(Y/ W) with target Q).
By Theorem 3.24, we have a spectral sequence

Eéijd' = Li*j h:ar (gzj;ar,ﬂj) = gqziar,ﬁf’ (4112)

Since each gzj;ar,gj is locally projective of finite type, we deduce that Eéﬁj J =0 fori # j. Then the
transition morphism of 9\;“@ associated to f is an isomorphism by Remark 4.4 and (4.11.1).

Since the question is local, for a general morphism f : (¥',4/) — (%, u) of pConv(Y/ W),
we may assume that u can be lifted to a morphism h : T — 2 of pConv(Y/W). By the
previous result, ¢, and cpor are isomorphisms. Then we deduce that ¢y is an isomorphism by
Proposition 3.14(c).

4.12 Proof of Proposition 4.8 for fppf topology. We consider the presheaf &2 on Conv(Y/ W)
defined by

(‘Z, u) = Hi((XTO /z)conv,fppfv w;(éa))
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By Corollary 4.5, the right-hand side is isomorphic to H'((X7;,/%)conv,zar, wi(ax(&))). We set

Fhw = R geonv.zar«(a(£)). By Lemma 4.3, the fppf (respectively Zariski) sheaf associated to
P is ﬁfgpf (respectively .Z. ). Then we deduce a canonical isomorphism (3.8.1)
(P por) = Tt (4.12.1)

Let T be an object of pConv(Y/ W). By Proposition 4.8 for Zariski topology and fppf descent,
we deduce that ﬁfippfx is the fppf sheaf associated to the coherent ﬁg[%]—module ﬁziarﬂ: (§3.12)
and hence is coherent. Assertion (i) follows.

Since ﬁfippfs is the fppf sheaf associated to ﬁ;ar,’f’ assertion (ii) follows from Proposition 4.8(ii)

for Zariski topology and (4.12.1). O

5. Frobenius descents

5.1 In this section, G denotes an adic flat formal W-scheme of finite type. We suppose that the
Frobenius morphism Fg, : Sy — Sp of the reduced subscheme of S is flat (and hence faithfully
flat). Let X be an Sp-scheme locally of finite type. We denote by (—)" the base-change functor
Fg, and by Fy5,: X > X " the relative Frobenius morphism of X relative to Sy. Then we have
a commutative diagram

Fx/s,

XS X —sX
\l . i (5.1.1)
F
Sy —2> S

The following theorem is one of the main results in this section.

THEOREM 5.2. Suppose that the Frobenius morphism Fs, : So — Sy is flat. For every Sp-scheme
locally of finite type X, the functorial morphism of convergent topoi (3.11.1) of Fx /g, induces
an equivalence of topoi

FX/SO,conv,fppf : (X/G)conv,fppf = (X//G)Convyfppf. (5,2,1)
Proof. The morphism Fx/s; conv,fppf 15 induced by the functor (3.9.2):
p: Conv(X/6) — Conv(X'/S), (T,u)— (T, Fx/s,0u). (5.2.2)

Note that Fx/so ou = Ul o FTO/SO'
By 3.10 and Lemmas 5.4 and 5.5 in the following, the functor p satisfies the conditions of
Proposition 2.5. Then the theorem follows from Proposition 2.5. O

LEMMA 5.3. Let Y be a reduced Sy-scheme, Z an Sy-scheme and ¢1,g0 : Y — Z two Sp-
morphisms. We put h; = g; o Fyg,: Y — Y' — Z' for i =1,2. If hy = hy, then g1 = go.

Proof. Since Fy/g, is a homeomorphism and h; = hg, then |gi| = |g2| on the underlying
topological spaces. Since the question is local, we can reduce to the case where Y, Z, Sy are
affine.

Since Y is reduced and separated over Sy, Fy/g, is schematically dominant [EGAI, 5.4.2]
and we deduce that ¢f = g5 [EGAI 5.4.1]. The Frobenius morphism F, is faithfully flat. Then
the functor Y — Y’ from the category of affine Sy-schemes to itself is faithful. The lemma
follows. =
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LEMMA 5.4. The functor p is fully faithful.

Proof. The functor p is clearly faithful. We prove its fullness. Let (%1, u1) and (To, us2) be two
objects of Conv(X/&) and g : p(T1,u1) = p(T2,u2) a morphism of Conv(X’'/&). We set g :
Ty — T, the induced morphism. To show that the morphism %y — %> defines a morphism of
Conv(X /&) which is sent to g by p, it suffices to show that u; = ug o gg. Since g is a morphism
of Conv(X’/&), we have a commutative diagram

g0

Tz
lFTz,o/So

(T2,0)

/
W
Xl

Then the assertion follows from Lemma 5.3 applied to w1 and us o gg. O

/

90

(T1,0)

LEMMA 5.5. (i) Let (T,u) be an object of Conv(X'/&) such that ¥ is affine and that u : Ty —
X' factors through an affine open subscheme U’ of X'. Then there exist an object (3,v) of
Conv(X/&) and an fppf covering {f : p(3,v) = (T,u)} in Conv(X'/S).

(ii) Keep the assumption and notation of (i). Let g : (¥1,u1) — (¥,u) be a morphism
of Conv(X’/&). Then there exist a morphism h : (31,v1) — (3,v) of Conv(X/&) and an fppf
covering {¢ : p(31,v1) = (¥1,u1)} such that the following diagram is Cartesian:

p(31,01) — = (T1,u1)
p(h)i o lg (5.5.1)
p(3,v) (T, u)

(iii) Every object of Conv(X'/&) admits a Zariski covering whose objects satisfy the
conditions of (i).

Proof. (i) We set U = F ;}SO(U "), which is an affine Sp-scheme of finite type, and we take a

closed Sp-immersion ¢o : U — Yy = Spec(Os, [11, . .., Ty]). We put Q) = Spf(Os{T1,...,T4}) and
denote by F : Q) — 2 the G-morphism defined by sending each T; to T7.

Note that Y] = Y) and the restriction of F on Yj is the same as the relative Frobenius
morphism Fy; /. We have a commutative diagram

UL>Y0
FU/Sol \LFYO (5.5.2)

U'LYO

and a canonical morphism U — U’ Xy, r ¥y. We denote the composition of ¢, : U' — Y} and
Yy — 2 by /. Since 2 is smooth over &, there exists an G-morphism 7 : € — ) lifting
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' ou:Ty— 2. We consider the following commutative diagram:

(To xvy,F Y0)o Txyr2
T / s/
i (5.5.3)
Uo —— (U’ Xy,,r Y0)o 2
U’ L 2

where Uy — U’ is induced by Fyg,-

If the ideal sheaf associated to t9 : U — Yy is locally generated by polynomials
{fi,..., fu} of Os,[T1,...,T,], the ideal sheaf associated to vy Xy, r Yo : U Xy, 5 Yo — Y
(5.5.2) is locally generated by {fV,...,fh}. Then the canonical morphism U — U’ Xy, r Y
induces an isomorphism

Uo :> (U/ XYy, F 3/0)0

By (5.5.3) and [EGALI, 4.5.11], we obtain an object (T xg r2),v) of Conv(X/&) and a morphism
[:p(Tx9r,v) = (T,u) of Conv(X’'/S). Since the reduction modulo p of F is faithfully flat
of finite type [I1196, 3.2], so is F' (cf. [Xul9, 7.2]). Then f is an fppf covering (§3.4).

