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Abstract
SLAM Benchmark plays a pivotal role in the field by providing a common ground for performance evaluation. In this
paper, a novel methodology of simultaneous localization and mapping benchmark and map accuracy improvement
(SLAMB&MAI) is introduced. It can objectively evaluate errors of localization and mapping, and further improve
map accuracy by utilizing evaluation results as feedback. The proposed benchmark transforms all elements into
a global frame and measures the errors between them. The comprehensiveness consists in the benchmark of both
localization and mapping, and the objectivity consists in the consideration of the correlation between localization
and mapping by the preservation of the original pose relations between all reference frames. The map accuracy
improvement is realized by first obtaining the optimization that minimizes the errors between the estimated tra-
jectory and ground truth trajectory and then applying it to the estimated map. The experimental results showed
that the map accuracy can be improved by an average of 15%. The optimization that yields minimal localization
errors is obtained by the proposed Centre Point Registration-Iterative Closest Point (CPR-ICP). This proposed
Iterative Closest Point (ICP) variant pre-aligns two point clouds by their centroids and least square planes and then
uses traditional ICP to minimize the error between them. The experimental results showed that CPR-ICP outper-
formed traditional ICP, especially in cases involving large-scale environments. To the extent of our knowledge, this
is the first work that can not only objectively benchmark both localization and mapping but also revise the esti-
mated map and increase its accuracy, which provides insights into the acquisition of ground truth map and robot
navigation.

1. Introduction
Simultaneous localization and mapping (SLAM), also known as concurrent mapping and localization,
is one of the fundamental challenges for robotics, dealing with the necessity to build a map of the
environment while simultaneously determining the location of the robot within this map. The map is also
referred to as a geometry or a 3D surface reconstruction, and these three terms are used in this paper with
no distinction. In a general SLAM system, the performances of localization and mapping depend largely
on SLAM algorithms, and the quantitative accuracy is determined by SLAM benchmarks. Regarding
a general SLAM benchmark procedure, there are two challenges that need to be addressed: (1) How to
benchmark SLAM systems comprehensively and objectively regarding the accuracy of localization and
mapping. (2) How to revise the estimated map, making it closer to ground truth. The aim of addressing
the first challenge is to obtain unbiased evaluations that represent actual SLAM performances, and the
aim of addressing the second challenge is to generate high-precision maps that have the potential to be
used as ground truth. A comprehensive and objective SLAM benchmark is supposed to evaluate the
performances of localization and mapping dependently in a global scope instead of benchmarking them
independently. However, most existing SLAM benchmarks only evaluate localization performances but
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leave out the assessment on mapping due to the unavailability of the map ground truth; and for those
that evaluate both aspects, they evaluate them independently which always leads to biased results.

The current literature on localization benchmark mainly provides open-sourced imagery datasets,
pose ground truth, methodologies for acquiring pose ground truth and evaluation metrics, among which
TUM RGB-D [1], KITTI [2] and EuRoc [3] are used most widely. The acquisition of pose ground truth
mostly makes use of external high-precision apparatus such as high-precision reference maps, RTK-
GPS, motion capture systems, laser range finders, sonar systems, etc. In ref. [4], the robot pose ground
truth was obtained by using Monte Carlo Localization with the help of a high-precision reference map,
and the performances of different localization approaches were benchmarked against this ground truth
using Euclidean distance and orientation difference as the evaluation metric. The dataset provided in
Rawseeds project [5] was collected by a mobile robot platform equipped with a variety of sensors,
which used RTK-GPS apparatus and a fusion of vision-based and laser-based sensors for ground truth
acquisition in both outdoor and indoor environments respectively. Meanwhile, the localization accuracy
was evaluated against the ground truth with a similar metric used in refs. [4, 6]. Similarly, the utilization
of GPS was adopted in ref. [7] for the generation of vision benchmark datasets. Furthermore, the work
also proposed a novel Average Orientation Similarity metric for the performance evaluation of object
detection and 3D orientation estimation. GPS is mostly used in outdoor environments for the acquisition
of pose ground truth, while motion capture systems are more suitable for indoor small-scale environ-
ments. In refs. [1] and [8], the motion capture system was used to track reflective visual markers affixed
to RGB-D cameras and output camera poses at a certain frame rate. Reference [1] also offered two
error metrics to evaluate pose tracking accuracy, which were Relative Pose Error (RPE) and Absolute
Trajectory Error (ATE). The RPE was used in ref. [8] for the evaluation of camera trajectory accuracy.

