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Abstract In 2001, Enochs’s celebrated flat cover conjecture was finally proven, and the proofs (two
different proofs were presented in the same paper) have since generated a great deal of interest among
researchers. The results have been recast in a number of other categories and, in particular, for additive
categories. In 2008, Mahmoudi and Renshaw considered a similar problem for acts over monoids but used
a slightly different definition of cover. They proved that, in general, their definition was not equivalent to
that of Enochs, except in the projective case, and left open a number of questions regarding the ‘other’
definition. This ‘other’ definition is the subject of the present paper and we attempt to emulate some of
Enochs’s work for the category of acts over monoids, and concentrate, in the main, on strongly flat acts.
We hope to extend this work to other classes of acts, such as injective, torsion free, divisible and free, in
a future report.
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1. Introduction and preliminaries

Let S be a monoid. By a right S-act we mean a non-empty set X together with an
action X × S → X given by (x, s) �→ xs such that, for all x ∈ X, s, t ∈ S, x1 = x and
x(st) = (xs)t. If ρ is an equivalence on a right S-act X, then we refer to it as a (right)
S-congruence if, for all s ∈ S, (x, y) ∈ ρ, it follows that (xs, ys) ∈ ρ. Left S-acts and
left S-congruences are defined dually. Throughout this paper, unless otherwise stated,
all acts will be right S-acts and all congruences right S-congruences. We refer the reader
to [8] for basic results and terminology in semigroups and monoids and to [1, 11] for
those concerning acts over monoids.

Enochs’s conjecture, that all modules over a unitary ring have a flat cover, was finally
proven in 2001. In 2008, Mahmoudi and Renshaw [13] initiated a study of flat covers
of acts over monoids. Their definition of cover concerned coessential epimorphisms and,
except for the case of projective covers, proved to be different to that given by Enochs.
In the present paper we attempt to initiate the study of Enochs’s notion of cover for the
category of acts over monoids, and focus primarily on SF-covers, where SF is the class
of strongly flat S-acts.
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After giving preliminary results and definitions, we provide some key results on directed
colimits for acts over monoids. Some of these may be generally known, but there are
so few references in the literature for results on direct limits of S-acts that we felt it
necessary to include the more important ones here. Pure epimorphisms were studied by
Stenström in [22] and we extend these in § 3. In § 4 we introduce the concept of an X -
cover and an X -precover for a class of S-acts X . This is analogous to Enochs’s definition
for covers of modules over rings and we prove that, for those classes that are closed under
isomorphisms and directed colimits, the existence of a precover implies the existence of
a cover. The inspiration for these results and their proofs is taken from the additive case
(see, for example, [4,6,23]). We also provide a necessary and sufficient condition and a
number of sufficient conditions for the existence of a precover. Finally, in § 5 we apply
some of these results to the case when X is the class of strongly flat S-acts.

An S-act P is called projective if, given any S-epimorphism f : A → B, whenever there
exists an S-map g : P → B, there exists an S-map h : P → A such that hf = g. A right
S-act A is said to be flat if, given any monomorphism of left S-acts f : X → Y , the
induced map 1 ⊗ f : A ⊗S X → A ⊗S Y , a ⊗ x �→ a ⊗ f(x) is also a monomorphism.
On the other hand, an S-monomorphism g : A → B is said to be pure (see [17]) if
for all left S-acts X, the induced map A ⊗S X → B ⊗S X is also a monomorphism.
Note that there are in fact two distinct notions of pure monomorphism in the literature.
See [1, § 7.4] for more details. In 1969, Lazard proved that flat modules are directed
colimits of finitely generated free modules [12]. In 1971, Stenström showed that the acts
that satisfy the same property are different from flat acts [22]. In fact they are the acts A,
where A ⊗S − preserves pullbacks and equalizers, or, equivalently, those that satisfy the
two interpolation conditions (P) and (E). These acts have come to be known as strongly
flat acts. A right S-act A is said to satisfy condition (P) if whenever au = a′u′ with
u, u′ ∈ S, a, a′ ∈ A, there exist a′′ ∈ A, s, s′ ∈ S with a = a′′s, a′ = a′′s′ and su = s′u′,
while A is said to satisfy condition (E) if whenever au = au′ with a ∈ A, u, u′ ∈ S, there
exist a′′ ∈ A, s ∈ S with a = a′′s and su = su′.

Throughout this paper we denote the class of all projective S-acts by PS , the class of
all strongly flat S-acts by SFS , the class of all S-acts that satisfy condition (P) by CPS ,
the class of all S-acts that satisfy condition (E) by ES and the class of all flat acts by
FS . We normally simply omit the subscript.

It is well known that, in general,

P � SF � CP � F .

Basic results on indecomposable acts, coproducts, pushouts and pullbacks of acts over
monoids can be found in [1,11]. From [1, Propositions 4.1.5, 5.2.17 and 5.2.5 and Corol-
lary 5.3.23] (see also [11, Lemmas III.9.3 and III.9.5]) we have the following.

Lemma 1.1. Let S be a monoid and let X =
⋃̇

Xi be a coproduct of S-acts. For each
of the cases X = P, X = SF , X = CP and X = F we have X ∈ X if and only if each
Xi ∈ X .
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The following lemma will be useful in one of our main results.

Lemma 1.2. Let S be a monoid, let X be an indecomposable S-act and let f : X → Y

be an S-epimorphism. Then Y is indecomposable.

Proof. Suppose that Y is not indecomposable, so there exist non-empty S-subacts
Y1 �= Y2 ⊆ Y with Y = Y1 ∪̇Y2. Then let Xi = f−1(Yi), i = 1, 2, and note that Xi are non-
empty S-subacts of X and that X = X1 ∪̇X2 with X1 �= X2, giving a contradiction. �

Let A be an S-act. We say that a projective S-act C together with an S-epimorphism
f : C → A is a projective cover of A if there is no proper subact B of C such that f |B is
onto. If we replace ‘projective’ by ‘strongly flat’ in this definition, then we have a strongly
flat cover. A monoid S is called perfect if all S-acts have a projective cover.

We define A to be finitely presented if A ∼= F/ρ (see [14, 22]), where F is finitely
generated free and ρ is finitely generated.

The following remark will be useful when we come to consider precovers in § 3.

Remark 1.3. Let S be a monoid, let A be an S-act and let θ be a congruence on A.
Let ρ be a congruence on A/θ and let θ/ρ = ker(ρ�θ�). Then, clearly, θ/ρ is a congruence
on A containing θ and A/(θ/ρ) = (A/θ)/ρ. Moreover, θ/ρ = θ if and only if ρ = 1F/θ.

Let λ be an infinite cardinal and let X be a class of S-acts. By a λ-skeleton of S-acts
Xλ we mean a set of pairwise non-isomorphic S-acts such that, for each act A ∈ X with
|A| < λ, there exists a (necessarily unique) act Aλ ∈ Xλ such that A ∼= Aλ.

Remark 1.4. Let S be a monoid, let X be a class of S-acts and suppose that there
exists a cardinal λ such that every indecomposable S-act X ∈ X is such that |X| < λ. It
is then reasonably clear that the class of indecomposable S-acts forms a set and so must
contain a λ-skeleton.

2. Colimits and directed colimits

In the literature there is surprisingly little on direct limits and colimits of acts and, in
addition, some inconsistencies of notation (see [11,17]). We include here a collection of
results on direct limits, some of which will be needed in later sections.