(ii) We denote by (31, w) the fibered product p(3,v) X(g.) (¥1,u1) in Conv(X'/S). By
applying Lemma 3.10 to the projection (31,w) — p(3,v), we obtain the Cartesian diagram
(5.5.1). Since ¢ is the base change of f, ¢ is an fppf covering.

(iii) Let (%, u) be an object of Conv(X’/&) and U’ an affine open subscheme of X’. We denote
by Ty the open formal subscheme of T associated to the open subset u=1(|U’|) of |Ty| = |T.
The assertion follows by taking an affine covering of Ty for every U’. a

LEMMA 5.6. Let T be an object of Conv(X'/&), 3 an object of Conv(X/&) and {p(3) - T} a
morphism of Conv(X’/&). Then there exist an object 3 xs 3 of Conv(X /&) and two morphisms
p1,p2: 3Xg3 — 3 of Conv(X/S) such that p(3xz3) = p(3) Xz p(3) and that p(p1) (respectively
p(p2)) is the projection p(3) X< p(3) — p(3) on the first (respectively second) component.

Proof. By applying Lemma 3.10(i) to the projection p(3) x<p(3) — p(3) on the first component,
we obtain an object 3 x¢ 3 of Conv(X /&) and a morphism p; : 3 Xg3 — 3 as in the proposition.
The existence of py follows from the fullness of p (Lemma 5.4). 0

We deduce from Theorem 5.2 a new proof of Frobenius descent for convergent isocrystals
(Proposition 5.7) and a comparison of de Rham complexes for the Frobenius descent
(Corollary 5.9).

PROPOSITION 5.7. Keep the assumption of Theorem 5.2. The inverse image and the direct

image functors of F'x;g, convzar induce equivalences of categories quasi-inverse to each other
(Definition 3.15):

Isof (X/6) = Isol (X'/6). (5.7.1)
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Proof. By §3.16, convergent isocrystals are sheaves for fppf topology and we work with fppf
topology in this proof. We write simply (5.2.1) for F'y/g, and we will show that the direct image
and inverse image functors of Fy,g, send coherent crystals of ﬁX/G[%}—modules to coherent
crystals of Oy /6[%]—modules. The assertion for the inverse image follows from (3.11.2) and we
will prove it for the direct image.

Let .# be a coherent crystal of ﬁX/G[%]—modules and (T,u) an object of Conv(X’'/&). We
first show that (Fx/g,«(#))x is coherent. By Lemma 5.5(iii), we may assume that (T, u) satisfies
the conditions of Lemma 5.5(i). Then, by Lemmas 5.5(ii) and 5.6, there exist objects 3 and 3 xz3
of Conv(X /&), an fppf covering {f : p(3) — ¥} and two morphisms p1,p2 : 3 X3 — 3 such that
p(3 xx3) = p(3) xzp(3) and that p(p;) and p(p2) are the canonical projections of p(3) x p(3).
In particular, the morphism of formal schemes 3 xg 3 — 3 attached to p; (respectively py) is
the projection on the first (respectively second) component.

Since the adjunction morphism F5 /5% Fx /g, — id is an isomorphism (Theorem 5.2), we have
(3.11.2)

(F'x/50:(F))p3) = F35 (Fx/506(F)) p(3x23) = F3x3- (5.7.2)

Since .7 is a crystal, we have 03 3-linear isomorphisms
x g\ P2 g PL xo g
P2(F3) —> F3xx3 < P1(F3)- (5.7.3)

Then we obtain a descent datum (ﬂ3,c;11 o ¢p,) for the fppf covering {f : 3 — ¥}. By fppf
descent [Abb10, 5.11.11], there exist a coherent ﬁry_[%]-module A and a canonical O3-linear
isomorphism f*(.#) = F3.

On the other hand, since Fx,g,.(#) is a sheaf in fppf topology, there exists an exact sequence

0 = (Fx/s0:(F)(T) = (Fx/50+(F))(p(3)) = (Fixys0+(F))(p(3 X1 3))- (5.7.4)

By (5.7.2), we deduce an Oz-linear isomorphism .# = (Fx /50x(F))z. In particular,
(Fx/s59x(:#))x is coherent. Hence, Fx/g,.(#) is coherent.

Following the same argument as in the second part of the proof of [Xul9, 9.13], we show that
for every morphism g of Conv(X/&), the transition morphism ¢, associated to Fx/s,.(#) is an
isomorphism, i.e. Fly/g,.(.) is a crystal. a

PROPOSITION 5.8. We consider the following diagram:

FX/SO,conv,zar

(X/G)conv,zar (X,/G)conv,zar
uml lux,/e (5.8.1)
Fx/s
XZ&F . X;ar

where vertical arrows are defined in § 3.21. Let & be a convergent isocrystal of (X/ W)cony,zar
and denote the structure morphism X — Sy by f. Then there exists a canonical isomorphism
in the derived category D(X,ar, f~1(0s)):

FX/SO*(RUX/G*(g)) :> RUX’/G*(FX/SO Conv,zar*((g)))' (582)

Proof. We consider & as a coherent crystal of ﬁX/G[%]—modules of (X/6)conv,fppt- Then o, (&)
and & are equal as presheaves and R’ a, (&) = 0 for i > 1 (Corollary 4.5). Then the assertion
follows from Theorem 5.2 and the fact that Fx g, @ Xzar = X ! _is an equivalence of topoi. O

zar
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COROLLARY 5.9. Keep the assumption of Proposition 5.8 and suppose that there exist smooth
liftings X of X and X' of X' over &. Let f : X — Sy be the canonical morphism. Then there
exists a canonical isomorphism between the de Rham complexes of & and of Fx /g, convzar (&)
in D(Xéara fﬁl(ﬁﬁ)):

FX/SO*(éa% ®6’3€ ﬁ.x/G) :> (FX/SO,Conv,zar *g).'{’ ®ﬁx’ Q;//G' (591)
Proof. It follows from (3.21.1) and Proposition 5.8. O

THEOREM 5.10. Let g : X — Y be a smooth proper morphism of smooth k-schemes and &
a convergent isocrystal of Conv(X/ W)cony,r- Then R’ geonv,+(&) is a convergent isocrystal of
Conv(Y/ W)cony,» for every i > 0.

