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Computations of Elliptic Units for
Real Quadratic Fields

Samit Dasgupta

Abstract. Let K be a real quadratic field, and p a rational prime which is inert in K. Let α be a modular

unit on Γ0(N). In an earlier joint article with Henri Darmon, we presented the definition of an element

u(α, τ ) ∈ K×

p attached to α and each τ ∈ K. We conjectured that the p-adic number u(α, τ ) lies in a

specific ring class extension of K depending on τ , and proposed a “Shimura reciprocity law” describing

the permutation action of Galois on the set of u(α, τ ). This article provides computational evidence

for these conjectures. We present an efficient algorithm for computing u(α, τ ), and implement this

algorithm with the modular unit α(z) = ∆(z)2∆(4z)/∆(2z)3. Using p = 3, 5, 7, and 11, and all real

quadratic fields K with discriminant D < 500 such that 2 splits in K and K contains no unit of negative

norm, we obtain results supporting our conjectures. One of the theoretical results in this paper is that

a certain measure used to define u(α, τ ) is shown to be Z-valued rather than only Zp ∩ Q-valued; this

is an improvement over our previous result and allows for a precise definition of u(α, τ ), instead of

only up to a root of unity.

Introduction

Elliptic units, which are obtained by evaluating modular units at quadratic imaginary

arguments of the Poincaré upper half-plane, yield an analytic construction of abelian
extensions of imaginary quadratic fields. The Kronecker limit formula relates the
complex absolute values of these units to values of zeta functions, and enabled Stark
to prove his rank one archimedean conjecture for abelian extensions of quadratic

imaginary fields [9].

A conjectural construction of an analogous theory for real quadratic fields K was

proposed in [2], by replacing the infinite prime of Q with a prime p that remains inert
in K. The completion Kp is a quadratic unramified extension of Qp. The construction
of [2] associates to a modular unit α and any τ ∈ K − Q an element u(α, τ ) ∈ K×

p

which is conjectured to be a p-unit in a specific narrow ring class field of K depending

on τ and denoted Hτ ([2, Conjecture 2.14], hereafter denoted Conjecture DD). In
harmony with the fact that the role of ∞ is played by that of p, the construction
of u(α, τ ) involves p-adic integration in a manner motivated by the definition of
“Stark–Heegner points” given in [1] and generalized in [5].

The main theorems of [2] relate the p-adic valuation and p-adic logarithm of
u(α, τ ) to values at 0 of partial zeta functions (classical and p-adic, respectively) at-

tached to the extension Hτ/K, and thereby allow one to deduce Gross’s p-adic ana-
logue of Stark’s conjecture (see [6]) for this extension from Conjecture DD.

In the present article we provide concrete computational evidence for Conjecture
DD. The formulas of [2, §4.4] may be used to calculate the units u(α, τ ) to a high
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p-adic accuracy. Using 50 digits of p-adic accuracy for p = 3, 5, 7, 11 and all ground
fields K of positive discriminant less than 500, we are able to recognize the units

u(α, τ ) as algebraic numbers for the fixed modular unit α = ∆(z)2
∆(4z)/∆(2z)3

and all τ such that Hτ is the narrow Hilbert class field of K. In each case, the algebraic
number approximated by u(α, τ ) is a p-unit in Hτ as predicted by Conjecture DD.

We begin by recalling the definition of u(α, τ ), and proving that a certain modular

symbol of measuresµ appearing in this definition is Z-valued. In [2], it is only proven
that µ is Zp-valued. In Sections 4 and 5 we describe the method and results of our
computations that supply empirical evidence for Conjecture DD.

1 Definition of the Units

Let N be a positive integer. A modular unit is a holomorphic nowhere vanishing func-
tion on Γ0(N)\H that extends to a meromorphic function on the compact Riemann

surface X0(N)(C). A typical example of such a unit is the modular function

(1) α(τ ) =

∏

d|N
∆(dτ )nd

for integers nd such that
∑

d nd = 0. For the remainder of the article, fix a choice of
such integers nd. We will assume that the corresponding modular unit α has no zero

or pole at the cusp ∞ of the completed upper half plane H
∗

= H ∪ P1(Q). This
assumption is equivalent to the equation

(2)
∑

d

ndd = 0.

Let p be a prime number not dividing N . Given the modular unit α of level N ,
we may define a modular unit of level N p by the rule α∗(z) := α(z)/α(pz). The
logarithmic derivatives of α and α∗ are given by

(3) dlogα(z) = 2πiF2(z) dz, dlogα∗(z) = 2πiF∗
2 (z) dz,

where F2(z) and F∗
2 (z) are the weight 2 Eisenstein series on Γ0(N) and Γ0(N p), re-

spectively, given by the formulae

(4) F2(z) = −24
∑

d|N
dndE2(dz), F∗

2 (z) = F2(z)− pF2(pz).

Here E2(z) is the standard Eisenstein series of weight 2:

E2(z) =
1

(2πi)2

(

ζ(2) +
1

2

∞
∑

m=−∞
m6=0

∞
∑

n=−∞

1

(mz + n)2

)

= − 1

24
+

∞
∑

n=1

σ1(n)qn, q = e2πiτ .

(5)
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(We remark that the double series used to define E2 is not absolutely convergent and
the resulting expression is not invariant under SL2(Z).)

Let M = Div0(Γ0(N)∞) denote the group of degree-zero divisors on the set of
cusps with denominator divisible by N . Note that M has a natural left action by
Γ0(N). A partial modular symbol with values in a group A is simply a group homo-
morphism from M to A. If ψ is a partial modular symbol and r, s ∈ Γ0(N)∞, then

one writes

ψ{r → s} or ψm for ψ([r]− [s]), where m = [r]− [s] ∈M.

Assumption (2) implies that the differential dlogα on H∗ is regular on Γ0(N)∞,
so we may define a partial modular symbol ψ with values in Z by the rule

ψ{r → s} :=
1

2πi

∫ s

r

dlogα =

∫ s

r

F2(z) dz,

where the complex line integral on the right side is taken along any smooth path P in
H∗ connecting the cusps r and s. The rational integer ψ{r → s}may be understood

as the winding number of the closed loop α(P) around the origin in the complex
plane. The function ψ (which was denoted mα in [2]) is called the partial modular
symbol attached to α, and its value will be expressed in terms of classical Dedekind

sums in Section 2.
The Eisenstein series of (4) and (5) are part of a natural family of Eisenstein se-

ries of varying weights. For even k ≥ 2, consider the standard Eisenstein series of
weight k:

(6) Ek(z) =
2(k− 1)!

