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1. Introductory Remarks

This contribution gives an outline of a game theoretic foundation
of the logical structure inherent to the language of a science. Game
theoretic approaches to a language were considered and developed by se-
veral authors. In this volume Saarinen [10] examines the game theoretic
semantics due to Hintikka and the dialog-game semantics due to Lorenzen.
In the following I shall not re-examine the approaches by Hintikka [1] and
Lorenzen [5]. However, some remarks about Lorenzen's semantics are ne-
cessary since the game theoretic approach considered here is essentially
based on the idea of Lorenzen to use dialog-games for a foundation of
logic.

1.1. The problem of the dialogic foundation of logic

A systematic game theoretic presentation of the rules of a dialog-
game was given at first by Lorenz [3]. Starting with certain structural
rules which constitute the general scheme of a dialog, a further dialog
rule is necessary in order to guarantee a finite game. Three particular
rules, each of which confines the possibilities of argumentation in a
dialog, are distinguished: the 'strict1 dialog rule, the 'effective' di-
aiog rule and the 'classical' dialog rule. A formalisation of the dialog
rules by means of calculi establishes the connection between the dialog-
ic semantics and the usual formulation of logic by mathematical logic.
While the 'strict' dialog rule leads to anew kind of logic, the 'effec-
tive' dialog rule leads to intuitionistic logic and the 'classical' dia-
log rule leads to classical logic. Within the dialogic approach of Lor-
enzen and Lorenz the problem of a foundation of logic precisely is the
problem to distinguish particular dialog rules (i.e. the 'strict', 'ef-
fective', 'classical' dialog rule) among an infinite set of possibili-
ties to confine a dialog-game. It depends on the choice of such a par-
ticular rule which kind of logic one obtains since, in the sense of the
semantical completeness and consistency, the dialog-game and the logical
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calculus are equivalent. As a guiding principle in order to choose be-
tween the possibilities to confine a dialog, certain minimal and maxi-
mal properties of the game are considered to be decisive. But nonethe-
less it seems to be a matter of convention and not at all a necessity
to select a particular dialog rule. It turns out that, in comparison
with the 'strict' and the 'classical' dialog rule, the 'effective' dia-
log rule allows a maximal dialogical differentiation of compound propo-
sitions. The concept of truth, established by means of the 'effective'
dialog-rule, is an extension of the concept of truth, established by
means of the 'strict' dialog-rule, whereas the concept of truth, ob-
tained by means of the 'classical' dialog-game, is a further extension
which takes into account the particular hypothesis of the 'excluded
middle1. It is argued by Lorenzen and Lorenz that because of the proper-
ties of maximal differentiation and the avoidance of the principle of
'excluded middle1 (which can be introduced into the 'effective' dialog-
game by means of appropriate hypotheses of the opponent) the 'effective'
dialog rule is most appropriate as a basic dialog rule. In this way the
intuitionistic logic is intended to be justified.

However, there is an argument that, following the very principle
which distinguishes the intuitionistic logic, the priority of still an-
other logic can be justified. In order to point out this argument I
have to characterize the minimal and maximal conditions briefly which
distinguish the 'strict', 'effective' and 'classical' dialog rule of
Lorenzen and Lorenz. Whereas the 'strict' dialog rule only allows one
attack by the proponent against the last argument of the opponent, which
is a minimal possibility (and turns out to be too restrictive), the 'ef-
fective' dialog rule allows the proponent to choose a finite number of
attacks against each argument, which is a maximal possibility. In both
of the cases there is only one possibility to defend upon each attack.
On the other hand, a maximal possibility of defence is granted to the
proponent by the 'classical' dialog rule. One might think of still an-
other possibility such that the possibility of attack is not maximal but
restricted in a certain position of the game to particular arguments .
which are still 'available'. A similar restriction can be introduced
with respect to the possibility of defence. A corresponding 'effective
quantum1 dialog rule and a 'quantum' dialog rule respectively are intro-
duced in [11] and [12] in order to distinguish a logic for quantum mechan-
ical propositions. The 'effective quantum' dialog rule allows a higher
differentiation of propositions in a dialog-game than the three other
dialog rules. The concept of truth, obtained by means of the 'effective
quantum' dialog-game, is an extension of the concept of truth, obtained
by means of the 'strict' dialog-game, whereas a second extension which
takes into account the particular hypothesis of the 'unrestricted avail-
ability' leads to the concept of truth, established by means of the 'ef-
fective' dialog rule. The quantum mechanical propositional calculus
which is a formalisation of the 'quantum' dialog-game is a well estab-
lished structure of the language of quantum mechanics [2]. Its justifi-
cation is usually based on the empirical conditions of quantum mechani-
cal measurements as proof procedures for quantum mechanical propositions.
By means of the conditions to measure quantum mechanical observables si-
multaneously, compound quantum mechanical propositions are defined and a
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quantum mechanical propositional system can be established. In this way
the structure of the language of quantum mechanics is justifed as an
appropriate possibility to describe the results of quantum mechanical
measurements. In contrast to such an empirical justification of the
quantum mechanical propositional calculus, the framework of the dialogic
logic, as it was pointed out above and will be substantiated in the
following, allows for a justification which is independent of the par-
ticular empirical conditions to prove propositions. The propositional
calculus can be established as an autonomous logic, called quantum lo-
gic. The program of such a justification of quantum logic is due to
Mittelstaedt [7].