Let I be a set with a preorder (that is, a reflexive and transitive relation). A direct
system is a collection of S-acts (Xi)i∈I together with S-maps φi,j : Xi → Xj for all
i � j ∈ I such that

• φi,i = 1Xi for all i ∈ I and

• φj,k ◦ φi,j = φi,k whenever i � j � k.
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The colimit of the system (Xi, φi,j) is an S-act X together with S-maps αi : Xi → X

such that

• αj ◦ φi,j = αi whenever i � j and

• if Y is an S-act and βi : Xi → Y are S-maps such that βj ◦ φi,j = βi whenever
i � j, then there exists a unique S-map ψ : X → Y such that the diagram

Xi
αi ��

βi

��

X

ψ����
��

��
��

Y

commutes for all i ∈ I.

If the indexing set I satisfies the property that for all i, j ∈ I there exists k ∈ I such
that k � i, j, then we say that I is directed. In this case we call the colimit a directed
colimit.

As with all universal constructions, the colimit, if it exists, is unique up to isomorphism.
That colimits of S-acts do indeed exist is easy to demonstrate. In fact, let λi : Xi →

⋃̇
iXi

be the natural inclusion and let ρ be the right congruence on
⋃̇

iXi generated by

R = {(λi(xi), λj(φi,j(xi))) | xi ∈ Xi, i � j ∈ I}.

Then, X = (
⋃̇

iXi)/ρ and αi : Xi → X given by αi(xi) = λi(xi)ρ are such that (X, αi)
is a colimit of (Xi, φi,j). In addition, if the index set I is directed, then

ρ = {(λi(xi), λj(xj)) | there exists k � i, j with φi,k(xi) = φj,k(xj)}.

See [16, Theorems I.3.1 and I.3.17] for more details. We subsequently talk of the (directed)
colimit of a direct system.

Lemma 2.1 (Renshaw [17, Lemma 3.5 and Corollary 3.6]). Let (Xi, φi,j) be a
direct system of S-acts with directed index set, and let (X, αi) be the directed colimit.
Then, αi(xi) = αj(xj) if and only if φi,k(xi) = φj,k(xj) for some k � i, j. Consequently,
αi is a monomorphism if and only if φi,k is a monomorphism for all k � i.

In fact the following is now easy to establish.

Theorem 2.2. Let S be a monoid, let (Xi, φi,j) be a direct system of S-acts with
directed index set I, and let X be an S-act and αi : Xi → X be such that

Xi

αi
���

��
��

��
�

φi,j �� Xj

αj
����

��
��

��

X

commutes for all i � j in I. Then, (X, αi) is the directed colimit of (Xi, φi,j) if and only
if

(1) for all x ∈ X there exist i ∈ I and xi ∈ Xi such that x = αi(xi),

(2) for all i, j ∈ I, αi(xi) = αj(xj) if and only if φi,k(xi) = φj,k(xj) for some k � i, j.
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We use these two basic properties of directed colimits without further reference.

Lemma 2.3. Let S be a monoid and let (Xi, φi,j) be a direct system of S-acts with
directed index set I and directed colimit (X, αi). For every family y1, . . . , yn ∈ X and
the relations

yjisi = yki
ti, 1 � i � m,

there exist some l ∈ I and x1, . . . , xn ∈ Xl such that αl(xr) = yr for 1 � r � n, and

xjisi = xkiti for all 1 � i � m.

Proof. Given y1, . . . , yn ∈ X there exist m(1), . . . , m(n) ∈ I and y′
r ∈ Xm(r) such

that αm(r)(y′
r) = yr for all 1 � r � n. So for all 1 � i � m we have that

αm(ji)(y
′
ji

si) = αm(ji)(y
′
ji

)si = αm(ki)(y
′
ki

)ti = αm(ki)(y
′
ki

ti),

so there exist li � m(ji), m(ki) such that, for all 1 � i � m,

φm(ji),li(y
′
ji

)si = φm(ji),li(y
′
ji

si) = φm(ki),li(y
′
ki

ti) = φm(ki),li(y
′
ki

)ti.

Let l � l1, . . . , lm. There then exist φm(1),l(y′
1), . . . , φm(n),l(y′

n) ∈ Xl such that

αl(φm(r),l(y′
r)) = αm(r)(y′

r) = yr

for all 1 � r � n, and

φm(ji),l(y
′
ji

)si = φli,l(φm(ji),li(y
′
ji

))si = φli,l(φm(ki),li(y
′
ki

))ti = φm(ki),l(y
′
ki

)ti

for all 1 � i � m, and the result follows. �

The following result shows that, in a certain sense, directed colimits preserve monomor-
phisms.

Lemma 2.4. Let S be a monoid, let (Xi, φi,j) be a direct system of S-acts with
directed index set and let (X, αi) be the directed colimit. Suppose that Y is an S-act
and that βi : Xi → Y are monomorphisms such that βi = βjφi,j for all i � j. There then
exists a unique monomorphism h : X → Y such that hαi = βi for all i.

Proof. Consider the following commutative diagram:

Xi

φi,j ��

αi

���
��

��
��

�

βi

���
��

��
��

��
��

��
� Xj

αj

����
��

��
��

βj

����
��
��
��
��
��
��

X
h

��
Y
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where h is the unique map guaranteed by the directed colimit property. Suppose that
h(x) = h(x′). There then exist i, j and xi ∈ Xi, xj ∈ Xj such that x = αi(xi) and
x′ = αj(xj). Hence, there exists k � i, j, so

βkφi,k(xi) = hαkφi,k(xi) = hαi(xi) = hαj(xj) = hαkφj,k(xj) = βkφj,k(xj).

Since βk is a monomorphism, φi,k(xi) = φj,k(xj), so x = x′, as required. �

Lemma 2.5. Let S be a monoid, let X be an S-act and let {ρi : i ∈ I} be a set of
congruences on X, partially ordered by inclusion, with the property that the index set
is directed and has a minimum element 0. Let φi,j : X/ρi → X/ρj be the S-map defined
by aρi �→ aρj whenever ρi ⊆ ρj , so (X/ρi, φi,j) is a direct system. Let ρ =

⋃
i∈Iρi. Then,

X/ρ is the directed colimit of (X/ρi, φi,j).

Proof. First note that ρ is transitive, since I is directed. Clearly, we can define S-
maps αi : X/ρi → X/ρ, aρi �→ aρ, such that αi = αjφi,j for all i � j. Now suppose that
there exist an S-act Q and S-maps βi : X/ρi → Q such that βi = βjφi,j for all i � j.
Define ψ : X/ρ → Q by ψ(aρ) = β0(aρ0). To see that this is well defined, let aρ = a′ρ in
X/ρ, that is, (a, a′) ∈ ρ, so there must exist some k ∈ I such that (a, a′) ∈ ρk, and we
get that

β0(aρ0) = βkφ0,k(aρ0) = βk(aρk) = βk(a′ρk) = βkφ0,k(a′ρ0) = β0(a′ρ0),

so ψ(aρ) = ψ(a′ρ) and ψ is well defined. It is easy to see that ψ is also an S-map.
Because 0 is the minimum element, we have that β0(aρ0) = β0φi,0(aρi) = βi(aρi), so
ψαi = βi for all i ∈ I. Finally, let ψ′ : X/ρ → Q be an S-map such that ψ′αi = βi for all
i ∈ I; then ψ′(aρ) = ψ′(α0(aρ0)) = β0(aρ0) = ψ(aρ), and we are done. �

Remark 2.6. In particular, this holds when we have a chain of congruences ρ1 ⊂ ρ2 ⊂
· · · and ρ =

⋃
i�1 ρi.