However, the aforementioned methodologies of pose ground truth acquisition are oftentimes labo-
rious and require external high-precision tools that could be unavailable under some circumstances.
Therefore, the approach of generating and utilizing synthesized pose ground truth has been adopted by
many researches [9–12]. For this approach, the SLAM algorithms were first run in real-world environ-
ments, and the estimated camera trajectory was then fitted into the synthesized imagery scenes by rigid
body transformation. In synthesized imagery scenes, the transformed poses were used as the ground
truth trajectory to control the movements of a virtual camera. Finally, the errors between the estimated
trajectory and ground truth trajectory were obtained using the error metric ATE proposed in ref. [1].

The majority of research for mapping benchmarks is actually about the benchmark of 3D recon-
struction of small or medium-sized objects with available CAD models as ground truth. A common
methodology used in the current literature [13–17] is firstly aligning the estimated map with the ground
truth map using a 3D shape registration approach [18–25] then calculating errors based on an error
metric [26–29]. This methodology has two major issues:

(1) The methodology is mainly used for the benchmark of 3D reconstruction of small or medium size
objects, of which the geometry ground truth is acquired by using high-precision 3D scanners, which are
not applicable for room-sized or large-scale scenes that appear in many SLAM scenarios. This issue is
a common SLAM problem, which is also formulated as the acquisition of map ground truth for large-
scale scenes, especially the scenes that are inaccessible to human beings, such as nuclear facilities and
chemical plant pipelines, etc.

(2) An objective mapping benchmark is supposed to preserve the original pose relation between the
estimated map and ground truth map, and then calculate the errors between corresponding elements in
two maps. Thus, the calculated errors can objectively represent the unbiased performance of the SLAM
system. Manual alignments between the estimated map and ground truth map will obfuscate the original
errors and result in biased evaluations.

The work presented in ref. [10] addressed the first issue by providing synthetic datasets of a living
room scene and an office room scene with both surface and trajectory ground truth. However, because
it benchmarked the performances of localization and mapping independently, the second issue was
still unsolved. Meister et al. [30] also addressed the first issue by evaluating the 3D reconstruction
system KinectFusion against different objects and scenes to investigate its capabilities for generating
accurate 3D surface reconstruction that can be used as geometry ground truth. The work concluded
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that KinectFusion was reliable in resolving object details with a minimum size of approximately 10 mm
and provided a high-quality dataset consisting of 57 scenes that can be used as training data for 3D
recognition and depth inpainting. For the second issue, Wasenmüller et al. [8] addressed it by placing
all estimates and ground truth in a global coordinate system while preserving the original orientational
relation and positional relation between the estimates and ground truth. In this work, a Microsoft Kinect
v2 was adopted as the Visual-SLAM sensor. Meanwhile, two other vision systems were used for ground
truth acquisition, which were a high-precision 3D scanner for geometry ground truth acquisition and
a motion capture system for pose ground truth acquisition. However, the first issue was not addressed
in this work. Moreover, because the three vision systems had their respective independent coordinate
systems, complex rigid body transformations were needed for the global evaluation, which increased
the computational costs. Besides, system errors would accumulate with the increase in the number of
sensor systems used, since each sensor system introduces its unique system error into the benchmark
process, which increases the likelihood of biased evaluations.

The benchmark methodology SLAMB&MAI proposed in this paper addresses the two aforemen-
tioned issues. The objectivity and comprehensiveness of the methodology consist in benchmarking
localization and mapping performances dependently in a global coordinate system. Furthermore, the
utilization of a high-precision motion capture system for acquiring the ground truth of both poses and
the map introduces less computational loads and system errors than the method proposed in ref. [8]. In
addition, SLAMB&MAI further reduces map errors and improves the map accuracy by utilizing pose
errors, which revises the estimated map and makes it closer to ground truth. Finally, the methodology of
revising the map offers insights into the methodologies of acquiring geometry ground truth with SLAM
systems.