Although a logic can be justified by means of a recourse to one or
the other distinguished dialog rule, the problem of a foundation of lo-
gic exceeds such a justification. The further question concerning the
foundation is how and in which sense is it possible to base a justifica-
tion of the laws of logic on the rules of a dialog-game. In the frame-
work of dialogic logic the universal validity of the laws of mathemati-
cal logic is lead back to the stipulation of certain rules within a di-
alog-game. But how can the necessity of such a stipulation of rules be
understood?

In this contribution an approach towards a dialogic foundation of
logic is presented which differs from Lorenzen's approach in some re-
spect. The dialog-game which is distinguished by means- of this approach
is the 'effective quantum1 dialog-game, established in [11] as a 'formal'
dialog-game for quantum mechanical propositions. Its systematic loca-
tion, as already pointed out, is "between" the 'strict' and the 'effec-
tive' dialog-game of Lorenzen and Lorenz. For the details of this game,
its formal representation by means of logical calculi and its systema-
tic relation to the usual caculi, I refer the reader to the articles
([11], [12], [8]). The main purpose of the following presentation of a game
theoretic approach to a scientific language is to contribute to a better
understanding of the stipulation of the dialog-game for a justification
of logic.

The question is whether a certain part of the formal structure of a
scientific language can be founded to be necessary independently of the
particular field of phenomena to which the language refers. There is
probably only one possibility to understand the necessity of a certain
structure within a language of a science, which consists in a demonstra-
tion that this structure can be founded on the necessary conditions
which make a language of a science and thus science itself possible.
Such a demonstration makes use of an argument which in the traditional
philosophy (following Kant) is called a transcendental argument. This
argument presupposes the fact that there are scientific languages which
possess formal structures. Being in the possession of scientific lan-
guages their systematic reconstitution may be considered. The point of
view adopted here is that a reconstitution of the (formalized) structure
of a language is only meaningful if it is based on the acts which are
performed in the praxis of a language. The transcendental argument for-
mulates conditions which must be satisfied by linguistic acts such that
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a reconstitution of a scientific language is possible at all. The pre-
conditions of a scientific language, the necessity of which can be un-
derstood in the sense of the transcendental argument, already determine
certain structures of a scientific language irrespectively of the phen-
omena which are described by it.

1.2. Outline of the Approach

According to the above programmatic remarks a reconstitution of
the formal structure (logic) of a scientific language is attempted
which formulates the conditions which linguistic acts (argumentations)
must satisfy for this aim. These conditions constitute certain possibil-
ities of argumentation which can be represented by means of rules in an
argumentation-game. The most general frame of an argumentation which
characterizes a scientific argumentation is represented by the frame-
rules of a dialog-game (Section 2 ). In the initial position of the
game the proponent states the initial argument. This argument may be
doubted by an opponent whereupon the proponent is obliged to justify
the initial argument. An initial argument is defined to be a proposi-
tion. If and only if an unambiguous argumentation can be performed with
respect to a proposition, the proposition is said to be 'dialog-defin-
ite '. In this case the particular possibilities of argumentation must
be determined by the proposition as a formal structure. According to
the particular possibilities of argumentation given by a proposition,
the connective structure of propositions is defined (Section 3 ). An
argumentation is considered which decides after a finite number of pos-
sible steps whether the initial argument is justified (i.e., the propon-
ent wins the game) or refuted (i.e., the opponent wins the game). Since
the possibilities of argumentation about a logically connected proposi-
tion are infinite, a finite game is only possible under the condition
of the existence of 'availability' and 'elementary' propositions (Sec-
tion 4 ). These propositions are not 'dialog-definite' but assumed to be
'proof-definite' "outside" of the dialog. By means of availability and
elementary propositions a finite dialog-game is established which is
called the material dialog-game. Material truth and falsity of proposi-
tions are defined by means of win and loss in the material dialog-game
(Section 5 ) . If availability and elementary propositions are not pre-
supposed to exist, a finite dialog which decides between material truth
and falsity of propositions is not guaranteed. However, because of the
dialog-definiteness of propositions, which comprehends the infinity of
the possibilities of argumentation about a proposition, win and loss are
potential decisions of a dialog in the potential infinity of the dialog-
game. This makes the following consideration meaningful. Propositions
are not necessarily presupossed to be dialog-definite by a finite argu-
mentation. Nevertheless there are propositions which are certainly won
by the proponent in the potential infinity of a dialog-game. This is the
case if and only if the proponent has a strategy of success against all
potential arguments of the opponent within the infinite dialog-game. In
order to examine strategies of success within a dialog-game, which depend
only on the connective structure (formal structure) of propositions, a
new dialog rule (the 'formal' dialog rule) is introduced into the game.
The resulting 'formal' dialog-game leads (this can only be stated here)
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| to the 'effective quantum' dialog-game under a particular hypothesis.
I It represents the structural (formal) possibilities of argumentation
• which are necessary in order to establish strategies of argumentation.
| Its formalization leads to a calculus which is called the calculus of
! the 'formal' logic. Finally (Section 6 ), the relation of the formal
: logic to the intuitionistic and classical logic is discussed.

