CHARACTERS OF CARTESIAN PRODUCTS
OF ALGEBRAS

SETH WARNER

Introduction. Let R be a commutative ring with identity 1. A character
of an R-algebra E is a homomorphism from E onto R, regarded as an algebra
over itself. If (E,)ecs is a family of R-algebras indexed by a set 4 and if

E=1]] Ea
a€eA
then for every 8 € 4 and every character vs of Es, v5 0 prg is a character of E
where prg is the projection homomorphism from E onto Es Further if A4 is
finite and if the only idempotents of R are 0 and 1 (equivalently, if R is not
the direct sum of two proper ideals), it is easy to see that every character of E
is of this form. In general, it is natural to ask:
(1) Is every character of
E =[] E.
Q€A
of the form vg o prg for some B & A, where vg is a character of Eg?

If each E, is R, E is simply the R-algebra of all R-valued functions with
domain 4; we shall denote this algebra by R4, the set of its characters by
M(R4), and its identity element by e. Since the only character of the R-
algebra R is the identity map, (1) becomes for R4:

(2) Is every character of R4 a projection?

Question (1) appears more general than (2), but we shall see in § 1, as a
consequence of an extension theorem of Buck, that an affirmative answer
to (2) implies an affirmative answer to (1).

Recently, by a measure-theoretic argument, Bialynicki-Birula and Zelazko
(1) answered (1) in the affirmative if R is an infinite field, if each E, has an
identity, and if 4 satisfies a certain set-theoretic condition. The author
obtained his results independently (without the hypothesis that each E,
possess an identity) as corollaries of a density theorem concerning a suitable
weak uniform structure imposed on the set of characters of R4. These results
are given in §§ 2 and 3. In §§ 4 and 5 we shall prove that if R is finite and 4
infinite, question (2) has a negative answer, but that if R is a principal
domain having at least two non-associated extremal elements (for example,
if R is the integers) and if A4 satisfies a certain set-theoretic condition, the
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questions have an affirmative answer. These results are applied in the re-
maining two sections: in § 6 we show that the only compact principal domains
are the known ones, namely, finite fields and valuation rings of locally com-
pact fields whose topology is given by a discrete valuation of rank 1; and in
§ 7 we give conditions on the algebra €(T") of all real-valued continuous func-
tions on topological space T which are both necessary and sufficient for every
connected component of 7" to be open.

1. The extension theorem. Buck’s extension theorem (5, Theorem 1)
may be stated in its most general form as follows (as observed in (8, p. 74),
one of the hypotheses of Buck’s original version is superfluous).

THEOREM A. Let R be a commutative ring with identity, E an R-algebra, H
an ideal of E, F an R-algebra with identity. If f is a homomorphism from H
onto F, there exists a unique homomorphism g from E onto F extending f.

Consequently, we see that an affirmative answer to question (2) implies
an affirmative answer to question (1):

THEOREM 1. Let (Eq)aea be a family of R-algebras indexed by A. If every
character of R* is a projection, then for every character u of

E=1]] E

aeA

there exist B € A and a character vs of Eg such that u = vg o prs.

Proof. First, let us assume each E, has an identity e,. The restriction of u
to the subalgebra

F=]] Rea

a€ed

of E is a character of F since F contains the identity of E. As F is canonically
isomorphic with R4, it follows from the hypothesis that there exists 8 € A
such that u(ig(es)) = 1, where g is the canonical injection map from Eg
into E. Hence if v3 = % o 14, 9 is a character of Eg, and # and v o p7s coincide
on the ideal 75(Eg) of E. Therefore, as vs o p7s is a character of E, the unique-
ness part of Buck’s theorem ensures # = 95 o prs. In the general case, let E,*
be the R-algebra obtained by adjoining an identity to E,. As E, is an ideal
in E,*, E is an ideal in
G =[] Ef
acA

By Buck’s theorem, there exists a character of G extending %, and an applica-
tion of the preceding result completes the proof.