Inspired by Ogus’ arguments in [Ogu84], we use Proposition 4.8 and Dwork’s trick to prove
Theorem 5.10. The proof of Proposition 4.8 relies on the local projectiveness of &, which is
obtained from the smoothness of X and of Y (Lemma 4.9). In Theorem 8.2, we will improve the
above theorem to the non-smooth case.

We first introduce certain subcategories of Conv(X/ W).

DEFINITION 5.11. (i) Let n be an integer > 0 and T a k-scheme. We denote by T the closed
subscheme of T' defined by the ideal sheaf {x € Or|2P" = 0}.

(ii) We denote by Conv™ (X/W) the full subcategory of Conv(X/ W) consisting of objects
(%, u) such that u : Th — X can be lifted to a k-morphism 7 : 7" — X.

Given an object (%, u) of Conv(™(X/W) and a morphism (%', /) — (%, u) of Conv(X/ W),
then (T/,4) is also an object of Conv(™(X/W). In particular, T(®) = T and Conv(®)(X/ W)
coincides with pConv(X/ W) (§4.7).

LEMMA 5.12. The functor p (5.2.2) sends Conv" ™) (X/ W) to Conv(™ (X'/W).
Proof. Let (T,u) be an object of Conv(™(X/W) and @ : T"t1) — X a lifting of u. The

absolute Frobenius morphism 7 — T factors through the closed subscheme T("+1) and
then the relative Frobenius morphism Fp(n) Ik factors through (T(”“))’ . We have a commutative

diagram
/ 1o \
X LA LA (S (5.12.1)
X! a’ (T(n+1))/ C (T(n))l

Then the morphism Flx/;, o u can be lifted to a k-morphism T — X’ and the lemma follows. O

5.13 Proof of Theorem 5.10. By Corollary 4.5, it suffices to prove the assertion for fppf topology.
There exists an object & of Iso (X'/ W) with F (¢) ~ & (Proposition 5.7). If we

. ) X/k,conv,fppf
set F = R’ geonv,fppf«(&) and = R’ (¢), then we have F3 () ~ F by
Theorem 5.2.

/
gconv,fppf * Y/k,conv,fppf
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Each object (respectively morphism) of Conv(Y/ W) belongs to a subcategory Conv™ (Y/ W)
(Definition 5.11) for some integer n. We prove the following assertions by induction:

(i) for every object ¥ of Conv(™ (Y/ W), 5 is coherent;
(ii) for every morphism f of Conv(™(Y/ W), the transition morphism ¢; associated to . is an
isomorphism.

The assertions for n = 0 are proved in Proposition 4.8. Suppose that the assertions hold for
n > 0; we prove them for n + 1. Let (T, u) be an object of Conv(®*D(Y/W). By (3.11.2), we
deduce that
Hpw) = T

By the induction hypotheses, for any object 3 of Conv(”)(X '/ W), 74 is coherent. Then assertion
(i) follows from Lemma 5.12 and the induction hypotheses.
Assertion (ii) can be verified in the same way by §3.11 and Lemma 5.12. O

5.14 The Frobenius homomorphism o : W — W induces a morphism of topoi (X'/ W)cony,r =
(X/ W)eony,r for 7 € {zar, fppf}. For any sheaf & of (X/ W)cony r, we denote by &’ the inverse
image of & to (X'/ W)cony,r-

A convergent F-isocrystal of Conv(X/W)eony,r is a pair (&, ¢) consisting of a convergent
isocrystal & of (X/ W)conv,r and an isomorphism, called a Frobenius structure of &,

¢ FX fpcomr (€)= €. (5.14.1)

COROLLARY 5.15. Keep the assumption of Theorem 5.10 and let ¢ be a Frobenius structure
on &. Then, for any i > 0, the pair (R geonv,r+(&), R" geonv,r«(¢)) is a convergent F-isocrystal of

Conv(Y/ W)conv,r-
Proof. By Theorem 5.10, it suffices to prove the assertion for fppf topology. Consider the
isomorphism

R Geome ot () * R Geomy oot + (Fk cons ot (6)) > R Geoms ot +(). (5.15.1)

By Corollary 4.6 and Theorem 5.2, the left-hand side is isomorphic to

F;;/k,conv,fppf((Ri Yconv ,fppf * (éa))/)

Then the assertion follows. O

6. Review of rigid geometry

6.1 Recall that S denotes the category of adic formal W-schemes of finite type whose morphisms
are W-morphisms of finite type (§2.1). The set B of admissible blow-ups in S forms a right
multiplicative system in S [Abb10, 4.1.4]. We denote by R the localized category of S relative
to B. Objects of R are called coherent rigid spaces (over K = W[%])

Let X be an object of R. We denote by (X) the set of rigid points of X [Abbl0, 4.3.1],
by Ad,y the full subcategory of R,y consisting of open immersions to &, by X,q the topos
of sheaves of sets on Ad,y for the admissible topology [Abb10, 4.3.8] and by Oy the structure
sheaf of X,q [Abb10, 4.7.4].

For any object X (respectively morphism f) of S, we denote its image in R by X'e
(respectively f8) and we set By, the full subcategory of S /x consisting of admissible blow-ups.
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6.2 Recall that S°® denotes the full subcategory of S consisting of flat formal W-schemes of finite
type (§2.1). For any object X of S® and any admissible blow-up ¢ : X’ — X, ¥’ is still an object
of S® [Abb10, 3.1.4]. Then the set B® of admissible blow-ups in S°® forms a right multiplicative
system in S°. By [Abb10, 4.1.15(iii)], the canonical functor S® — R is essentially surjective and
hence induces an equivalence of categories between the localized category of S°¢ relative to B®
and R.

6.3 Let X be an object of S. We denote the specialization morphism of topoi [Abb10, 4.5.2] by

px X8 o Xy (6.3.1)
For any object (X', ¢) of By, we denote by (i, the composition
pp X585 xie I g (6.3.2)

Let .7 be an Ox-module. We denote by F18 the rigid fiber associated to . [Abb10, 4.7.4],
which is a sheaf of X,5. We have a functorial isomorphism [Abb10, 4.7.4.2]

C e 1
rig . * * L
Fe —  lim pg <(<pzar(35)) {p]) (6.3.3)
(X', p)EBS

In particular, Oy is defined by (€x)"8. The morphism px (respectively p.,) is ringed by Oyrig
(respectively O%f) and Ox [Abbl0, 4.7.5].