! 2. The Frame-Rules of the Dialog-Game

] The concept of a dialog-game represents the most general frame of a
I scientific argumentation. Hence it formulates a necessary condition
i which must be satisfied by any argumentation which can be characterized
1 as a scientific argumentation. Considering the praxis of scientific
I languages, one can establish the following methodological distinction
I of a scientific argumentation with respect to other possible methods of
] argumentation: Any assertion put forward within the course of a scien-
j tific argumentation, is open to doubts or counterassertions and, upon a
| doubt, must be substantiated in a certain way by a justifying procedure.
J This means that it must be possible to examine each step of the proce-
; dure whether it is performed correctly or not and, in case the procedure
I is finished, it must be possible to examine whether a justification of

the assertion is obtained by it or not. In this way a sequential order
of argumentative acts is established which consists of an assertion, a
doubt or an attack against the assertion and a justification or a de-
fence upon the attack. Utterances which are used as assertions, attacks
and defences respectively are called arguments. This most general sti-
pulation of the possibilities of a scientific argumentation can be for-
mulated by means of rules of a dialog-game:

Fl: At the beginning of the dialog, the proponent (P) asserts the ini-
tial argument. In this way the initial position of the dialog-game
is established.

F2: After the assertion of the initial argument, an opponent (0) may
attack this argument. Thereupon, the proponent is obliged to defend
the initial argument against the attack.

F3: The dialog consists in a sequence of arguments which are assertions,
attacks or defences of the two participants.

F4: If one of the participants cannot continue to put forth an argument,
he loses the dialog. In this case the other one wins and the final
position of the dialog is established.

The rules F1-F4 are called the frame-rules of a dialog since they con-
stitute the concept of a dialog. By means of the frame-rules a dialog is
determined as a two-person zero-sum game. The restriction of a scienti-
fic argumentation to a dialog is not essential but only a simplification
of the game. Every potential opponent to an argument may be embodied in
the fictitious opponent of the dialog.

The frame-rules do not yet determine an exhaustive definition of a
dialog. It is not made precise which arguments may be used as assertions,
attacks and defences and in which combination they may be used. However,
it is presupposed that one understands what it means to assert, to at-
tack and to defend by an argument. Therefore we say that the concept of
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a dialog is introduced insofar as its definitional frame is determined.
Further specifications of the arguments which are possible in a dialog
fill out the definitional frame to an exhaustive definition of a dialog-
game. The exhaustive definition formulates precise concepts such that a
dialog can be performed unambiguously.

Any assertion within a language for which a justifying procedure is
defined is said to be a proposition. In this sense propositions are said
to be proof-definite• In particular we have:

Dl: A proposition is dialog-definite if and only if it can be asser-
ted as an initial argument in a dialog (i.e., its constitutive
justifying procedure is a dialog-game).

3. Compound Propositions

In order to carry out a dialog about an argument unambiguously, the
possibilities to attack and to defend an argument must be specified.
This can be done by setting up all possible attacks against an argument
and all possible defences of this argument upon each of these attacks.
In general, according to the praxis of scientific languages, such a
specification concerns what in the traditional philosophy is called the
'content' of a proposition. In particular, a proposition might be com-
posed out of subpropositions. Then, the composition is a purely formal
structure of the proposition (i.e., the composition is independent of the
content of the subpropositions).

Considering the dialogic reconstitution of a language, the concept
of composition of a proposition can be established by determining the
'argumentative1 possibilities of attack and defence in a dialog. By an
'argumentative' possibility of attack I mean a possibility of attack
where the attack is either a doubt, which is an unattackable challenge
to defend, or a proposition, which is an initial argument in a new dia-
log. By an 'argumentative' possibiliy to defend I mean a possibility to
defend where the defence is a proposition, which again is an initial ar-
gument in a new dialog. Argumentative possibilities make use of possi-
bilities "within" the dialog; they reduce the dialog to a sequence of
subdialogs, whereas non-argumentative possibilites make use of possibil-
ities "outside" of the dialog. Each combination of argumentative possi-
bilities of attack and argumentative possibilities of defence defines a
particular connective. In the cases that one, two and infinitely many
propositions are involved in the combinations, we have the following
complete scheme of logical connectives:

D2: logical
connective

position

negation
(not)

logically con-
nected proposition

1-A

1 A

possibilities
of attack

A

possibilities
of defence

A
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conj unction
(and)

disjunction
(or)

material im-
plication
(if-then)

(but not)

(neither-nor)

universal quan-
tifier (all)

existential
quantifier
(some)

(no)

A A B

A V B

A ->B

A«—B

A—<B

A>— B

A V B

£A,

VA,

1?
2?

?

A

B

A
?

B

A
B

11?

•>

A
B

A
B

B

A

B

A

K

o( ranges over a constructive index set of the minimal power 2C

It can easily be shown that all combinations which involve finitely
many propositions lead to connectives which are dialogically equivalent
(i.e., the argumentative possibilities are the same) to iterations of the
above unary and binary connectives. The unary and binary connectives are,
furthermore, dialogically equivalent to iterations of the negation, the
conjunction, the disjunction and the material implication which repre-
sent, together with the universal and the existential quantifiers, a mi-
nimal base for logical connectives.

The following argument-rule determines the argumentative possibili-
ties in a dialog:

Al: a) Any assertion of a subproposition is an initial argument in a
new dialog (a subdialog) about the subproposition. If an attack
consists in the assertion of a subproposition, the corresponding
obligation to defend is postponed until a final position of the
subdialog is established.

b) A negation iA may be attacked by the assertion of the subpropo-
sition A. Upon the attack no defence is possible (i.e., if the
subdialog about A is lost by the participant who asserted TA,
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he loses the dialog about nA also).

A conjunction A A B may be attacked by a challenge to defend by
a subproposition which is chosen by the participant who attacks.
The corresponding obligation of defence consists in the asser-
tion of this subproposition.

A disjunction A v B may be attacked by a challenge to defend by
a subproposition. The corresponding obligation to defend con-
sists in the assertion of a subproposition which is chosen by
the participant who defends.

