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Abstract

The course of COVID-19 is highly variable, with genetics playing a significant role. Through
large-scale genetic association studies, a link between single nucleotide polymorphisms and
disease susceptibility and severity was established. However, individual single nucleotide poly-
morphisms identified thus far have shown modest effects, indicating a polygenic nature of this
trait, and individually have limited predictive performance. To address this limitation, we
investigated the performance of a polygenic risk score model in the context of COVID-19
severity in a Russian population. A genome-wide polygenic risk score model including infor-
mation from over a million common single nucleotide polymorphisms was developed using
summary statistics from the COVID-19 Host Genetics Initiative consortium. Low-coverage
sequencing (5x) was performed for ~1000 participants, and polygenic risk score values were
calculated for each individual. A multivariate logistic regression model was used to analyse the
association between polygenic risk score andCOVID-19 outcomes.We found that individuals in
the top 10% of the polygenic risk score distribution had a markedly elevated risk of severe
COVID-19, with adjusted odds ratio of 2.9 (95% confidence interval: 1.8–4.6, p-value = 4e-06),
and more than four times higher risk of mortality from COVID-19 (adjusted odds ratio = 4.3,
p-value = 2e-05). This study highlights the potential of polygenic risk score as a valuable tool for
identifying individuals at increased risk of severe COVID-19 based on their genetic profile.

Introduction

COVID-19 (coronavirus disease 2019) is a contagious illness caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The majority of individuals who contract
the virus exhibit mild to moderate respiratory symptoms and can recover without requiring
specific medical treatment. However, in certain cases, the disease can manifest in a severe form,
requiring medical intervention [1, 2].

Apart from external factors such as virus characteristics and the effectiveness of healthcare,
certain host-related factors such as increasing age, male gender, and pre-existing chronic diseases
such as hypertension, cardiovascular disease, or diabetes have been associated with susceptibility
and severity of COVID-19 [3, 4]. However, these risk factors alone cannot fully explain the wide
variation observed in the disease severity, which can range from asymptomatic cases to acute
respiratory distress syndrome and even death [5–7].

To gain insights into the aetiology of COVID-19, large-scale genetic association studies
including both rare and common genetic variants have employed various study designs. These
investigations, along with subsequent follow-up studies, have expanded our understanding of the
disease and provided potential avenues for its treatment. The COVID-19Host Genetics Initiative
(HGI) was established to investigate the role of human genetics in the severity and susceptibility
of COVID-19 [8]. This global effort aims to conduct a meta-analysis of multiple COVID-19
genome-wide association studies (GWAS) and to identify single nucleotide polymorphisms
(SNPs) associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Combin-
ing genetic data from up to 49562 cases and 2 million controls across 19 countries through case–
control meta-analyses, these studies have implicated a total of 13 independent genome-wide
significant loci associated with COVID-19-related traits [9]. Several of these loci represent
potentially actionable mechanisms in response to infection, such as innate antiviral immune
signalling, regulation of organ-specific inflammatory responses, and upregulation of cell recep-
tors [10, 11].
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The effects of individual genetic variants identified so far are
generally small, consistent with the polygenic architecture. An
individual who tests negative for a specific genetic risk variant
may still have a high genetic risk due to other unmeasured genetic
factors. While every single variant only explains a small portion of
the risk for severe COVID-19, combining multiple genetic variants
into a polygenic risk score (PRS) can offer a better prediction of the
risk. PRS allows for the aggregation of the effects of multiple SNPs
into a single score, which can be practically applied to individuals
within a population [12]. Conventionally, a polygenic score is
defined as a weighted linear combination of allele counts for SNPs
observed in an individual’s genome [13].

Several studies have explored the development and evaluation of
PRS for potential clinical applications, revealing that PRS is asso-
ciated with an increased risk of severe COVID-19, most of these
studied cohorts consisting predominantly of individuals ofWestern
European ancestry [15–17]. Using 1582 SARS-CoV-2 positive par-
ticipants from the UK Biobank (1018 with severe COVID-19 and
564 without severe COVID-19) and 64 SNPs for PRS calculation,
Dite et al. developed and validated a clinical and genetic model for
predicting the risk of severe COVID-19. Only 13% of participants
from this study were non-European, and the model including PRS
alone had an area under the receiver operating characteristic curve
(AUC) of 0.68 [17].

