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ABSTRACT. We explore spatial aliasing of non-Gaussian distributions of sea-ice thickness. Using a
heuristic model and >1000 measurements, we show how different instrument footprint sizes and shapes
can cluster thickness distributions into artificial modes, thereby distorting frequency distribution,
making it difficult to compare and communicate information across spatial scales. This problem has not
been dealt with systematically in sea ice until now, largely because it appears to incur no significant
change in integrated thickness which often serves as a volume proxy. Concomitantly, demands are
increasing for thickness distribution as a resource for modeling, monitoring and forecasting air–sea
fluxes and growing human infrastructure needs in a changing polar environment. New demands include
the characterization of uncertainties both regionally and seasonally for spaceborne, airborne, in situ
and underwater measurements. To serve these growing needs, we quantify the impact of spatial aliasing
by computing resolution error (Er) over a range of horizontal scales (x) from 5 to 500m. Results are
summarized through a power law (Er =bxm) with distinct exponents (m) from 0.3 to 0.5 using example
mathematical functions including Gaussian, inverse linear and running mean filters. Recommendations
and visualizations are provided to encourage discussion, new data acquisitions, analysis methods and
metadata formats.

KEYWORDS: ice and climate, ice physics, sea ice, snow/ice surface processes, volume scaling methods

INTRODUCTION
The target area an instrument measures is called an instru-
ment footprint. This area must be considered relative to the
size of physiographic features being measured. In the case of
sea ice, dominant features are ridges. Ridges are deformed
ice features created through mechanical deformation (kine-
matic) events which pile masses of ice floes together as long,
narrow (linear) features which are only meters wide along
their narrowest axis. Ridges are several meters thicker than
the surrounding level ice which is grown thermodynamically
through the more uniform process of freezing sea water.
Ridges are important because they contain a disproportion-
ately larger amount of sea-ice volume per unit surface area.
Subsequently, volume is the primary variable scientists need
for monitoring the mass balance of sea ice in the context of
planetary thermal stability (IPCC, 2013).

Electromagnetic induction (EM) devices are currently the
most accessible instruments for scientists measuring sea-ice
thickness and mapping its features. EM devices assume an
instrument footprint from a roughly conical beam (illumin-
ation) proportional to 3.7 times the flying altitude (Reid and
Vrbancich, 2004), i.e. footprint increases radially with
distance. EM systems have a long-standing reputation for
measuring level sea-ice thickness to within 10% accuracy
(e.g. Kovacs and Mellor, 1971; Kovacs, 1975; McNeill,
1980). Unfortunately, relative errors of 40–60% are com-
monly reported near deformed sea ice when measured from
airborne EM systems relative to ground surveys (e.g. Reid and
others, 2006; Pfaffling and others, 2007). This error is not
unique to EM instruments. It is a problem of footprint size – a
problem of resolution error and therefore an issue of scale.

Growing uncertainty due to scale is undesired because
such a problem impacts efforts to develop integrated
observing systems from multiple platforms to monitor sea
ice. The specific scaling problem just referenced involves
the smoothing of narrow, deep features into wider,
shallower features with larger instrument footprints smooth-
ing more than smaller footprint instruments. This is
problematic for snow and ice thickness because the
thickness of these features is not normally distributed (i.e.
non-Gaussian). Mathematically, we know that averaging
computes the mean, but distorts skew, median and mode
information of any measurement which is not normally
distributed. Hence, any measurement system or processing
method that averages part or all of a non-Gaussian distri-
bution may not adequately capture a physical thickness and
may thereby distort true thickness distribution.

This scaling problem has long existed for sea ice, but is
more relevant today given large changes in the Arctic that
require increased accuracy of thickness and its distribution
(e.g. SEARCH Project Office, 2008; SCICEX Science
Advisory Committee, 2010; Wadhams and others, 2011;
IPCC, 2013). Better projections and predictions of sea ice
(e.g. Zhang and others, 2008; Hunke, 2010; Holland and
others, 2011; Schweiger and others, 2011) demand better
modeled thickness distribution parameterizations (Bitz and
others, 2001). These demands need to be validated and
supported by more accurate measurements. Resolution error
is long identified in upward-looking sonar (ULS) draft
measurements, albeit under the more specific ULS problem
known as beamwidth error (e.g. Wadhams and Davy, 1986).
It is also long known that ice topography changes the shape
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of a returning footprint waveform as a function of back-
scatter and incidence angle (e.g. Fetterer and others, 1992).
However, it has been years since this fundamental measure-
ment topic was re-examined, particularly in a form that
communicates clearly in interdisciplinary discourse.