A material implication A —> B may be attacked by the assertion of
the subproposition A. According to a) the obligation to defend,
which consists in the assertion of the subproposition B, is
postponed until a final position of the subdialog about A is
established. In case the participant who attacked loses the sub-
dialog, he loses the dialog about A—>B also, since he cannot
continue the dialog. In case he wins the subdialog, the second
participant has to continue the dialog by the assertion of B.

A universal quantifier may be attacked by the challenge to de-
fend by a subproposition which is chosen by the participant who
attacks.

An existential quantifier may be attacked by the challenge to
defend by a subproposition which is chosen by the participant
who defends.

c) Attacks may be repeated unrestrictedly (i.e., if a proposition is
defended upon an attack, this proposition may be attacked again).

If a participant who is obliged to defend is allowed to choose
between several possibilities to defend (cf., the disjunction and
existential quantifier) he may repeat the defence-arguments un-
restrictedly (i.e., in case he loses the subdialog about a de-
fence-argument he may choose a defence-argument again).

The order of attacks and the order of defences is arbitrary.

If an order among the possibilities of attack and the possibilities
of defence is introduced in addition to the fundamental succession of
attack and defence, this leads to the definition of sequential connec-
tives:

D3: sequential
connective

sequential
conjunction
(and then)

sequentially con-
nected proposition

A n B

possibilities
of attack

1.
3.

1?
2?

possibilities
of defence

2.
4.

A
B
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sequential
disjunction
(or then)

sequential mate-
rial implication
(if-then)

sequential univer-
sal quantifier '

sequential exis-
tential quantifier

A u B

A—IB

UA,

1. ?

1. A

1. 1?

2n-l. n?

1. ?

2. A

3. B

2. B

?• *1

2n. A
-n

f i1
n+1. A. n

ol ranges over a constructive index set of the power % 0

The succession of possible arguments is numbered in the above
scheme. Each argument may be put forth at most once. It can be shown
that the sequential connectives, defined in the above scheme, represent
a minimal basis of sequential connectives (i.e., all sequential connec-
tives are dialogically equivalent to iterations of the above connec-
tives) . In a dialog about a sequentially connected proposition the argu-
ment rule Al a)-b) applies.

Whereas sequential connectives are defined by a succession of pos-
sible arguments the definition of logical connectives depends on the
attack-defence succession only, but not on an order among attacks or
among defences. However, each dialog about a logically connected propo-
sition consists in a particular application of the possibilities to at-
tack and to defend and, thus, in a particular sequence of arguments.
For a representation of a dialog it is convenient to write down the ar-
guments of 0 and P in a pair of two columns. Each row gets a number.
Arguments which are used as attacks are associated with an index (i),
where i indicates the row in which the attacked argument stands. Argu-
ments which are used as defences are associated with an index <i>
where i indicates the row in which the defended argument stands.

An example of a dialog about a conjunction A A B is represented by
the scheme:

0
1

m

n

2?

1?

2?

(0)

(0)

(0)

A A B
BB "1 the subdialog about B is
'. J won by P
A 1 the subdialog about A is
'. i won by P
B 1 the subdialog about B is
: J lost by P
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The subdialogs are assumed to be finite. In row r, P loses the dialog
about A A B since he has no argument to continue the dialog. In case P
wins the last dialog about B, 0 is allowed to continue by an attack
against A A B.

Consider a dialog about a disjunction A v B which is for example:

o
1 ? (0)

A V B
A "1 the subdialog about A is
I J lost by P

B T the subdialog about B is
; I lost by P

A ") the subdialog about A is
won by P

Since P wins the last subdialog about A he wins the dialog about A V B.
In case he loses the last subdialog, P is allowed to continue the dia-
log by defending against the attack in row 1.

A dialog about a material implication A

O P

O
1 A

n A

(O)

(O)

is for example:

the subdialog about A is
lost by P

the subdialog about B is
won by P

the subdialog about A is
lost by P

the subdialog about B is
lost by P

P loses the dialog about A -» B in row s since he loses the last subdia-
log about B. In case P wins the last subdialog, 0 is allowed to continue
the dialog by a new attack against A—>B.

In order to use the dialog-game as a justifying procedure for com-
pound propositions a criterion for the truth of a proposition must be
given. The truth of a logically connected proposition should not depend
on the particular choice of attacks by O in a dialog which is won by P.
Considering the definition of logical connectives, it should be certain
that the dialog about a logically connected proposition is won irrespec-
tively of the particular sequences of attacks by the opponent. Thus we
have the following definitions:
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D4: a) A proposition A is true if and only if P wins the dialog-
game about A against all possible sequences of attacks by 0.

b) A proposition A is not true if and only if P wins the dialog-
game about A, which is stated by O as a subproposition in a
dialog, against all possible sequences of attacks by O.

From the above examples of dialogs about logically connected propo-
sitions it is clear that the conditions which define the truth of propo-
sitions can be satisfied at all only in dialog-games about propositions
which are composed by particular connectives. In a dialog-game about a
disjunction or an existential quantifier, the conditions of truth are
satisfied if one of the subpropositions is established to be true. In a
dialog-game about a material implication A —•> B the truth conditions are
satisfied if the truth of the subproposition A cannot be established.
However, in all other cases of dialogs, as it can be seen most clearly
in a dialog about a conjunction, the conditions of truth cannot be es-
tablished by means of the purely argumentative possibilities of a dia-
log-game which we considered until now.