Example 2.7. If S is an inverse monoid, which we consider as a right S-act, then
for any e � f ∈ E(S) it follows that kerλf ⊆ ker λe, where λe(s) = es. Hence, there
exists a set of right congruences on S, partially ordered by inclusion, where the identity
relation kerλ1 is a least element in the ordering. We can now construct a direct system of
S-acts S/ker λf → S/ker λe, s ker λf �→ s ker λe, whose directed colimit, by the previous
lemma, is S/σ, where σ =

⋃
e∈E(S) ker λe, which is easily seen to be the minimum group

congruence on S (see [8, p. 159]).

Proposition 2.8 (Stenström [22, Proposition 5.2]). Let S be a monoid. Every
directed colimit of a direct system of strongly flat acts is strongly flat.

The following easily proved result is probably well known.

Proposition 2.9. Let S be a monoid. Every directed colimit of a direct system of
acts that satisfy condition (P) satisfies condition (P).

The situation for projective acts is slightly different.

Proposition 2.10 (Fountain [7]). Let S be a monoid. Every directed colimit of a
direct system of projective acts is projective if and only if S is perfect.
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3. Purity and epimorphisms

Let ψ : X → Y be an S-epimorphism. We say that ψ is a pure epimorphism if for every
finitely presented S-act M and every S-map f : M → Y there exists g : M → X such
that

X
ψ �� Y

M

g

����������
f

��

commutes.

Theorem 3.1 (Stenström [22, Proposition 4.3]). Let S be a monoid and let
ψ : X → Y be an S-epimorphism. The following are then equivalent:

(1) ψ is pure;

(2) for every family y1, . . . , yn ∈ Y and the relations

yji
si = yki

ti (1 � i � m)

there exist x1, . . . , xn ∈ X such that ψ(xr) = yr for 1 � r � n, and

xjisi = xkiti for all 1 � i � m.

Example 3.2. Let S be an inverse monoid and let σ be the minimum group congruence
on S as in Example 2.7. The right S-map S → S/σ is then a pure S-epimorphism. To
see this let y1 = x1σ, . . . , yn = xnσ ∈ S/σ and suppose that we have the relations

yjisi = ykiti (1 � i � m).

For 1 � i � m we then have (xji
si, xkiti) ∈ σ, so there exist ei ∈ E(S) (1 � i � m) such

that eixji
si = eixki

ti. Now let e = e1 · · · em and note that, for 1 � i � m, exji
si = exki

ti
and, for 1 � l � n, σ�(exl) = (exl)σ = xlσ = yl, as required.

It is clear that if the epimorphism ψ splits with splitting monomorphism φ : Y → X,
then φf : M → X is such that ψφf = f , so ψ is pure. The converse is not in general
true. For example, let S = N with multiplication given by

n.m = max{m, n} for all m, n ∈ S.

Let ΘS = {θ} be the 1-element right S-act and note that S → ΘS is a pure epimorphism
by Theorem 3.1. However, as S does not contain a fixed point, it does not split.

From Lemma 2.3 we can immediately deduce the following.

Corollary 3.3. Let S be a monoid and let (Xi, φi,j) be a direct system of S-acts with
directed index set I and directed colimit (X, αi). The natural map

⋃̇
Xi → X is then a

pure epimorphism.
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Suppose that (Xi, φi,j) and (Yi, θi,j) are direct systems of S-acts and S-maps, suppose
that for each i ∈ I there exists an S-map ψi : Xi → Yi and suppose that (X, βi) and
(Y, αi), the directed colimits of these systems, are such that

Xi
ψi ��

βi

��

Yi

αi

��
X

ψ
�� Y

Xi

φi,j ��

ψi

��

Xj

ψj

��
Yi

θi,j

�� Yj

(∗)

commute for all i � j ∈ I. We then refer to ψ as the directed colimit of the ψi. It was shown
in [16] that directed colimits of (monomorphisms) epimorphisms are (monomorphisms)
epimorphisms.

Corollary 3.4. Let S be a monoid. Directed colimits of pure S-epimorphisms are
pure.

Proof. Suppose that (Xi, φi,j) and (Yi, θi,j) are direct systems and that for each i ∈ I

there exists a pure epimorphism ψi : Xi → Yi, and suppose that (X, βi) and (Y, αi), the
directed colimits of these systems, are such that the diagrams in (∗) commute for all
i � j ∈ I.

Suppose that there exist y1, . . . , yn ∈ Y , s1, . . . , sm, t1, . . . tm ∈ S and the relations

yjisi = ykiti (1 � i � m).

By Lemma 2.3 there exist l ∈ I and z1, . . . , zn ∈ Yl such that αl(zr) = yr for 1 � r � n,
and

zjisi = zki
ti for all 1 � i � m.

Since ψl is pure, there exist x1, . . . , xn ∈ Xl such that ψl(xr) = zr for 1 � r � n, and

xji
si = xki

ti for all 1 � i � m.

Hence,
βl(xji)si = βl(xki)ti for all 1 � i � m,

and ψβl(xr) = αlψl(xr) = αl(zr) = yr for 1 � r � n, so ψ is pure. �

Lemma 3.5. Let S be a monoid, let

A
φ ��

α

��

B

β

��
C

ψ
�� D

be a pullback diagram of S-acts, and suppose that ψ is a pure epimorphism. Then, φ is
also a pure epimorphism.
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Proof. That φ is onto is clear. Suppose that M is finitely presented and that
f : M → B is a morphism. There then exists g : M → C such that ψg = βf . Since
A is a pullback, there exists a unique h : M → A such that φh = f and αh = g. �

Although not every pure epimorphism splits, we can deduce the following.

Theorem 3.6. Let S be a monoid and let ψ : X → Y be an epimorphism. Then, ψ is
pure if and only if it is a directed colimit of split epimorphisms.

Proof. Suppose that ψ is pure. We know (see [22, Proposition 4.1]) that Y is a
directed colimit of finitely presented acts (Yi, φi,j), so let αi : Yi → Y be the canonical
maps. For each Yi let

Xi
ψi ��

βi

��

Yi

αi

��
X

ψ
�� Y

be a pullback diagram, so by Lemma 3.5 ψi is pure. Hence, since Yi is finitely presented,
it easily follows that ψi splits. Note that Xi = {(yi, x) ∈ Yi × X | αi(yi) = ψ(x)},
ψi(yi, x) = yi and βi(yi, x) = x, and that, since ψ is onto, Xi �= ∅.

For i � j define θi,j : Xi → Xj by θi,j(yi, x) = (φi,j(yi), x) and note that βjθi,j = βi

and that ψjθi,j = φi,jψi. Suppose now that there exist Z and γi : Xi → Z with γjθi,j = γi

for all i � j. Define γ : X → Z by γ(x) = γi(yi, x), where i and yi are chosen such that
αi(yi) = ψ(x). Then, γ is well defined since if ψ(x) = αj(yj), then there exists k � i, j

with φi,k(yi) = φj,k(yj) and

γi(yi, x) = γkθi,k(yi, x) = γk(φi,k(yi), x)

= γk(φj,k(yj), x) = γkθj,k(yj , x)

= γj(yj , x).