Unlike the performance investigation of KinectFusion proposed in ref. [30], the proposed
SLAMB&MAI method doesn’t have a demanding requirement on the accuracy of SLAM systems when
acquiring geometry ground truth, because it uses benchmark results as feedbacks to correct geometry
errors and generate accurate geometries that are eligible to be used as ground truth, which has the
potential to be applied in numerous SLAM systems for acquiring geometry ground truth of different
size objects and scenes.

2. Approach for SLAM benchmark and map accuracy improvement
2.1. Application scenarios
In order to obtain the high-precision maps of large-scale scenes that don’t have their CAD models as
ground truth, such as legacy nuclear facilities, historical heritage sites, chemical plants, etc, a novel
methodology is proposed in this section. As shown in Fig. 1, the SLAM camera is firstly moved along a
known ground truth trajectory (red solid arrow line), and the estimated trajectory (green dash arrow line)
and the estimated map (chromatic point cloud) are generated based on the SLAM algorithm. Then the
optimal error correction is calculated by minimizing the error between the ground truth trajectory and
the estimated trajectory. This optimal error correction is then applied to optimize the estimated map to
generate a high-precision map. Finally, the mapping error is evaluated by comparing the high-precision
map with the ground truth map of the environment (here denotes the 3D model of the corridor available
in benchmark). The proposed methodology is presented and detailed in Sections 2.2 and 2.3.

2.2. Methodology of a comprehensive and objective SLAM benchmark
Compared with the current literature, the proposed novel benchmark methodology consists in bench-
marking localization and mapping in a global coordinate system.

As shown in Fig. 2, a SLAM camera (RGB-D camera in the example) is used to map a 3D object
(profile of a house in the example). To realize a comprehensive and objective SLAM benchmark, a
high-precision measuring tool (e.g. VICON motion capture system) is needed for acquiring the ground
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Figure 1. Concept of simultaneous localization and mapping benchmark and map accuracy improve-
ment. The error correction minimizing trajectory errors is then applied to the estimated map to generate
the high-precision map. One example of the potential applications is the mapping of a corridor.

truth of the trajectory and map, and a global coordinate system needs to be established so that the ground
truth and estimates of the trajectory and map can be transformed into it for further evaluation.

As shown in Fig. 2(a), the trajectory ground truth P∗ and map ground truth Q∗ are acquired by using
the high-accuracy vision system, working with a plurality of markers placed on the SLAM camera and
object. The ground truth acquisition system is set up at a high position so that it can see all the markers,
and its coordinate system is used as the global coordinate frame G. Several markers are placed at corners
of the mapping object so that the ground truth mapping Q∗ can be obtained directly without any pose
transformation.

As shown in Fig. 2(b), the reference frame of the SLAM camera is denoted as Sc (SLAM camera
frame), and the trajectory of its origin is considered as the SLAM camera trajectory. For acquiring the
ground truth of the SLAM camera trajectory P∗, a 3D-printed part is attached to the back of the SLAM
camera with the attachment of three markers. The reference frame of these three markers is denoted
as Sca (SLAM camera attachment frame); its origin is located at the centroid of the triangle encircled
by the three markers, and its x and y axes are parallel to the attachment length and width respectively.
TG

Sca denotes the pose transformation from Sca to G; it is being captured by the ground truth acquisition
system constantly, and the position of Sc origin within Sca is a known factor; therefore, the ground truth
of the SLAM camera trajectory can be obtained.

The markers on the SLAM camera attachment are placed in an asymmetric pattern, and the reason
for this is that the symmetry of the rectangle encircled by four markers oftentimes obfuscates the ground
truth acquisition system, which causes the pose of Sca to change during the operation. By contrast, the
triangle encircled by three markers is asymmetric, which increases the robustness of the pose of Sca
and makes it less likely to change during the operation.

The estimated trajectory and map obtained from the SLAM algorithm are originally within Sc, and
the pose transformation from Sc to Sca is denoted as TSca

Sc which is also a known factor; therefore, the
pose transformation from Sc to G can be expressed as TG

Sc = TG
ScaT

Sca
Sc . In this way, the estimated trajectory
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Figure 2. Schematic diagram of the benchmark methodology: (a) General concept of the methodology.
To ensure the benchmark is comprehensive and objective, a high-precision measuring tool is used for
ground truth acquisition, and its coordinate frame is used as the global frame, which all estimates and
ground truth are transformed into. (b) Pose transformations between different frames. Except that the
map ground truth Q∗ can be obtained directly, the acquisition of the other three variables (map estimates
Q, trajectory ground truth P∗, trajectory estimates P) requires Sca to achieve the transformation from
their respective reference frames to the global frame G.