(2πi)k

∞
∑′

m,n=−∞

1

(mz + n)k
= −Bk

2k
+

∞
∑

n=1

σk−1(n)qn.

Define likewise the higher weight Eisenstein series

Fk(z) = −24
∑

d|N
nd · d · Ek(dz)

= −48(k− 1)!

(2πi)k

∞
∑′

m,n=−∞

( 1

(mz + n)k

∑

d|(N,m)

ndd
)

= −24

∞
∑

n=1

σk−1(n)
∑

d|N
nddqnd.

(7)

The Fk are modular forms of weight k on Γ0(N) that are holomorphic on the upper
half plane. Note that these Eisenstein series have no constant term and hence are
holomorphic at the cusp∞. We also define, for the purpose of p-adic interpolation,
the function F∗

k (z) = Fk(z)− pk−1Fk(pz). We extend the definition of Ek(z) and Fk(z)

to all k ≥ 2 by letting Ek = Fk = 0 for k odd.
Let X denote the subspace of Zp × Zp consisting of all pairs (a, b) such that a

and b are not both divisible by p in Zp. This space of “primitive vectors” makes an
appearance in the earlier work of Greenberg and Stevens [7].
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Definition 1.1 For a subgroup A ⊂ Qp, a distribution on X with values in A is a
function ν which assigns to each compact open set U ⊂ X an element ν(U ) ∈ A

such that
• ν(U ∪V ) = ν(U ) + ν(V ) for disjoint compact open U and V , and
• ν(X) = 0.

A distribution is said to be a measure if A can be chosen to be a bounded subgroup
of Qp.

The set of measures on X valued in A is denoted Meas(X,A). The crucial technical
ingredient in the definition of u(α, τ ) is the following result.

Theorem 1.2 ([2, Theorem 4.2]) Let α be fixed as above. There is a unique

Meas(X,Zp)-valued partial modular symbol µ such that for every homogeneous poly-

nomial h(x, y) ∈ Z[x, y] of degree k− 2,

(8)

∫

X

h(x, y) dµ{r → s}(x, y) = Re
(

(1− pk−2)

∫ s

r

h(z, 1)Fk(z) dz
)

.

The p-adic integral on the left side of (8) is defined to be

lim
‖U‖→0

∑

U∈U

h(xU , yU ) · µ{r → s}(U ) ∈ Zp,

where U is a cover of X by disjoint compact opens, (xU , yU ) is an arbitrary point of
U ∈ U, and the p-adic limit is taken over uniformly finer covers U. Implicit in the
statement of Theorem 1.2 is the fact that the real numbers on the right side of (8)

are in fact rational, and hence may be viewed as elements of Qp. We will give explicit
formulas for these numbers in terms of generalized Dedekind sums in Section 2. In
Section 3, we will prove the following.

Theorem 1.3 The partial modular symbol of measures µ is Z-valued.

The space X, viewed as a subspace of the larger space Y := Q2
p − {0}, forms a

fundamental domain for the action of multiplication by p on Y. Hence the measures
µ{r → s} can be extended uniquely to measures on Y which are invariant under
multiplication by p:

µ{r → s}(pU ) = µ{r → s}(U )

for all compact open U ⊂ Y. The group GL2(Qp) acts on Y by left multiplication

by viewing the elements of Y as column vectors. The partial modular symbol of
measures µ satisfies the following additional properties:
• For all

γ ∈ Γ̃ :=

{(

a b

c d

)

∈ GL+
2 (Z[1/p]) : N|c

}

and all compact open U ⊂ Y,

µ{γr → γs}(γU ) = µ{r → s}(U ).
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• For every homogeneous polynomial h(x, y) ∈ Z[x, y] of degree k− 2,

(9)

∫

Zp×Z
×

p

h(x, y) dµ{r → s}(x, y) = Re
(

∫ s

r

h(z, 1)F∗
k (z) dz

)

.

We are now ready to define u(α, τ ). Let K be a real quadratic field such that p is
inert in K, and let τ ∈ K −Q. Assume that the reduction of τ modulo p, which is an

element of P1(Fp2 ), does not lie in P1(Fp). Choose the real embedding of K in which
τ is greater than its Galois conjugate. Denote by Γτ the stabilizer of τ in

Γ :=

{(

a b

c d

)

∈ SL2(Z[1/p]) : N|c
}

⊂ Γ̃,

acting via linear fractional transformations. Let γτ be the unique element of Γτ

whose image generates the quotient Γτ/〈±1〉 ∼= Z such that

(10) γτ

(

τ

1

)

= ε

(

τ

1

)

with ε > 1. Write γτ =
(

a b
Nc d

)

.

We define the element u(α, τ ) ∈ K×
p by the formula

(11) u(α, τ ) = pψ{∞→ a
Nc

} · ×
∫

X

(x − yτ ) dµ
{

∞→ a

Nc

}

(x, y).

The p-adic multiplicative integral on the right side of (11) is defined to be

lim
‖U‖→0

∏

U∈U

(xU − yU τ )µ{∞→ a
Nc

}(U ) ∈ O
×
p ,

with the notation as in (8). Here Op denotes the ring of integers of Kp. Note that the
definition of the multplicative integral is contingent on Theorem 1.3. This constitutes
an improvement over the definition of [2], where u(α, τ ) was defined only up to a
root of unity in K×

p .

The element u(α, τ ) ∈ K×
p is conjectured to lie in a ring class field extension of K.

To be precise, assume that the minimal quadratic polynomial with integer coefficients

satisfied by τ has the form

Aτ 2 + Bτ + C = 0, (A,B,C) = 1, A > 0

where

(12) N|A and D = B2 − 4AC is relatively prime to N p.

Conjecture DD The element u(α, τ ) ∈ K×
p is a p-unit in the narrow ring class field

HD attached to the discriminant D > 0.
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2 Dedekind Sums

In this section we relate the integrals appearing in the right of (8) and (9) to general-
ized Dedekind sums. The explicitly calculable formulas of this section will be used in
the computations of u(α, τ ).