From first principles, large-scale estimates of sea-ice
thickness are impacted by ubiquitous small-scale processes
(e.g. Hopkins and others, 2004; Wadhams and Doble, 2008;
Doble and others, 2011; Geiger and others, 2011; Thomas
and others, 2011). As an example, small-scale deformed ice
features play a central role in air–sea momentum transfer
(Banke and others, 1980), with Andreas (2011) showing a
strong coupling between physical and aerodynamic rough-
ness of snow and ice. For clarity, physical roughness
includes those features through which momentum is trans-
ferred. According to Andreas (2011), momentum-transfer-
ring features are 12.6m and smaller (i.e. the width of ridge
sails and keels, and deformed ice blocks) with 1–0.5m
sampling intervals recommended along survey lines that are
at least 255m long. These recommendations ensure
sufficient sampling for rendering geometric shapes relevant
to volume estimates. Currently, such measurement practices
are not standardized.

Another finding is a new full-physics finite-volume small-
scale electromagnetic geophysical model where instrument
footprint is found to be more variable than previously
assumed. Findings in Samluk and others (2015) show
how sea-ice conductivity impacts both electromagnetic

penetration (so-called skin depth) in vertical extent and,
more importantly, lateral skin depth or footprint size of
returned secondary eddy currents. More notably, at large
scales, Bernstein and others (2015) show that regionally
integrated thickness exceeds area-weighted average thick-
ness due to a skew towards thick and deformed ice. Using
Southern Ocean thickness proxy archives from ice charts, as
few as five bins in thickness distribution already makes a big
difference in sea-ice volume estimates. Bernstein and others
(2015) found that volume from integrated thickness exceeds
propagated averages by as much as 60%. Such results occur
when strong bimodal summer ice is distributed between
thinning seasonal ice and thicker surviving ice. This
problem amplifies as measurements are propagated through
multiple resolution changes. In short, resolution errors grow
and modify data records each time data are interpolated to a
new grid. When unchecked, such problems make it difficult
to compare results, as resolution errors change thickness
distribution between measurements, archives, reanalyses
and model inputs by way of simple interpolation onto a new
grid or other smoothing processes.

Turning this problem on its head, we consider here the
hypothesis that resolution error can be leveraged as a tool to
quantify and improve the accuracy of snow and sea-ice
thickness, distribution, and variability. Questions we pose in
this paper are: (1) What is the underlying cause of the
problem? (2) How much distortion is incurred? (3) Is there a
way to quantify distortions as a function of scale? (4) What is
the impact on climate data records (CDR) and stakeholders
of community datasets? Most importantly, (5) how can we
use this knowledge to improve data synthesis capabilities?
We address question (1) by examining the underlying cause
of resolution error using a heuristic model. We apply our
heuristic model to a sample dataset to answer question (2)
and devise a power law to relate errors between scales to
address (3). Questions (4) and (5) are discussion points
relevant to model prediction, measurement strategies and
outlining of new steps forward.

HEURISTIC MODEL
Resolution error is difficult to validate with existing
coincident sea-ice datasets of drifting pack ice because
geolocation errors are still too large for conclusive certainty
(personal communication from C. Haas, 2012). Hence, for
this study, we defer to a simple heuristic experiment to
explain general characteristics from first principles.We begin
with an idealized model (Fig. 1) using a two-dimensional
(2-D) triangular ridge described with both discrete and
statistical representations of thickness. We build this model
from earlier work (Worby and others, 2008) with center draft
of 1 and area of 1 (dimensionless units) and call our initial
ridge shape Case 0: High Resolution. Next, we consider an
idealized running mean of length 3 and call this Case 1: Low
Resolution. From a spatial context (Fig. 1a), we see that the
volume (a 2-D area in this case) is conserved as an integrated
value between Cases 0 and 1. However, in both spatial and
frequency domains (Fig. 1), thickness distribution between
cases is quite different. In both frames of reference, a bimodal
distribution of thin and thick ice in Case 0 becomes a single,
averaged mode of intermediate thickness in Case 1. This
behavior is analogous to aliasing in time series (e.g. Emery
and Thomson, 2001), so we identify the problem here as
spatial aliasing. As with temporal aliasing (e.g. Geiger and

Fig. 1. Heuristic model of spatial aliasing. An idealized triangular
ridge (a) with normalized units is well represented by discrete
points (solid blue) when simply connected by line segments, or
discrete area rectangles (dashed blue) when interpreted as a
piecewise constant function. Both solutions conserve volume and
thickness distribution. When smoothed by an example running-
mean filter of length 3, the feature changes shape, with discrete
points (solid red) and discrete area (dashed red) still conserving
volume but no longer conserving thickness distribution. The impact
is most pronounced on thickness distribution in the frequency
domain (b) when the distribution is bimodal. The underlying cause
of thickness distortion is loss of bimodal structure due to averaging
of a non-Gaussian feature.