P and map Q within the global frame G can be obtained. In the global frame G, for all positions from
the estimated camera trajectory p1, . . ., pn ∈ P, their respective nearest neighboring positions from the
ground truth trajectory are denoted as p∗

1, . . ., p∗
n ∈ P∗; for all positions from the estimated map q1, . . .,

qm ∈ Q, their respective nearest neighboring points or mesh surfaces are denoted as q∗
1, . . ., q∗

m ∈ Q∗.
For the camera trajectory, the nearest neighbor distance is point-to-point distance, and the Root Mean
Squared Error (RMSE) overall nearest neighbor distances is expressed in Eq. (1). For the map, the
nearest neighbor distance could be either point-to-point distance or point-to-mesh distance [26, 27], and
the RMSE of them is collectively expressed in Eq. (2). The RMSE is used as the evaluation metric for
error analysis shown in Section 3.

RMSEtrajectory =
(

1

n

n∑
i=1

∥∥pi − p∗
i

∥∥2

)1/2

(1)
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Figure 3. Workflow of the map accuracy improvement system. The approach used in the first step (tra-
jectory error correction) is Centre Point Registration-Iterative Closest Point (CPR-ICP); it is subdivided
into five substeps. The first four substeps constitute the CPR operation and are followed by the final ICP
step. The output of CPR-ICP is a rigid transformation; it is fed into the step of map error correction and
the revised high-precision map is obtained.

RMSEmap =
(

1

m

m∑
i=1

∥∥qi − q∗
i

∥∥2

)1/2

(2)

2.3. Methodology of map accuracy improvement
The motivation of the proposed novel methodology is to improve the accuracy of the estimated map in
order to generate a high-precision map (geometry). As shown in Fig. 1, the novel methodology can be
formulated as firstly finding the best error optimization between the estimated trajectory and ground truth
trajectory and then applying this error optimization on the estimated map to obtain the high-precision
map. The rationale behind this is that there exist correlations between the trajectory error and geometry
error (yellow and pink curve double arrow lines). As shown in Fig. 3, the workflow of the map accuracy
improvement system comprises two steps, that is trajectory error correction (Step 1) and map error
correction (Step 2). The trajectory error correction is in essence the registration of the point cloud of
the estimated trajectory (green point cloud) to the point cloud of the ground truth trajectory (red point
cloud). The commonly employed approach is Iterative Closest Point (ICP) [19, 31–33] method. For
traditional ICP method, if there is no decent feature matching between two point clouds to start with, it
cannot achieve good results. Therefore, a novel ICP, that is Centre Point Registration-ICP (CPR-ICP), is
proposed to tackle this problem. The Centre Point Registration (CPR) is at the core of CPR-ICP and it is
a pre-alignment process for the two point clouds prior to the ICP operation. The aim of CPR is to bring
closer the same features in two point clouds and create a decent feature matching for the subsequent
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Figure 4. The objective of Centre Point Registration. Being orthogonal to each other, the three reference
planes are fitted with the least squares method and they all pass through the centroid of the point cloud.

ICP operation to start with. As shown in Fig. 4, CPR is achieved by finding and aligning three reference
planes for each point cloud, and the three reference planes should have the following attributes:

• The first reference plane is achieved by minimizing the sum of the squares of distances between
points and the plane.

• The second plane has two attributes: (1) orthogonal to the first reference plane; (2) minimization
of the sum of the squares of the distances between the points and the plane.

• The third plane has three attributes: (1) orthogonal to the first reference plane; (2) orthogonal to
the second reference plane; (3) minimization of the sum of the squares of the distances between
the points and the plane is the minimum.

The problem of finding the three reference planes can be formulated in a mathematical way: given
a point cloud P = {pi| pi = [xiyizi]T , i ∈ N ∩ i ∈ [1, n]} and a plane Ax + By + Cz + D = 0 with a unit
vector of û = [ABC]T , the sum of the squares of the distances between the points and the plane can be
expressed as:

f
(
û, D

)=
n∑

i=1

(
ûTpi + D

)2
(3)

Find the û and D that make (4) hold.