One might ask why we do not restrict the argumentative possibili-
ties to sequential connectives only. In this case, the possible attacks
of the opponent are determined by a particular sequence in a dialog such
that a sequentially connected proposition is true if P wins the dialog
about this proposition. But it can be seen that sequential connectives
do not establish what is usually meant by a logical connective in the
language of a science. If, for instance, a conjunction is used in a sci-
entific language, its truth is not interpreted as any sequential truth
of its subproposition but as a simultaneous truth of its subpropositions.
Let us consider physical propositions of the kind a(S,t): "The physical
system S has the property a at the time t." Let us assume that the
proof of such a proposition consists in a measurement of a with respect
to the system S at the time t. A time metric is presupposed. The conjunc-
tion a(S,t) A b(S,t) cannot be established by a proof of a(S,t.) and a
proof of b(S,t,) where the time interval [t.,t2] (which includes t) is
infinitesimally small, if the system S is a quantum mechanical system
and a and b are not commensurable ([6],[7]p. 23). in the limiting case
t2-tj->+0, the sequential proposition a(S,t,)n b(S,t2) cannot be in-
terpreted to be independent of the succession of the propositions
a(S,t) and b(S,t) without leading to contradictions within the language
of quantum mechanics. A conjunction a A b of quantum mechanical proposi-
tions can be established by a proof of a and a proof of b only if, in
addition, a and b are commensurable, i.e., it is guaranteed that the
proofs of a and b are reproduced in any sequence of measurements of a
and b. This example shows that in scientific languages compound proposi-
tions are used, the proof conditions of which indeed cannot be reduced
to sequential proofs of the subpropositions.

The truth conditions of the logically connected propositions, defined
by means of D2, can be considered to be most general argumentative truth
conditions with respect to compound propositions. However, as it was
pointed out above, these truth conditions cannot be decided by purely argu-
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mentative means in the dialog-game. Yet, such logically connected propo-
sitions occur and are proven in scientific languages. Considering a dia-
logic reconstitution of the language of a science we are lead to the
question how the truth of a logically connected proposition can be es-
tablished in a dialog.

4. availability and Elementary Propositions

From the discussion concerning the above dialogs about the logical
connectives it can be seen that an additional argument is necessary in
order to decide on the truth of propositions. If the proponent wins a
dialog about a logically connected proposition the truth of this propo-
sition can be established only by means of an argument which confirms
that the dialog is won irrespectively of the particular sequence of at-
tacks which are chosen by the opponent. This argument leads to the con-
cept of availability of propositions. If, for instance, in the above
dialog about the conjunction a A B it is guaranteed by an additional ar-
gument (an availability argument) that the win of the subdialogs about
a and B is inherited by arbitrary sequences of the subdialogs, the dia-
log can be confined to only one attack by 1? and 2? each. In this case,
the truth conditions of the conjunction are reduced to the truth of the
two subpropositions and the truth of the additional availability argu-
ment which asserts that, once the dialogs about a and B are won, the
win is available throughout any sequence of dialogs about a and B. Con-
sider the above dialog about a disjunction a v B where the first two
subdialogs are lost by P. The truth of A v B is established if in a fi-
nite, but unbounded, continuation of trials to defend by A and B the
truth of a subproposition can be obtained. However, if this is known by
an additional argument (an inavailability argument) the continuation of
the dialog is redundant and the dialog is bounded.

The assertions of the two availability arguments, denoted by k(A,B)
and k(a,B) in the following, are made precise by the definition:

D5: a) k(A,B) states that each sequence of dialogs about a and B sat-
isfies that all dialogs about a are won by the same partici-
pant and all dialogs about B are won by the same participant.

b) k(a,B) states that a sequence of dialogs about a and B satis-
fies that a win or loss of a dialog about a or B by a par-
ticipant at the beginning of the sequence is changed into a
loss or win respectively of the repeated dialog at the end of
the sequence.

The mere introduction of availability arguments does not lead to an
extension of the dialog-game by means of which the truth of logically
connected propositions can be established, unless we are in the possess-
ion of justifying-procedures for these arguments. The existence of proof-
procedures, which determine k(a,B) and ic(a,B) to be proof-definite propo-
sitions, is a necessary condition in order to decide on the truth of lo-
gically connected propositions. Proofs of availability propositions can-
not be performed by means of the structural possibilities of argumenta-
tion within a dialog, but only with respect to some special knowledge
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about the material 'content' of the propositions. In this sense we say
that proofs of availability propositions are performed "outside" of the
dialog. The justifying procedures for availability propositions can on-
ly be defined within the particular set-up of a scientific language. In
a language for mathematics or in a language for classical physics avail-
ability propositions k(A,B) and ic(A,B) are formally true and formally
false propositions respectively such that they do not occur in the lan-
guages explicitely. A scientific language in which the availability of
propositions is not trivially satisfied is a language for quantum me-
chanics. Here, the availability propositions state the commensurability
of quantum mechanical properties. Within the framework of quantum the-
ory the commensurability is precisely defined by means of commutation
relations between observables.

Considering the dialogic reconstitution of a scientific language,
the necessity of the existence of availability propositions is under-
stood without reference to the particular material set-up of a scienti-
fic language.

The proof of k(A,B) is interpreted as a disproof of k(A,B) and a
proof of k(A,B) is interpreted as a disproof of k(A,B). If a disproof
is defined for a proposition, this proposition is said to be disproof-r
definite. A disproof establishes the falsity of a proposition. k(A,B)
and k"(A,B) are counter-propositions; this means:

k(A,B) true »Tir k(A,B) false, k(A,B) true try k(A,B) false,
whereas

k(A,B) true /-y k(A,B) not true, k(A,B) true ^V k(A,B) not true.