2. Algebras over fields. Let K be a field equipped with the discrete topology.

K is then a topological field whose associated uniform structure is the discrete
uniform structure. Let Ux(A4) be the weakest uniform structure on 4 such
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that each f € K4 is uniformly continuous, let ®x(4) be the weakest uniform
structure on the set (K4, K) of all K-valued functions on K4 such that
u — u(f) is uniformly continuous on F (K4, K) for all f € K4, and let Bx(4)
be the uniform structure induced on M (K4) by Wx(A4). As the uniform
structure of K is complete and separated, Wx(4) is a complete, separated
uniform structure (4, § 1, Proposition 2, and Theorem 1). A familiar argument
shows M (K4) is closed: if § is a filter on M (K4) converging to u € F(K4, K)
and if £, g € KA, then §(fg) — u(fg), F(f) — u(f), and §(g) — u(g); for any
Fe§, (fo)(F) Cf(F)g(F), so F(fg) is the filter base for a filter finer tnan
that generated by F(f)-F(g); hence as F(f) - Flg) — u(fHulg), so also F(fg)
— u(f)u(g), and therefore u(fg) = u(f)u(g). Similarly, u is linear. F(e) — u(e),
but as v(e) = 1 for all v € M(K4), u(e) = 1. Hence u € M(K*). M(K4) is
therefore a complete separated uniform space. For any finite subset T of K4,
let U(T) = [(a,B) €4 XA: fla) =Ff(B) for all f€ T, V(T') = [(u,2) €
M(K4) X M(K4): u(f) = v(f) for all f€ T]. The collection of sets U(T)
[respectively, V(T)] forms a fundamental system of entourages for Ug(4)
[respectively, Bx(A4)] as T ranges through all finite subsets of K4. For each
a € A let " be the projection f — f(«) on K4. Then a — o is clearly a uniform
structure isomorphism from A into M(K4), and we shall denote by 4" the
image of A under this map.

THEOREM 2. For any field K, A* is dense in M(K*).

Proof. Let u € M(K4); we shall prove there exists a filter on 4* converging
to . Let H be the kernel of #, a proper ideal of K4. For each finite subset
T of Hlet F(T') = [a"* € A*:f(a) = 0 for all f € T]. Clearly F(Ty) M F(I'y)
= F(T'; U I'y), so to prove the sets F(T') form a filter base for a filter § on
A*, it suffices to prove F(TI') # ¢ for all finite subsets I' of . Suppose F(T') =¢
for some T = {f1,...,f,} € H; we define gy, ..., g, inductively by letting
g1 = e and, for j > 1, letting g; be the characteristic function of

[ ca( £ re)w -0,

Then if 2 = Zy*f;g;, h € H and, since F(I') = ¢, h(a) # 0 for all « € 4. But
then e = %-(e/h) € H, so H = K# which is impossible. Finally, the filter
thus defined converges to u: if T' = {f1,...,f,} € K4, for each j let &, = f;
— u(f;)e; then Ty = {hy, ..., h,} C H. F(T4) C V() (u), for if «* € F(T)
and if 1 <j<n, &"(f) —u(f,) = a*(h; + u(f)e) — u(fy) = o (h;) = hj(a)
= 0, by definition of F(Ty). Hence § — u, and the proof is complete.

CoroLLARY 1. If K 1is a field, every character of K4 is a projection if and
only if Ug(A4) is complete.

CoROLLARY 2. If K is a field, (Ex)aea @ family of K-algebras indexed by A,
and of Ug(A) is complete, then for every character v of E = 1, E, there exist
B € A and a character vg of Eg such that v = vz o prs.
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3. The theorems of Bialynicki-Birula and Zelazko. An Ulam measure
on set A is a non-zero, countably additive set-function A, defined on the class
of all subsets of A, taking on only the values 0 and 1, such that A\(X) = 0
for all finite subsets X of 4; an Ulam ultrafilter on A is an ultrafilter U such
that the intersection of any countable subfamily of U is again a member of
U; a point ultrafilter on A is simply the (Ulam) ultrafilter of all subsets of A
containing a given point of 4. If X is an Ulam measure, the sets X such that
MX) =1 form an Ulam ultrafilter which is not a point ultrafilter; conversely
any Ulam ultrafilter which is not a point ultrafilter defines an Ulam measure.
Thus 4 admits no Ulam measure if and only if every Ulam ultrafilter on 4
is a point ultrafilter.

Bialynicki-Birula and Zelazko (1) proved the following results (under the
additional hypothesis in Theorem B that each E, possessed an identity):

THEOREM B. Let K be an infinite field, (Ey)aca a family of K-algebras indexed
by a set A which either admits no Ulam measure or has cardinality not greater
than that of K. Then for every character u of E = Tl E,, there exist 8 € A and a
character vg of Eg such that u = vg o prs.