The classical Bernoulli polynomials Bn are defined by the power series

etx

et − 1
=

∞
∑

n=0

Bn(x)

n!
tn−1.

We use the Bernoulli polynomials to define periodic functions

B̃s(x) :=

{

0 if s = 1 and x ∈ Z

Bs(x − [x]) otherwise,

where [x] denotes the greatest integer less than or equal to x. Let s and t be positive
integers. For a and c relatively prime and c ≥ 1, the generalized Dedekind sum
Ds,t (a/c) is defined by

Ds,t (a/c) :=
cs−1

st

c
∑

h=1

B̃s(h/c)B̃t (ha/c).

In terms of these generalized Dedekind sums, we have from [2, §4.4, §4.7],
(13)

Re
[

∫ a
Nc

∞
znFk(z) dz

]

= −12

n
∑

ℓ=0

(

n

ℓ

)

( a

Nc

) n−ℓ
(−1)ℓ

∑

d|N

nd

dℓ
Dk−ℓ−1,ℓ+1

( a

Nc/d

)

,

Re
[

∫ a
Nc

∞
znF∗

k (z) dz
]

= −12

n
∑

ℓ=0

(

n

ℓ

)

( a

Nc

) n−ℓ
(−1)ℓ

×
∑

d|N

nd

dℓ

[

Dk−ℓ−1,ℓ+1

( a

Nc/d

)

− pk−ℓ−2Dk−ℓ−1,ℓ+1

( pa

Nc/d

)]

.

(14)

Equation (13) for k = 2 and n = 0 yields the formula

ψ
{

∞→ a

Nc

}

= −12
∑

d|N
ndD

( a

Nc/d

)

,

where D = D1,1 is the classical Dedekind sum.

3 Integrality of the Measures

In this section we prove that the measures µm, which are proved in [2] to be only
Zp-valued, actually take on integer values. We begin by reviewing the single-variable
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measures arising from Bernoulli polynomials; our presentation is motivated by [8,
§10.2]. Let e ≥ 1 be a positive integer divisible by N but not by p, and let

Z = lim←−Z/epnZ ∼= Z/eZ× Zp.

For each integer k ≥ 1, define a distribution Fk on Z corresponding to the Eisenstein
series F2k by the rule

Fk(a + epn · Z) :=
∑

d|N
nd

( epn

d

) k−1

· 1

k
· B̃k

( a

epn/d

)

for each integer a. The “distribution relation”

(15)

f
∑

a=1

B̃k

(

x +
a

f

)

= f 1−kB̃k( f x)

for Bernoulli polynomials demonstrates that Fk is indeed a distribution for each
k ≥ 1. For x ∈ Z, let xp denote the projection of x onto Zp.

Proposition 3.1 The distributions Fk are Zp-valued measures, and for every compact

open set U ⊂ Z and every k ≥ 1 we have Fk(U ) =
∫

U
xk−1

p dF1(x).

Proof It suffices to consider U of the form U = a + epnZ for integers a. We will
prove that

(16) Fk(U ) ≡ ak−1
F1(U ) (mod pn−ǫZp)

where ǫ depends only on k. The key fact is that the Bernoulli polynomial Bk(x) begins
xk − 1

2
kxk−1 + · · · . Therefore,

(17) Fk(U ) ≡
∑

d|N
nd

( epn

d

) k−1 1

k

(

( da

epn
−

[ da

epn

]) k

− k

2

( da

epn
−

[ da

epn

]) k−1
)

modulo pn−ǫZp, where ǫ is the largest power of p appearing in the denominators of
the coefficients of Bk(x)/k. The congruence (17) yields:

Fk(U ) ≡
∑

d|N

nd

k

(( d

epn

)

ak − kak−1
[ da

epn

]

− k

2
ak−1

)

(mod pn−ǫZp)

≡ −
∑

d|N
ndak−1

[ da

epn

]

,(18)

where (18) uses
∑

nd =
∑

ndd = 0. The congruence (18) implies that Fk is
Zp-valued. Meanwhile we find

(19) ak−1
F1(U ) = ak−1

∑

d|n
nd

( d

epn
−

[ da

epn

]

− 1

2

)

= −
∑

d|N
ndak−1

[ da

epn

]

.

Equations (18) and (19) yield (16), proving the proposition.

https://doi.org/10.4153/CJM-2007-023-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-023-0


560 S. Dasgupta

The measures Fk may be used to calculate the modular symbol of measures µ. Let
the fraction a

Nc
be fixed; we will write ν for µ{∞ → a

Nc
}.

Let V be a compact open subset of Z×
p , and let fi(y) =

∑di

n=0 cn(i)yn be a se-
quence of polynomials such that limi→∞ fi(y) is the characteristic function of V .

Then equations (8) and (13) for the moments of ν yield

(20) ν(Zp ×V ) = lim
i→∞
−12

∑

d|N
nd

di
∑

n=0

(1− pn)cn(i) · Dn+1,1

( a

Nc/d

)

.

From the distribution relation (15) with k = 1, we have

Dn+1,1

( a

Nc/d

)

=

( Nc

d

) n
Nc/d
∑

h=1

B̃n+1

(

h
Nc/d

)

n + 1
· B̃1

( ha

Nc/d

)

=

( Nc

d

) n
Nc
∑

h=1

B̃n+1

(

h
Nc/d

)

n + 1
· B̃1

( ha

Nc

)

.

Hence (20) becomes
(21)

ν(Zp ×V ) = lim
i→∞
−12

Nc
∑

h=1

B̃1

( ha

Nc

)

di
∑

n=0

(1− pn)
∑

d|N
nd

( Nc

d

) n B̃n+1

(

h
Nc/d

)

n + 1
cn(i).