If % is moreover coherent, we have a canonical isomorphism p%(F [%]) 5 7t [Abbl0,
4.7.2.8).

6.4 Let Coh(Oyrig) be the category of coherent Oy.ig-modules over }Z:f [Abb10, 4.8.16]. The
inverse image functor of modules p% induces an equivalence of categories [Abb10, 4.7.8.2, 4.7.29.2
and 4.8.18]

Pk Coh(ﬁx [;D = Coh(Ogsiz). (6.4.1)

The functor px, sends coherent Oyrig-modules to coherent ﬁx[%]—modules [Abb10, 4.7.8.1] and
defines a quasi-inverse to (6.4.1).

6.5 Let f:X — 2 be a morphism of S. It induces a morphism of ringed topoi fad o (X085,
Oxrig) — (2];15, ﬁ@rig) [Abbl10, 4.7.2.1]. The diagram

xrig Vi f;iig rig o

(X Oxnie) ——= (Vg Opee)

ﬂxl lp@ (6.5.1)

(:{zarv ﬁf[%]) @ (g)zam ﬁ@[%])

is commutative up to canonical isomorphisms [Abb10, 4.7.24.2].
Let .7 be a coherent Oyrig-module. By §6.4, there exist canonical isomorphisms

Pa(Fie (P9 (F)) = FIE (0l (ppe(F))) = [85(F).

Then we deduce that the following base-change morphism is an isomorphism:

Pt (F) = prafug (F). (6.5.2)
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6.6 We say that a family {X; — X},cr of flat morphisms of R [Abbl10, 5.10.1] is an fppf
covering if it admits a finite subfamily {X; — X}jes such that ;e fi((A;)) = (X), ie.
LljeJ X; — X is faithfully flat [Abbl0, 5.10.11]. In view of [Abb10, 5.10.12], fppf coverings
are stable by composition and by base change in R.

Let X be a coherent rigid space. We denote by Rf,y the full subcategory of R,y consisting
of flat morphisms to X'. We call fppf topology the topology on Rf,y generated by the pretopology
for which coverings are fppf coverings. We denote by Xf,,r the topos of sheaves of sets on this
site.

By fppf descent of morphisms [Abb10, 5.12.4], the fppf topology on Rf,y is subcanonical,
i.e. the presheaf associated to each object of Rf/y is a sheaf for the fppf topology.

6.7 Let 7 be a coherent Ox-module. The presheaf on Rf »
(f : X' = X) > T(X, f4(F))

a

is a sheaf for the fppf topology by fppf descent for coherent modules on rigid spaces [Abb10,
5.11.11]. In particular, Ox defines a sheaf of rings of Xppr that we still denote by Ox. We call
abusively a coherent Ox-module of Xpppe a sheaf of A, associated to a coherent &x-module
of Xad-

Given a morphism f : X’ — X of R, the canonical functor Rf sx — Riy defined by
Y — Y xx X' is continuous and left exact. It induces the functorial morphism of topoi fppf :

Xf/ppf — Xpppf, which is ringed by Ox and Ox:.

7. Rigid convergent topos and convergent isocrystals

7.1 In this section, & denotes an adic flat formal W-scheme of finite type and X an S-scheme.

We will introduce a full subcategory of (X/&)convsar consisting of sheaves
F = {P%, B¢} (§3.6) such that the morphism 3¢ is an isomorphism if the underlying morphism
of formal schemes of f is an admissible blow-up. It turns out that this category forms a topos
(X/6)rconv,ad (§7.3 and Corollary 7.13) and admits a canonical morphism to (X/&)conv,zar
(§7.11). Convergent isocrystals lie in (X/&);conv,aa and their cohomologies remain unchanged
in this topos (Proposition 7.19 and Corollary 7.25).

We begin by introducing (X/&),conv,aa and its fppf variant.

LEMMA 7.2. We denote by Byg the set of morphisms in Conv(X/&) (Definition 3.1) whose
underlying morphism on formal schemes is an admissible blow-up. Then it forms a right
multiplicative system in Conv(X/&).

Proof. For any object (T, u) of Conv(X/&), we have a canonical functor st : By — Conv(X/8)
sending (%', ¢) to (T',uo¢y). Then the assertion follows from the facts that admissible blow-ups
form a right multiplicative system in S  (86.2) and that the canonical functor Conv(X/&) — Sg
is faithful. IZ!

7.3 We denote by RConv(X/&) the localized category of Conv(X/&) relative to Bx/g. More
precisely, objects of RConv(X/&) are the same as those of Conv(X/&). For two objects (3, v),
(%,u) of RConv(X/&), we have

Homgcony(x/6)((3,0), (F,u)) = lim  Homcony(x/e) (3, v 0 ¢0), (T, u)). (7.3.1)
(3',p)EBS
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We denote by Qs the canonical functor
Qx/s : Conv(X/6) — RConv(X/6). (7.3.2)

For an object ¥ (respectively a morphism f) of Conv(X/&), we write T'& = Qx/s(%)
(respectively fi& = Q x/&(f)) if there is no risk of confusion.

7.4 We denote by C/O;/(X/G) (respectively mV(X/G)) the category of presheaves on
Conv(X/6) (respectively RConv(X/&)) and by Qy/s mV(X/G) — C/on\V(X/G) the functor
defined by # +— F 0 Qx/s. The functor Qx e, admits a left adjoint Qx /e [SGA4, 15.1] defined
as follows. '

For any object ¢ of RConv(X/&), we denote by Iglg the category whose objects are pairs
(3,9) consisting of an object 3 of Conv(X/&) and a morphism g : T8 — 3'8 of RConv(X/&).
A morphism (3’,¢9') — (3,9) is given by a morphism p : 3’ — 3 of Conv(X/&) such that
g = p"8 o ¢'. Then we have [SGA4, T 5.1.1]

Qx/e(7)(T%®) = lim  F(3). (7.4.1)
(3.9)€(13™)°

Moreover, we have a commutative diagram [SGA4, I 1.5.4]

Conv(X/6) —27° . RConv(X/6)
i l (7.4.2)
Conv(X /&) — 27" RComv(X/&)

where the vertical functors are the canonical functors.

PROPOSITION 7.5. (i) The category (Igig)o is filtered [SGA4, I 2.7].

(ii) The functor Qx e is left exact (and hence is exact).

(iii) Fiber products are representable in RConv(X/&) and Qx;s commutes with fiber
products.

Proof. We verify the following conditions of [SGA4, I 2.7] for (Igig)o.