< û, D > = minû,Df
(
û, D

)
(4)

If f ′
D(û, D) = 0, D = −ûTp where p =

∑n
i=1 pi
n

is the centroid of the point cloud P. This means that
regardless of the normal unit vector û, the planes making (4) hold definitely pass through the point
cloud centroid p (as shown in Fig. 4, all three reference planes pass through the centroid); therefore,
the problem can be further formulated as: given a point cloud matrix P = [p1, p2, . . . , pn] where pi =
[xi yi zi]T , p =

∑n
i=1 pi
n

and 1 = [1, 1, . . . , 1]n×1
T , find the unit vector û = [A B C]T that makes (5) hold:

û = minûûT (P − p1T
) (

P − p1T
)T û (5)
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In (5), (P − p1T)(P − p1T)T is a symmetric matrix, so it can be factorized into the form of U�UT

using SVD (Singular Value Decomposition) [34]; therefore, (5) can also be expressed as:

û = minûûTU

⎡
⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤
⎥⎦UTû (6)

In (6), U is an orthogonal matrix and λ1, λ2, λ3 are the singular values and λ1 ≥ λ2 ≥ λ3; therefore,
UT û is still a unit vector and can be denoted as û′ = [A′ B′ C′]T , so (6) can also be expressed as:

û′ = minû′λ1A′2 + λ2B′2 + λ3C′2 (7)

(7) holds if û′ = [0 0 1]T , which means û equals the last column vector of U; therefore, the last column
vector of U is the normal vector of the first reference plane. To find the second reference plane, the
above calculation is repeated. Since the second reference plane also passes through the centroid and is
orthogonal to the first reference plane, its unit vector û′ = [A′ B′ 0]T , so (7) reaches the minimum value
λ2 if û′ = [0 1 0]T , which means û equals the second to last column vector of U; therefore, the second to
last column vector of U is the normal vector of the second reference plane, and the first column vector of
U is the normal vector of the third reference plane. To sum up, this calculation process firstly normalizes
every point in the point cloud by the centroid, and then factorizes the square of the normalized point
cloud matrix using SVD; therefore, the CPR operation can be elaborated as the following four steps:

1. Compute the centroid (the mean of all point coordinates p =
∑n

i=1 pi
n

) of each point cloud and
normalize each point cloud by the centroid, which is corresponding to Substep 1 of Step 1 shown
in Fig. 3.

2. Apply SVD to each normalized point cloud and compute the three normal vectors, which is
corresponding to Substep 2 of Step 1 shown in Fig. 3.

3. Translate the source point cloud (the estimate) to the reference point cloud (the ground truth)
and align their centroids, which is corresponding to Substep 3 of Step 1 shown in Fig. 3.

4. Rotate the translated source point cloud (the estimate) around its centroid and align its three
normal vectors to those of the reference point cloud (the ground truth), which is corresponding
to Substep 4 of Step 1 shown in Fig. 3.

3. Experiment and analysis
The experimental validation of the proposed methodology is categorized into three different scenes:
experiments of small-scale scenes, medium-scale scenes, and large-scale scenes. To clearly demonstrate
the advantage of CPR-ICP over the traditional ICP, before it is tested in SLAM environments, it is first
tested on the famous “Stanford Bunny” dataset [35–37], as shown in Fig. 5. In this case, the source point
cloud (yellow bunny) is deliberately placed in a pose that differs vastly from that of the target point
cloud (grey bunny). Under such a circumstance, the pre-alignment (CPR) can generate a decent feature
matching between two point clouds; therefore, CPR-ICP demonstrates an ideal alignment as shown in
Fig. 5(b). In contrast, due to not having a decent feature matching to start with, the traditional ICP
demonstrates a poor alignment between two point clouds as shown in Fig. 5(a).