Write Nc = epr with p not dividing e. Then N divides e, and in terms of the measure
F1 above we have

di
∑

n=0

(1− pn)
∑

d|N
nd

( Nc

d

) n B̃n+1

(

h
Nc/d

)

n + 1
cn(i) =

∫

h+eprZ

(

fi(xp)− fi(pxp)
)

dF1(x)

by Proposition 3.1. Let us now specify V of the form V = b + psZp, with s ≥ r

and b ∈ Z×
p . In the limit as i → ∞, the value fi(xp) approaches 1 or 0 according to

whether xp ∈ V , and fi(pxp) approaches 0. Therefore (21) becomes

ν(Zp ×V ) = −12

Nc
∑

h=1

B̃1

( ha

Nc

)

F1

(

{x ∈ h + eprZ : xp ∈ V}
)

= −12

Nc
∑

h=1
h∈b+pr

Zp

B̃1

( ha

epr

)

∑

d|N
ndB̃1

( y

eps/d

)

(22)
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where y is an integer such that y ≡ h (mod e) and y ≡ b (mod ps). Fixing one
such y for each h, we obtain

ν(Zp ×V ) = 12

Nc
∑

h=1
h∈b+pr

Zp

B̃1

( ha

epr

)

∑

d|N
nd

[ y

eps/d

]

≡ 12
a

Nc

Nc
∑

h=1
h∈b+pr

Zp

h
∑

d|N
nd

[ y

eps/d

]

(mod Z),

(23)

where (23) uses
∑

nd =
∑

ndd = 0.Hence to prove integrality, it suffices to consider
the case a = 1. For this purpose, we return to (22) with a = 1 and rewrite the

expression in terms of a generalized Dedekind sum:

(24) ν(Zp ×V ) = −12
∑

d|N
nd

epr/d
∑

h=1
h∈b+pr

Zp

B̃1

( h

epr/d

)

B̃1

( y

eps/d

)

.

The inner sum is the generalized Dedekind sum denoted C(1, 1, ps−r, e
d
, ke/d

ps , 0) in

[10], where k is an integer chosen so that ke/d ≡ b (mod ps). The reciprocity law
governing these Dedekind sums [10, Theorem 2] shows that this value equals

epr/d
∑

h=1
h∈b+pr

Zp

B̃1

( h

epr/d

)

B̃1

( y

eps/d

)

=
(e/d)2

2ps−r
−

ps−r

∑

i=1

B̃1

( i

ps−r

)

B̃1

( (i pr − k)e/d

ps−r

)

+
ps−r

2e/d
B̃2

(

− b

pr

)

+
ps−r

2e/d
B̃2

( b

ps

)

(25)

− B̃1

( b

ps

)

.(26)

Using this expression in equation (24), the terms from lines (25) and (26) vanish
since

∑

ndd = 0. The remaining line yields only terms in Z[1/p]. Since we know
that ν is Zp-valued, we thus conclude that ν(Zp × V ) ∈ Z. Since the Γ̃ translates of
the sets Zp×V form a basis of compact opens for Q2

p−{0}/pZ ∼= X, the Γ̃-invariance

of µ therefore implies that the modular symbol of measures µ is Z-valued, proving
Theorem 1.3.

For future reference, we record the following corollary of our calculations above.

Proposition 3.2 Let u, v ∈ Z such that (u, v) ∈ X. For a positive integer s, let Uu,v,s

denote the ball of radius p−s around (u, v) in X, i.e., Uu,v,s = (u + psZp)× (v + psZp) ⊂
X. Let a

c
∈ Γ0(N)∞. Then

µ
{

∞→ a

c

}

(Uu,v,s) = −12
∑

ℓ (mod c)

B̃1

( a

c

(

ℓ+
v

ps

)

− u

ps

)

∑

d|N
ndB̃1

( d

c

(

ℓ+
v

ps

))

.
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Proof We provide only a sketch. Write c = epr with p ∤ e. Equation (22) states that
if s ≥ r, then

(27)

µ

{

∞→ a

epr

}

(Zp × (v + psZp)) = −12

Nc
∑

h=1
h≡v (mod pr)

B̃1

( ha

epr

)

∑

d|N
ndB̃1

( yd

eps

)

,

where y ≡ h (mod e) and y ≡ v (mod ps). When s ≤ r, the analogous formula is

(28)

µ
{

∞→ a

epr

}

(Zp × (v + psZp)) = −12

Nc
∑

h=1
h≡v (mod ps)

B̃1

( ha

epr

)

∑

d|N
ndB̃1

( hd

epr

)

.

Suppose now that p ∤ v, and let j ∈ Z such that u ≡ jv (mod ps). Consider the
matrix γ =

(

ps j
0 1

)

∈ Γ, and note that γ(Zp × (v + psZp)) = Uu,v,s. The Γ-invariance
of µ then yields

(29) µ
{

∞→ a

c

}

(Uu,v,s) = µ
{

∞→ a− jc

cps

}

(Zp × (v + psZp)).

An elementary calculation shows that the right-hand side of (29) equals the result
stated in the proposition, using 28 when the fraction

a− jc
cps has denominator divisible

by ps and using (27) when it does not.

To handle the case when p divides v, let µ̃ be the partial modular symbol defined

by the formula of the proposition, i.e.,

µ̃
{

∞→ a

c

}

(Uu,v,s) := −12
∑

ℓ (mod c)

B̃1

( a

c

(

ℓ+
v

ps

)

− u

ps

)

∑

d|N
ndB̃1

( d

c

(

ℓ+
v

ps

))

.

Since any γ ∈ Γ0(N)−Γ0(N p) sends Uu,v,s with p|v to Uu ′,v ′,s with p ∤ v ′, to conclude
the proof it suffices to prove that µ̃ is a Γ0(N)-invariant partial modular symbol. In

terms of the notation of [10], we have

µ̃
{

∞→ a

c

}

(Uu,v,s) = −12
∑

d|N
ndC

(

1, 1, a,
c

d
,

v

ps
,−ud

ps

)

,

and the desired Γ0(N)-invariance follows from the transformation formula regarding
the generalized Dedekind sums C(−) [10, Theorem 2]. The computation is lengthy
but elementary, and we omit it.

4 Method to Compute Elliptic Units

As before, let K denote a real quadratic field in which p is inert. The completion Kp

is a quadratic unramified extension of Qp. Let logp : K×
p → Op denote the branch of
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the p-adic logarithm which vanishes on p. Let β be a primitive (p2 − 1)-st root of
unity in K×

p , and let logβ denote the discrete logarithm with base β:

logβ : K×
p → Z/(p2 − 1)Z,

where
x

pordp(x)β logβ(x)
∈ 1 + pOp for all x ∈ K×

p .