(PS1) Given two morphisms u : (31,91) = (30,90) and v : (32,92) = (30,90) of Igig, by
Lemma 7.2 and (7.3.1), there exist an admissible blow-up ¥’ of ¥ and morphisms g; : ¥ — 3;
of Conv(X/&) such that g;'® = g; and that uw o g; = go = v o go. Then we obtain a morphism
h: % — 31 x3, 32 of Conv(X/&) (§3.2) and an object (31 x3, 32, h"8) of Iglg dominant (3;, g;)
for ¢ = 1,2. The diagram

(31 X34 32,5"8) — (32, 92)

| |

(31,91) — (30, 90)

commutes. Then condition (PS1) follows. '
(PS2) Let w,v: (),9) = (3,h) be two morphisms of Iglg. There exist an admissible blow-up
(%', ) of T and a morphism g : ¥ — 2) of Conv(X/&) such that uog=1vogin Conv(X/&),
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denoted by h. We have g'e = g, "8 = h. Then (T',¢"®) defines an object of Igig and b

(respectively g) defines a morphism from (', ¢"8) to (2),g) (respectively (3,h)). Condition
(PS2) follows from uog=wvog="H.

It is clear that Igig is non-empty. Given two objects (31,¢91) and (32,92), there exist an
admissible blow-up ¥’ of ¥ and morphisms g; : ¥ — 3; of Conv(X/&) for i = 1,2 such that

gzr-ig = g;. Hence, Igig is connected. Then assertion (i) follows.
Assertion (ii) follows from (i). Assertion (iii) follows from (ii), (7.4.2) and the fact that the
fiber product is representable in Conv(X/&). O

7.6 The canonical functor Conv(X/&) — S‘;G defined by (T, u) — ¥ induces a functor
RCOHV(X/@) —> R/Grig. (7.6.1)

In view of the definition of fiber product in R grie [ADD10, 4.1.13], the above functor commutes
with fiber products.

7.7 We say that a family of morphisms {(T;,u;)"® — (T,u)"8},; of RConv(X/6) is an
admissible (respectively fppf) covering if its image {T?g — ‘Irig}ie ; in R is an admissible
(respectively fppf) covering (§6.6 and [Abb10, 4.3.8]). By §§6.6 and 7.6, admissible (respectively
fppf) coverings form a pretopology. For 7 € {ad, fppf}, we call rigid convergent topos of X over
S (with T-topology) and denote by (X/&)rconv,» the topos of sheaves of sets on RConv(X/6),
equipped with the topology associated to the pretopology defined by admissible (respectively
fppf) coverings.

7.8 Let (T, u) be an object of Conv(X/&). The canonical functor (§6.2)
rz : 8j; — Conv(X/6), (f: T - %)~ (T,uofo)
sends admissible blow-ups to Bx /g and hence induces a functor
rfzrig . R/grig — RCODV(X/G) (781)

The restriction of (7.8.1) to Ad grie (respectively Rf jgrs) is cocontinuous for the admissible
(respectively fppf) topology and induces a morphism of topoi

Sqrig : T8 — (X/S)eonvr, T € {ad, fppf}. (7.8.2)

For any sheaf .7 of (X/6)cony,r, We set Fgrig = s;ig(ﬂ). For any morphism f : "¢ — gris
of RConv(X/&), we have a canonical morphism

/Bf . g@rig — ffr*(yzlrig) (783)

and we denote its adjoint by
’Yf . f:(g&'rlg) —> ﬁfj/rig. (784)

If the morphism of underlying rigid spaces of f belongs to Ad gwis (respectively Rf gus), the
functorial morphism f- is the localization morphism at ¥’ and then ~; is an isomorphism. If
g : T8 — e is another morphism of RConv(X/&), one verifies that vyor = 77 0 £ (7).

By repeating the proof of Proposition 3.7, we have the following description for a sheaf of
(X/G)rconv,r'
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PROPOSITION 7.9. For 7 € {ad, fppf}, a sheaf .# of (X/&)iconv,r is equivalent to the following
data:

(i) for every object T of RConv(X /&), a sheaf Pz of e,
(ii) for every morphism f : T8 — T"& of RConv(X /&), a morphism s (7.8.4)

subject to the following conditions.

(a) If f is the identity morphism of (T,u), then ~y; is the identity morphism.

(b) If the underlying morphism f : & — T8 of coherent rigid spaces is a morphism of Ad Jrie
(respectively Rf jzvie ), then 7y is an isomorphism.

(c) If f and g are two composable morphisms, then we have Ygor = ¢ 0 fX(74).

7.10 Note that the fppf topology on RConv(X/&) is finer than the admissible topology.
Equipped with the fppf topology on the source and the admissible topology on the target, the
identical functor id : RConv(X /&) — RConv(X/&) is cocontinuous and induces a morphism of
topoi (§2.4)

Qp : (X/6>rconv,fppf - (X/g)rconv,ad (7101)
If 7 is a sheaf of (X/&)iconv,ppfs then o .(F) is equal to .F# as presheaves. If ¢ is a sheaf of
(X/S)rconv,ad, then o (¥) is the sheafification of ¢ with respect to the fppf topology.

7.11 Equipped with the Zariski topology on the source and the admissible topology on the
target, the canonical functor Qx,g (7.3.2) is clearly continuous. Since the functor Qx /e and
the sheafification functor are exact (§7.6), then we have a morphism of topoi

pX/G : (X/G)rconv,ad - (X/G)conv,zar (7.11.1)

defined by px/e. = Q}/G and p}/e = aoQx/e! (§7.6), where a denotes the sheafification functor.
For any object T of Conv(X/&) and any sheaf .# of (X/&);conv,ad, We have (6.3.1)

(Px/6+(F))z = prs(Fagria). (7.11.2)

Let f: 3 — % be a morphism of Conv(X/&) and Bz, Vs (vespectively S, v¢) transition
morphisms of .% associated to f& (respectively px/e«(-F) associated to f) (§§3.6 and 7.8). Via
(7.11.2), we have

B = pz+(Brie)- (7.11.3)
Then ~; coincides with the composition of the base-change morphism and p3.(7yzis):
% o rig# / o> P3*(’Yfrig) -
foe (P32 (Parie)) = p3u(fof (Farie)) ——— p3a(Frie). (7.11.4)

PROPOSITION 7.12. Let .# be a sheaf of (X/&)conv,zar and (%, u) an object of Conv(X/&). There
exists a canonical isomorphism (6.3.2)

(Px/e(F))aie = lim i (Fe). (7.12.1)
(Vp)eBg

Proof. Let U be an object of Ad grig that we consider as an object of RConv(X/&) via ree
(7.8.1). By (7.4.1), (P (:F))qrie is the sheaf associated to the presheaf on Ad i

U lim F(3). (7.12.2)
(3.9)€(14)°
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We denote by Jg the category of quadruples (T', ¢, il g) consisting of an admissible blow-up

