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OSCILLATION THEOREMS FOR DELAY DIFFERENTIAL 
EQUATIONS VIA LAPLACE TRANSFORMS 

BY 

I. GYÔRI, G. LADAS AND L. PAKULA 

ABSTRACT. Sufficient conditions for the oscillation of all solutions of 
the delay differention equation (1) below are obtained. 

1. Introduction. Consider the delay differential equation 

n 

CD * « + ] £ # * ( ' - * Ï ) = / ( 0 , t^o 
i=i 

where/ G C[0, oo) and pi G (—oo, oo), 77 G [0, oo) for / = 1, 2, . . . , n. 
Our aim in this paper is to obtain sufficient conditions for the oscillation of all 

solutions of (1). The arguments rely on a known result (Lemma 1) about the abscissa 
of convergence of the Laplace transform of a non-negative function. Our results apply 
when, for example, the coefficients pi are positive and the function/(0 is a finite linear 
combination of sines and cosines. (See Corollary 1.) By using Laplace transforms we 
also obtain a remarkably short proof of the following well-known theorem: 

THEOREM 0. Every solution of 

n 

(2) x(t) + J2pix(t-Ti) = 0 

is oscillatory if and only if the characteristic equation 
n 

(3) P(\) = \ + Y,Pie~XT'=° 
i=\ 

has no real roots. 

For other proofs of Theorem 0 see [1], [2], [4], and [5]. 
As usual, a solution x(t) of (1) is called oscillatory if it has arbitrarily large zeros. 
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2. Forced Oscillations. Without loss of generality we will assume the coefficients 
Pi of (1) are all nonzero and that T\ = max{ri, . . . ,T„} . Then a solution x(t) of (1) 
is defined for t ^ —T\ and x E C[—TI, oojnC^O, oo). 

We first recall some facts about Laplace transforms. If X(s) is the Laplace transform 
of x(t), 

/»00 

X(s) = / e~stx(t)dt, 
Jo 

then the abscissa of convergence of X(s) is defined by 

b = inf {o- E /? : X(a) exists}. 

Then X(s) is analytic for Res > 6. 
Let JCC(0 denote x(t + c). Then, for any c € R, the Laplace transform Xc(s) of xc(t) 

exists and has the same abscissa of convergence as X(s) as we can see by noting that 
the defining integrals of X(s) and Xc(s) converge or diverge for the same values of s. 
Moreover, for Res > b we can write 

(4) Xc(s) 
/ 

X(s)- / e~stx(t)dt 

The last integral defines an entire function of the complex variable s so we see that 
X(s) and Xc(s) have their singularities at the same points. We will use the following 
known result from Widder [6]. 

LEMMA 1. IfX(s) is the Laplace transform of a non-negative function x(t) and has 
abscissa of convergence b > — oo, then X(s) has a singularity at the point s = b. 

We call a function x(t) eventually positive if there is a c ^ 0 such that xc(t) > 0 for 
all t > 0. Our discussion of the abscissa of convergence of Xc(s) implies that Lemma 
1 holds when X(s) is the Laplace transform of an eventually positive function. 

We assume that, for some a > 0, f(t) — o(eat). Then the Laplace transform F(s) 
of f(t) exists. Let x(t) be a solution of (1). Then (see e.g. [3]) there is a (3 > 0 such 
that x(t) = o{e^). This shows that the Laplace transform X(s) of x(t) exists with an 
abscissa of convergemce b less than infinity. 

We now state our first result. 

THEOREM 1. Let a E R and assume that the following conditions are satisfied: (H\) 
Equation (3) has no (real) roots in [a, oo); (H2) a is the abscissa of convergence of 
F (5), F (s) has a singularity on Res = a, but F(s) is analytic at s = a. 

Then every solution of (I) is oscillatory. 

PROOF. Suppose (1) had an eventually positive solution x(t) with Laplace transform 
X(s) having abscissa of convergence b. Then X(s) is analytic in the half-plane Res > b 
and, by Lemma 1, cannot be analytically continued at s = b. That is, there is no 
complex neighborhood of b on which we can find an analytic function which agrees 
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with X(s) for Res > b. By taking the Laplace transform of both sides of (1) we find 
that 

(5) P(s)X(s)=x(0)-$(s) + F(s) 

where P is defined by (3) and (j)(s) = (j>\(s) + • • • + (f)n(s) with 

Ms)=Pie-STl / e-*x(OdÇ. 
J—Ti 

for / = 1, . . . , n. 
By analyticity, (5) holds for Res > max{<2, b}. Note that <j> is an entire function. 

Now a > b is impossible because (5) and (H2) would imply a singularity of X(s) in 
Res > b. 

On the other hand, a ^ b is impossible because we could then use (//1), (H2), and 
(5) to analytically continue X(s) at s = b. Thus (1) cannot have an eventually positive 
solution. • 

COROLLARY 1. Assume that pi, T( G [0, 00) for i = 1, . . . , n and that f if) is a finite 
linear combination of sines and cosines. Then every solution of (1) is oscillatory. 

THEOREM 2. Suppose that: (H3) Equation (3) has no real roots; (H4) The abscissa 
of convergence ofF(s) is —00 and, for some e > 0, \F(s)\ = 0(e~s^Ti~e^) as s —> —00. 

Then every solution of (I) is oscillatory. 

PROOF. Otherwise (1) has a solution x(t) such that for some c ^ 0, xc{t) > 0 for 
t ^ 0. Let (1') denote equation (1) wi th/ replaced by fc. Then xc(t) is a positive 
solution of (1;). It is easily checked using (4) that Fc(s) also satisfies (#4). Since we 
are seeking a contradiction, we may as well assume that x(t) > 0 for t ^ —T\. Then 
in view of (5), and by Lemma 1, if tollows that the abscissa of convergence of X(s) is 
—00. Clearly, for all real s we have X(s) > 0, and by (7/3), P(s) > 0. Now consider 
linis—ooXO). (7/3) implies that/?i, the coefficient corresponding to the largest delay, 
is positive. Take e > 0 small enough so that r\ — e > 77 for / = 2, . . . , n. By continuity 
and the assumed positivity of x(t) in [—n, 0], we can conclude that, eventually as 
s —• — 0 0 , 

(t>i(s) > e-s(Tl~e) -> 00. 

On the other hand, as s —• —00, 

\Ms)\ = oie'**) = o(Ms)) 

for / = 2, . . . , n. This, together with (//4) and (5), implies that l im^-ooX^) = —00. 
This contradiction concludes the proof. D 

The if statement of Theorem 0 follows, of course, from Theorem 2 with/(0 = 0. 
Our argument reduces to the following short, direct proof of this: Assume, for the 
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sake of contradiction, that (2) has a positive solution x(t) with Laplace transform 
X(s). Then, as in (5), 

(6) P(s)X(s) = x(0) - </>(*)• 

for s 6 (—oo, oo). But both P(s) and X(s) are positive while (j>(s) —» oo as s —» — oo. 
Hence (6) leads to a contradiction. The converse part of Theorem 0 is obvious. 
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