While one recent study included African and South Asian
groups, the associations with COVID-19 outcomes were limited
by applying a PRS based on only six SNPs [18]. Another study that
considered non-Western European populations was constrained by
its focus on a specific Russian cohort (athletes) and also included
only six genetic polymorphisms in the PRS assessment [19]. The
multi-ethnic approach implemented in a recent paper using UK
Biobank data allowed the application of PRS, based on 17 SNPs, to
diverse populations, where a PRS model showed meaningful pre-
diction performance across Black and Asian cohorts [20, 21].

While the study’s findings suggest that PRS may have the
potential as a predictivemarker for COVID-19 severity and support
their potential use in risk stratification and personalized healthcare
approaches, the limitations of these studies underscore the need for
further research to enhance the predictive capability of PRS in the
context of COVID-19.

Our study aimed to investigate the performance of the PRS
model in the Russian population. The genomes of study partici-
pants (319 individuals with severe COVID-19 and 663 with mod-
erate or without disease) were assessed using low-coverage (with a
mean depth of 5x) sequencing. Next, we developed a genome-wide
PRS model for COVID-19 severity using the summary statistics
from the HGI consortium. We demonstrated that PRS, incorpor-
ating information from more than a million common genetic
variants, can identify individuals with markedly elevated risk of
severe COVID-19 course: adjusted OR = 2.9 (95% confidence
interval (CI): 1.8–4.6, p-value = 4e-06) for individuals in the top
10% of the PRS distribution, and can moderately improve the
quality of prediction (AUC increased from 0.68 to 0.71) compared
to a model including only demographic and clinical information.

Materials and methods

Study participants and genetic sequencing

As part of the COVID-19 study, biomaterial (blood) and clinical
data from COVID-19 patients hospitalized in the infectious disease
department of the St. Petersburg State Budgetary Healthcare

Institution ‘City Hospital No. 40 of Kurortny District’ were col-
lected. For each participant, retrospective and prospective access to
electronic health data was available, including the Hospital Infor-
mation System (HIS).

In this work, low-coverage sequencing with an average coverage
of 5x was performed for 1101 individuals divided into 41 batches.
Low-coverage sequencing, also called low-pass whole genome
sequencing (LP-WGS), is a low-cost, high-throughput DNA
sequencing technology used to accurately detect genetic variation
in the genomes of multiple species [22]. LP-WGS is the type of
WGS with genome coverage from 0.5x to 5x [23, 24]. Using imput-
ation algorithms, this technology provides high variant detection
accuracy with low sequence coverage. LP-WGS and subsequent
imputation yields, across the genome, more accurate genotypes
than imputation using array-based genotyping data, allowing for
increased power in GWAS studies and more accurate results in
polygenic risk prediction [25].

Before sequencing, a preliminary analysis and quality control of
the data were performed. This was followed by a preprocessing
stage that used blocking and randomization techniques to design
sequencing batches to reduce potential biases and ensure an even
distribution of sample characteristics, such as age, sex, and case/
control status.

Genomic DNA isolation was performed with QIAcube, using a
QIAamp DNA Blood Mini Kit. DNA concentration was measured
with a Promega QuantiFluor dsDNA System. Library preparation
was done using an MGIEasy FS DNA Library Prep Set. Sequencing
was done on an MGISEQ-2000 sequencing machine with the
DNBSEQ-G400RS high-throughput sequencing set (FCL PE150,
540 G).

Variant calling, imputation, and quality control

Quality control (FastQC, version 0.11.9) [26], alignment (BWA,
version 0.7.17) [27], deduplication (samtools, version 1.16.1), and
variant calling (bcftools, version 1.16) were performed for the reads
obtained from sequencing [28]. Imputation of the resulting data
was then performed using the GLIMPSE tool (version 1.1.1) [29],
which allowed the imputation of low-coverage sequencing data. To
improve the imputation quality, only bi-allelic sites were retained
from the LP-WGS BAM data and processed with bcftools. Then
iterative refinement of the genotype likelihood using the reference
panels with a segmentation size of 2 Mb with a buffer size of 200 kb
produced imputed dosages, and multiple chunks within each
chromosome were ligated. A panel of the 1000 Genomes Project
with high coverage [30], including high-quality single nucleotide
variants and insertion-deletion mutations (SNV- and INDELs)
from over 3000 individuals, was used as a reference sample.

