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A DEFINITION OF SEPARATION AXIOM

BY
T. CRAMER

0. Introduction. Several separation axioms, defined in terms of continuous
functions, were examined by van Est and Freudenthal [3], in 1951. Since that time,
a number of new topological properties which were called separation axioms were
defined by Aull and Thron [1], and later by Robinson and Wu [2]. This paper
gives a general definition of separation axiom, defined in terms of continuous
functions, and shows that the standard separation axioms, and all but one of these
new topological properties, fit this definition. Moreover, it is shown that the re-
maining property, defined in [2], can never fit the expected form of the definition.
In addition, a new class of separation axioms lying strictly between T, and T
are defined and characterized, and examples of spaces satisfying these axioms
are produced.

1. The definition. Suppose that o7 and & are classes of subsets of topological
spaces. Given a class of 2" of topological spaces, with a distinguished pair of sub-
sets Ax and By of each member X € Z', we define T(Z, #, %) as the class of
topological spaces Y such that for every disjoint pair of non-empty subsets 4
and B of Y with 4 € &/ and B e %, there is a continuous map f: Y—X with
flAl=Ax and f(B)=Bx, for some X € Z. By a separation axiom we shall mean
a class T(«, #,%), or the intersection of such classes. Throughout, we shall
identify all separation axioms with the class of topological spaces satisfying that
axiom.

Let & be the class of all singletons of topological spaces, € the class of all
closed sets, 2 the class of all doubletons, & the class of all finite sets, and 2%
the class of all derived sets of singletons of topological spaces. This terminology
will be preserved throughout.

The following simple observations follow quickly from the definition. If f: X—Y
is a continuous map such that f[Ax]=A4p and f[Bx]=By, then T(&, #, X)<=
T(«/, %, Y). The converse is not true, however, as will be shown following
Theorem 2.4. Also, if the classes &7 and % are closed under the weakening of
topologies, for example the classes &, &, and & and the class of all compact
sets, then T(Z, #,Z) is closed under the strengthening of topologies. Again,
suppose &7 and & satisfy the following property. If the subsets A4 and B of a space
Y belong to &7 and # respectively, and if Y is a subspace of a space X, then 4
and B belong to & and % when considered as subsets of X. For example, the classes
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&, 2, F, and the class of all compact sets satisfy this property. Under these
circumstances the class 7(<7, #, %) is hereditary; that is, every subspace of a
member is a member. Finally, T(&, &, Z) is closed under arbitrary products,
for all families 2" of topological spaces with distinguished pairs of subsets.

2. The standard axioms and the axioms of Aull and Thron. The first theorem
shows that the commonly known separation axioms, and the axioms defined by
Aull and Thron in [1] fit our definition. For reference, we shall give the definitions
of the axioms in [1]. The closure of a set 4 will be denoted by cl(4), the closure of
a singleton {x} by cl(x), and the derived set of a point x by {x}’. A space X is T}, if
for each x € X, {x}' is closed. A space is T, if it is T, and for all distinct points x
and y, {x}' N {y}Y=9. A space is Ty, if for each point x, {x}" is a union of dis-
joint closed sets. A space is T’y if for all distinct points x and y, cl(x) N cl(y)
contains at most one point. A space is Ty g if for all distinct points x and y,
cl(x) N cl(y) is one of {x}, {y}, or &. A space is T if for each point x and finite
set F not containing x, there is an open set containing F but not x, or containing x
and disjoint from F. A space is T if for each disjoint pair of finite sets there is.
an open set containing one and disjoint from the other.

Next, we must name the following topological spaces with distinguished pairs
of subsets. Let a, b, ¢, and d be distinct points. Then P, is the two point space
with base {{a}, {a, b}} and distinguished subsets A={a} and B={b}. Let P, be
the space with base {{b}, {a, b}} and with A={a} and B={b}. Let P, have the
base {{a}, {b}, {a, b, c}} and A={a}, B={b}. Define P, as the set {a, b} with the
discrete topology, and with 4={a}, B={b}. Next, P; has base {{a, b}, {a, b, c}}
with A={a}, B={b, c}. Finally, let P, have base {{a, c}, {a, b, c, d}} with 4={a, b},
B={c, d}.

For each initial ordinal «, let P be the distinct set of points {a,:f<a}, with
A={a,}, B={a;:0<f<a}, and a base consisting of all complements of the single-
tons {g;}, 0<f<a. Define U as the unit interval [0, 1] with the usual topology,
and 4={0}, B={1}.

LemMA 2.1. Suppose that X is a topological space with at least three points. Then
the following are equivalent:

() XeT(£, 9D, Py);

(i) X € T, and for each pair of distinct points x,y € X, {x} N {y} =3 ;
and (iii) for each pair of distinct points x, y € X, cl(x) N cl(y) is one of {x}, {y}, or
<.