If availability propositions exist they can be incorporated into the
dialog-game by means of the additional argument-rule:

A 2: a) If an availability proposition k(A,B) is asserted in a dia-
log it may be attacked by the argument k(A,B)?. The obliga-
tion of defence consists in a proof of k(A,B) which is per-
formed outside of the dialog. If a proof of k(A,B) is es-
tablished, this is indicated by the argument k(A,B)! in the
dialog,

b) analogously for k(A,B).

With the help of availability propositions and the argument-rule
A 2 the argumentative possibilities in a dialog about logically connect
ted propositions can be confined to only one attack by each argument and
to only one defence by each subproposition. In a dialog about a conjunc-
tion A A B, the availability attack k(A,B)? may be used as a third
attack:

0
1 1? (0)

2? (0)

n k(A,B)?(O)

A A B

k(A,B)!

the subdialog about A is
won by P
the subdialog about B is
won by P
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In case P succeeds in defending against the three attacks he wins the
dialog about a A B, and the truth of A A B is.established if the win of
the two subdialogs leads to the truth of A and B.

A dialog about a disjunction A v B obtains a third possibility to
defend A V B by the proposition k(A,B):

0
1 (0)

n+1 k(A,B)? (n)

A V B
A

k(A,B)
E(A,B) !

the subdialog about A
is lost by P

the subdialog about B
is lost by P

In case P wins one of the dialogs about A,B and k(A,B), he wins the
dialog about the disjunction A v B. A V B is true if one of the propo-
sitions A,B, k(A,B) can be established to be true.

Also a dialog about a material implication A
means of the availability proposition k(A,B):

can be confined by

0
1

n k(A,B)?

(0)

(0)

the subdialog about A
is lost by P

the subdialog about B
is won by P

k(A,B)!

Whenever P wins the subdialog about B the opponent may attack A —>B
again by asserting A. However, if the availability of B is guaranteed,
i.e., k(A,B) is true, P always can win the subdialog about B. If the
truth of B can be established, the truth conditions are satisfied for
A -»B.

It is obvious that the above possibilities in dialogs about logical-
ly connected propositions are equivalent to the possibilities in dialogs
about particular sequentially connected propositions. The following ar-
gument-rule, which replaces the argument-rule Al, formulates this cor-
respondence:

A 1:
m

logically connected
proposition

A A B
A v B
A->B

sequentially connected
proposition

(A n B) n k(A,B)
(A u B) LJ k(A,B)
A —{ (B H k(A,B))
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A dialog about a compound proposition is a nesting of subdialogs
about the subpropositions. The concept of availability must recursively
be applied with respect to the subpropositions in order to confine the
subdialogs.

However, an exhaustive definition of a dialog-game can be given only
if the nesting of the subdialogs is based on a set of elementary dialogs.
This means that there must exist propositions which are not proven by
means of a further dialogic argumentation, and that each compound propo-
sition must be composed pf these elementary propositions. It needs no
further explication that scientific languages use elementary proposi-
tions as a basis for compound propositions and formulate justifying pro-
cedures for these propositions. Examples for elementary propositions in
a language for mathematics are propositions of the kind Hfcf: "The figure
f is deducible in the calculus K". The proofs consist in demonstrations
of the deductions. The language for physics uses elementary propositions
of the kind a(S,t), as formulated already above. The proofs of such pro-
positions are performed by means of measuring processes, which are in-
terpreted by means of the particular physical theory, and by means of
deductions within the mathematical formalism of the theory.

For the dialogic reconstitution of a scientific language, the ne-
cessity of the existence of elementary propositions is understood, irre-
spectively of the particular material set-up of a scientific language.

The introduction of elementary propositions into the dialog-game is-
analogous to the introduction of availability propositions. The game is
extended by means of the argument-rule:

A 3 : If an elementary proposition a is asserted in a dialog, it may
be attacked by the argument a?. The obligation to defend con-
sists in a proof of a which is performed outside of the dia-
log. If a proof of a is established, the argument a! is
put forth in the dialog.

5. The Material and the Formal Dialog-Game

Being in the possession of availability and elementary propositions,
the dialog-game, established by the argument-rules A 1 to A 3, exhaus-
tively defines a justifying procedure for logically connected proposi-
tions. This dialog-game is called the material dialog-game, and the con-
cept of truth, which is constituted by it, is called the material truth:

D 4: a) A proposition A is materially true if and only if P wins the
material dialog about A.

b) A proposition A is materially not true if and only if P
loses the material dialog-game about A.

As an example we consider a dialog about the proposition
(a->-b) — > (c V d) :
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0
1
2
3
4
5
6
7
8
9

10
11 k

0

a->b

a ?
b
b !

k(a,b)l

?
d ?
c ?

(a-^b,c vd)?

(0)

(2)
<1>
<4>
<1>

(7)
(8)
(9)
(0)

(1)
<2)

(4)
(1)

<7>
<7>
( 9 >
<o>

P

(a -^b) —* (c v d)

a
a!

b?
k(a,b)?

c V d
d
c
c!

k(a->b,c vd) !

It is assumed that in row 9 P cannot prove the elementary proposition d.
Hence, he cannot place the argument d! but has to continue the subdialog
about c v d by choosing c or k(c,d) as another defence. The win of the
above dialog establishes the truth of the proposition.