Subsequently, variants with an INFO score below 0.7 and a
minor allele frequency (MAF) less than 0.1% were excluded from
the analysis, following established protocols [9, 13]. After applying
filters for variant and individual call rates above 90%, five partici-
pants were removed. Genetic sex was inferred based on X chromo-
some heterozygosity using PLINK’s implementation, where
individuals with heterozygosity estimates (F) less than 0.2 were
classified as female and those with F greater than 0.8 were classified
as male. A total of 24 participants with discordant genetic sex were
excluded. First- and second-degree relatives were identified using
the KING-robust method [31] and removed from the analysis, with
a kinship threshold of 0.125. This step resulted in the exclusion of
32 participants (one member of each pair). The analysis was then
restricted to a list of HapMap3 variants [32] included in the PRS
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models. All genotype extraction and quality control procedures
were performed using PLINK 1.90 software [33].

Establishing COVID-19 severity

The criteria for a mild course of COVID-19 were defined as having
a body temperature below 38°C, cough, weakness, sore throat, and
the absence of indicators characteristic of a moderate or severe
course. Amoderate course of COVID-19was characterized by fever
with a temperature above 38°C, a respiratory rate greater than 22
breaths per minute, shortness of breath, pneumonia as detected by
computed tomography (CT) scan of the lungs, and oxygen satur-
ation (SpO2) less than 95%. Severe disease was clinically and
radiologically defined by a respiratory rate exceeding 30 breaths
per minute, SpO2 < 93%, PaO2/FiO2 < 300 mm Hg, progression of
changes in the lungs characteristic of COVID-19, and pneumonia
as indicated by CT data, including an increase in the prevalence of
identified changes by more than 25%.

Additional criteria for severe disease included the appearance of
signs of other pathological conditions, changes in the level of
consciousness, unstable haemodynamics (systolic blood pressure
less than 90mmHg or diastolic blood pressure less than 60mmHg,
and urine output less than 20 ml/h), and a quick Sequential Organ
Failure Assessment (qSOFA) score > 2 points. Lastly, the criteria for
an extremely severe course included signs of acute respiratory
distress syndrome (ARDS) requiring respiratory support
(invasive ventilation), septic shock, and multiple organ failure.

Ascertainment of covariates

The covariates of the present study were as follows: age, sex, and
comorbidities, including myocardial infarction (MI), congestive
heart failure (CHF), peripheral artery disease (PAD), cerebrovas-
cular disease (CD), chronic obstructive pulmonary disease
(COPD), diabetes, and kidney damage. The information pertaining
to the comorbidities was derived from the electronic medical
records. The first ten principal genetic components (PCs) were also
included as covariates to adjust for population genetic structures
and avoid bias, as per current recommendations [13]. The compu-
tation of PCs was done by PLINK 1.90 software, via the – pca option
[33]. In addition to genetic quality controlmeasures, 58 participants
were excluded from the analysis because information on their
clinical parameters was missing and could not be obtained. As a
result, the rate of missing values for any comorbidity is 0%.

Construction of PRS models

The calculation of PRS values relies on both genotype data from the
target individuals and a PRSmodel. To derive a PRS model, GWAS
are used to estimate the effect sizes of SNPs [34]. However, a GWAS
gives the marginal effect size for each SNP estimated by a regression
model that ignores linkage disequilibrium (LD) structure. As a result,
to construct a PRS model that incorporates multiple SNPs, the SNP
effects must be re-estimated while accounting for LD structure.

We used the GWAS from the COVID-19 HGI consortium
(release 7). These results were obtained by the meta-analysis that
combined the results of 60 individual studies from 25 countries,
with a total of 18000 severe cases of COVID-19 and more than a
million controls who either did not have a severe disease course or
were not affected by COVID-19 during the study period.

To re-weight the effect sizes,weusedSBayesR (version gctb_2.02), a
powerful Bayesian tool that uses summary statistics fromGWAS [14].

This tool re-weights the effects of each genetic variant based on the
marginal estimate of its effect size, statistical strength of association, the
degree of correlation between the variant and other variants nearby,
and tuning parameters. We used the default values for tuning param-
eters. It also requires a GCTB-compatible LD matrix file based on
individual-level data from a reference population, and for this analysis,
we used a shrunk sparse GCTB LD matrix from 50000 individuals of
European ancestry in the UK Biobank dataset [35].