Then, γ is an S-map and, clearly, γβi = γi. Finally, if γ′ : X → Z is such that γ′βi = γi

for all i, then γ′(x) = γ′βi(yi, x) = γi(yi, x) = γ(x), so γ is unique. We therefore have
that (X, βi) is the directed colimit of (Xi, θi,j), as required.

Conversely, since split epimorphisms are pure, then ψ is pure by Corollary 3.4. �

Example 3.7. Let S be as in Example 2.7. Note that, for all e ∈ E(S), S → S/ker λe

splits with splitting map s ker λe �→ es. Moreover,

S ��

1S

��

S/ker λe

��
S

σ�

�� S/σ

commutes for all e ∈ E(S) and σ� is a directed colimit of split epimorphisms.
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Theorem 3.8 (Stenström [22, Theorem 5.3]). Let S be a monoid. An S-act Y is
then strongly flat if and only if every epimorphism X → Y is pure.

In [15], Normak defines an epimorphism φ : X → Y to be 1-pure if for every element
y ∈ Y and the relations ysi = yti, i = 1, . . . , n, there exists an element x ∈ X such that
φ(x) = y and xsi = xti for all i. He proves the following.

Proposition 3.9 (Normak [15, Proposition 1.17]). Let S be a monoid. An epi-
morphism φ : X → Y is 1-pure if and only if for all cyclic finitely presented S-acts C and
every morphism f : C → Y there exists g : C → X with f = φg.

Proposition 3.10 (Normak [15, Proposition 2.2]). Let S be a monoid. Y satisfies
condition (E) if and only if every epimorphism X → Y is 1-pure.

As a generalization, we say that an epimorphism g : B → A of S-acts is n-pure if for
every family of n elements a1, . . . , an ∈ A and every finite family of relations aαi

si = aβi
ti,

i = 1, . . . , m, there exist b1, . . . , bn ∈ B such that g(bi) = ai and bαisi = bβiti for all i.
We are interested in the cases n = 1 and n = 2. Clearly, pure ⇒ 2-pure ⇒ 1-pure.

Proposition 3.11. Let S be a monoid and let ψ : X → Y be an S-epimorphism in
which X satisfies condition (E). Then, Y satisfies condition (E) if and only if ψ is 1-pure.

Proof. Suppose that ψ is 1-pure and that y ∈ Y , s, t ∈ S are such that ys = yt

in Y . Hence, there exists x ∈ X such that ψ(x) = y and xs = xt. Since X satisfies
condition (E) there exist x′ ∈ X, u ∈ S such that x = x′u, us = ut and so y = ψ(x′)u,
us = ut and Y satisfies condition (E).

The converse holds by Proposition 3.10. �

Proposition 3.12. Let S be a monoid and let ψ : X → Y be an S-epimorphism in
which X satisfies condition (P). If ψ is 2-pure, then Y satisfies condition (P).

Proof. Suppose that ψ is 2-pure and suppose that y1, y2 ∈ Y , s1, s2 ∈ S are such
that y1s1 = y2s2 in Y . Hence, there exist x1, x2 ∈ X with ψ(xi) = yi and x1s1 = x2s2 in
X. Since X satisfies condition (P), there exist x3 ∈ X, u1, u2 ∈ S such that x1 = x3u1,
x2 = x3u2 and u1s1 = u2s2. Consequently, y1 = ψ(x3)u1, y2 = ψ(x3)u2 and u1s1 = u2s2,
so Y satisfies condition (P). �

The converse of this last result is false. For example, let S = (N ∪ {0}, +) and let
ΘS = {θ} be the 1-element S-act. Let x = y = θ ∈ ΘS ; then x0 = y0 and x0 = y1 but
there cannot exist x′, y′ ∈ S such that x′ + 0 = y′ + 0 and x′ + 0 = y′ + 1, so S → ΘS is
not 2-pure, but it is easy to check that ΘS does satisfy condition (P).

From Theorem 3.8 and Propositions 3.11 and 3.12 we deduce the following.

Corollary 3.13. Let S be a monoid and let ψ : X → Y be an S-epimorphism with X

strongly flat. The following are equivalent:

(1) Y is strongly flat;

(2) ψ is pure;

(3) ψ is 2-pure.
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Let X be an S-act and let θ be a congruence on X. Say that θ is pure if X → X/θ is
pure. As a corollary to Theorem 3.1 we have the following.

Corollary 3.14. Let S be a monoid, let X be an S-act and let θ be a congruence on
X. Then, θ is pure if and only if for every family x1, . . . , xn ∈ X and the relations

xjisiθxkiti (1 � i � m)

on X there exists y1, . . . , yn ∈ X such that yiθxi and

yjisi = ykiti for all 1 � i � m.

Corollary 3.15. Let ρ be a right S-congruence on a monoid S. Then, ρ is pure if and
only if S/ρ is strongly flat.

Example 3.16. It now follows easily from Example 3.2 that if S is an inverse monoid
with minimum group congruence σ, then S/σ is a strongly flat right S-act.

Let f : X → Y be an S-monomorphism. Renshaw [20] defined f to be P -unitary if

(∀y, y′ ∈ Y \ im(f), ∀s, t ∈ S) ys, y′t ∈ im(f) ⇒ ys = y′t.

This is obviously equivalent to saying that whenever y, y′ ∈ Y , s, t ∈ S are such that
ys �= y′t but ys, y′t ∈ im(f), either y ∈ im(f) or y′ ∈ im(f).

In the same way, Renshaw defined f to be E-unitary if

(∀y ∈ Y \ im(f), ∀s, t ∈ S) ys, yt ∈ im(f) ⇒ ys = yt,

which is obviously equivalent to saying that whenever y ∈ Y , s, t ∈ S are such that
ys �= yt but ys, yt ∈ im(f), then y ∈ im(f).

Theorem 3.17. Let S be a monoid, let f : X → Y be a monomorphism and suppose
that Y → Y/X is a 2-pure epimorphism. Then, f is P -unitary. Moreover, for all s, t ∈ S

there exists x, x′ ∈ X with xs = x′t.

Proof. Let ρ = im(f)× im(f)∪1Y , so Y/X = Y/ρ. Let y, y′ ∈ Y \ im(f) and suppose
that ys, y′t ∈ im(f). Then ys ρ y′t, and so, by assumption, it easily follows that ys = y′t,
as required.

Let x ∈ X so that f(x)s ρ f(x)t. There then exists x1, x2 ∈ X with

f(x1) ρ f(x) ρ f(x2) and f(x1)s = f(x2)t.

Hence, x1s = x2t, as required. �

It then follows from [20, Theorems 4.1 and 4.3] that if Y → Y/X is a pure epimorphism,
then f : X → Y is a pure monomorphism. In fact, following the remark after the proof
of [20, Theorem 4.1], we see that f splits. In addition, we see from [20, Theorem 4.22]
that if every epimorphism is pure, then S is a group. Actually, from Theorem 3.8 we see
that all S-acts are strongly flat, so S is the trivial group.
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Theorem 3.18. Let S be a monoid, let f : X → Y be a monomorphism and suppose
that Y → Y/X is a 1-pure epimorphism. Then, f is E-unitary. Moreover, for all s, t ∈ S

there exists x ∈ X with xs = xt.