TrEOREM C. If K s an infinite field admitting no Ulam measure, then .|
admits no Ulam measure if and only if every character of K4 is a projection.

By Corollary 2 of Theorem 1, to prove Theorem B it suffices to show that
either of its hypotheses concerning .1 ensures Ug(4) is complete. If the car-
dinality of 4 is not greater than that of K, there exists a one-to-one function
g ¢ K4 U({g}) is then the diagonal in 4 X A4, so Ug(4) is the discrete
uniform structure and hence is complete. Suppose 4 admits no Ulam measure.
Let § be a Cauchy filter on 4 and let U be an ultrafilter containing §. U is
an Ulam ultrafilter: let (\,),>0 be a sequence of distinct non-zero elements of
K. If (F,).>0 s any decreasing sequence of members of U such that Fy = 4,
let g(@) = N, forall @ € F, — Foy1, gla) = 0 forall @« € F = M,30F,, and let
C € Nbe U{{g})-small. If C N\ (F, — Fpy1) # ¢, CMN F,y1 = ¢ by definition
of g, which is impossible. Hence C C F, so F € 1. Thus by hypothesis, as
every Ulam ultrafilter is a point ultrafilter, there exists 8 € 4 which is con-
tained in each member of 11. 8 is then an adherent point of the Cauchy filter
&, so § converges to B and the proof is complete.

To prove Theorem C, it suffices by Theorem B and Corollary 1 of Theorem 2
to show that if Ug(A4) is complete and if every Ulam ultrafilter on K is a point
ultrafilter, then every Ulam ultrafilter U1 on 4 is a point ultrafilter. For each
fe K4 [LCK:f1(L) € U] is clearly an Ulam ultrafilter on K, so there
exists A € K such that f~1(A) € . But f~!(\) is U({ f})-small; it follows
easily that U is a Cauchy filter on 4 and therefore converges. As the topology
defined by x(4) is the discrete topology, U is therefore a point ultrafilter.

4. Algebras over finite rings. We next ask for what other commutative
rings R with identity does question (2) (and therefore question (1)) have an
essentially affirmative answer. We first consider finite rings.
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Let R be a finite commutative ring with identity 1. If v and 6 are idem-
potents in R, we write v > § if ¥ = §, and obtain thus the usual partial order-
ing of idempotents; idempotent e is minimal if ¢ # 0 and if § < e implies
8 =0o0rd = e Let (¢,)1<;<, be the set of all minimal idempotents. Then if
j # k, e, =0, and clearly 1 = 3 i"¢; (for otherwise, as R is finite, idem-
potent 1 — > "¢; > some minimal idempotent not in (€,)1<j<z.) Then R is the
direct sum of ideals (Re;)i<<,, and every idempotent is the sum of a sub-
family of (¢;)1<j<, (s0 there exist exactly 2" idempotents in R). If X is a subset
of A4, let ¢x € R* be its characteristic function. If % is a character of R4,
u(¢x) is then an idempotent in R since ¢x is an idempotent in R4,

THEOREM 3. Let R be a finite commutative ring with identity, e, ..., €,
(n > 1) its minimal idempotents, and let ® be the class of all ultrafilters on A.
For each character u of R* and for 1 < j < n,letFu; = [X T 4 :ul(dx) > ¢,
Then u— (Fu1, ..., Fun) 1S ¢ one-to-one map from M(R*) onto ®". Hence
if A is finite and has m members, M (R*) has m™ members; if A is infinite with
cardinality R, M(R%) has cardinality exp (exp(X)).

Proof. §,,;1s an ultrafilter: as u(dp4) =1 > e;and u(gy) = 0 < €, 4 € Fuj
and ¢ € Fu,;s if X, V€ Fuyy u(dxny) = uldx)u(dy) > € =€, so XNV
€Fusf XCEFu,and VDX, ¢x = dxdy, so u(px) = u(dx)u(éy), that is,
u(py) > u(px) > €;, and therefore V € §, ,; finally, if X ¢ §, ;, u(dx)e; = 0
by minimality of ¢,, so

w(pa—x)e; = [u(pa—x) + u(ox)le; = u(da)e; = ¢,
that is, u(¢p4_x) > ¢, and therefore 4 — X € §,. ;. Thus §,,; is an ultrafilter.
Next, suppose §..; = F».; for 1 < j < n. Given subset X of 4,
u(px) = Zle; ey <ulex)] = 2l s X € Fuyl = Zle 1 X € F0 ]
= Yles e < v(ox)] = v(dx).