Geiger and others: Impact of spatial aliasing on sea-ice thickness measurements354

https://doi.org/10.3189/2015AoG69A644 Published online by Cambridge University Press

https://doi.org/10.3189/2015AoG69A644


Drinkwater, 2005), it quickly becomes difficult to compare,
let alone combine, measurements into a larger archive for
modeling and remote sensing when one dataset is aliased
and one is not; or two datasets are aliased to different
degrees. The underlying cause is the smoothing of non-
Gaussian data, with bimodal cases producing the most
extreme effects.

This heuristic exercise leads to our second question:
What is the size of these differences, preferably in the
context of scale? Differences between two data series are
traditionally summed together in quadrature for a measure
of disagreement (e.g. Geiger, 2006). Mathematically, this is
equivalent to interpreting each data series as a vector and
subtracting one vector from the other in the form of a
Euclidean distance of scalar L2 Norm, with superscript ‘2’
denoting the exponent value for terms in summation. The
measure of disagreement is often made independent of
sample size by dividing the sum by the number of points.
For the heuristic example (Fig. 1a), normalized points X = –1
and X=1 yield a difference of 1/3 in Case 1 relative to Case
0 while the center incurs a difference of –2/3. When these
terms are summed in quadrature, the result is �0.27 from

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=3ð Þ
2
þ � 2=3ð Þ

2
þ 1=3ð Þ

2
q� �

=3 ¼ �
ffiffiffiffiffiffiffiffi
6=9

p� �
=3 using

a formalism presented later.
Unfortunately, it is difficult to interpret a normalized error

(disagreement) of �0.27 (i.e. ��1/4) from an intuitive
perspective (Fig. 1). The individual errors are never that
small, even though the formula itself is essentially identical
to a standard deviation calculation. The intuitive disconnect
arises because this problem is a measure of a changing
perimeter rather than a statistical length.

Our toy model (Fig. 1) suggests that while volume is
conserved, perimeter is changing between Case 0 and Case
1, with the profile shrinking in one dimension but growing
in the other. We therefore consider here the alternative L1

Norm (e.g. Black, 2006; Donoho, 2006), which essentially
sums the absolute differences (‘TaxiCab distance’). In the
heuristic example, the L1 normalized error is � 1=3j jþð

� 2=3j j þ 1=3j jÞ=3 ¼ �4=9 ffi �0:44. This numerical value
of average disagreement makes a more intuitive connection
to typical errors measured (e.g. one location is losing 2/3
while two locations are gaining 1/3, with an average error
somewhere between and closer to the smaller repeated
values). Thought processes like these are the rationale
behind works by Willmott and Johnson (2005) and
Stampone and others (2012) where an emphasis on
absolute-value error provides an understanding for area-
based problems along a 2-D geographic surface.

Generalizing principles above, we devise a two-step
algorithm to first create a lower-resolution result (zn, L) that
retains the original high sampling frequency, and then
measure resolution difference (error) between this lower-
resolution product and its higher-resolution source (zn):

zn, L ¼

PJðLÞ=2
j¼� JðLÞ=2wjzjþn
PJðLÞ=2

j¼� JðLÞ=2wj

ErðLÞ ¼

PN
n¼1
PJðLÞ=2

j¼� JðLÞ=2wj zn, L � zjþn
�
�

�
�

N
PJðLÞ=2

j¼� JðLÞ=2wj

ð1Þ

Here wj represents a set of weighting coefficients for j= –J/2
to J/2. The index range J is associated with the length scale (L)
through L= J �x where �x (m) is the resolution, making J an

integer indexed function of L and of the spacing �x. We
generalize resolution error as a � deviation in thickness,
taken as a function not only of the absolute-value sums of
differences between resolutions but also as a function of the
weights involved (i.e. both size and shapes of the functions).
Here Er expresses an average deviation between a highly
resolved signal zn and a smooth signal zn, L where n denotes
the discrete data point and L denotes the scale of the filter.
Our toy model (Fig. 1) represents an example of these
definitions, where zn and zn, L are represented by blue and
red curves, respectively, J=3, �x=1, L= J, j= [–1, 0, +1]
and wj= [1, 1, 1], noting that the integer value of j equals
INT(–J/2) to INT(J/2) (e.g. INT(3/2) = 1). In that example, only
one point, X=0, is investigated such that n=N=1 (N>1
investigated later using an observed data series).