Proof. Let ρ = im(f) × im(f) ∪ 1Y , so Y/X = Y/ρ. Let y ∈ Y \ im(f), s, t ∈ S

and suppose that ys, yt ∈ im(f). Then (yρ)s = (yρ)t, so there exist z ∈ Y , u ∈ S with
yρ = (zρ)u and us = ut. Hence, y = zu, so ys = yt, as required.

Let x ∈ X so that f(x)ρs = f(x)ρt. There then exists y ∈ Y with yρ = f(x)ρ and
ys = yt. Hence, y = x1 for some xi ∈ X, so x1s = x1t, as required. �

Theorem 3.19. Let S be a monoid, let f : X → Y be a monomorphism and suppose
that Y → Y/X is a split epimorphism. Then f is P -unitary. Moreover, for all s, t ∈ S

there exists x ∈ X with xs = xt.

Proof. Let ρ = im(f)× im(f)∪ 1Y , so Y/X = Y/ρ. Let g : Y/X → Y be the splitting
map. Note that if y �∈ im(f), then g(yρ) = y. Let y, y′ ∈ Y \ im(f), s, t ∈ S and suppose
that ys, y′t ∈ im(f). Then (yρ)s = (y′ρ)t, so g(yρ)s = g(y′ρ)t. Consequently, ys = y′t,
as required.

Let x ∈ X such that f(x)ρs = f(x)ρt. Then g(f(x)ρ)s = g(f(x)ρ)t, so there exists
x1 ∈ X with g(f(x)ρ) = f(x1), so x1s = x1t, as required. �

4. Covers and precovers

Let S be a monoid, and let A be an S-act. Unless otherwise stated, in the rest of this
section, X is a class of S-acts closed under isomorphisms. By an X -precover of A we
mean an S-map g : P → A for some P ∈ X such that, for every S-map g′ : P ′ → A, for
P ′ ∈ X , there exists an S-map f : P ′ → P with g′ = gf .

P
g �� A

P ′

g′

��

f

���������

If, in addition, the precover satisfies the condition that each S-map f : P → P with
gf = g is an isomorphism, then we call it an X -cover. We, of course, frequently identify
the (pre)cover with its domain. Obviously, an S-act A is an X -cover of itself if and only
if A ∈ X . Note that this definition of cover is different from that given in [13].

Theorem 4.1 (Mahmoudi and Renshaw [13, Theorem 5.8]). Let S be a monoid.
If g1 : X1 → A and g2 : X2 → A are both X -covers of an S-act A, then there exists an
isomorphism h : X1 → X2 such that g2h = g1.

Theorem 4.2 (Mahmoudi and Renshaw [13, Theorem 5.7]). Let S be a monoid.
An S-map g : P → A, with P ∈ P, is a P-cover of A if and only if it is a projective cover.
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It was demonstrated in [13] that the previous result is not true for condition (P). We
show in § 5 that it is also false for strongly flat acts.

Recall from [11, Theorem II.3.16] that an S-act G is called a generator if there exists
an S-epimorphism G → S.

Proposition 4.3. Let S be a monoid and let X be a class of S-acts that contains a
generator G. If g : C → A is an X -precover of A, then g is an epimorphism.

Proof. Let h : G → S be an S-epimorphism. There then exists an x ∈ G such that
h(x) = 1. For all a ∈ A define the S-map λa : S → A by λa(s) = as. By the X -precover
property, there exists an S-map f : G → C such that gf = λah. Hence, g(f(x)) = a, so
im(g) = A and g is epimorphic. �

Obviously, if every S-act has an epimorphic X -precover, then S has an epimorphic
X -precover, which by definition is then a generator in X , so we have the following
corollary.

Corollary 4.4. Let S be a monoid and let X be a class of S-acts such that every
S-act has an X -precover. Every S-act then has an epimorphic X -precover if and only if
X contains a generator.

Note that, for any class of S-acts containing S, S is a generator in X , so X -precovers
are always epimorphic. In particular, this is true for the classes P, SF , CP and F .

Lemma 4.5. Let S be a monoid and let h : X → A be a homomorphism of S-acts
where A =

⋃̇
i∈IAi is a coproduct of non-empty subacts Ai ⊆ A. There then exist J ⊆ I

and Xj ⊆ X for each j ∈ J such that X =
⋃̇

j∈JXj and im(h|Xj ) ⊆ Aj for each j ∈ J .
Moreover, if h is an epimorphism, then J = I.

Proof. For each i ∈ I let Xi = {x ∈ X : h(x) ∈ Ai} and define J = {i ∈ I : Xi �= ∅}.
For all xj ∈ Xj and s ∈ S, h(xjs) = h(xj)s ∈ Aj , so xjs ∈ Xj and Xj is a subact of X.
Since Aj are disjoint and h is a well-defined S-map, Xj are also disjoint and X =

⋃̇
j∈JXj .

Clearly, im(h|Xj
) ⊆ Aj for each j ∈ J . If h is an epimorphism, then none of the Xi are

empty, so J = I. �

Proposition 4.6. Let S be a monoid and let X satisfy the property that, for each
i ∈ I,

⋃̇
i∈IXi ∈ X ⇔ Xi ∈ X . Each Ai then has an X -precover if and only if

⋃̇
i∈IAi

has an X -precover.

Proof. For each i ∈ I, let gi : Ci → Ai be an X -precover of Ai. Define g :
⋃̇

i∈ICi →⋃̇
i∈IAi to be the obvious induced map where g|Ci = gi for each i ∈ I. We claim that

this is an X -precover of
⋃̇

i∈IAi. Let X ∈ X and let h : X →
⋃̇

i∈IAi. By Lemma 4.5,
there exists a subset J ⊆ I such that X =

⋃̇
j∈JXj and im(h|Xj ) ⊆ Aj for each j ∈ J .

Now, by the hypothesis, Xj ∈ X , so, since Cj is an X -precover of Aj , there exists
fj ∈ HomS(Xj , Cj) such that h|Xj

= gjfj . So define f :
⋃̇

j∈JXj →
⋃̇

i∈ICi to be the
obvious induced map with f |Xj = fj for each j ∈ J , and clearly gf = h.

Conversely, let g : C →
⋃̇

i∈IAi = A be an X -precover of A. Let i ∈ I and define
Ci = {c ∈ C : g(c) ∈ Ai}, and let gi = g|Ci . Suppose that X is an S-act and suppose

https://doi.org/10.1017/S0013091513000618 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000618


602 A. Bailey and J. H. Renshaw

that h ∈ HomS(X, Ai). Then, clearly h ∈ HomS(X, A), so by the X -precover property
there exists an f ∈ HomS(X, C) such that h = gf . In fact g(f(X)) = h(X) ⊆ Ai, so
f ∈ HomS(X, Ci) and hi = gif . By the hypothesis, Ci ∈ X , and hence gi : Ci → Ai is an
X -precover of Ai. �

By Lemma 1.1, the classes P, SF , CP and F all satisfy this property, so, for any of
these classes, to show that all S-acts have X -precovers it is enough to show that the
indecomposable S-acts have X -precovers.

Lemma 4.7. Let S be a monoid. The one element S-act ΘS has an X -precover if and
only if there exists an S-act A ∈ X such that HomS(X, A) �= ∅ for all X ∈ X .

Proof. Let ΘS = {θ}, let A ∈ X and let g : A → ΘS be given by g(a) = θ. Given any
S-act X ∈ X with S-map h : X → ΘS , clearly gf = h for every f ∈ HomS(X, A). �

We now show that the colimits of X -precovers are X -precovers. To be more precise,
we have the following.