Proof. (i)=-(ii). Suppose that X € T(<, 9, P3) and x and y are distinct points
in X Pick another point z and then there is a continuous map f: X—P; such that
S*[{a, b}] is an open set containing z and exactly one of x and y. Thus X € T,

Also, z € {x}' N {y}’ for some x, y and z in X implies there cannot be a contin-
uous map f:X—P, with f(z)=a, and f[{x, y}]={b, c}, so {x}' N {y}'=o for all
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distinct x and y in X. (ii)=-(iii) Assuming condition (ii), if z € cl(x) N cl(y) for
some distinct points x and y in X, then z=x or z=y. But X € T; implies {x, y} &
cl(x) N cl(y). (iii)=-(i) Assume (iii) holds for X, and that {z} and the pair {x, y}
of distinct points are disjoint. Then there is an open set U such that z € U and one
of x or y belongs to U. Define f: X—P; by f(z)=a, f[U\{z}]=b, and f[X\U]=c.
Then f'is continuous so X € T(&, Z, P,).

LEMMA 2.2. Suppose that X is a topological space with at least three points. Then
XeT(ZL, D, {Py, Py}) iff for each pair x, y of distinct points in X, x € {y} implies
) =g.

Proof. Suppose that for all distinct points x, y € X, x € {y}’ implies {x}'=¢&.
Given a disjoint singleton {x} and doubleton {y, z}, if x ¢ cl(y) and x ¢ cl(z) then
there is a continuous map f: X—P, such that f(x)=a and f[{y, z}]={b}. Otherwise,
suppose x €cl(y). Then z ¢cl(x) and y ¢cl(x) so there is a continuous map
f:X—P, such that f(x)=a and f[{y, z}]={b}. Thus X € (¥, 2, {P,, Py}).

If X € T(Z, D, {P,, Py}) then since X has at least three points, X is 7,. Suppose
x €{y} and z € {x}'. Clearly z5y. But if f: X—P, with f(x)=a and f[{y, z}]=b is
continuous then x ¢ {y}’, and if f: X—P, with f(x)=a and f[{y, z}]=b is contin-
uous then z ¢ {x}'.

LEMMA 2.3. A space X belongs to T(2D, D, P,) iff for each pair {x, y} of distinct
points in X, {x} 0\ {y}’ contains at most one point.

Proof. Note that every space with less than four points trivially satisfies the
lemma. Suppose {x}' N {y}’ contains at most one point, for each distinct pair
x,y € X. Let {x, y} and {u, v} be disjoint pairs of points in X. If there is an open
set U containing exactly one point from {x, y}, and exactly one point from {u, v},
then there is a continuous map f:X—P, with f[U]={a, ¢} and f[X\Ul={b, d},
and X € T(2, 2, P,). Since our arguments are symmetric in x and y, in  and v,
and in {x, y} and {u, v}, it is sufficient to consider three cases. In each case the
statement that a pair of points belongs to U shall mean that there is an open set
U containing that pair and disjoint from the other pair. (A) Suppose cl(x) N cl(y)#
@ and cl(u) Ncl(v)# . For example, suppose y € cl(x) and u € cl(v). Then
x¢cl(y), v ¢cl(y), x ¢ cl(w) and v ¢ cl(u) so x, v € U. (B) Suppose cl(x) N cl(y)# &
but cl(u) N cl(v)=2. Then, for instance, y € cl(x) and thus x ¢ cl(y), x ¢ cl(w),
v ¢cl(y)and v ¢ cl(u) so x, v € U. (C) Suppose cl(x) N cl(y)= g and cl(x) N cl(v)=
@. If x¢cl(w) and v ¢cl(y) then x,v € U. Assume x € cl(u). We will take two
subcases. If (a) y ecl(®) then not both x ecl(v) and y ecl(v) or else {x, y}<
cl(m) N cl(v). Therefore, either x,u €U or y,ue U. If (b) y ecl(u) then since
x € cl(u), v ¢ cl(x) and y, v € U. Finally, if v € cI(y) then a pair of subcases similar
to (a) and (b) produces the desired result. Thus X € T(Z2, 2, P,).

On the other hand, if x, y, u, and v are distinct elements of a space X and
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{u, v}< cl(x) N cl(y) then obviously there can be no continuous map f:X—P,
with f[(x, }]={a, b} and f[{u, v}]={c, d}.

Using the characterizations in Lemmas 2.1, 2.2, and 2.3, we readily obtain the
following theorem.

THEOREM 2.4. The separation axioms listed below can be represented as T(, 4,
X)), where the classes S/, %, and Z are given in the table.