We note for clarity that, if zn is any linear function of n,
then Er = 0, provided wj are symmetric with respect to center
j=0. The actual value of Er also depends on the weights wj
such that weights can be varied to minimize Er to find an
optimal weight shape (unpublished work), also called the
filter shape. Furthermore, if data are normally distributed,
then resolution error reduces to the mean absolute error.
Hence, growth of resolution error occurs in a manner distinct
from mean absolute error when skewed information is
introduced either by non-Gaussian distributions of targeted
materials or inclination of filter shape at an incidence angle
relative to a target face (not shown, for brevity).

Building on the understanding from above, we provide
answers to question (3) by devising a relationship between
resolution error and scale in a generalized sense. We craft
our experiment using Eqn (1) together with (1) predefined
filter shapes (sets of wj) and (2) a dataset. Because different
filters have different shapes which a priori we assume will
impact results, we choose a range of representative shapes
(Table 1) to assess the impact of both narrow and wide
filters. For this study, we choose four symmetric shapes that
are commonly seen in models, instrumentation and geo-
physical studies in general.

The first choice (Table 1) is a centered Gaussian which
often describes the shape of a signal from an instrument
transmitter/receiver pair (side lobes excluded for simplicity).
The second is an inverse linear filter which is commonly
used to interpolate data from one resolution to another in
model applications. The remaining two shapes are tapered
Gaussian, basically a nonlinear curved fit, and a running
mean as used in our heuristic model (Table 1; Fig. 2) and
commonly applied in many high-data-volume real-time
acquisitions for initial data reduction. Below, we apply these
filter shapes to real data to explore possible hardware and
software responses between input (high resolution) and
output (low resolution).

Table 1. Symmetric smoothing functions

Function Function weights (wj)

Gaussian* 1ffiffiffiffi
2�
p exp � s2

2

� �
; s ¼ j d�

Inverse linear 1 � sj j; s ¼ j
J=2

Tapered Gaussian widened Gaussian then truncate

Running average 1

*s values are generated using numerical indices j for j= –J/2 to J/2 with
d�= range(�)/J, where the range of � spans from –4 to 4 (see Fig. 2).
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Filter functions (Fig. 2) are provided to represent a wide
variety of symmetric filters and their properties. The
compact kernels shown are nonzero in the normalized
interval [–1, 1], but zero outside this interval. Regions where
filter functions are larger than zero are defined in this paper
as length scale L for each filter. This is also called the ‘kernel
length scale’. Note that a good case can be made for other
length definitions. For example, the Gaussian filter appears
narrower than the running mean, with the area underneath
each curve helping to quantify an ‘intrinsic’ length scale (i.e.
the length proportional to the width covered by a fixed area
(say 90%) underneath the filter curve). As an example, the
running-mean filter has an intrinsic length identical to the
kernel length scale. In contrast, the Gaussian achieves 90%
of its area between the narrower normalized interval
[–0.41, 0.41]. A similar analysis finds an inverse linear filter
intrinsic scale of �75% of the kernel length scale. While
these matters and their impacts are well known to signal-
processing specialists, the use of averaging techniques and
symmetric filters to smooth instrument signals or post-
process data are largely routine applications in many fields
where smoothing methods are often used without consider-
ing these subtle relationships between a zone of influence
(kernel size) and intrinsic weighting of each kernel shape.
Hence, these simple filters are chosen for this paper as a
means to communicate issues across a broad interdisciplin-
ary community.

DATA
Data are retrieved from the SEDNA archive (Sea-ice
Experiment: Dynamic Nature of the Arctic; Hutchings and
others, 2011), specifically the Geonics EM-31-MK2 (here-
after referred to as EM-31) for sea-ice thickness, and
MagnaProbe (Sturm and others, 2006) readings for snow
depth, plus drilled holes for calibration. These field
measurements were taken in April 2007 in the Beaufort
Sea (�73°N, 147°W). Fieldwork was a collaboration
between the SEDNA project (Hutchings and others, 2008)
and the European DAMOCLES project (Developing Arctic
Modeling and Observing Capabilities for Long-term En-
vironmental Studies; Gascard and others, 2008).

Archive records show that the first half of the experiment
(1–7 April 2007) included a thickness survey along the array
set out near the ice camp (Fig. 3a). The array consisted of six
1 km long transect legs. During the transect survey, the

EM-31 was carried by one person at a steady height in a
horizontal orientation (perpendicular to the survey track)
with a shoulder strap used to support and maintain a
constant reference (zo = 1.00� 0.05m). Distance was paced
out at �5m intervals between 25m survey stakes. Following
the EM-31 was the MagnaProbe carried by a second person
who measured the snow thickness where EM-31 readings
had just been taken. Following the survey, calibration sites
were chosen, with additional EM-31 samples collected with
coincident drilled holes, enabling snow depth and ice
thickness measurements to centimeter accuracy. At some
locations, the EM-31 was held at two different heights
(carrying height and ground) plus different orientations to
account for local ice features and variability.