For p > 2, we then have the decomposition:

K×
p
∼= Z× Z/(p2 − 1)Z× pOp given by x 7→ (ordp(x), logβ(x), logp(x)).

(The function logp is invertible only on 1 + p2Op for p = 2; for notational reasons
only, we will assume p > 2 throughout.) For x = u(α, τ ) and γτ = ( a ∗

Nc ∗ ), these
three components are given by the formulas

ordp(u(α, τ )) = −12
∑

d|N
nd · D

( a

Nc/d

)

,(30)

logβ(u(α, τ )) =

∫

X

logβ(x − yτ ) dµ
{

∞→ a

Nc

}

(x, y),(31)

logp(u(α, τ )) =

∫

X

logp(x − yτ ) dµ
{

∞→ a

Nc

}

(x, y).(32)

The computations of (30) and (31) are easy to execute in practice (note that for (31)
it suffices to take a cover of X in which x and y are determined modulo p), so we only
elaborate upon the computation of (32).

Suppose we are content to calculate (32) to an accuracy of M p-adic digits. Let

m = [∞]−
[

a
Nc

]

∈M. Then logp(u(α, τ )) is equal to

∫

Zp×Z
×

p

logp(y) dµm(x, y) +

∫

Zp×Z
×

p

logp

(

x

y
− τ

)

dµm(x, y)(33)

+

∫

Z
×

p ×pZp

logp(x) dµm(x, y) +

∫

Z
×

p ×pZp

logp

(

1− yτ

x

)

dµm(x, y).(34)

The first term of (33) is independent of τ . To evaluate this term to an accuracy of M

p-adic digits, one finds a polynomial f (y) that is congruent to logp(y) modulo pM

for all y ∈ Z×
p . This can be done as follows. For each i = 1, . . . , p − 1, let

gi(y) =

p−1
∏

j=1
j 6=i

(y − j)M ,
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and let hi(y) denote the power series of logp(y)/gi(y) on the residue disc i + pZp,
truncated after M +log M terms (the extra log M terms account for the denominators

divisible by powers of p in the power series of logp). Then letting

(35) f (y) =

p−1
∑

i=1

gi(y)hi(y)

produces the desired polynomial; it has degree p(M + log M). The first term of (33)
may then be evaluated be replacing logp(y) by f (y) and using (9) and (14) to evaluate

the integral of yn on Zp × Z×
p against the measure µm.

There is a Z×
p -bundle map π : X → P1(Qp) given by (x, y) 7→ x/y. Given the

measure µm on X, its push forward to P1(Qp) is defined by the rule

µm(U ) = π∗µm(U ) = µm(π−1(U )) ∈ Z

for compact open U ⊂ P1(Qp) (the measure-valued partial modular symbol µ was

denoted µα in [2]). The second term of (33) may be recognized as a push forward
from X to P1(Qp), and equals

∫

Zp

logp(t − τ ) dµm(t) =

p−1
∑

i=0

∫

i+pZp

logp(t − i + (i − τ )) dµm(t)

=

p−1
∑

i=0

[

logp(τ − i)µm(i + pZp)

+

∫

i+pZp

logp

(

1− t − i

τ − i

)

dµm(t)

]

.(36)

The final integrand in (36) may be expanded as a power series in the residue disc
i + pZp, and hence to calculate the integral modulo pM , it suffices to calculate the

moments

(37)

∫

i+pZp

(t − i)n dµm(t) = pn

∫

Zp

un dµP−1

i m(u) (mod pM)

for n = 0, . . . ,M − 1, where Pi =
(

p i
0 1

)

, and (37) uses the invariance of µ under

Pi ∈ Γ̃. Writing P−1
i m = w̃ = [∞]− [w], we calculate (37) by pulling back to X:

∫

Zp

un dµw̃(u) =

∫

Zp×Z
×

p

xn y−n dµw̃(x, y)

= lim
j→∞

g=(p−1)p j

∫

Zp×Z
×

p

xn yg−n dµw̃(x, y)

= lim
j→∞

g=(p−1)p j

12

n
∑

ℓ=0

(

n

l

)

wn−ℓ(−1)ℓ
∑

d|N
ndd−ℓDg−ℓ+1,ℓ+1(dw).

(38)
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Writing w = b/epr (with p ∤ e and N|e) and employing the distribution relation
(15), expression (38) may be expressed in terms of the single-variable measures of

Section 3:

lim
j→∞

g=(p−1)p j

∑

d|N
ndd−ℓDg−ℓ+1,ℓ+1

( bd

epr

)

=

epr

∑

h=1

B̃ℓ+1( hb
epr )

ℓ + 1
lim
j→∞

g=(p−1)p j

Fg−ℓ+1(h + epr · Z)

=

epr

∑

h=1

B̃ℓ+1( hb
epr )

ℓ + 1

∫

h+eprZ

x−ℓ dF1(x),

(39)

by Proposition 3.1. The integrals of (39) may be computed modulo pM by expanding

x−ℓ as a power series and using Proposition 3.1 to calculate the moments of F1.

The terms of (34) may be calculated similarly using the methods described above

for (33). Our method has broken down the computation of (32) into two parts. The
first step is the calculation of the following integrals, which are independent of τ :

(i)
∫

Zp×Z
×

p
logp(y) dµm(x, y),

(ii)
∫

i+pZp
(t − i)n dµm(t), i = 0, . . . , p = 1, n = 0, . . . ,M − 1,

(iii)
∫

Z
×

p ×pZp
logp(x) dµm(x, y),

(iv)
∫

P1(Qp)−Zp
t−n dµm(t), n = 0, . . .M − 1.

(The last moment arises in the computation of (34).) The second step is to calculate
logp u(α, τ ) from these integrals, using the decomposition of (33)–(34).

Hence our algorithm is to execute one program, which calculates for a given α, p,
and M, the integrals (i)–(iv) once and for all as m ranges over a Γ0(N)-module basis
for M, to an accuracy of pM . (Using the Γ0(N)-invariance of the indefinite integral,

it suffices to calculate (i)–(iv) for a Γ0(N)-module basis of M in order to evaluate
the indefinite integral for all m ∈ M.) This program executes O(pM2) arithmetic
operations involving p-adic numbers stored to an accuracy of M p-adic digits. The
output is stored in a file.