(T, ) of T, an open formal subscheme 4 of T" and an open immersion g : U — & over T8,
A morphism (T, p1,41,91) to (T4, 2, s, g2) is a morphism T) — T}, of Bg sending &; to Ly
compatible with g1, g2. The category Jg is clearly fibered over Bq:

Jg - B‘I7 (‘Ilawau?g) g (5/790)

For any admissible blow-up (¥',¢) of T, we denote its fiber by J(%{;z/- The sheaf pj(Fs) is
associated to the presheaf on Ad jgrig:

U lim  F(rg(40)). (7.12.3)
(L9)E(IG £1)°

Then the right-hand side of (7.12.1) is the sheaf on Ad jzre associated to the presheaf

U lim F(r< (). (7.12.4)
(T, ,9)€(JG)°

We have a canonical functor (§7.8)
T Jg — Ig (T, 0,80, g) = (re(U), reiz(g))-

We denote by J the full subcategory of Jg consisting of objects such that g is an isomorphism.
Then each morphism of J is Cartesian. Each category (J&T,)O is filtered by [SGA4, I 5.2].
We deduce that (Jg)O is filtered. It is clear that J° is cofinal in (Jg)o and hence is filtered
[SGA4, T 8.1.3a).

To prove the assertion, it suffices to show that the induced functor r : J° — (Ig )° is cofinal in
the sense of [SGA4, I 8.1.1]. By [Abb10, 4.2.2], for any object (3,9 : U — 3*8) of Ig, there exists a
morphism A :  — 3 of Conv(X /&) with an open formal subscheme 4l of some admissible blow-up
T of T such that g = k™8, i.e. condition (F1) of [SGA4, I 8.1.3] is satisfied. Given an object
(3,9) of Ig, an object (T, ¢, 4, h) of J and two morphisms fi, fa : (r<(il), r¢rie(h)) = (3, 9),
then fI'® = f3® in RConv(X/&) since h is an isomorphism. By [Abb10, 3.5.9], we deduce
that fi = fa, i.e. condition (F2) of [SGA4, I 8.1.3] is satisfied. Then the assertion follows from
[SGA4, 18.1.3Db). O

COROLLARY 7.13.

(i) The canonical morphism p% /6PX /&% = id is an isomorphism.
(ii) The functor px e, is fully faithful and its essential image consists of sheaves F = {Fx, B}
(§ 3.6) such that By is an isomorphism for every morphism f of By/g.

Proof. (i) Let .# be a sheaf of (X/&)conv,ad- Via (7.11.2) and (7.12.1), we consider the evaluation
of p}/gpx/g*(ﬂ’) — .7 at an object T'& of RConv(X/&):

lim oo (fhps (Fgria)) — Fegrie. (7.13.1)
(T p)eBS

In view of the proof of Proposition 7.12, the morphism p(f1ps(Fris)) — Farie deduced from
(7.13.1) is nothing but the adjunction morphism. Then the assertion follows from [Abb10, 4.5.27
and 4.5.28].
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(ii) By (i), the functor py g, is fully faithful. By (7.11.3), the essential image of px/e.
satisfies the desired property. Let & be a sheaf of (X/&)conv zar satisfying the desired property.
By (7.11.2), Proposition 7.12 and [Abb10, 4.5.22 and 4.5.27], we deduce that the evaluation of
the adjunction morphism

Y — px/ePx/s(Y) (7.13.2)

at each object of RConv(X /&) is an isomorphism. Then the assertion follows. O

7.14 Let g : & — & be a morphism of S°, X’ an S’-scheme and f : X’ — X a morphism
compatible with g as in §3.9. The canonical functor ¢ : Conv(X’'/&’) — Conv(X /&) defined by
(%,u) = (%, fou) (3.9.2) sends admissible blow-ups to admissible blow-ups. Then ¢ induces a
functor that we denote by

¥ : RConv(X'/&') - RConv(X/G). (7.14.1)

Since ¢ commutes with fiber products, the same holds for ¢ by § 7.6. In view of Lemma 3.10(i)
and (7.3.1), one verifies that the functor ¢ is continuous and cocontinuous for admissible
(respectively fppf) topology in the same way as in Lemma 3.10. By §2.4, the functor ¢ (7.14.1)
induces morphisms of topoi

frconv,'r : (X//G/)rconv,r - (X/6)rconv,'r; T E {ad,fppf} (7142)

such that the pullback functor is induced by the composition with 1. For a sheaf % of
(X/6)rconv,» and an object T of RConv(X'/&’), we have

(f:conv,‘r(y))frig - ‘O}\w(frig)' (7143)

For any morphism g of RConv(X’/&’), the transition morphism of f7., () associated to g
is equal to the transition morphism of .# associated to 1(g).
In view of the description of inverse image functors, we deduce the following result.

COROLLARY 7.15. Keep the assumption and notation of § 3.9 and of § 7.14. The diagram

frconv,ad

(X//Gl)rconv,ad (X/G)rconv,ad
pX’/G’i \LPX/G
fconv,zar
(X//G/)Conv,zar (X/G)conv,zar

is commutative up to canonical iSsomorphisms.

7.16 We set ﬁ;ég/;e = p}/G(ﬁX/G[%]). By (6.3.3) and Proposition 7.12, for any object T"8 of
RConv(X/&), we have a canonical isomorphism

(ﬁ;ﬁe)fzrlg :) ﬁgrig. (7161)

Then, by fppf descent [Abb10, 5.11.11], the presheaf ﬁ;ﬁG is also a sheaf for the fppf topology.
For 7 € {ad, fppf}, if % is an ﬁﬁig-module of (X/6)rconv,r, Farig is an Ogrig-module. For any
morphism f : T8 — T8 of RConv(X /&), the transition morphism v; (Proposition 7.9) extends
to an (Ognig )-linear morphism (§6.7)

Cf . f:(ﬁgrlg) — g\g/rig. (7162)

In view of Proposition 7.9, we deduce the following description for ﬁ;é%G—modules.
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PROPOSITION 7.17. For T € {zar, fppf}, an ﬁ;%G—module of (X/6)rconv,r Is equivalent to the

following data:
(i) for every object T8 of RConv(X/&), an Oxiz-module Fs of Ty ;
(ii) for every morphism f: T"& — T"¢ of RConv(X/&), an Ogmg-linear morphism cy (7.16.2),

which is subject to the following conditions.

(a) If f is the identity morphism, then cy is the identity.

(b) If the underlying morphism f : T — T"8 of coherent rigid spaces is a morphism of Ad J3ris
(respectively Rf jgve ), then cy is an isomorphism.