3.1. Experiments of small-scale scenes
The proposed methodology is then tested on a small-scale SLAM scene. As shown in Fig. 6(a), in the
experiment, a Vicon motion capture system is used for acquiring ground truth and providing global
frame G; a laptop (SLAM laptop) with an Intel Core i9-10980HK CPU (2.40 GHz, 8 Cores, 16 Logical
Processors) and 32 gigabytes memory is used to run the SLAM algorithm ORB-SLAM2 [38]; and
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Figure 5. Performance comparison between Iterative Closest Point (ICP) and Centre Point
Registration-ICP (CPR-ICP) under the circumstance of a decent initial feature matching being absent.
(a) Performance of the traditional ICP: the misalignment between two bunnies demonstrates the poor
performance of ICP. It is due to the lack of a decent feature matching to start with. (b) Performance
of CPR-ICP: the fine alignment between two bunnies demonstrates the ideal performance of CPR-ICP.
CPR-ICP firstly conducts a rough alignment of two point clouds and then conducts the ICP operation,
making it robust to achieve an ideal performance under such an extreme circumstance.

an Intel RealSense D435i RGB-D camera is affixed at the top of the SLAM laptop and used as the
SLAM vision sensor (SLAM camera). As shown in Fig. 6(b), the map being evaluated consists of three
points that are centroids of three rectangular regions on a 75 × 75 cm table surface. The table surface is
partitioned into four equal rectangular regions by tapes with color textures. Among the four rectangular
regions, twelve markers are placed at the corners of three rectangular regions; in this way, the centroid
coordinates (three blue points) of these three rectangular regions can be captured directly by the motion
capture system and used as the ground truth map Q∗, as is shown in Fig. 6 (c). The ground truth map P∗,
estimated trajectory P and estimated map Q are also shown in the form of point clouds in Fig. 6(c).

During the experimental operation, the SLAM camera scans the table surface constantly to generate
its point cloud; in the meantime, the pose of the SLAM camera attachment frame (Sca) relative to the
global frame G is being captured constantly by the motion capture system so that P, P∗, Q and Q∗ can
be obtained within the global frame G using the pose transformations shown in Section 2. Within the
generated point cloud of the table surface, for each rectangular region, the four map points at four corners
are chosen manually and their coordinates are averaged, and these three mean coordinates are used as
the estimated map Q (three yellow points). After P, P∗, Q and Q∗ are obtained within the global frame
G, for the purpose of benchmarks, the RMSE errors of the trajectory and map are calculated based on
Eqs. (1) and (2). Then the error correction function CPR-ICP (obtained in Step 1 shown in Fig. 3) or
traditional ICP can be obtained, it is applied on the estimated map Q and the revised map (three purple
points) is obtained, as is shown in Fig. 1 and Step 2 in Fig. 3. Then, the RMSE errors between the revised
trajectory and map and the ground truth trajectory and map are calculated as well based on Eqs. (1) and
(2), respectively.

As shown in Table I, the test results show that the concept of correcting map errors using trajectory
error correction works fine; it can reduce the map error by an average of around 15%. Among all test
results, for either trajectory or map, ICP and CPR-ICP reduce roughly an equal amount of errors. The
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Figure 6. Experimental setup and operation of simultaneous localization and mapping benchmark and
map accuracy improvement (SLAMB&MAI). (a) The SLAM system consists of an RGB-D camera (SLAM
camera) and a laptop (SLAM laptop); the SLAM camera scans the table surface and feeds the image
data into the SLAM laptop to generate the point cloud. During the scanning operation, the SLAM laptop
is carried by an operator moving around the table surface, meanwhile, the pose of the SLAM camera
is constantly adjusted by the operator to make sure the entire table surface stays in SLAM camera’s
field of view and the SLAM camera attachment frame (Sca) stays in Vicon’s field of view throughout
the operation process. After the scanning operation is done, all obtained coordinates are transformed
into the global frame G. In the transformed map point cloud, the map points at four corners of the
three rectangular regions are chosen manually, and their mean coordinate is used as the map estimate;
then the errors of SLAM camera trajectory and map are calculated, and the error correction function
of camera trajectory is obtained and applied to the map estimates to obtain the high-precision map.
(b) The layout of the map setup on a table surface. (c) The point cloud of the captured data under the
global coordinate frame G. The three blue points represent the ground truth map Q∗; the three yellow
points represent the estimated map Q; the three purple points represent the revised map; the green points
represent the estimated trajectory P; and the dense red points represent the ground truth trajectory P∗.
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Table I. Errors of map and trajectory before and after Centre Point Registration-Iterative Closest
Point correction for the small-scale scene.