A second program is then run, inputting the integrals (i)–(iv) from the output file
of the first program, and calculating u(α, τ ) to an accuracy of pM as described above.

This calculation executes O(pM) arithmetic operations, and hence is rather quick
even when M is large. Thus to compute the p-units u(α, τ ) to a high accuracy for
various real quadratic fields K, it suffices to execute the (much slower) first program
only once.

We summarize our method to compute the unit u(α, τ ) below. We assume that α
has been fixed as in (1), as well as a prime p and a p-adic accuracy pM . We further
assume that a Γ0(N)-basis {m1, . . . ,mr} of M is known, as well as an algorithm to
write any m ∈M as a linear combination

m =

r
∑

i=1

∑

γ∈Γ0(N)

aγ,i · γmi ,
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with aγ,i ∈ Z and all but finitely many of the aγ,i equal to zero. For the case N = 4,
we remark that M is a free Z[Γ0(4)]-module, generated by [∞] −

[

1
4

]

. A recursive

algorithm to write any element of M as an element of Z[Γ0(4)]([∞]−
[

1
4

]

) is given
below.

Algorithm 4.1 Let N = 4. This algorithm expresses any [∞] −
[

a
4c

]

∈ M with

c ≥ 0 as a linear combination
∑

aγ · γ([∞]−
[

1
4

]

) with aγ ∈ Z and γ ∈ Γ0(4).

1. If c = 0, then [∞]−
[

a
4c

]

= 0. Terminate. Otherwise, proceed with the remainder

of the algorithm.
2. Let d be the unique integer such that ad ≡ 1 (mod 4c) and −2c < d < 2c, and

let b = (ad − 1)/(4c). Define γ ∈ Γ0(4) by

γ =



















(

a b

4c d

)

if d < 0,

(

a− 4b b

4c − 4d d

)

if d > 0.

3. We have

(40) [∞]−
[ a

4c

]

=















(

[∞]−
[ a + 4b

4c + 4d

])

− γ
(

[∞]−
[

1
4

])

if d < 0

(

[∞]−
[ a− 4b

4c − 4d

])

+ γ
(

[∞]−
[

1
4

])

if d > 0.

In both cases, return to Step 1 to express the first term in parentheses on the right
side of (40) in the desired form.

In each case in (40), the denominator of the fraction involved in the first term on
the right-hand side (namely, 4c + 4d when d < 0 and 4c − 4d when d > 0) has

absolute value smaller than 4c. Thus the recursive procedure will terminate when we
have reached the case c = 0.

We return now to the case of general N and the algorithm to compute u(α, τ ). The
following procedure computes certain integrals specific only to the data (α, p,M)
and hence must be executed only once if that data is fixed.

Algorithm 4.2 This algorithm computes certain auxiliary integrals which are
needed to compute u(α, τ ).

1. [Calculate integral (i)] As described in (35), define a polynomial f (y) such that
f (y) ≡ logp(y) (mod pM) for all y ∈ Z×

p . Then compute

∫

Zp×Z
×

p

logp(y) dµmi
(x, y) ≡

∫

Zp×Z
×

p

f (y) dµmi
(x, y) (mod pM)

for i = 1, . . . , r using equations (9) and (14).
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2. [Calculate integral (ii)] For each i = 1, . . . , r, j = 0, . . . , p − 1, and n = 0, . . . ,
M − 1, calculate

∫

j+pZp

(t − j)n dµmi
(t) (mod pM)

using equations (37)–(39). The integral in (39) can be evaluated by expanding
x−ℓ as a power series and using Proposition 3.1 to calculate the moments of F1.

3. [Calculate integral (iii)] With the polynomial f as in Step 1 above, for each i =

1, . . . , r calculate

∫

Z
×

p ×pZp

logp(x) dµmi
(x, y) ≡

∫

Z
×

p ×pZp

f (x) dµmi
(x, y) (mod pM),

where the right-hand side can be computed using the formula

(41)

∫

Z
×

p ×pZp

xn dµ
{

∞→ a

Nc

}

(x, y) = −12

n
∑

ℓ=0

(

n

ℓ

)

( a

Nc

) n−ℓ
(−1)ℓ

×
∑

d|N

nd

dℓ

[

pn−ℓDn−ℓ+1,ℓ+1

( pa

Nc/d

)

− pnDn−ℓ+1,ℓ+1

( a

Nc/d

)]

.

Equation (41) follows by subtracting (9) from (8), using (13) and (14).
4. [Calculate integral (iv)] For i = 1, . . . , r and n = 0, . . . ,M − 1, calculate

(42)

∫

P1(Qp)−Zp

t−n dµmi
(t) (mod pM)

as follows. The invariance of µ under γ =
(

1 0
N 1

)

implies that (42) equals

(43)

∫

1
N

+pZp

( u

−Nu + 1

)−n

dµγ−1mi
(u) (mod pM).

Let j be the positive integer less than p which is congruent to 1/N modulo p. The
function ( u

−Nu+1
)−n can be expanded as a power series in u− j in the residue disc

j + pZp; this reduces the computation of (43) to the computation of integrals of
the form

∫

j+pZp

(u− j)n dµγ−1mi
(u) (mod pM).

These may in turn be computed as in Step 2.

Once Algorithm 4.2 has been executed and its results stored in a file, the u(α, τ ) ∈
K×

p for varying real quadratic fields K and elements τ ∈ K can be computed to an
accuracy of pM by the following algorithm, which assumes the results of Algorithm
4.2 as input.
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Algorithm 4.3 (Computing u(α, τ )) Fix τ ∈ K ⊂ P1(Kp) such that the reduction
of τ modulo p does not lie in P1(Fp). Let γτ = ( a ∗

Nc ∗ ) be as in (10). The following

algorithm computes u(α, τ ).

1. [Calculate ordp u(α, τ )] Define

ordp(u(α, τ )) = −12
∑

d|N
nd · D

( a

Nc/d

)

∈ Z.