Lemma 4.8. Let S be a monoid, let X be a class of S-acts closed under colimits and
let A be an S-act. Suppose that (Xi, φi,j) is a direct system of S-acts with Xi ∈ X for
each i ∈ I and with colimit (X, αi). Suppose also that, for each i ∈ I, fi : Xi → A is an
X -precover of A such that, for all i � j, fjφi,j = fi. There then exists an X -precover
f : X → A such that fαi = fi for all i ∈ I.

Proof. We have a commutative diagram

Xi

φi,j ��

αi

���
��

��
��

�

fi

���
��

��
��

��
��

��
� Xj

αj

����
��

��
��

fj

����
��
��
��
��
��
��

X

A

so there exists a unique S-map f : X → A such that fαi = fi for all i ∈ I. If F ∈ X and
if g : F → A, then for each i ∈ I there exists hi : F → Xi such that fihi = g. Choose any
i ∈ I and let h : F → X be given by h = αihi. Then fh = g, as required. �

The motivation for the next few results comes mainly from [23].

Lemma 4.9. Let S be a monoid and let X be a class of S-acts closed under directed
colimits. Let A be an S-act and suppose that k : C → A is an X -precover of A. There
then exists an X -precover k̄ : C̄ → A and an S-map g : C → C̄ with k̄g = k such that
for any X -precover k∗ : C∗ → A and any S-map h : C̄ → C∗ with k∗h = k̄, h|im(g) is a
monomorphism.
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Proof. Suppose, by way of contradiction, that for all X -precovers k̄ : C̄ → A and
S-maps g : C → C̄ with k̄g = k there exist an X -precover k∗ : C∗ → A and an S-map
h : C̄ → C∗ with k∗h = k̄ and such that h|im(g) is not a monomorphism. So, in particular,
when C̄ = C, k̄ = k and g = 1C , there exists an X -precover k1 : C1 → A and an S-map
g1,0 : C → C1 with k1g1,0 = k and such that g1,0|im(1C) is not a monomorphism.

Now let κ � 2 be an ordinal and suppose that for all ordinals α < κ there exist an
X -precover kα : Cα → A and S-maps gα,β : Cβ → Cα for β < α such that for any triple
γ < δ < α, gα,γ = gα,δgδ,γ and

ker(g1,0) � · · · � ker (gα,0) � · · · ⊆ C × C.

We proceed by transfinite induction. First, if κ is not a limit ordinal, then on setting C̄ =
Cκ−1, k̄ = kκ−1 and g = gκ−1,0 we deduce that there exist an X -precover kκ : Cκ → A

and an S-map gκ,κ−1 : Cκ−1 → Cκ with kκgκ,κ−1 = gκ−1,0 such that gκ,κ−1|im(gκ−1,0) is
not a monomorphism. For β < κ − 1 let gκ,β = gκ,κ−1gκ−1,β , so ker(gκ−1,0) � ker(gκ,0)
and, for γ < δ < κ, gκ,γ = gκ,δgδ,γ , as required.

Now, if κ is a limit ordinal, then let (Cκ, gκ,α : Cα → Cκ) be the directed colimit of
the system (Cα, gα,β) and consider the diagram

Cβ
gα,β ��

gκ,β

���
��

��
��

�

kβ

���
��

��
��

��
��

��
��

Cα

gκ,α

����
��

��
��

kα

����
��
��
��
��
��
��
�

Cκ

kκ

��
A

where kκ : Cκ → A is the unique S-map that makes the diagram commutative. By
Lemma 4.8 we then deduce that kκ : Cκ → A is an X -precover for A. In addition, we
see that, for γ < δ < κ, gκ,γ = gκ,δgδ,γ and that ker(gδ,0) ⊆ ker(gκ,0). But ker(gδ,0) �

ker(gδ+1,0) ⊆ ker(gκ,0), so ker(gδ,0) � ker(gκ,0), as required.
It then follows that |C × C| is greater than the cardinality of every ordinal, which is a

clear contradiction. �

Lemma 4.10. Let S be a monoid and let X be a class of S-acts closed under directed
colimits. Let A be an S-act and suppose that k : C → A is an X -precover of A. There
then exists an X -precover k̄ : C̄ → A such that, for any X -precover k∗ : C∗ → A and any
S-map h : C̄ → C∗ with k∗h = k̄, h is a monomorphism.

Proof. By Lemma 4.9 there exist an X -precover k1 : C1 → A and an S-map
g1,0 : C → C1 with k1g1,0 = k such that, for any X -precover k∗ : C∗ → A and any
S-map h : C1 → C∗ with k∗h = k1, h|im(g1,0) is a monomorphism. Now, let n > 1
and suppose by way of induction that there exist an X -precover kn−1 : Cn−1 → A

and a map gn−1,n−2 : Cn−2 → Cn−1 with kn−1gn−1,n−2 = kn−2 and such that, for any
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X -precover k∗ : C∗ → A and any S-map h : Cn−1 → C∗ with k∗h = kn−1, h|im(gn−1,n−2)

is a monomorphism (here, we obviously assume that C0 = C and k0 = k):

Cn−2
gn−1,n−2 �� Cn−1

kn−1 ��

h
															 A

C

k∗

��

By Lemma 4.9 we then deduce that there exist an X -precover kn : Cn → A and a map
gn,n−1 : Cn−1 → Cn with kngn,n−1 = kn−1 and such that, for any X -precover k∗ : C∗ → A

and any S-map h : Cn → C∗ with k∗h = kn, h|im(gn,n−1) is a monomorphism.
Now, let (Cω, gω,n : Cn → Cω) be the directed colimit of the system (Cn, gn,n−1) and

consider the diagram

Cn−1
gn,n−1 ��

gω,n−1

















kn−1

���
��

��
��

��
��

��
��

Cn

gω,n

����
��

��
��

kn

����
��
��
��
��
��
��
�

Cω

kω

��
A

where kω : Cω → A is the unique S-map that makes the diagram commutative. By
Lemma 4.8 we then deduce that kω : Cω → A is an X -precover for A. We claim that
this X -precover has the desired properties. So let k∗ : C∗ → A be an X -precover of A

and let h : Cω → C∗ be an S-map with k∗h = kω. Suppose also that h(x) = h(y) for
x, y ∈ Cω. There then exist m, n > 0 and xm ∈ Cm, yn ∈ Cn such that gω,m(xm) = x

and gω,n(yn) = y. Assume, without loss of generality, that m � n and let zn = gn,m(xm).
Then

hgω,n+1(gn+1,n(zn)) = hgω,n(zn) = hgω,n(yn) = hgω,n+1(gn+1,n(yn)).

But hgω,n+1 : Cn+1 → C∗ and hgω,n+1|im(gn+1,n) is, therefore, a monomorphism. Hence,
gn+1,n(zn) = gn+1,n(yn), so

x = gω,m(xm) = gω,n+1(gn+1,n(zn)) = gω,n+1(gn+1,n(yn)) = gω,n(yn) = y,

as required. �

We can now deduce one of our main theorems.

Theorem 4.11. Let S be a monoid, let A be an S-act and let X be a class of S-acts
closed under directed colimits. If A has an X -precover, then A has an X -cover.