Data processing
EM-31 relative conductivity records are calibrated with an
exponential fit between a recorded apparent conductivity
(mSm–1) and distance z between the instrument and a
highly conductive material (sea water assumed for this
study). The conversion equations used here follow Eicken
and others (2001) as

�a ¼ Aþ B exp � Czð Þ ð2Þ

where coefficients A, B and C are solved using nonlinear
regression. The nonlinear regression routine requires input of
a function such as Eqn (2), a series of matched values for
apparent conductivity and distance z from coincident
measurements at drilled holes, and an initial guess of

Fig. 2. Filter shapes. Four normalized shapes are mathematically
constructed from Gaussian (thick line), inverse linear (dashed line),
tapered Gaussian (thin line) and running-average (dotted line)
functions. Each function is expanded to needed length scales (L) to
filter any measured point relative to neighboring points.

Fig. 3. Arctic ice camp survey. (a) Photograph with superimposed
lines taken from light-wing aircraft at oblique angle over 1 km long
survey legs. Survey samples are taken along each leg every 5m
using coincident EM-31 and MagnaProbe in tandem. Arrow is
bearing true north; camp outlined. (b) Calibration results of EM-31
expressed as conductivity measurements based on 52 vertical
distance samples collected coincidentally at drillhole sites, with
regression analysis summarized in Table 2. Ice types in legend
identified as first-year level ice (FY), first-year deformed ice (FYD)
and multi-year ice (MY).
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coefficients. Once coefficients are found, the inverse solution

z ¼ zref � ln �a � Að Þ=C; zref ¼ ln ðBÞ=C ð3Þ

describes the distance z between instrument and water
surface at any site given coefficients and input apparent
conductivity value. Sea-ice thickness zi is determined
subsequently by

zi ¼ z � zo � zs: ð4Þ

Here zo is the distance between the instrument and the top
surface (a mixture of snow and ice) and zs is the snow
thickness (MagnaProbe used in this study).

By definition, as exponential relationship varies rapidly
relative to an e-folding anchor point. Subsequently, values
that are further away from the anchor point are increasingly
sensitive to the coefficients chosen via a fitted curve
solution. In this case, deeper sea-ice thickness values are
the most sensitive. Concomitantly, effective nonlinear
regression techniques provide tight confidence intervals for
each computed coefficient given an appropriate number of
input samples. Hence, we perturb our calibration dataset
into three sample sizes to estimate sensitivity beyond
drillhole depths. The first sampling includes all pairings of
drillhole data with EM-31 readings, from which we compute
an initial set of coefficients (Table 2) and a fitted exponential
curve. We then subsample the initial dataset into values
which are below and above the initial fit. Each of these two
subsets is subsequently subject to nonlinear regression to
generate two more unique sets of coefficients which we call
Low and High solutions (Table 2) which form boundaries of
gray shading of uncertainty (Fig. 3b) with a tight set of fitted
curves where data values span exponential fit, but a growing
uncertainty beyond data-availability range as the solution
extrapolates. The end result is better visual communication
of ice thickness uncertainty to subsequent users.

Survey lines are concatenated to form a single long 2-D
thickness profile (Fig. 4) with associated uncertainties. We
create a profile from 1156 measurements and call the total
thickness (snow plus ice thickness) our zn values for
n=1, . . . ,1156. Values are spaced �5m such that �x=5
along the concatenated lines. Three realizations of zn

profiles are created using the Low (thin profile), Central
Tendency (mean profile) and High (thick profile) calibration
coefficients (Table 2).

Model processing
For each of the three realizations just described, we apply
each filter (Fig. 2) at increasing filter lengths from L=10,
20, . . . ,500m length scales. In this way, we generate sets of
smooth solutions zn, L for a range of length scales using the
algorithm in Eqn (1) and solve subsequently for Er(L) for each
generated profile. To maintain the same number of data
points for a growing scale problem, we always start with the
original data and buffer the two ends of the concatenated
profile with a mirror of end values to needed lengths. For
brevity, we only show solutions for the Central Tendency
(Fig. 5).