2. [Calculate logβ u(α, τ )] Define

logβ(u(α, τ )) =

∫

X

logβ(x − yτ ) dµ
{

∞→ a

Nc

}

(x, y)

=

∑

(u,v)

logβ(u− vτ )µ
{

∞→ a

Nc

}

(Uu,v,1) ∈ Z/(p2 − 1)Z,

(44)

where the sum in (44) is over representatives (u, v) in Z × Z for the nonzero el-
ements of Fp × Fp. The right side of (44) may be computed using Proposition
3.2.

3. [Calculate logp u(α, τ )] Write [∞]−[ a
Nc

] in terms of the given Γ0(N)-basis for M:

[∞]−
[ a

Nc

]

=

r
∑

i=1

∑

γ∈Γ0(N)

aγ,i · γmi ,

for example, using Algorithm 4.1 when N = 4. Then calculate

logp(u(α, τ )) =

∫

X

logp(x − yτ ) dµ
{

∞→ a

Nc

}

(x, y)

=

∑

i,γ

ai,γ

∫

X

logp(x − yγ−1τ ) dµmi
(x, y)

(45)

modulo pM , using the decomposition (33)–(34). The first terms of (33) and (34)
were calculated in Steps 1 and 3 of Algorithm 4.2. The second terms in (33) and
(34) are push forwards from Zp × Z×

p to Zp under π; they can be expanded as
power series in the residue discs i + pZp as described in (36), and calculated using

the moments from Steps 2 and 4 of Algorthm 4.2.
4. [Define u(α, τ )] Define

u(α, τ ) = pordp(u(α,τ ) · β logβ (u(α,τ )) · exp(logp(u(α, τ ))),

where exp : pOp → 1 + pOp is the exponential map inverting logp on 1 + pOp.
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5 Results

We used the methods of Section 4 with the modular unitα(z) = ∆(z)2
∆(2z)−3

∆(4z)
of level N = 4 and various p. We used a p-adic accuracy of M = 50 digits. In our
calculations, we restricted to fields K and τ ∈ K such that the resulting elements

u(α, τ ) would be (conjecturally) defined over the narrow Hilbert class field H+ of K.
Assumption (12) lead us to restrict to K of discriminant D congruent to 1 modulo 8.
For each p we considered all D < 500 for which p is inert in K and OK contains no
unit of norm−1.

We used the programming language Magma for the computations. In each case,
we computed representatives for each of the h classes of quadratic forms to produce
a τi (see [1, §5.2]) and the corresponding u(α, τi) ∈ K×

p . Conjecture 2.14 of [2] pre-

dicts that the conjugate of u(α, τi) ∈ H+ over H is u(α, τi)
−1. Thus the characteristic

polynomial of the u(α, τi) ∈ H+ over K should be

P(x) =

h
∏

i=1

(

x − u(α, τi)
)(

x − u(α, τi)
−1

)

.

We computed the polynomial P(x) in Kp[x] to an accuracy of 50 p-adic digits, and
used a simple algorithm involving shortest lattice vectors (see [3, §1.6]) to recognize
the resulting p-adic numbers as elements of K.

Remark 5.1 The modular symbol ψ attached to α actually takes values in 3Z, since
α is the cube of the modular function η(z)8η(2z)−12η(4z)4 of level 4. In order to
minimize the heights of the points u(α, τ ), it is preferable to replace ψ with ψ/3.

Furthermore, after executing our algorithm, it was clear that in most cases our

p-units were still powers of smaller units. If the integers ordp(u(α, τi)) and

µ
{

∞→ a

Nc

}

((u + pZp)× (v + pZp))

for (u, v) ∈ X are divisible by a common integer r relatively prime to p, then formulas
(30)–(32) yield a canonical r-th root of u(α, τ ) in K×

p , by replacing ψ by ψ/r. In each
case where ordp u(α, τ ) 6= 0, we calculated the largest r for which this was the case.

The tables below present our results; we list for each discriminant the class num-
ber h of OK (so [H+ : K] = 2h), the maximal value of r as described in Remark 5.1,
the values 1

r
ordp u(α, τ ), and the polynomial P(x) of the u(α, τ )1/r scaled to clear

powers of p from the denominator. In each case, the polynomials produced are in-
deed characteristic polynomials of p-units in H+. In many cases, the units listed are
powers of smaller p-units in H+; in these cases, the polynomial P(x) of the largest
root lying in H+ is listed in the table on the following line (with the root taken im-

plied by the value of r). This root is not necessarily uniquely defined, depending on
the presence of roots of unity in H+.

Remark 5.2 Since the units we produce conjecturally have trivial valuation at each
place not lying above p, they are determined uniquely by their valuations at the places

https://doi.org/10.4153/CJM-2007-023-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-023-0


570 S. Dasgupta

Table 1: Characteristic Polynomial of u(α, τ ) for p = 3

D h r ordp u(α, τ )1/r P(x)

161 1 6 ±0 x2 − 2x + 1

209 1
6 ±6 729x2 + 1358x + 729

36 ±1 3x2 + 5x + 3

305 2
6 ±2,±4

6561x4 − 675
√

D+3987
2

x3 + 75
√

D+4607
2

x2−
675

√
D+3987
2

x + 6561

12 ±1,±3 81x4 − 9
√

D+345
2

x3 + 15
√

D+419
2

x2 − 9
√

D+345
2

x + 81

329 1 6 ±0 x2 − 2x + 1

377 2 12 ±1,±3 81x4 − 21
√

D+207
2

x3 + 21
√

D+499
2

x2 − 21
√

D+207
2

x + 81

473 3

6 ±2,±2,±6

310x6 + 15795
√

D+101493
2

x5 + 12285
√

D+620541
2

x4+
34905

√
D+336763
2

x3 + 12285
√

D+620541
2

x2+
15795

√
D+101493
2

x + 310

12 ±1,±1,±3
243x6 + −9

√
D+945
2

x5 + 15
√

D+1167
2

x4 + 21
√

D+815
2

x3+
15
√

D+1167
2

x2 + −9
√

D+945
2

x + 243

497 1 6 ±0 x2 − 2x + 1

above p. In particular, when the class number of K is 1 and ordp u(α, τ ) = 0, we

expect u(α, τ ) to be a root of unity. To produce non-trivial units in this case, one
must work with a different modular unit α to avoid the “accidental zero” caused by
the particular linear combination of ∆-functions weighted by nd used to define α.