PRS values were calculated as a weighted sum of allele counts:

PRSi =
XN

j

βjGij ,

where βj is the re-weighted effect size of the jth SNP, Gij is the
genotype of the jth SNP for ith individual, and N is the number of
SNPs from the model. PLINK 1.90 software [33] was used for PRS
calculation (via the – score option).

Statistical analysis and association testing

Logistic regression of COVID-19 outcomes on PRS was then con-
ducted using R (version 4.3.2) [36] and Python (version 3.8.17) [37],
adjusted for covariates (sex, age, comorbidities, and the first ten PCs).
The discriminative power of models in identifying high-risk individ-
uals was then assessed using receiver operating curve (ROC) analysis.
The area under the ROC (AUC) was calculated for full models
(consisting of covariates and PRS) and base models (covariates-only).
Because of limited sample size, we used the stratified k-fold cross-
validator (k = 5) to estimate a mean AUC for each logistic regression
model. The confidence interval for the AUC was calculated using the
formula given by Hanley and McNeil [38]. Increment in AUC
(ΔAUC)was reported basedon the difference between the twomodels,
reported as the discriminative or predictive power conferred by PRS.
The bootstrap procedure for differences between classifierswas used to
calculate the significance (p-value) of an increment in AUC.

Once the PRS was calculated, individuals were separately strati-
fied into quintiles for PRS. Next, they were categorized into low
genetic risk (decile 1, bottom 10% of cohort), intermediate risk
(decile 2–9, middle 80%), and high risk (decile 10, top 10%). For
each group, we applied the non-parametric Kaplan–Meier estima-
tor [39] to estimate the cumulative density curve and the log-rank
test (with other groups used as a reference), which is the statistical
test for comparing the survival distributions of two ormore groups.
Participants’ birthdates were considered the starting point, and
their respective enrolment dates in the study served as the endpoint.
For this analysis, COVID-19 outcomes (severe cases or death due to
COVID-19) were defined as events, while all other observations
were treated as censored data. We performed a multivariate Cox
regression analysis for the whole cohort using PRS values, sex,
comorbidities, and the first ten principal components of genetic
variation as parameters. To compare survival with changes in PRS,
we plotted the partial effects of PRS on outcome, where we fixed the
values of the covariates and used themean PRS values in each of the
three groups described above. The survival analysis was performed
using Python (version 3.8.17) [37].

Results

Participant characteristics

The participants of the study were the patients of the Infectious
Disease Department of the St. Petersburg State Health Care

Epidemiology and Infection 3

https://doi.org/10.1017/S0950268824001778 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824001778


Institution ‘City Hospital No. 40, Kurortny District’ who were
admitted for treatment with SARS-CoV-2 infection (confirmed
by polymerase chain reaction), and healthy individuals. Healthy
individuals are defined as people who did not require COVID-19
medical treatment at the time of the study (between April 2020 and
March 2022).

Table 1 shows the participants’ characteristics. Of the 982 parti-
cipants who passed quality control (Supplementary Figure 1),
431 (44%) were female, with a mean age of 60 years, while for
551 (56%) male participants, the mean age was 56 years. Overall,
814 (83%) of all participants had COVID-19, of which 319 (39%)

had severe COVID-19. Separation according to the severity of the
disease was carried out according to the clinical and radiological
data (Methods). The case group included 319 patients (199 men
and 120women, 63 ± 14 years) with the severe and extremely severe
course of COVID-19. The control group, which combinedmild and
moderate forms of COVID-19, as well as healthy individuals,
included 663 patients (352 men and 311 women, 56 ± 16 years).
Participants’ comorbidity characteristics stratified by COVID-19
severity and mortality are shown in Supplementary Tables 1–7.

Low-coverage sequencing and imputation

For all participants, low-pass whole genome sequencing (LP-WGS)
was performed with a depth of 5x genome coverage. To evaluate the
efficiency of LP-WGS in the PRS context, we calculated PRS values
for a participant (not included in the study population) sequenced
in each of the batches to control the quality of the sequencing
process. The coefficient of variation (CV) was equal to 0.5%,
demonstrating excellent technical reproducibility.

Testing associations between PRS and COVID-19 severity

Using the summary-statistics-based approach, leveraging information
from a robustmeta-analysis, we developed a PRSmodel, which incorp-
orated 1093542 common genetic variants. Subsequently, we calculated
individual PRS values using the obtained PRS model (Figure 1).