In addition to the proof-procedures for elementary propositions we
consider the possibility of disproof-procedures which define the fal-
sity of elementary propositions. If elementary propositions- a are dis-
proof-definite, their counter-propositions a can be defined such that

a true iTM a false,
and

a.true a not true.

The argument-rule A 3 applies also for counter-propositions a.

The dialog-game, as a proof-procedure, decides on the truth of pro-
positions; but it does not decide on their falsity, since the falsity
of a proposition is defined by means of a disproof-procedure. The nega-
tion 1A is true if and only if the'participant who attacks loses the
subdialog about A (i.e., A is not true). If A is not true, this does not
imply the falsity of A in general. In the following, however, the dia-
log-game with respect to a negation ~iA will be extended such that the
win of the dialog about ~i A (by the participant who asserted ~i A) es-
tablishes the falsity of A. If a disproof-procedure exists for A, a
counter-proposition A can be defined which is proved if and only if A
is disproved. In this case we stipulate the additional argument-rule:

A 4: A participant who asserted a negation ~iA, may give up the sub-
m dialog about the attack A. In case he gives up or wins the sub-

dialog about the attack A, he is obliged to prove the counter-
proposition A outside of the dialog.

By means of the material dialog-game and A 4 we define:

D 4 c) A proposition A is materially false if and only if P wins the
material dialog-game about T A .
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For example, a material dialog about the negation na of an elementary
proposition a reads:

0
1
2
3
4

0

a

a?

(0)

(3)

P

"1 a

(1) a?
<0> a
<3> a !

With the help of A 4 the negation -|A satisfies:

1A true K"V A true V~S/ A false.

The material dialog-game is founded by means of the conditions under
which the truth of compound propositions can be established in a dialog-
ic procedure. Availability propositions, elementary propositions and
counter-propositions confine the argumentation insofar as they may be
stated in a dialog but their proof procedures are performed outside of
the dialog. These material propositions are not dialog-definite (i.e.,
justified by means of the argumentative possibilities in a dialog) but
they are justified by means of their particular material 'content' which
refers to the conception of reality formulated by a scientific language.

dialogic argumentation

proofs of material propositions

reality

If we restrict our consideration to the dialogic argumentation be-
tween P and 0 (not including the proofs of material propositions), the
truth and the falsity of propositions cannot be decided. However, even
under the conditions of the purely structural rules of the dialog, one
can distinguish propositions which would certainly be true if a material
dialog-game were performed and if the opponent were able to decide on
the truth and on the falsity of material propositions. The truth of such
propositions does not depend on the particular material set-up of the
propositions; it is guaranteed only by the formal structure of the pro-
positions.

Consider for instance the dialog-game about the proposition A—*A.
Upon the opponent's attack by the assertion of A, a subdialog is per-
formed about A. The proposition A is dialog-definite (i.e., an unambigu-
ous dialog can be performed about A) only if A can be decomposed into
elementary propositions and if availability propositions exist according
to the material argument-rule A 1. In case A is not true, the proponent
wins the dialog about A-*A. In case A is true, the proponent defends by
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the assertion of the same subproposition A. Within the subdialog about A
P is allowed to make use of the arguments of 0 within the preceding sub-
dialog. As an example for A let us consider an elementary proposition a.
Then we have the dialog:

0
1
2
3
4

0

a
a!

a?

(0)

(3)

P

a —> a

(1) a?
(.0) a

It is assumed that 0 can prove the elementary proposition a in row 2.
For instance, if a is a mathematical proposition of the kind i— f: "The
figure f is deducible in the calculus K", and K is undecidable, it is
assumed that 0 knows a deduction of f. If it is guaranteed that the
proof of a can be reestablished again in row 4, P certainly can defend
by a!. This condition implies that the availability proposition k(a,a)
is true. Hence, P wins the dialog about a—>a.

Another example is a dialog about the material implication

CA A., ) A A,, )

0
1
2

(0)
(A

(1) i?

k?

In case proposition A. A^ can be proved by 0, i.e., all subpropositions
A are true, P is obliged to defend by the assertion of the same propo-
sition A A j . Upon any attack k?, P can take over the opponent's proof
of A. , again under the condition that A is still available. P then
possesses a strategy of success in the continuation of the dialog.

Propositions which can be justified to be true only because of
their formal structure are called formally true propositions. In order
to obtain a complete survey about formally true propositions, a new
dialog-game is introduced which takes into account the above conditions
for the formal truth of propositions. In this way the formal dialog-game
[.11] can be established. The argument-rules of the formal dialog-game,
which cannot be justified in detail here, may be characterized in the
following way:

(1) Elementary propositions must not be attacked. 0 is allowed to state
elementary propositions unrestrictedly. P is allowed to state ele-
mentary propositions only if they have been asserted by 0 previously
and if they are still available.
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(2) Availability propositions k(A,B), which state the availability of
the proposition A after the succeeding proposition B, are treated
like elementary propositions. However, there are availability propo-
sitions which can be shown to be formally true and which may be as-
serted by P unrestrictedly. Availability propositions can be elimi-
nated in the formal dialog-game. The formal truth of k(A,B) is equi-
valent to the win of the formal dialog-game about the compound pro-
position A — M B — ^ A ) .

(3) Counter-propositions A, which state the falsity of the proposition A,
are considered like elementary propositions. There are counter-pro-
positions A which can be shown to be formally true since they prove
A to be a formal contradiction, and which may be asserted by P un-
restrictedly. Counter-propositions too can be eliminated in the for-
mal dialog-game. The formal truth of A is equivalent to the win of
the formal dialog-game against the opponent's proposition A. This
equivalence is established by extending the argument-rules to the rules
D3 and D4, used by Lorenz ([3], [4]); also cf., the rule F4 in [11]).