RESULTS
Results (Fig. 5) show the Central Tendency profile for all four
filters over all scales at 10m increments. Four filter solutions
are arranged from narrowest (top panels) to widest (bottom
panels) shapes. We see a direct relationship between
increasing filter width and increasing resolution error. Beside
each spatial profile, we show the corresponding thickness
distribution with only three scales (original measurements,
250m, and largest at 500m scale) in frequency space to

Table 2. Summary of EM calibration coefficients

Solution Coefficients

A B C

mSm–1 mSm–1 m–1

Low* 9.90� 5.82 927.80� 9.42 0.6943� 0.0158
Central Tendency 26.48� 4.48 1049.40� 6.24 0.7624� 0.0120
High 67.13� 2.63 1107.19� 3.38 0.8649� 0.0081

*Confidence interval at 95% level provided through nonlinear regression.

Fig. 4. Concatenated profile from survey lines. Survey lines sampled at 5m intervals for ice thickness (using EM-31) and snow depth (using
MagnaProbe). All six survey lines are concatenated into one synthetic profile with typical properties listed (MagnaProbe depths also
indicated at drill sites). Field measurements such as these are often provided as climate data records (CDR) for modelers, remote-sensing
calibration and other applications. Note that uncertainties are provided as gray shadow to communicate uncertainties as in Figure 3b. In this
way, we explore propagated uncertainties and their compounding effects with other error sources.
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avoid confusion of the many growing distribution peaks at
different scales. Deviations from the original distribution are
aliased artifacts which appear in two forms: (1) loss of
thickest ice and (2) development of additional modes;
neither deviation represents any real sea-ice features. For a
sense of significant clustering, a white-noise level is shown.
White noise is calculated as a constant power across all
frequencies (i.e. as the inverse of bin number, 1/B) as a
general white-noise description. Here 51 bins (i.e. B=51) are
used with 0.2m bin intervals. This equates to a white-noise
level of 2%. In other words, when new aliased peaks differ
from the original signal by more than white noise, there is a

significant difference at that frequency bin relative to the
original signal. By mixing shapes and sizes of filters, one can
create a new smooth thickness distribution which no longer
matches the original high-resolution signal (not shown, for
brevity) but still conserves volume. The most telling detail is
the loss of thickest ice.

To summarize results from all realizations, we plot
resolution error (Er) as a function of scale in a log–log
relationship (Fig. 6). These results are sufficiently uniform to
fit solutions with regression analysis. For clarity, we intro-
duce the dimensionless variable x= L/L0 and set L0 = 1m to
align our mathematical model with the 1m length Andreas

Fig. 5. Impact of instrument footprint. Using mathematical functions (Fig. 2) to simulate instrument footprints of different sizes and shapes,
we show how width and depth of narrow features are widened and flattened spatially (a–d). In frequency space (e–h, respectively), observed
(black line) frequency distributions (FD) develop artificial modes which grow with scale and exceed white-noise levels in wider filter cases,
especially in (g, h). While volume and mean thickness conserve in all cases (inset cumulative frequency distribution (CDF) shown for L=5,
250, 500m; e–h), thickness distribution and thickest ice types are altered considerably as noted by artificial peaks and loss of ice at 10m
bin, respectively.
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(2011) recommends. Using the well-recognized form
Y=mX+B, we define Y= log(Er/L0), X= log(x) and B= log(b/
L0) to solve for m and b as exponent and amplitude in the
relationship Er(L) =bxm (Tables 3 and 4).

EXAMPLE APPLICATIONS
Two visual perspectives are provided as example applica-
tions. The first is spatial aliasing of a low-resolution
instrument which oversamples to collect data coincident
with a high-resolution instrument; oversampling is essential
for this to work, as is a high sampling rate. Using the dots
(Fig. 6) as a guide, high-resolution data are filtered to a
length scale matching the low-resolution instrument using
the footprint shape and size of the low-resolution instru-
ment. If the filtered result (purple dot in Fig. 6) yields the
same thickness distribution as the low-resolution instrument,
then both instruments see the same thing at low resolution.
Equation (1) estimates the error introduced to the higher-
resolution instrument and, more importantly, the increase in
error at any scale for instruments with similar footprint
shapes (Figs 5a–d and 6). Such an application is invaluable
when analyzing new prototype airborne instruments in-
tended for spaceborne missions.