Across the study population, the PRS was normally distributed
with the prevalence of severe COVID-19 rising in the right tail of

Table 1. COVID-19-related characteristics of the participants

Characteristics Male Female

Mean age (SD) 56 (15) 60 (16)

Healthy individuals 101 67

Patients required treatment by
severity (course of COVID–19)

Mild 74 63

Moderate 177 181

Severe 198 117

Extremely
severe

1 3

Outcome Death 86 47

Recovery or
no disease

450 384

Figure 1. Study design and workflow. The PRS model for COVID-19 severity was derived by combining summary association statistics from the COVID-19 Host Genetics Initiative
consortium and a linkage disequilibrium reference panel of 50,000 individuals of European ancestry from theUKBiobank data set. As a computational algorithm, SBayesRwas used,
which is a Bayesian approach to calculate a posterior mean effect for all variants based on a prior (effect size in the previous GWAS) and subsequent shrinkage based on linkage
disequilibrium. The PRS model was restricted by the list of variants from HapMap3 and included about one million variants.
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the distribution, from 15% in the lowest decile to around 50% in the
highest decile (Figure 2). We compared the distributions of PRS
values between severe cases and the control group. Comparison of
the mean PRS values, performed using Student’s t-test for two
independent samples, showed a significant difference (p-value =
1e-07), with PRS values larger in severe cases (Figure 3). Next, we
found that the 10% of the population with the highest PRS values
had anOR = 2.3 for COVID-19 (95%CI: 1.5–3.6, p-value = 0.0001).

Adjusted and ROC analysis

We analysed the association between PRS and severe COVID-19
using a multivariate logistic regression model adjusted for sex, age,
comorbidities, and the first ten principal components of genetic
variation. In the adjusted model, a highly significant association
between PRS and severe COVID-19 was found: OR = 1.54 per
standard deviation (95% CI: 1.3–1.8 with p-value = 2e-08,
Supplementary Table 8). High values of PRS (the 10% of PRS
distribution) were associated with the adjusted OR = 2.9 (95% CI:
1.8–4.6, p-value = 4e-06, Supplementary Table 9).

With the applied cross-validation approach, the analysis showed
moderate improvements in AUC with the addition of PRS to the
base model containing only covariates (Supplementary Table 10).
The model predicting the risk of severe COVID-19 had an AUC of
0.68 (95% CI: 0.6–0.76 by the formula given by Hanley andMcNeil
[38]) for a model excluding PRS, and it increased up to 0.71 (95%
CI: 0.62–0.79) when PRS was included (Figure 4). However, given
the limited sample size, this result was insignificant (p-value > 0.05
for increment in AUC). The PRS-only model had an AUC of 0.6
(95% CI: 0.52–0.69, Supplementary Table 11).

Testing associations between PRS and COVID-19 mortality

The severe form of the disease is associated with an increased risk of
death.We compared the mean PRS values for groups with different
COVID-19 outcomes (death vs no death or no disease). Results
showed a significant difference in mean PRS (p-value = 0.006,
Figure 5).

Then, to assess how much the risk of death is associated with an
increased PRS value, we calculated the odds ratio (OR) for death

Figure 2. Prevalence of the severe COVID-19 according to PRS decile. All participants (N = 982) were stratified by decile of the PRS distribution. The average prevalence in per cent
and 95% CI within each decile are displayed.
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between the group with the highest PRS values (10%) and others.
The resulting OR was 2.0 (95% CI: 1.1–3.4) with p-value = 0.01.
Thus, in the group with the highest PRS values, the probability of
death due to severe disease was almost doubled. In an adjusted
model with the same covariates as in the analysis of COVID-19
severity, a significant association between PRS and COVID-19
mortality was found: OR = 1.5 per standard deviation (95% CI:
1.2–1.9 with p-value = 0.0007, Supplementary Table 12). High
values of PRS (the 10% of PRS distribution) were associated with
the adjusted OR = 4.3 (95% CI: 2.2–8.5, p-value = 2e-05,
Supplementary Table 13).