Proof. By Lemma 4.10 there exists an X -precover k0 : C0 → A such that, for any
X -precover k∗ : C∗ → A and any S-map h : C0 → C∗ with k∗h = k0, h is a monomor-
phism. We show that k0 : C0 → A is in fact an X -cover of A.
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Assume by way of contradiction that A does not have an X -cover. Let C1 = C0 and
k1 = k0. There then exists g1,0 : C0 → C1 with k1g1,0 = k0 and such that g1,0 is a
monomorphism but not an epimorphism. It follows that

im(g1,0) � C1 = C0.

By way of transfinite induction, suppose that κ � 2 is an ordinal such that, for all ordinals
α < κ, there exists an X -precover kα : Cα → A such that the following hold:

(1) for any X -precover k∗ : C∗ → A and any S-map h : Cα → C∗ with k∗h = kα, h is
a monomorphism;

(2) for all ordinals β < α there exist S-maps gα,β : Cβ → Cα, which are monomor-
phisms but not epimorphisms, and im(gα,β) � Cα;

(3) for all ordinals γ < β < α, gα,γ = gα,βgβ,γ and

im(gα,γ) � im(gα,β).

We show that κ also possesses these properties. If κ is not a limit ordinal, then let Cκ =
Cκ−1 and kκ = kκ−1. Then, clearly, kκ : Cκ → A satisfies the condition of (1) above. There
also exists gκ,κ−1 : Cκ−1 → Cκ with kκgκ,κ−1 = kκ−1, which is a monomorphism but not
an epimorphism. For each β < κ let gκ,β = gκ,κ−1gκ−1,β . Then, since gκ,κ−1 is not onto, it
follows that gκ,β is not an epimorphism but is a monomorphism, so im(gκ,β) � Cκ. By the
inductive hypothesis, if γ < β < κ, gκ,γ = gκ,βgβ,γ and, in addition, im(gκ,γ) � im(gκ,β).

Now suppose that κ is a limit ordinal, let (Cκ, gκ,β : Cβ → Cκ) be the directed colimit
of the system (Cβ , gβ,γ) and consider the diagram

Cγ
gβ,γ ��

gκ,γ

���
��

��
��

�

kγ

���
��

��
��

��
��

��
��

Cβ

gκ,β

����
��

��
��

kβ

����
��
��
��
��
��
��
�

Cκ

kκ

��
A

where kκ : Cκ → A is the unique S-map that makes the diagram commute. By Lemma 4.8
we then deduce that kκ : Cκ → A is an X -precover for A. In addition, we see that, for
γ < β < κ, gκ,γ = gκ,βgβ,γ , and that since each gβ,γ is a monomorphism, so is each gκ,β .
Suppose that gκ,γ is onto for some γ < κ. Then, for each γ < β < κ, since gκ,β is a
monomorphism, it follows that gβ,γ is also onto, which is a contradiction, so gκ,γ is not
an epimorphism for any γ < κ. It is then clear that

im(gκ,γ) � im(gκ,β) � Cκ.

https://doi.org/10.1017/S0013091513000618 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000618


606 A. Bailey and J. H. Renshaw

Finally, let k∗ : C∗ → A be an X -precover and let h : Cκ → C∗ be such that k∗h = kκ.
For each β < κ we then have a commutative diagram

Cβ
gκ,β ��

hgκ,β
����������������� Cκ

kκ ��

h

�
��

��
��

� A

C∗

k∗

��

and by assumption hgκ,β is a monomorphism. Hence, by Lemma 2.4 it follows that h

is a monomorphism. In particular, we can deduce that there exists a monomorphism
Cκ → C0.

Consequently, we see that for any ordinal κ we have a chain of length κ,

im(gκ,0) � · · · � im(gκ,β) � · · · � Cκ ⊆ C0,

which is a contradiction. �

It is clear that a necessary condition for an S-act A to have an X -precover is that there
exists X ∈ X with HomS(X, A) �= ∅. This condition is always satisfied in the category
of modules over a ring (or indeed any category with a zero object), as every Hom-set is
always non-empty, but this is not always the case for S-acts.

Let S be a monoid and let X be a class of S-acts. We say that X satisfies the (weak)
solution set condition if for all S-acts A there exists a set SA ⊆ X such that for all
(indecomposable) X ∈ X and all S-maps h : X → A there exist Y ∈ SA, f : X → Y and
g : Y → A such that h = gf .

Theorem 4.12. Let S be a monoid and let X be a class of S-acts such that
⋃̇

i∈IXi ∈
X ⇔ Xi ∈ X for each i ∈ I. Every S-act then has an X -precover if and only if

(1) for every S-act A there exists an X in X such that HomS(X, A) �= ∅,

(2) X satisfies the weak solution set condition.

Proof. Suppose that X satisfies the given conditions. Let A be an S-act and let SA =
{Ci : i ∈ I} be as given in the weak solution set condition. Note that, by property (1),
SA �= ∅. Moreover, we can assume that, for all Y ∈ SA, HomS(Y, A) �= ∅ as SA\{Y ∈ SA |
HomS(Y, A) = ∅} will also satisfy the requirements of the solution set condition.

For each i ∈ I and for each S-map g : Ci → A let Ci,g be an isomorphic copy of Ci

with the isomorphism φi,g : Ci,g → Ci (recall that we are assuming that X is closed under
isomorphisms). Let

CA =
⋃̇

i∈I, g∈HomS(Ci,A)
Ci,g.

By the hypothesis, CA ∈ X and we can define an S-map ḡ : CA → A by ḡ|Ci,g =
gφi,g for each i ∈ I, g ∈ HomS(Ci, A). We claim that (CA, ḡ) is an X -precover for A.
Let X ∈ X and let h : X → A be an S-map. By the hypothesis, X =

⋃̇
j∈JXj is a

coproduct of indecomposable S-acts with Xj ∈ X for each j ∈ J . Furthermore, by the
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hypothesis, there exist Cij
∈ SA, fj : Xj → Cij

and gj : Cij
→ A such that gjfj = h|Xj

.
Now ḡ|Cij ,gj

φ−1
ij ,gj

= gj , so both triangles and the outer square in the following diagram
commute (where the unlabelled arrows are the obvious inclusion maps):

CA
ḡ �� A

Cij ,gj

��

X =
⋃̇

Xj

h

��

Cij

φ−1
ij ,gj

��
gj

��
Xj

fj

��

��

So define f : X → CA by f |Xj
= φ−1

ij ,gj
fj and note that ḡf = h, as required.

Conversely, if A is an S-act with an X -precover CA, then HomS(CA, A) �= ∅, and on
setting SA = {CA} we see that X satisfies the (weak) solution set condition. �

Note from the proof of Theorem 4.12 that we can also deduce the following.

Theorem 4.13. Let S be a monoid and let X be a class of S-acts such that Xi ∈ X
for each i ∈ I ⇒

⋃̇
i∈IXi ∈ X . Every S-act then has an X -precover if and only if

(1) for every S-act A there exists an X in X such that HomS(X, A) �= ∅,

(2) X satisfies the solution set condition.

Corollary 4.14. Let S be a monoid and let X be a class of S-acts such that

(1)
⋃̇

i∈IXi ∈ X ⇔ Xi ∈ X for each i ∈ I,

(2) for every S-act A there exists an X in X such that HomS(X, A) �= ∅,

(3) there exists a cardinal λ such that for every indecomposable X in X , |X| < λ.

Then, every S-act has an X -precover.