As R is finite, the functions ¢y generate R*; hence u# = v. Thus the map is
one-to-one. Next, let i, ..., . be any n (not necessarily distinct) ultra-
filters on 4, and let 1 < j < n. As R is finite, for each f € R4 there exists
one and only one A\, ; € R such that f ~'(\, ;) € ;. lf f,g€ R*and if p C R,
there exists
a € 7N ) MYV ) N (4 D7 s ) N D)7 N s) OV ()™ N 5)
since §; is a filter. Hence
Mo, = (f+ (@) = fla) + gle) = Ay + Ny
Ao = () (a) = fla)gle) = NNy
and
MNeri = (Wf) (@) = pf(a) = phs,;

Let
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u(f) = ; Ay, i€

Then clearly from the above u is linear, and for any f, g € R4,

w0 = (5 000)( B hese) = 5 B vebvsen

j=1 k=1
= j_Zl AriNg. s€5 = Zl Mo, i€5 = u(fg).
= g
Also, clearly )\, ; = 1. Hence # € M(R*). For any subset X of 4,
. ]. = >\¢,ij

if and only if X € §;, and
O = )\d’er

if and only if X ¢ §;; therefore u(¢x) = > le;: X € F,l, and so u(dx) > €
if and only if X € §,. Hence §,,; = §, for 1 < j < #, and therefore the map
is onto ®*. If 4 is finite with m members, every ultrafilter on .4 is a point
ultrafilter, and therefore @ has m" members. Suppose 4 is infinite with
cardinality N. Then ® has cardinality exp (exp(X)) (2, Exercise 14(c), p. 73),
so M(R*) has cardinality [exp(exp(X))]* = exp(exp(X)).

We see therefore that the answer to question (2) is in general negative
if R is finite:

COROLLARY. Let R be a finite commutative ring with identity 1, A a set containing
more than one element. Then every character of R4 is a projection if and only
if A 1s finite and the only idempotents of R are 0 and 1.

5. Algebras over integral domains.

THEOREM 4. Let D be an integral domain, K its field of quotients. The following
two conditions are both mecessary and sufficient for every character of the
D-algebra D* to be a projection:

(1) Every character of the K-algebra K* is a projection;

(2) For every u € M(D4) and every f € D4 such that f(«) # 0 for all a € .1,
u(f) # 0.

Proof. Necessity: if # is a projection of D* and if f(«a) ## 0 for all « € 4,
then u(f) # 0; hence (2) is necessary. If (1) does not hold, there exist charac-
ters of K4 which are not projections. Then by Corollary 1 of Theorem 2,
Ux(A4) is an incomplete uniform structure. Let § be a non-convergent Cauchy
filter on A for Ug(A). Then for any f € D4, f(§) is a Cauchy filter base in
D, hence lim f(g) exists and lies in D since D C K is closed and K complete.
Clearly u: f — lim f(§) is a character of D4, and for the characteristic function

¢o of any {a}, @ € 4, u(¢.) = 0 since § is not convergent. Thus % is not a
projection.
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Sufficiency: let u € M(D4). If f € K4, f is the quotient g/k of [unctions
g, h € D* where h(a) # 0 for all « € 4, and so by (2) u(h) # 0. It is easy
to see that if we define v(g/h) to be u(g)/u(h) for all g, h € D* such that
h(a) # 0 for all @ € A, then v is a well-defined character of K4 extending u.
As v is a projection by (1), u is also a projection.

In discussing principal domains we shall use the terminology and results
of § 1 of Bourbaki’s 4/gebre, chapter 7. Also, we assume as part of the definition
of compactness that compact spaces are separated.

THEOREM 5. Let D be a principal domain possessing at least two non-associated
extremal elements m and o. If A either admits no Ulam measure or has cardinality
not greater than that of D, every character of D* is a projection.