Axiom L 4 x

T, & & Py, P,
T, & & P,
T, & s P,
regular % € P,
completely regular & % U
normal € ¢ P,
totally disconnected & & P,

Ty & F P,, P,

Ty F F P,, P}
Tp & 92 P,

Tup & 99 {P®:¢ is an initial ordinal}

AISO, TDD=T(y,9,P3) N TD, TYS=T(¢?,@,P3) N To, and TY=T(y,9,
{PO’P(,)}) n T(Q,Q,P‘I) N TO'

It is obvious that the characterizations of the separation axioms offered in
Theorem 2.4 are not unique. For example, let Py be the set {a, b, ¢, d} of distinct
points with a base for the topology consisting of {{a, ¢}, {b, c}, {a, b, ¢, d}}, and
A={a}, B={b}. Then (¥, &, P)=T(¥, &, P))=T;. Indeed, if X is T;, then
for each pair x, y € X with x>y, there are open sets U and V with xe U, y ¢ U,
yeV,and x ¢ V. Define f:X—P; by f[U\V]={a}, f[V\Ul={b}, fIUNV]={c},
and f[X\(U U V)]={d}, and then f will be continuous. This example also shows
that T(&, #, X)= (, %, Y) does not imply that there is a continuous function
f:X—Y with f[dx]=Ay and f[Bx]=By, because there is no such function from
P, to P;.

3. The properties 7™, strong T, and strong T,. These properties are defined
by Robinson and Wu in [2]. A space X is 7™, m an infinite cardinal, if for each
x € X, {x}' is a union of at most m closed sets. A space X is strong T, if for each
x € X, {x}' is either empty, or the union of a finite family of non-empty closed
sets whose common intersection is empty. And, X is strong 7y if for each x € X,
{x}' is either empty, or the union of a family of non-empty closed sets, such that
the intersection of this family is empty, and at least one of its elements is compact.
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Let m be an infinite cardinal, and A the initial ordinal of cardinality m. Define
R,, <A, to be the two point space {a, b} with base {{a}, {a, b}}, and R™ the
product T {R,:2<A}, with the product topology. Let =, be the projection of
R™ to R,, and let x; be the point in R™ for which =,(x;)=a, a<A. Define Z™
to be the set of all subspaces of R™ which contain the point x;, and for each
X eR™, set Ax={x,} and Bx=X\{x,}.

THEOREM 3.1. The separation axiom T'™ can be represented as T(¥, DS, ™),
Jor each infinite cardinal m.

Proof. Easily T"™c T(&, 2, &™) because By is a union of at most m closed
sets of the form X N w}l(b), <, XeAR™.

Conversely, if X € 7™ and x € X, then if {x}'#¢, {x}' is the union of closed
sets {M,:a<A} (not necessarily distinct). Define f:X—R™ by putting =,(f(y)) to
be b if y e M,, «<A, and a otherwise. Since f! [, (b)]=M, for each a<i, fis
continuous and X must belong to (¥, 2%, Z™)

The next theorem will prove useful in characterizing the property strong 77,
and will be used in Section 4.

Given a partially ordered set P, and a point x € P, let (x]={y e P:y<x}.
We shall say that P has the PO topology if {P\(x]:x € P} generates the topology.
Let &, be the class of all partially ordered sets with at least two elements and with a
greatest element, each endowed with the PO topology. That is, if P € &, then
there is an element u € P such that x<u for all x € P, and P\{u} is not empty.
Let Ap={u} and Bp=P\{u} be the distinguished pair of subsets for each P € Z,.

THEOREM 3.2. Let A € P, let u be the greatest element or A, and let B=A\{u},.
Then a space X belongs to T(&, 2D, A) iff for each x € X either {x}' =¢ or else
there is a family M of non-empty closed subsets of X such that (i) {x}=U#,
(i) for each ye YA, N{Me M:yeM}ec M, (i) for each M e M, M5
U{NeM:Nc=M and N#M}, and (iv) there is an order isomorphism from M,
partially ordered by inclusion, to B, with the partial order induced from A.

Proof. Suppose that X € T(&, 2%, A) and that x € X. If {x}# %, there is a
continuous function f:X—4 such that f(x)=u and f[{x}']=B. For each a € B,
let M,=f"*[(a]] N cl(x), and let A4 ={M,:a € B}. Then M, is a non-empty closed
set for each a € B, and A ={x}'. Since f[{x} ]=B, f[M,]=(a], for each a € B,
so the map M,—a is an order isomorphism. This in turn implies that .# satisfies
(iii) because no set (a], a € B, is a union of sets (b] with b<a. Finally, for y € {x}',
if f(y)=a then N{M, € M :y € M,}=M, so A satisfies ii).