(4) Formally true propositions exist only if the following condition
(which is already taken into account in the above examples and in
(l)-(3)) is satisfied: Win and loss of a dialog about a material
proposition is inherited by arbitrary repetitions of the dialog.

By means of the formal dialog-game we obtain:

D 4 a) A proposition A is formally true if and only if P has a strat-
egy of success for A in the formal dialog-game, i.e., P wins
the dialog-game about A irrespective of the arguments of 0.

b) A proposition A is formally false if and only if P has a
strategy of success against A in the formal dialog-game, i.e.,
if 0 asserts A, P wins the subdialog about A irrespective of
the arguments of 0.

The formal dialog-game can be replaced by the following calculus L of

formal logic such that:

A - » B formally true.

(Ll.l)
(Ll.2)
(L2.1)
(L2.2)
(L2.3)
(L2.4)
(L2.5)
(L3.1)
(L3.2)
(L3.3)
(L3.4)
(L3.5)

A
A
A
A
C

'CS
C
A
B
A
A

s
a
A
A

•s

A j
• s

s
s
•s

s
A n *

he
A
B £
B S
B S
A 4
, :<
A
A"V
A V

C U

V 1

c

A

B
A
B
C
A

6 B

•£ C

^ B

^ ' C
B
B
B

, >

S C

, V

/^A^ (n does not appear in the conclusion)

S> A V B S C

S C (n does not appear in the conclusion)

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192460 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192460


38

(L4.1)
(L4.2)
(L4.3)
(L4.4)
(L4.5)

(L5.0)
(L5.1)
(L5.2)
(L5.3)
(L5.4)

(L5.5)

(L5.6)

A A (I
A A C
A £ B
A •£ B
B S A

A s
A A 1
A A C
A •£
A S B
A £ C
A S B
A £ C
B S A

£ B
- ^ A
- ^ A

- * I
1

A
A •£

i) s

« A
i =^

: A
< A =%

1 A •
- S . A
—^ A
- * A
-4. A

- * A
& A

A A
<£ A

B £

B
A -

B :
^ (

B

- A

s -

'< B

* C S A
s A-*-B
2 - * A ••

- ( ^ A

-» C S

1B->A
-lC -i-A
TB -^A

S 1A

B

S (B A C) -=»• A
-̂  B (n does not appear in the

conclusion)

~|A

]
A S (B v C)

A <• (B

_ -. ... B =*> B < ( V Aj ) -* B
(n does not appear in the conclusion)

This result cannot be demonstrated here. The calculus L is ob-
tained analogously to the procedure in ([11], [12]). However, L differs from
the calculus of effective quantum logic Qeff cf., [12], p. 363) with
respect to some rules concerning propositions A->(B-*A), since the dia-
logic semantics of Q e f f involves an additional rule for availability
propositions which is satisfied for quantum physical propositions.

6. Connection to Logical Calculi

The calculus of effective quantum logic Q can be established if
' the rule:

A S B - ^ A =J> A S TB-*A

is added to the calculus L. This additional rule is justified by means
of the dialogic semantics if the following particular condition with re-
spect to availability propositions is satisfied: If the availability
proposition k(A,B) is true under the condition that A and B are true,
then the availability proposition k(A,B) is true also under the condi-
tion that A is true and B is false.

For quantum mechanical propositions A,B and their commensurability
propositions k(A,B) the above condition means: If a measurement of the
property B with the result "true" is commensurable with a measurement of
the property A_ with the result "true", then also a measurement of B with
the result "false" is commensurable with a measurement of A with the re-
sult "true". This condition, which corresponds., to the possibility of
•perfect measurements' [81, is necessary in order to interpret the prop-
erty 13 by means of a four-element Boolean algebra {o,B, TB,1 } .

The calculus of (full) quantum logic 0 (cf., [12], p.374) can be obtained
from Q f f by the additional axiom of the 'excluded middle':

V S A V -1A .

This axiom can be justified if the condition of the value-definiteness
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(i.e., the decidability of the proof procedure) is satisfied. In the
case of quantum mechanical propositions this condition corresponds to
the possibility of 'yes-no measurements' which decide between the truth
and falsity of the propositions.

The algebraic representation of.the calculus of (full) quantum lo-
gic by means of the Lindenbaum-Tarski algebra is an orthocomplemented
quasimodular(= orthomodular) lattice. This lattice is well-known for
an axiomatic formulation of abstract quantum theory [2]. A detailed •
presentation of the dialogic quantum logic is found in [7].

The dialogic logic of Lorenzen and Lorenz can be reestablished if
the additional axiom of the 'unrestricted availability':

A;S B -*A

is added to the calculi Q „. and Q respectively. This axiom is justified
in the framework of the dialogic semantics if availability propositions
k(A,B) can be established to be always true.

The connection between the calculi is summarized in the scheme:
value definiteness

formal logic > effective quantum logic >(full) quantum logic

J ' I
unrestricted availability

I I
effective logic -̂ » classical logic

The formal logic seems to be a universal structure of a formal sci-
entific language which can be founded by the argumentative precondi-
tions of a scientific language independently of the empirical content
of propositions. Particular empirical conditions like the unrestricted
availability and the value-definiteness of propositions, in case they
are confirmed within a scientific praxis, lead to distinguished logical
calculi. However,;their necessity is not understood as a structure of
argumentation but is confirmed as a structure of reality which is con-
cerned by a scientific language.
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