Trajectory Amount of Amount of
Original errors trajectory Original Map errors map error

trajectory after CPR-ICP error correction map after CPR-ICP correction
Trial errors correction using CPR-ICP errors correction using CPR-ICP
number (mm) (mm) (mm/%) (mm) (mm) (mm/%)
1 66.59 61.21 5.38 (8.08%) 59.54 51.20 8.34 (14.01%)
2 72.09 63.83 8.26 (11.46%) 67.26 54.22 13.03 (19.38%)
3 105.98 101.24 4.74 (4.48%) 68.73 60.06 8.67 (12.62%)
4 103.99 94.34 9.65 (9.28%) 139.88 112.44 27.45 (19.62%)
5 62.58 57.92 4.66 (7.45%) 65.77 55.21 10.57(16.07%)

Figure 7. Experiment setup in medium-scale environments and results. (a) A panoramic photo of the
medium-scale scene. (b) The global coordinate frame G was established at a corner where two walls
meet, and its relative position to the small-scale room is known. (c) The point clouds of the ground truth
and estimate of the camera trajectory and map. The blue CAD model represents the ground truth map
Q∗, its relative position to G is known; the yellow point cloud represents the estimated map Q; the purple
point cloud represents the revised map; the green point cloud represents the estimated trajectory P; and
the dense red point cloud represents the ground truth trajectory P∗. They were all captured under the
global frame G.
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Table II. Errors of map and trajectory before and after Centre Point Registration-Iterative Closest
Point correction for the medium-scale scene.

Trajectory Amount of Map errors Amount of
Original errors trajectory error Original after map error

trajectory after CPR-ICP correction map CPR-ICP correction
Trial errors correction using CPR-ICP errors correction using CPR-ICP
number (mm) (mm) (mm/%) (mm) (mm) (mm/%)
1 116.19 90.27 25.92 (22.30%) 78.98 67.21 11.76 (14.90%)
2 61.15 51.70 9.45 (15.46%) 70.43 62.72 7.71 (10.95%)
3 147.27 100.27 47.00 (31.91%) 79.40 69.95 9.45 (11.91%)
4 124.01 102.53 21.48 (17.32%) 71.13 61.96 9.17 (12.89%)
5 115.67 82.67 33.00 (28.53%) 95.78 82.65 13.13 (13.71%)

Figure 8. Experiment setup in large-scale environments and results. (a) A panoramic photo of the
large-scale scene. (b) The global coordinate frame G is established at a corner where two walls meet,
and its relative position to the small-scale room is known. (c) The point clouds of the ground truth and
estimate of the camera trajectory and map. The blue CAD model represents the ground truth map Q∗,
its relative position to G is known; the yellow point cloud represents the estimated map Q; the purple
point cloud represents the revised map; the green point cloud represents the estimated trajectory P; and
the dense red point cloud represents the ground truth trajectory P∗. They were all captured under the
global frame G.
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Table III. Errors of map and trajectory before and after Centre Point Registration-Iterative Closest
Point correction for the large-scale scene.

Trajectory Amount of Map errors Amount of
Original errors trajectory Original after map error

trajectory after CPR-ICP error correction map CPR-ICP correction using
Trial errors correction using CPR-ICP errors correction CPR-ICP
number (mm) (mm) (mm/%) (mm) (mm) (mm/%)
1 444.54 181.47 263.07 (59.18%) 310.52 221.58 88.94 (28.64%)
2 549.83 250.14 299.69 (54.51%) 269.21 226.53 42.68 (15.85%)
3 465.78 215.62 250.16 (53.71%) 285.05 210.35 74.70 (26.21%)
4 314.10 182.03 132.06 (42.04%) 281.08 235.32 45.76 (16.28%)
5 346.53 220.00 126.53 (36.51%) 268.00 200.40 67.60 (25.22%)

reason for this is that in the small-scale scene, the point clouds of estimates and ground truth tend
to have a decent initial feature matching between them; therefore, the CPR correction makes a modest
contribution. But for a point cloud registration case that doesn’t have a decent initial feature matching like
the one shown in Fig. 5, the CPR correction makes a significant difference. To further verify the practical
applicability of the proposed methodology for scenes with larger scales, experiments in a medium-scale
scene and a large-scale scene were conducted and are detailed in 3.2 and 3.3, respectively.