The second example shows how resolution error grows in
a non-Gaussian distribution. Changes at each point
(dZn ¼ zn, L � zn) are accumulated into 0.2m bins as
percentages for each scale, with the histogram changing as
a function of length scale (L) and filter shape (Fig. 7).
Through such visualization, � values of Er are intuitively
related to high concentrations of thickness differences dZn.
From such a perspective, we see power-law increases of Er
growing slower than overall distribution, and a general trend
of under-reported thicknesses (i.e. more dZn< 0) with
growing footprint size. Hence, while Er represents many
values within a Central Tendency, the actual distribution of
error grows much faster at extreme ends, where differences
really matter in terms of heat fluxes (at the thin end) and
human infrastructure (at the thick end). Non-systematic
distribution patterns are present across increasing scales,
which suggests that spatial aliasing of sea-ice thickness is
difficult to anti-alias using techniques such as those found in
Smith and others (2000). However, this form of analysis is
invaluable for tracking and understanding changes in non-
Gaussian properties, especially for cases where instruments
are collecting smoothed returns for new ground-to-airborne-
to-spaceborne systems and their comparisons. Such assess-
ment provides interesting relationships between an emitted
footprint shape and return shape after interacting with rough
topography. In this regard, Er is an effective tool for
characterizing upscaling processes.

DISCUSSION
Spatial aliasing is a ubiquitous problem that is not limited to
sea ice or instruments. We simply use sea ice as a non-
Gaussian example and encourage the application of analysis
tools provided herein. To address impact, we ask: Why is
such detail so important in the first place? How important is a
true thickness distribution to a data user? How do we use
these results to translate observed thickness distribution into
a common reference between different types of observa-
tions? We begin by acknowledging that volume is conserved
only in a relative sense within the experiments shown herein.
No one instrument measures the true elevation and draft of
snow and sea ice above and below sea level, smoothed or
not. Hence, volume is a derived quantity and can only be
conserved if combinations of instruments both above and
below sea level measure the same features coincidentally
with the same footprint sizes. Geolocation of measurements
is already a substantial cutting-edge research problem right
now (e.g. Gardner and others, 2012) in addition to measure-
ment accuracy (Geiger and others, 2015). In short, we argue
that good estimates of volume result from higher confidence
in thickness distributions.

Fig. 6. Systematic increase in resolution error as a function of scale.
Growing resolution errors (Er) are shown based on four filter shapes
(Fig. 2), each applied to the Central Tendency calibrated profiles
(Figs 3b and 4). Log–log slopes used to estimate exponential fit
Er =bxm for length scale x with fit parameters listed (Tables 3 and 4).
Each slope and intercept pair is significantly distinct at the 95%
confidence interval, thereby providing a predictable trend of
growing resolution error as a function related to instrument
waveform response, footprint shape and size, and/or post-process
smoothing algorithms. Colored dots are used as example applica-
tion to demonstrate how a high-resolution instrument (blue) can be
used to test a low-resolution instrument (red) for aliasing by filtering
the high-resolution data using the footprint characteristics of the
low-resolution instrument (purple).

Table 4. Power-law amplitude (b) from intercept B= log(b) and
95% confidence interval

Function Low* Central Tendency High

Gaussian 0.026�0.008 0.043�0.002 0.071� 0.003
Inverse linear 0.038�0.002 0.067�0.004 0.111� 0.006
Tapered Gaussian 0.067�0.003 0.121�0.005 0.204� 0.010
Running mean 0.071�0.003 0.129�0.006 0.217� 0.011

*Amplitude b (m) from b= exp(B) and uncertainty (exp(B+ 95% CI) – exp
(B – 95% CI))/2, where CI is confidence interval.

Table 3. Power-law exponent (m) and 95% confidence interval

Function Low* Central Tendency High

Gaussian 0.464�0.006 0.464�0.008 0.502� 0.007
Inverse linear 0.429�0.008 0.415�0.010 0.458� 0.009
Tapered Gaussian 0.347�0.007 0.328�0.008 0.370� 0.009
Running mean 0.338�0.008 0.319�0.008 0.360� 0.009

*Solutions shown for Low, Central Tendency, and High EM-31 calibration
coefficients in Table 2, respectively.
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As for thickness distribution, we must first recognize that
horizontal length scales of sea ice are vast, with six or more
orders of magnitude from the smallest features to basin-scale
extent. Conversely, sea ice is only meters thick everywhere,
with nearly all of the roughness of sea ice at high spatial
frequencies in the form of rafting, ridges, rubble fields and
deformed linear features. At all scales larger than 1m, these
features distribute consistency into an iconic skewed shape
partitioned into (1) thin ice, (2) a strong central mode of
thermodynamically grown seasonal ice, and (3) a long tail of
thick ice from deformation processes. Essentially, sea-ice
thickness distribution is our ‘Rosetta Stone’ through which
we communicate and translate knowledge about sea-ice
thickness properties and processes across scales and
between data users.