(c) If f and g are two composable morphisms, then we have cgor = cf 0 fX(cq).

DEFINITION 7.18. Let .% be an ﬁ;%G-module of (X/6)rconv,r-

(i) We say that .Z is coherent if for every object T8 of RConv(X/&), Fxis is coherent (§6.7).
(ii) We say that .7 is a crystal if for every morphism f of RConv(X/8), cf is an isomorphism.

By fppf descent [Abb10, 5.11.11], the direct image and inverse image functors of «,. (7.10.1)
induce equivalences of categories quasi-inverse to each other between the category of coherent

crystals of ﬁ;%G—modules of (X/6)rconv,ad and that of (X/&)rconv, fppf-

PROPOSITION 7.19. The direct image and inverse image functors of px/e induce equivalences
of categories quasi-inverse to each other between the category of coherent crystals of O X/G[%]—
modules of (X/6)conv,zar and that of (X/6)rconv,ad-

Proof. Let .# be a coherent crystal of ﬁ;g/g—modules of (X/6)rconv,ad- By §6.4 and (7.11.2),
px/e«(F) is coherent. In view of (6.5.2) and (7.11.4), we deduce that it is also a crystal. By
Corollary 7.13(i), p}/epx/g*(ﬁ) — Z is an isomorphism.

Let ¢4 be a coherent crystal of ﬁx/e[%}—modules of (X/6)convzar and & = p}/e(%).
By Tate’s acyclicity [Abbl0, 3.5.5], ¢ is contained in the essential image of px/s.

(Corollary 7.13(ii)). Then we have a canonical isomorphism ¢ = py /ex(A) (7.13.2). We deduce
from Proposition 7.12 and Tate’s acyclicity [Abb10, 3.5.5] (respectively (6.5.2) and (7.11.4)) that
A is coherent (respectively is a crystal). Then the assertion follows. |

7.20 Let g: X — Y be a morphism of S-schemes, T an object of Conv(Y/&) and T'¢ its image
in RConv(Y/®&). By fppf descent for morphisms of coherent rigid spaces [Abb10, 5.12.1], the
presheaf associated to T18 is a sheaf for the fppf (respectively Zariski) topology that we denote
by TH&. We set X7, = X xy Tp and, for 7 € {ad, fppf}, we denote by

9x/%71 * (XT()/Z)I“COI’IV,T - (TO/S)I"COHV,Tv
Warig * (XTO/S)I‘COHV,T - (X/G)rconv,T

the functorial morphisms of topoi (7.14.2).
By repeating arguments of §4, we prove the following results in the rigid convergent topos.

LEMMA 7.21 (Lemma 4.2). Keep the notation of § 7.20. There exists a canonical equivalence of
topoi:

(X/6) S (X1p/F)rconv,rs (7.21.1)

rconvaT/g?conv,T (Trig)

which identifies the localization morphism and werig.
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LEMMA 7.22 (Lemma 4.3). For any ﬁ;g/g—module E of (X/6)iconv,r, there exists a canonical
isomorphism in D+(‘Ir7ig, Ocrig):
(R Greonv,r+ (E))grie = (R gx/ s (Wieis (E)) ) grie (7.22.1)

COROLLARY 7.23 (Corollary 4.6). Let & — & be a morphism of S°, Y’ an S’-scheme and h :
Y’ — Y a morphism compatible with S’ — S. We set X' = X xyY" and we denote by ¢’ : X' — Y”
and W/ : X' — X the canonical morphisms:

X' L) X
9’l o lg
L
Then, for any ﬁX/G[%]-module E of (X/S)conv,r, the base-change morphism
h’fconv,’r(R ngOHV,T*(E)) :> Rg;conv,r*(hizonv,T(E)) (7231)
is an isomorphism.

COROLLARY 7.24 (Corollary 4.5). Let & be a coherent crystal of ﬁﬁgg—modules of (X/6)rconv fppt -
Then we have (7.10.1)

Rl (&) =0, Vi>1. (7.24.1)
COROLLARY 7.25. Let & be a coherent crystal of ﬁ;‘?G—modules of (X/S)rconv,ad- Then we have
R px/ex(6) =0, Vi1l (7.25.1)

Proof. By Lemma 7.21, the Zariski sheaf R’ px/e+(&) on RConv(X/G) is associated to the
presheaf . '
THE HZ((TO/‘I)rconv,ada éa‘%rig)'

By [SGA4, V 4.3 and III 4.1], we can replace RConv(X/&) by the full subcategory of objects
whose underlying rigid space is affinoid, and it suffices to show that for such an object "8,

H'((To/%)conv,ad> &) (7.25.2)

vanishes for ¢ > 1. Let % = {S?g — 318} be an admissible covering by affinoids of an affinoid

3gin R /grig. The Cech cohomology H' (% , & [51¢) 18 isomorphic to the cphomology H (3;1(%, Esrig ),
which vanishes by [Abb10, 4.8.26]. Since each admissible covering of 3™¢ admits a refinement by

finitely many affinoids, the vanishing of (7.25.2) follows from [Sta, 03F9]. O

8. Higher direct images of a convergent isocrystal

8.1 Let X be a k-scheme locally of finite type. For 7 € {ad, fppf}, the Frobenius homomorphism
o : W — W induces a morphism of topoi (X'/ W)rcony,r = (X/ W)rconv,» (7.14.2). For any sheaf
& of (X/W)iconv,r, we denote by &” the inverse image of & to (X'/ W)rconv,r-

Asin §5.14, a pair (&, ) consisting of a coherent crystal of ﬁ’;%@-modules & of (X/ W)rconv,r
(Definition 7.18) and an isomorphism ¢ : F' Ik xcony (&) = & is called a convergent F-isocrystal
Of (X/ W)rconv,‘r-

In this section, we prove the following result about the higher direct image of a convergent
(F-)isocrystal of rigid convergent topos.
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THEOREM 8.2. Let g : X — Y be a smooth proper morphism of k-schemes locally of finite type
and & (respectively (&, )) a convergent isocrystal (respectively F-isocrystal) of (X/ W )iconv,r-
Then R’ Greonv,r+(&) (respectively (R? Greonv,r+(&), R Greonv,7+())) Is a convergent isocrystal
(respectively F-isocrystal) of (Y/ W)conv,r-

By Corollary 7.25, Theorem 8.2 and arguments of §5.13, we deduce the following variant for
the convergent topos.

COROLLARY 8.3. Keep the assumption of Theorem 8.2. The higher direct image of a convergent
isocrystal (respectively F-isocrystal) of (X/W)convzar (§5.14) is a convergent isocrystal
(respectively F-isocrystal) of (Y/ W)conv zar-

We first show that the smooth case of Theorem 8.2 can be deduced from the corresponding
statement in convergent topos (Theorem 5.10).