Proof. By Theorem 4 and Theorem B, it suffices to prove that if « is a
character of D4, then u(f) # 0 for every f € D4 satisfying f(a) # 0 for all
a € A. Define p € D# such that for each a € A, p(a) is the highest power
of = dividing f(a). Then f = pg with ¢ € D* such that (m, g(a)) =1 for
each @ € A, and hence there exist g1, g» € D* such that =g, 4+ gg» = e. This
implies 7u(gi) + u(q)u(g:) = 1 and therefore u(q) # 0 since 7 is not in-
vertible. Similarly, there exist ki, hy € D4 such that oh; + phs = e, vielding
u(p) # 0. Therefore u(f) = u(p)ulq) = 0.

The author is indebted to the referee for the following theorem and remark.

THEOREM 6. If R is a compact commutative ring with identity and if .1 is
any infinite set, there exist characters of R* which are not projections.

Proof. Let 1 be any ultrafilter on .1 which is not a point ultrafilter. Lor
any f € R4, f(11) is an ultrafilter base on R and thus converges. Hence u:
S —lim f(1) is clearly a character of R4 which is not a projection.

If D is the ring of p-adic integers for some prime p, D is a compact principal
domain; if 4 is a countably infinite set, 4 admits no Ulam measure but there
exist characters of D* which are not projections by Theorem 6. Thus the
condition in Theorem 5 that D have at least two non-associated extremal
elements cannot be omitted without other restrictions on D.

6. Compact principal domains. Let K be a field with a discrete valuation
v of rank 1. Then the valuation ring D = [x € K :9(x) > 0] is a principal
domain whose field of quotientsis K,and P = [x € K :v(x) > 0] is the unique
maximal ideal of D. If the topology on K defined by v is locally compact
(equivalently, if K is complete and if the residue class field D/P is finite
(3, Exercise 24, p. 59)), D is compact.

Thus finite fields and valuation rings of locally compact fields whose
topology is given by a discrete valuation of rank 1 are compact principal
domains. We now show these are the only compact principal domains.

THEOREM 7. If D is an infinite compact principal domain, then there exists a
non-trivial discrete valuation v of rank 1 on the field of quotients K of D such that:
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(1) The topology of K defined by v is locally compact and induces on D its
gven topology.
(2) D 1s the valuation ring of K with respect to v.

Proof. As in the example following Theorem 6, if A is a countably infinite
set, 4 admits no Ulam measure but by Theorem 6 there exist characters of
D4 which are not projections; hence as D is infinite, D is not a field by Theorem
B, so by Theorem 5 there exists an extremal element p £ D such that |p}
is a representative system of extremal elements. For each non-zero element
x of K there exist a unique unit # of D and a unique integer n such that
x = up”; if x = up”, let v(x) = #n, and let v(0) = 4+ «. Clearly v is a discrete
valuation of rank 1 on K and its valuation ring is D. The topology T, induce«
on D by the topology of K defined by v is separated, and the given topology
T of D is compact. Hence to prove T = ¥, it suffices to show T, is weaker
than $, that is, for all positive integers #n, U, = [x € D :9(x) > n] is a
neighbourhood of 0 for ¥. Let V be a neighbourhood of 0 for T not con-
taining 1, p, p%, . .., p" By (3, Exercise 7, p. 56) there exists a neighbourhood
W of 0 for T satisfying DW C V. Let x = up?f € W. If & < n, p* = w' (up")
¢ DW C V, a contradiction. Hence £ > #, that is, x € U,. Thus W C U,,
so ¥, = T. But then D is a compact neighbourhood of 0 for the topology
of K, so K is locally compact.

COROLLARY. A compact principal domain is metrizable, totally disconnected,
and has exactly one maximal ideal.

7. A topological application. Let 7" be a topological space, (7" the
algebra over the real numbers R of all continuous real-valued functions on
T. We shall apply Theorem B to give necessary and sufficient conditions on
&(T) for every connected component of 7" to be open. Let us call an algebra
decomposable if it is the direct sum of two proper ideals, indecomposable other-
wise. The following theorem is well known and easy to prove:

TueorREM 8. T is connected if and only if S(T) is indecomposable.

Let us call Ulam’s Axiom the assertion that there exist no Ulam measures;
it is known that Ulam’s Axiom is consistent with the usual axioms of set theory
(9, pp- 207-8). Let us call an algebra fully decomposable if it is isomorphic
with the Cartesian product of indecomposable algebras.

THEOREM 9. If every connected component of T is open, S(T) is fully decom-
posable. Conversely, Ulam’s Axiom is equivalent to the following assertion: if T
is any topological space such that C(T) s fully decomposable, then every con-
nected component of T is open.