Similarly, if K has class number 2 and the values ordp u(α, τi) for the distinct Γ-

orbits of τi are equal, then we expect the corresponding units to be equal, and our
polynomial P(x) to factor as a square. A different modular unit must be used to
generate the full narrow Hilbert class field. These features of the construction are
evident in the tables.
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Table 2: Characteristic Polynomial of u(α, τ ) for p = 5

D h r ordp u(α, τ )1/r P(x)

33 1
6 ±2 25x2 + 3

√
D−49
2

x + 25

12 ±1 5x2 + 3
√

D−1
2

x + 5

57 1 12 ±1 5x2 + −
√

D+9
2

x + 5

177 1
6 ±6 56x2 + 4011

√
D+5231
2

x + 56

12 ±3 125x2 + 21
√

D−191
2

x + 125

217 1 6 ±0 x2 − 2x + 1

273 2
6 ±2,±2 (25x2 + 3

√
D−41
2

x + 25)2

12 ±1,±1 (5x2 + −
√

D+3
2

x + 5)2

297 1
12 ±3 125x2 − 74x + 125

36 ±1 5x2 + x + 5

377 2

6 ±2,±6
58x4 + 30375

√
D+533925
2

x3 + 76545
√

D+102167
2

x2

+ 30375
√

D+533925
2

x + 58

12 ±1,±3
625x4 + 75

√
D−655
2

x3 + −15
√

D+1447
2

x2

+ 75
√

D−655
2

x + 625

393 1
6 ±10 510x2 + 2275534x + 510

12 ±5 3125x2 + 4154x + 3125

417 1
6 ±6 56x2 − 2109

√
D+18929
2

x + 56

12 ±3 125x2 + 19
√

D+111
2

x + 125

473 3

6 ±2,±2,±6

510x6 + −253125
√

D−4501875
2

x5

+ 496125
√

D+5836125
2

x4 + −59535
√

D−13546883
2

x3+
496125

√
D+5836125
2

x2 + −253125
√

D−4501875
2

x + 510

12 ±1,±1,±3

3125x6 + −1125
√

D−1475
2

x5

+ 225
√

D+47345
2

x4 + −2655
√

D−6797
2

x3+
225

√
D+47345
2

x2 + −1125
√

D−1475
2

x + 3125

497 1 6 ±0 x2 − 2x + 1
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Table 3: Characteristic Polynomial of u(α, τ ) for p = 7

D h r ordp u(α, τ )1/r P(x)

33 1
6 ±2 49x2 + 94x + 49

12 ±1 7x2 + 2x + 7

129 1 12 ±1 7x2 − 2x + 7

201 1
6 ±2 49x2 + 94x + 7

12 ±1 7x2 + 2x + 7

209 1
12 ±3 343x2 − 610x + 343

36 ±1 7x2 + 5x + 7

297 1
6 ±6 76x2 + 153502x + 76

36 ±1 7x2 + 2x + 7

321 3

6 ±2,±2,±6

710x6 − 1188495
√

D+567084987
2

x5+
−557865

√
D+433702773
2

x4 + 5083155
√

D−475485877
2

x3

+−557865
√

D+433702773
2

x2 − 1188495
√

D+567084987
2

x + 710

12 ±1,±1,±3

75x6 − 2205
√

D+53361
2

x5+
3465

√
D+48699
2

x4 − 4455
√

D+21791
2

x3

+ 3465
√

D+48699
2

x2 − 2205
√

D+53361
2

x + 75

377 2

6 ±2,±6
78x4 + −1210545

√
D+3900253

2
x3 + −172935

√
D+31066815
2

x2

+−1210545
√

D+3900253
2

x + 78

12 ±1,±3
2401x4 + 315

√
D+10017
2

x3 + 405
√

D+15155
2

x2

+ 315
√

D+10017
2

x + 2401

465 2
6 ±4 ,±4 (2401x2 − 4034x + 2401)2

24 ±1 ,±1 (7x2 + 2x + 7)2

489 1
6 ±2 49x2 + 94x + 49

12 ±1 7x2 + 2x + 7
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Table 4: Characteristic Polynomial of u(α, τ ) for p = 11

D h r ordp u(α, τ )1/r P(x)

57 1
6 ±2 121x2 − 15

√
D+233
2

x + 121

12 ±1 11x2 − 5
√

D+3
2

x + 11

105 2
6 ±2,±2 (121x2 − 39

√
D+73
2

x + 121)2

12 ±1,±1 (11x2 − 3
√

D+13
2

x + 11)2

129 1
6 ±2 121x2 + −21

√
D+199

2
x + 121

12 ±1 11x2 +
√

D+21
2

x + 11 [1pt]

161 1 6 ±0 x2 − 2x + 1

217 1 6 ±0 x2 − 2x + 1

249 1
6 ±6 116x2 − 167295

√
D+3198553
2

x + 116

12 ±3 113x2 − 285
√

D+587
2

x + 113

305 2

6 ±2,±6
118x4 + 10372725

√
D+344443077
2

x3 + 23917275
√

D−61466353
2

x2

+ 10372725
√

D+344443077
2

x + 118

12 ±1,±3
114x4 + −2475

√
D+6853

2
x3 + −225

√
D+44467
2

x2

+−2475
√

D+6853
2

x + 114

321 3

6 ±2,±2,±6

1110x6 − (1967882169
√

D + 60603418095)x5+
10953497049

√
D+178199983335
2

x4

− 13842699651
√

D+210615242059
2

x3

+ 10953497049
√

D+178199983335
2

x2−
(1967882169

√
D + 60603418095)x + 1110

12 ±1,±1,±3

115x6 + (−4719
√

D + 427251)x5+
−37257

√
D+801537

2
x4 + −55935

√
D+531929

2
x3

+−37257
√

D+801537
2

x2 + (−4719
√

D + 427251)x + 115

329 1 6 ±0 x2 − 2x + 1

393 1
6 ±10 1110x2 − 50395911602x + 1110

12 ±5 115x2 − 319798x + 115

417 1
6 ±6 116x2 + 174795

√
D−2882153
2

x + 116

12 ±3 113x2 + 215
√

D−813
2

x + 113

497 1 6 ±0 x2 − 2x + 1
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