3.2. Experiments of medium-scale scenes
Similar experiments were then carried out in a medium-scale room with the size of 243 cm × 259 cm ×
414 cm, as is shown in Fig. 7(a). The captured data shown in Fig. 7(c) are similar to the one shown
in Fig. 6(c), except that the ground truth map Q∗ is a manually drawn CAD model instead of a point
cloud. The global frame G shown in Fig. 7(b) was established at a corner where two walls meet, and the
relative position of Q∗ to G was pre-obtained by manual measurement. Using the manually drawn CAD
model as ground truth map would introduce errors; therefore, the actual performance of the proposed
methodology is better than the test results shown in Table II.

As shown in Table II, the concept of correcting map errors using trajectory error correction also
works for medium-scale scenes; the map error was reduced by an average of around 12%. As mentioned
before, using the manually drawn CAD model as ground truth map would introduce errors, so it’s safe to
say the proposed methodology is able to reduce the map error by at least 12%. Among all the test results,
40% of them of CPR-ICP are better than that of ICP, which is higher than the 20% for the small-scale
scene. This result shows that CPR-ICP tends to outperform ICP in scenes with larger scales, so more
experiments were conducted in a large-scale scene and are presented in the next section.

3.3. Experiments of large-scale scenes
The proposed methodology is then tested on a large-scale room with the size of 243cm × 692cm ×
659cm as shown in Fig. 8. Same as the test in medium-scale scenes, using the manually drawn
CAD model as ground truth map would introduce errors, so the actual performance of the proposed
methodology is better than the test results shown in Table III.

As can be seen from Table III, the concept of correcting map errors using trajectory error correction
works for large-scale scenes as well; the proposed methodology was able to reduce the map error by
around 20%. Among all test results, 80% of them of CPR-ICP are better than that of ICP, and 40% are
better by above 15%. Combined with the 0% for small-scale scenes and 40% for medium-scale scenes,
the ratios of test results in which CPR-ICP is better than ICP in different scale scenes are shown in Fig. 9.
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Figure 9. The ratios of test results in which Centre Point Registration-Iterative Closest Point (CPR-ICP)
is better than ICP in different scale scenes. The trend shows that the proposed CPR-ICP tends to
outperform the traditional ICP in scenes with larger scales.

As can be seen from Fig. 9, in terms of map error correction, the trend shows that the proposed CPR-
ICP tends to outperform the traditional ICP in scenes with larger scale. The reason is that the SLAM 3D
reconstruction of large-scale scenes tends to have more errors, therefore, a pre-alignment before ICP is
necessary.

4. Conclusion
In this paper, the methodology of a comprehensive and objective SLAM benchmark is presented, which
can evaluate the SLAM performances unbiasedly. Based on this benchmark, a novel concept of map
error correction method by using the correction of trajectory error is presented, and a novel point cloud
registration method CPR-ICP is proposed, which firstly aligns two point clouds by their three fitted
planes, then applies the ICP operation.

A set of experiments was conducted to validate the feasibility of the proposed point cloud registration
method and the map error correction method. The results have shown that the proposed novel registra-
tion method outperformed the traditional ICP algorithm, especially in scenes with large scales where a
decent initial feature matching is oftentimes absent. The proposed map error correction method has also
shown promising performances. After correction, the map error can be reduced by 15%, 12%, and 20%
for small-scale, medium-scale, and large-scale scenes, respectively (15.67% on average). This can be
considered acceptable for industrial applications, especially for obstacle avoidance in robot navigation,
which requires credible obstacle position.

However, for the general applicability of the proposed concept and methodology, they will be further
assessed in more SLAM scenarios where different types of sensors and SLAM algorithms are imple-
mented, such as LiDAR-based SLAM systems and other Visual SLAM systems. Moreover, they will also
be further assessed against different types of maps or geometries (such as 2D point cloud and 3D mesh)
for complex shape objects. The computational cost in these different scenarios will also be considered
and benchmarked. In addition, the robustness of the proposed methodology will be further investigated
under extreme conditions, such as occlusions, low illumination, etc, where the point cloud is incomplete
or has noise. In these cases, the correlations between localization error and mapping error will be further
investigated.
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