To prove the converse, suppose x is a point in some space X, {x}'# &, and #
is a family of non-empty closed subsets of X satisfying (i)-(iv). Let 0:.#—B be the
order isomorphism, and define f:X—A4 as follows. Let f[X\{x}']=u. For each
yei{xy, let My=N{M e #:ye M}, and since M, e A, let f(y)=06(M,). For
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each a € B there is some set M € .# such that 6(M)=a. Note that y e M iff
M,= M, and this happens iff f(y)<a so f~[(a]]=M and fis continuous. But also
if 0(M)=a, M={M,:y € M} and by (iii), M=M, for some y € M so f[{x}']=B.

Let 2 be the set of X € &, such that X is finite and X has no least element
a, a<x for all x € X.

COROLLARY 3.3. 4 space X is strong Tp iff Xe (¥, 2%, 2).

Proof. Suppose X is strong T, and x € X with {x}' . Then {x}’ is a union
of a finite family .#; of non-empty closed subsets of X. Let .#, be .#, together
with all non-empty intersections of sets in .#;. Define M, ..., M,, to be those
elements of .#, which have no proper intersections with the other elements of
M 5. Note that for each N € A, N\J{M,:i<m} also has no proper intersections
with elements from #,. Enumerate A,={M,,...,M,, N;,..., N,} and define
inductively M,,,, to be the first N; such that N;< U{M,:i<m+k}. An inductive
argument shows that the resulting family .# satisfies (i), (ii), and (iii) of Theorem
3.2. Since #,7# o, the set My, ..., M, must contain at least two elements.
Adjoin to A, ordered by inclusion, a largest element u, and the resulting partially
ordered set with the PO topology must belong to 2.

The converse is immediate from Theorem 3.2, because if .# is a family of closed
sets with no least element, (ii) implies its intersection must be empty.

ExAMPLE 3.4. The property strong T, cannot be represented as (&, 2%, %)
for any family 2" of topological spaces with distinguished pairs of subsets.

Proof. Let 4, be the set {u, a, b} of distinct elements with a partial order in-
duced by: a<u and b<u. Let 4, have the PO topology and clearly A4, is strong
T,. Define 4, to be the set of all sequences {x(n):n<w} of elements from 4, such
that for each x € 4, there is some n<w such that x(m)=u iff m>n. Partially
order 4, by giving it the lexicographical order, and let 4, have the PO topology.
The sets (x], x € 4, form a base for the closed sets, and cl(x)=(x] for each x € 4,.
None of the sets (x] are compact, so clearly 4, is not strong T,. Given any point
x € Ay, with x(m)=u iff m>n, define f: 4,—A4, by setting f(y) to be u if y<x;
otherwise, set f() to be a if y(n)=a, and f() to be b if y(n)=>b. Let x,, x;, € 4; be
defined by x,(m)=x(m) for m#n, x,(n)=a, and similarly x,(m)=x(m) for m=#n,
and x,(n)=>b. Then f~*(a)=(x,] and f~(b)=(x,], so fis continuous and f[{x}']=
{a, b}={u}’, f(x)=u. Thus 4, € T(¥, DS, Z) implies 4, € T(¥, DS, Z).

4. A class of separation axioms between 7, and 7. It is clear from Theorem
3.2 that if 4 € &, then T(¥, D, A) is contained in T, because a space is T,
if and only if the derived set of every point is a union of closed sets. It is not clear
from the definition, however, that there are any non-trivial spaces in 7(¥, 9%, A);
that is, any spaces that are not in 77. In this section we shall construct examples of
such spaces.

Given a space 4 € &, with largest element u, let U(A4) be the set of all sequences
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{x(n):n<w} for which there exists n<w with x(m)=u iff m>n. Given x and y
in U(4), set x<y if there is some n<w such that x(m)=y(m) for all m<n, x(M)<
y(n), and y(n+1)=u. This defines a partial order on U(4), so let U(A4) have the
PO topology.

THEOREM 4.1. For each A € P, U(A) belongs to T(¥, DS, A) but not to T,.

Proof. Let x € U(A4) and suppose that » is the least integer for which x(n)=u.
Define f:U(A4)—A as follows. If y<x and y(n)=u let f(y)=y(n—1); if y<x and
ym#u let f()=y(n); and if y<Lx let f(y)=u. Since {x}' ={y e U(4):y<x}, it
is clear that f(x)=u and f[{x}']=4\{u}. But for each a € A\{u}, f[(a]]=(y] V (2]
where y(m)=x(m) when m<n—1, y(n—1)=a, and y(m)=u when n<m; and
where z(m)=x(m) when m<n, z(n)=a, and z(m)=u when n<m. Thus fis con-
tinuous and U(4) € T(&, 2%, A). Also, since A\{u}, is not empty, U(4)\{w} is
not empty, where w(n)=u for all n<w, and the only closed set containing w is
U(A), so U(A4) is not T3.
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