Proof. If (Ta)acsa is the family of all connected components of 7" and if
each T, is open, clearly €(7) is isomorphic with II,.4 €(7,), and by Theorem
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8 each €(7,) is indecomposable. To prove the second assertion, we shall
first prove the following lemma:

LEMMA. Let (Ea)aes be a family of non-zero algebras over the real numbers R
indexed by a set A admitting no Ulam measure, and let g be an isomorphism
from E = MyeqEq onto C(T). Then T is the topological sum of a family (Ta)aea
of subsets, also indexed by A, and for all « € A py 0 g 0 i, is an isomorphism
from E, onto C(T,), where i, is the canonical injection isomorphism from E,
mto E, po the restriction homomorphism from C(T) into €(T,).

Proof. E has an identity e as it is isomorphic with €(7T), so for all « € 4,
Eq has e, = prq(e) as its identity. Then %, = (g0 4.)(ea) € €(T) is an idem-
potent, hence the characteristic function of an open-closed set 7, C T. Now
a # B implies i.(e) 1i5(eg) = 0 and thus h,-hg = 0, that is, T, N\ T = ¢.
Furthermore, for any ¢ € T, t"o g is a character of E and hence, by Theorem B,
"0 g = V.0 pr, for some a € A and some character v, of E. Then &, (¢) = t* (ha)
= t*(g(ta(€a))) = (Va0 p7a) (te(€x)) = va(€2) = 1 and therefore ¢ € 7},; this shows
T is the union and hence the topological sum of (7,)«cs. Next, suppose
(ps 0 g 078) (x) = O for some x € Eg Then (go7(x))(#) = (ps 0 g 0 is(x))(2)
= 0 for ¢t € Ty, whereas for t € T # T}, hs(t) = 0 and hence

(g0 1p(x)) () = (gos(xes)) () = (goip(x))(t) -hs(t) = 0;

this means g o 75(x) = 0 and therefore, as g and 15 are isomorphisms, x = 0.
Hence pg o g o 75 is one-to-one. Finally, ps o g o 75 is onto: for any f5 € €(7%)
let f € G(T) be the function defined by f(¢) = fs(¢) if ¢ € Ty, f(t) = 0 other-
wise. Since f-&, = 0 for any a # 38, we have

pra(@ () = pra(g™'(f)) - pra(ic(es)) = pra(g™'(f) -iale))
= pra(g'(f) g7 (ha)) = (prao g )(f-ha) = 0

for @ # B. This implies (75 0 p7s) (g7 (f)) = g7*(f) and thus
(ps 0 g 0 18) (Prs(g='(f))) = ps(f) = fp,

where prg(g=1(f)) € Eg.

We return now to the proof of the theorem. Let us assume Ulam’s Axiom
and suppose €(7) is fully decomposable. Then by the lemma, T is the topo-
logical sum of a family (7%)ae4 Of subsets, and foralla € 4, €(7T,) is isomorphic
with an indecomposable algebra. Hence by Theorem 8 each T, is connected.
(Tw)aea is therefore the set of all connected components of 7', and each 7, is
open. Finally, suppose Ulam’s Axiom is false. Now Ulam’s Axiom is equivalent
to the assertion that every discrete space S is a Q-space (that is, the weakest
uniform structure Bg(S) on S for which each f € €(S) is uniformly con-
tinuous is complete). (Q-spaces are defined and discussed in (7); a summary
of results about Q-spaces is contained in (6, pp. 351-2), and their relation
to Ulam’s Axiom is discussed in (9, pp. 206-8).) Therefore there exists a
discrete space .S which is not a Q-space. Let T be the completion of S for
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Br(S). Then €(7) is isomorphic with €(S), and as S is discrete, €(S) = R*,
a fully decomposable algebra. Therefore €(7) is fully decomposable. For any
s € S, there exists an open set V in T such that VNS = {s}; then s € V
=VNS8C(VNS)~ = {s}= = {s}, so {s} is both open and closed in T.
Let C be a connected component of T containing some point in 7 — S. Then
by the preceding, s § C for all s € S. Hence C & 7" — S. But then C cannot
be open, since S is dense in 7. €(7) is therefore fully decomposable, but not
every connected component of 7 is open.

COROLLARY. Assume Ulam’s Axiom. A topological space T 1is locally con-
nected if and only if for every open subset G of T, S (G) is fully decomposable.
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