PRS-based survival analysis for COVID-19 severity and mortality

Next, we hypothesized that PRS for severe COVID-19 would be
associated with a higher risk of severe COVID-19 in early age. In
Kaplan–Meier analyses, which is a non-parametric statistic used to
estimate the survival function from lifetime data, we divided the
sample into three groups: 10% of all individuals with the highest
PRS values, 10% of all individuals with the lowest PRS values, and
the rest (Figure 6). The analysis showed that people from the group
with high PRS values started to have an increased risk of severe
COVID-19 in comparison with other groups already before the age
of 40 years (p-value < 2e-8 for the log-rank test). For example, the
average risk of a severe course, which is reached at the age of
60 years, in the groupwith the highest PRS is reached before 50 years
of age. Adjustment for covariates (sex, comorbidities, and the first
ten PCs of genetic variation) using a multivariate Cox regression
analysis showed similar results (Supplementary Figure 2) with the
hazard ratio (HR) for PRS = 1.39 (p-value < 1e-7, Supplementary
Table 14). The same analysis for the COVID-19 mortality showed
similar results, where people from the group of high PRS values
started to have an increased mortality risk of COVID-19 in com-
parison with other groups already before the age of 50 years (p-
value < 2e-6 for the log-rank test, Supplementary Figures 3 and 4)
with HR for PRS = 1.44 (p-value < 1e-3, Supplementary Table 15).

Discussion

In this study, we constructed a polygenic risk model for predicting
the severity and mortality risk of COVID-19 and applied it to a
target cohort of 982 Russian participants. Comparing the distribu-
tions of a PRS, incorporating information from more than one
million common genetic variants, between the case and control
groups revealed significant differences, indicating meaningful asso-
ciations between the PRS and COVID-19 severity and mortality.
We also demonstrated the potential of LP-WGSwith 5x coverage to
be used for PRS calculation followed by genetic predisposition
prediction.

Our main objective was to evaluate the predictive ability of PRS
for COVID-19 severity in a population of Eastern European ances-
try. To achieve this, we developed a logistic regression model that
included demographic and clinical covariates and the full model
that also incorporated the PRS. Comparison between these models
demonstrated that incorporating PRS moderately enhanced the
predictive accuracy. These findings align with a previous analysis
by Huang et al. [16], where PRS values for severe COVID-19 were
constructed using 112 SNPs in 430,582 participants from the UK
Biobank study. In that work, AUC was calculated for a model
including only covariates and for the full model, which also
included the PRS. For the first model, the AUC was 0.789, while
in the full mode, the AUCwas 0.794 (p-value = 0.002 for increment
in AUC). The higher overall prediction accuracy of themodel could
be attributed to the usage of information on additional covariates
(hypertension, chronic respiratory infections, asthma, physical
activity, smoking status, alcohol consumption, and body mass
index). Although our PRS, based on approximately one million
SNPs, offered stronger improvement in AUC (0.026 in our study vs
0.005 inHuang et al.), this result was insignificant, given the limited
sample size of our study. The higher contribution of the PRS in our
case can be explained by themuch larger number of genetic variants
used but also by fewer clinical factors in our model. Indeed, it is
often observed that adding a predictor to a model having a high

Figure 3. Comparison of distributions of PRS values between the groups with and without severe COVID-19. (a) Distribution of PRS in the groups with (Ncases = 319) and without
(Ncontrols = 663) severe COVID-19. The x-axis represents PRS, with values scaled to a mean of 0 and a standard deviation of 1 (in the total sample) to facilitate interpretation. (b) PRS
values among cases versus controls. Within each box plot, the horizontal lines reflect the median, the top, and bottom of each box reflect the interquartile range, and the whiskers
reflect the rest of the distribution, except for points that are determined to be ‘outliers’.
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AUC improves it by an amount smaller than what could be
achieved by adding the same factor to a poorer model.

Furthermore, stratifying individuals by PRS quantiles revealed
an association with a distinctive risk of severe COVID-19 in result-
ing groups. The highest PRS categories exhibited higher (adjusted
OR up to 2.9 for the top 10% PRS) risk. This genetic basis for
differences in disease severity among individuals also extended to
the occurrence of mortality due to COVID-19 (adjusted OR = 4.3
for the top 10% PRS). These results demonstrate that polygenic
risks can be employed to stratify patients and assess their risk of
severe disease and mortality related to COVID-19.

Additional survival analysis revealed that the highest risk cat-
egories as defined by PRS not only exhibited higher risk for
COVID-19 severity and mortality but also experienced an earlier
onset of increased risk compared to the mean- and low-risk cat-
egories. These findings provide insights into both the overall risk for
severe COVID-19 and how the risk varies by age.