An aliased peak in a thickness distribution does not
represent a real feature, though it is real information, simply
in the wrong place. We see this happening for the thick ice
categories as we look from top to bottom through case
studies (Fig. 5a–d) where we see thick ice moved into
packets of thinner ice categories at a faster rate for wider
filter shapes. Therefore, a first recommended best practice is
to test data records intended for data assimilation or other
data synthesis approaches by adding the following four
pieces of critical information to analysis routines and
metadata archives: (1) the beamwidth (or projection angle)
of an instrument, (2) the angle of incidence of instrument
projection, (3) height of measurement above the snow/ice
interface (even if just a mean estimated height) and (4)
approximate shape of the signal (or at least a measure of
how broadly the signal is shaped – intrinsic length scale).
These four points are needed for Eqn (1) to quantify
resolution error and scaling effects. Adding this information
as metadata to archives will support a growing body of

literature on upscaling and downscaling for which reso-
lution error is already being included in larger-scale climate
works (Willmott and Johnson, 2005; Stampone and others,
2012; Bernstein and others, 2015).

In terms of compounding impacts, imagine how thickness
distribution must change when high-resolution data are
collected but then reduced through common practices such
as a running mean. Imagine how many aliased artifacts are
introduced through subsequent objective analysis where
correlation length scales and Gaussian noise functions are
added to the process after a running mean filter is applied.
Such products are often imported into numerical models
with inverse linear interpolation to gridcell resolutions. And
so we wonder, how many different filter shapes and sizes
did specific raw data encounter before being merged with
other datasets? Since sea-ice volume is a derived product,
one of the most effective ways to make observations more
consistent across scales is to archive thickness distributions
with the four metadata points just identified and then
generate ice volumes from these native inputs and test for
resolution error using the algorithms and application tools
demonstrated here. In this way, data centers can leverage
their large computational and data-mining capabilities with
cross checks to characterize upscale problems such as
resolution error. We demonstrate (Fig. 6) one way to test
data quality assurance.

Furthermore, we strongly recommend an effective alter-
native to the running mean, using the inverse linear filter
which is simple to implement (Table 1) and, surprisingly,
surpasses the Gaussian filter in terms of lowest increase of
resolution error in this study. The low error is likely related
to the absolute value in both the inverse linear and TaxiCab
Geometry for our resolution error calculations. Still, inverse
linear filters are commonly used in numerical models for

Fig. 7. Example distributions of growing resolution error. Respective to each filter shape (Fig. 5a–d), resolution error is visualized as a
distribution of dZn ¼ zn, L � zn for Central Tendency calibration results. Grey shading identifies percent of values found within bins
discretized by 0.2m changes in dZ at each incremental 10m length scale. Thick black lines are positive and negative representations of Er
(from Fig. 6). Note, black lines envelope only highest concentrations of error, which increase at a lower rate than surrounding non-Gaussian
error distributions. Variability in error propagation is strong enough to impede effective downscaling solutions to reverse (Smith and others,
2000) the aliasing process at this time.
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data interpolation. Hence, inverse linear filters for in-the-
field data reduction offer consistent filtering shapes between
modelers and measurement teams. Furthermore, if snow and
sea-ice communities could standardize data collection
practices, then we could avoid many of the obvious sources
of large aliasing problems, by eliminating running-mean
filters for underway data reduction, especially for non-
Gaussian variables. Removing this one filter alone will
decrease a number of aliasing problems that currently make
it very difficult to compare and combine different in situ and
airborne measurements.

CONCLUSION
Instruments with footprints larger than length scales of
deformed sea-ice features encounter spatial aliasing which
impacts the non-Gaussian shape of estimated sea-ice
thickness distribution. Using a power law based on reso-
lution error, one can estimate the impact of aliasing when
upscaling results or comparing high- and low-resolution
instruments given knowledge of an instrument’s footprint
size and shape of the emitted (though preferably returned)
signal. Data users who may need such records for upscaling
and downscaling applications or process studies should test
for this condition, especially if they are integrating a
diversity of measurements for data assimilation. Much more
work is needed on this topic as this is only one case study of
a pervasive data integration issue. However, there is much
that can be advanced by looking into matters described
herein and applying them to new data acquisition cam-
paigns, archives and metadata studies. Based on results
found here, a critical best practice is the elimination of any
wide filters as soon as possible, especially the running
average. Gaussian filters, and surprisingly the simple inverse
linear filter, are tapered sufficiently to minimize many
aliasing situations introduced through post-processing and
interpolation activities. But even the most idealized trans-
mitted signals will return distorted pulses with extensive
complexity when they interact with sea-ice topography. In
summary, this problem demands further sustained analysis
for some time to come.
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