PROPOSITION 8.4. Keep the notation and assumption of Theorem 8.2. If Y is moreover smooth

over k, then R’ Greonv,7+(&) Is a coherent crystal of ﬁ;/i/gw—modules.

Proof. We first prove the assertion for the admissible topology. The sheaf .7 = px,w.(&) is a
coherent crystal of ﬁ;%w—modules of (X/ W)cony zar and p}/w(ﬁ) 5 & (Proposition 7.19). By

Theorem 5.10, R’ Geonv zar «(-F ) is a coherent crystal of ﬁy/w[%]-modules of (Y/ W)conv, zar- We
consider the composition

Ri YJconv,zar x (ﬁ) :> Py/ %Y *p;/ W (R’L gconv,zar * (g)) — pY/ W * (R’L grconv,ad * (@@))7 (84 1)

where the first arrow is an isomorphism by Proposition 7.19 and the second arrow is
induced by the base-change morphism. By Lemmas 4.3 and 7.22, R Geonv zar « (- F ) (respectively
Py /W «(R' Greonv,ad «(€))) is the sheaf associated to the presheaf on Conv(Y/W):

T — Hi((XTO/‘Z)Convjzar, we(F)) (respectively T — Hi((XTO/Q)rconwad,wi‘gig(@@))).
By Corollary 7.25, the canonical morphism

Hi((XTO /Z)Conv,zam W;(y)) = Hi((XTD /(Z)rconv,ada W;:rig (@@))

is an isomorphism. The composition (8.4.1) is induced by the above morphisms and
hence is an isomorphism. In view of the definition of py/w, (§7.11), we deduce that
Py W(Ri Geonv zar +(F)) 5 R? Greonv,ad «(€) by (8.4.1). Then the assertion for admissible topology
fol{ows from Proposition 7.19.

Using Corollary 7.24, one verifies the proposition for fppf topology by comparing
R’ Greonv,ad (&) and R Greonv fppt (€) in a similar way as above. O

8.5 To prove Theorem 8.2, we use a construction of Ogus in his proof of proper surjective
descent for convergent isocrystals [Ogu84]. Let ¥ be an adic formal W-scheme of finite type
and f : Z — T a projective and surjective k-morphism. Then f factors through a closed
immersion Z — IP%YO for some integer N > 1. Let IP’](IV be the formal W-scheme associated to
the inductive system (]P;]ivn)ngl. By §3.18, we can construct a family of adic formal PY-schemes
{Kz,n(}P’]TV )}n>0. Based on the following result, Ogus showed the proper surjective descent for
convergent isocrystals [Ogu84, 4.6].
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THEOREM 8.6 [Ogu84, 4.7 and 4.8]. For n large enough, the morphism 7 : T7,(PY) — T is
faithfully rig-flat (i.e. m is faithfully flat) [Abb10, 5.5.9).

A variant of Theorem 5.2 holds for rigid convergent topos.

ProPOSITION 8.7. For every locally of finite type k-scheme X, the morphism

FX/k:,rconv,fppf : (X/ W)rconv,fppf - (X// W)rconv,fppf (8-7-1)

is an equivalence of topoi.

Proof. By Lemma 5.4 and (7.3.1), the canonical functor RConv(X/W) — RConv(X'/ W)
induced by Fy/, (7.14.1) is fully faithful. In view of Proposition 2.5, Lemma 5.5 and §7.11,
the assertion follows. O

8.8 Proof of Theorem 8.2. We prove the assertion for convergent isocrystals. Then the
assertion for convergent F-isocrystals follows from Proposition 8.7 and a similar argument as in
Corollary 5.15. The question being local (Corollary 7.23), we may assume that Y is separated
and of finite type by Corollary 7.23. Moreover, we may assume that Y is reduced.

By applying alteration to each irreducible component of Y [dJon96, 4.1}, there exist a smooth
k-scheme Y and a proper surjective k-morphism ¥ — Y. By Chow’s lemma EEGAH 5.6.1], there
exists a surjective k-morphism Z — Y such that the composition f : Z — Y — Y is projective
and surjective. We set .% = R’ greonv tppf«(&). In view of Corollary 7.23 and Proposition 8.4, the
inverse image of % to (Y / W)rconv,fppf 18 a coherent crystal. Then so is fr = fppf(gz ).

Let (T, u) be an object of Conv(Y/ W). The morphism f factors through a closed immersion
Z — ]P’g for some integer N > 1. We set Tz = Ty Xy Z. We take again the notation of § 8.5 for the
projective and surjective k-morphism Tz — Tp. We choose an integer n such that the morphism
7 1, n(PY) — T is faithfully rig-flat (Theorem 8.6). We set | = Tr, ,,(PY), R = R xz R
and denote by p1, ps : R — R two projections.

Note that % and R define objects of Conv(Z/ W) by (3.18.2) and then of Conv(Y/W).

Moreover, {7'18 : "8 — TTi&} defines an fppf covering of RConv(Y/W). Since f* = fopt (F) 18
a coherent crystal of ﬁZ;C’TW modules, the following modules are coherent:
yﬁﬂrig = (f:conv,fppf(y))mrig? yﬂﬂl)’rig = (f:conv,fppf(g))%(l );rig (881)
and we have isomorphisms
pglg* (ﬁmrig) :) g‘(}{(l),rig <: p?g* (ymrig). (882)

Then we obtain a descent datum on .Fyie for the fppf covering {7*i& : "8 — Tr&} There exist
a coherent Ozrig-module . and an isomorphism [Abb10, 5.11.11]

T (M) S Fpeie. (8.8.3)

On the other hand, since .Z is a sheaf for the fppf topology, for any U € Ob(Rf/gug), we
have an exact sequence

0— FU) > FU Xz RE) = F (U Xgrig RDT8), (8.8.4)

By comparing (8.8.3) and (8.8.4), we deduce that .Feig is isomorphic to .# and hence is coherent.
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Let g : ¥ — ¥ be a morphism of Conv(Y/ W). Choose an integer n large enough such that
R = TT/Z,n(]P’]TV,) — T and R = T, ,(PY) — T are faithfully rig-flat. Since the construction
of R is functorial, we have a W-morphism h : R — QR compatible with g. Moreover, h induces
a morphism of Conv(Z/W). The transition morphism of fy, . ,¢(-#) associated to hY& is an
isomorphism. Since h dominates g in Conv(Y/ W), we deduce that the transition morphism crie
of .F associated to ¢"'¢ is an isomorphism by fppf descent (cf. [Xul9, proof of 9.13]). Then .7 is

a crystal and the theorem follows. O
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