The application of PRS in clinical settings presents many chal-
lenges. However, recent research has demonstrated their potential
utility in the realm of healthcare, spanning a wide array of diseases

[40–42]. As an illustrative example, the extended Breast and Ovar-
ian Analysis of Disease Incidence and Carrier Estimation Algo-
rithm (BOADICEA) model is employed to assess the risks of breast
and ovarian cancer, by integrating various factors including per-
sonal risk indicators, familial cancer history, mammographic dens-
ity, an assortment of lifestyle and hormonal aspects, genetic
screening for high- and moderate-risk genes, as well as polygenic
scores [43]. The validation of this model in a Dutch prospective
cohort, with regard to breast cancer risk prediction, has demon-
strated that the incorporation of PRS enhances the discriminatory
capability from 0.53 to 0.64, compared to a model based solely on
age, which currently serves as the sole determinant for breast cancer
screening recommendations in the Dutch population [44]. Our
study findings have indicated that the application of PRS in the
context of COVID-19 holds potential implications for stratifying
individuals according to their genetic predisposition towards dis-
ease severity.

In addition, several studies have found the positive impact of
informing patients about their increased polygenic risk on behav-
ioural patterns. For example, research has shown that when people

Figure 4. The comparison of receiving operating curves for three logistic regression models. The full model included the covariates (sex, age, comorbidities, and the first ten PCs)
and the PRS, while the covariates-only model excluded the PRS.
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are aware of their increased polygenic risk for certain diseases, such
as cardiovascular disease or diabetes, they are more likely to engage
in healthier lifestyles, including regular exercise, a balanced diet,
and regular health checkups [45]. These behavioural changes can
have a significant impact on disease prevention and treatment,
ultimately leading to improved health outcomes. By providing
patients with a thorough understanding of their genetic risk pro-
files, healthcare providers can encourage proactive measures to

reduce potential risks and promote long-term health and well-
being.

A few limitations of our study should be noted. First, despite the
multi-ethnic and global nature of the HGI Release 7 meta-analysis,
the participants were mostly of Western European descent
[9]. While polygenic scores that incorporate GWAS data from
diverse ancestries in addition to the target population have shown
relative improvement in predictive accuracy compared to methods

Figure 6. Association of PRSwith COVID-19 severity. All participants (N = 982) were stratified into three categories, based on their PRS: bottomdecile, deciles 2–9, and top decile. The
Kaplan–Meier curve is plotted according to the PRS category.

Figure 5. Comparison of distributions of PRS values between the groups with and without death outcome. (a) Distribution of PRS in the groups with (Ndeath = 133) and without (Nno

death = 849) death outcome of COVID-19. The x-axis represents PRS, with values scaled to a mean of 0 and a standard deviation of 1 (in the total sample) to facilitate interpretation.
(b) PRS values among cases versus controls. Within each box plot, the horizontal lines reflect the median, the top, and bottom of each box reflect the interquartile range, and the
whiskers reflect the rest of the distribution, except for points that are determined to be ‘outliers’.
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that rely solely on GWAS data from a single ancestry source [46],
incorporating more genetic data from non-Western European
populations into these models is expected to enhance their predict-
ive accuracy, particularly for individuals from underrepresented
populations. Second, the lack of specific clinical data required to
accurately match the severity criteria used by the HGI consortium
may have led to some inaccuracy in the classification of outcome
measures for some participants.

Our study has several strengths. First, we evaluated the perform-
ance of polygenic risk models in the Russian population, which is a
valuable contribution to understanding the limitations of PRS
applicability, particularly in light of the over-representation of
Western European population data in existing models. Secondly,
for complex traits, previous research has shown that even the
strongest GWAS hits tend to have modest effect sizes on risk and
that all the genome-wide significant hits in combination explain
only a small fraction of the disease risk heritability [47]. Subsequent
studies have largely resolved this initial mystery by demonstrating
thatmost of themissing heritability is due to numerous small-effect
common variants that are not significant at current sample sizes
[48, 49]. In this work, we employed a wide range of common SNPs
for PRS calculation, which is an important addition to previously
published models for severe COVID-19 prediction, where PRS
values were calculated using only themost significant SNPs. Finally,
recent publications have proposed the use of LP-WGS in conjunc-
tion with genotype imputation as an alternative to genotyping
arrays for trait mapping and polygenic score calculation [24]. In
our study, we also demonstrated good model performance using
PRS based on LP-WGS data.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0950268824001778.
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