Proof. By (3), there exists a λ-skeleton C = {Ci : i ∈ I} for the indecomposable
S-acts in X . Suppose that A is an S-act and let SA = C. If X ∈ X is indecomposable
and if h : X → A is an S-map, then there exists an isomorphism φ : X → Ci for some
Ci ∈ C, we have an S-map hφ−1 : Ci → A and clearly h = hφ−1φ, so X satisfies the
weak solution set condition. �

Let A be an S-act and let ρ be a congruence on A. We say that ρ is X -pure if A/ρ ∈ X .
The inspiration for some of the following results comes from [23].

Theorem 4.15. Let S be a monoid, let X be a class of S-acts and suppose that A

is an S-act such that ψ : F → A is an X -precover. Suppose also that the set of X -pure
congruences on F is closed under unions of chains. There then exists an X -precover
φ : G → A of A such that there exists no non-identity X -pure congruence ρ ⊂ ker(φ)
on G.
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Proof. First, if there does not exist a non-identity X -pure congruence σ ⊆ ker(ψ)
on F , then we let G = F and φ = ψ. Otherwise, by assumption, any chain of X -pure
congruences on F contained in ker(ψ) has an upper bound, so by Zorn’s lemma there is
a maximum σ, say. Let G = F/σ and let φ : G → A by the natural map that makes

F
ψ ��

σ�

��

A

G

φ

���������

commute. It is then easy to check that φ : G → A is an X -precover, as, if H ∈ X
and f : H → A, then there exists g : H → F such that ψg = f . So σ�g : H → G and
φσ�g = ψg = f , and φ : G → A is an X -precover.

Finally, suppose that ρ �= 1G is an X -pure congruence on G such that ρ ⊂ ker(φ). By
Remark 1.3, σ/ρ is then an X -pure congruence on F containing σ and σ/ρ = ker(ρ�σ�) ⊆
ker(ψ). By the maximality of σ it follows that σ = σ/ρ, so ρ = 1G, a contradiction, as
required. �

Following [2], we can extend this result as follows.

Proposition 4.16. Let S be a monoid and let X be a class of S-acts. If A is an S-act
such that ψ : F → A is an X -cover, then there exists no non-identity X -pure congruence
ρ ⊂ ker ψ on F .

Proof. Let ρ ⊂ ker ψ be an X -pure congruence on F . There then exists an induced
S-map φ : F/ρ → A such that φρ� = ψ. Since (F, ψ) is a precover, there exists an S-map
θ : F/ρ → F such that ψθ = φ:

F
ψ �� A

F/ρ

θ

����������
φ

��

Hence, ψθρ� = φρ� = ψ, so θρ� is an automorphism of F . Hence, ρ� is a monomorphism,
so ρ = 1A, as required. �

Let X be a class of S-acts. We say that X is (weakly) congruence pure if for each
cardinal λ there exists a cardinal κ > λ such that for every (indecomposable) X ∈ X
with |X| � κ and every congruence ρ on X with |X/ρ| � λ there exists an X -pure
congruence 1X �= θ ⊆ ρ of X.

Theorem 4.17. Let S be a monoid and let X be a class of S-acts such that

(1)
⋃̇

i∈IXi ∈ X ⇔ Xi ∈ X for each i ∈ I,

(2) for every S-act A there exists an X in X such that HomS(X, A) �= ∅,
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(3) for each X ∈ X the set of all X -pure congruences on X is closed under unions of
chains,

(4) X is weakly congruence pure.

Then, X satisfies the weak solution set condition, so every S-act has an X -precover.

Proof. Let A be an S-act, let λ = max{|A|,ℵ0}, let κ be as given in the weakly
congruence pure condition and let SA be any κ-skeleton of X consisting of S-acts of
cardinalities less than κ. Suppose that X ∈ X is an indecomposable S-act and that
h : X → A is an S-map. If |X| < κ, then let Y ∈ SA be an isomorphic copy of X and let
f : X → Y be an isomorphism and define g : Y → A by g = hf−1 such that h = gf .

Suppose now that |X| � κ. Then |X/ker(h)| = |im(h)| � λ, so there exists an X -pure
congruence 1X �= θ ⊆ ker(h) on X with X/θ ∈ X . In fact, using a combination of Zorn’s
lemma and the hypothesis that the set of X -pure congruences on X is closed under
unions of chains, we can assume that θ is maximal with respect to this property. Now let
h̄ : X/θ → A be the unique map such that

X
θ�

��

h ��
��

��
��

X/θ

h̄

��
A

commutes. Note that, since im(h̄) = im(h),

|(X/θ)/ker(h̄)| = |X/ker(h)| � λ.

Now suppose, by way of contradiction, that 1X/θ �= ρ ⊆ ker(h̄) is an X -pure congruence
on X/θ such that (X/θ)/ρ ∈ X . Then by Remark 1.3 and since X ∈ X it follows
that θ/ρ is an X -pure congruence on X containing θ, and since ρ ⊆ ker(h̄) it easily
follows that θ/ρ ⊆ ker(h). Hence, by the maximality of θ we deduce that θ/ρ = θ,
so ρ = 1X/θ. Therefore, it follows that X/θ does not contain a non-identity X -pure
congruence contained in ker(h̄) and, since by Lemma 1.2 X/θ is indecomposable and
since X is weakly congruence pure, we deduce that |X/θ| < κ. Consequently, it follows
that there exist Y ∈ SA and an isomorphism f̄ : X/θ → Y ; so define f : X → Y by
f = f̄ θ� and g : Y → A by g = h̄f̄−1 such that gf = h.

Hence, X satisfies the weak solution set condition and the result follows from Theo-
rem 4.12. �

A similar condition to this is considered in [3, 4] and forms the basis of one of the
proofs of the flat cover conjecture.

5. Strongly flat and condition (P) covers

In this section we apply some of the previous results to the specific classes X = SF and
X = CP. In particular, note from Lemma 1.1 that

⋃̇
i∈IXi ∈ X ⇔ Xi ∈ X for each i ∈ I
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holds for both X = SF and X = CP. Also, since S is strongly flat (and hence satisfies
condition (P)), given any S-act A there exists an X in X such that HomS(X, A) �= ∅.

Let A be an S-act and let ρ be a congruence on A. Recall that we say that ρ is X -pure
if A/ρ ∈ X . So, by Propositions 3.11 and 3.12, Corollary 3.13 and [1, Corollary 4.1.3 and
Theorem 4.1.4] we deduce the following.

Corollary 5.1. Let S be a monoid, let X be an S-act and let ρ be a congruence on X.

(1) If X ∈ E , then ρ is E-pure if and only if it is 1-pure.

(2) If X ∈ CP, then ρ is CP-pure if it is 2-pure.

(3) If X ∈ SF , then ρ is SF-pure if and only if it is pure if and only if it is 2-pure.

(4) If X ∈ P, then ρ is P-pure if and only if ρ� splits.

From Lemma 2.5 and Propositions 2.8 and 2.9 we can immediately deduce the following
important result.

Theorem 5.2. Let S be a monoid and let X be a class of S-acts closed under directed
colimits. Then, X is closed under chains of X -pure congruences. In particular, this is true
for the classes X = SF and X = CP.

Recall that an act X is said to be locally cyclic if for all x, y ∈ X there exists z ∈ X,
s, t ∈ S with x = zs, y = zt. By [19, Theorem 3.7] the indecomposable acts in CP and
SF are the locally cyclic acts.

Lemma 5.3. Let S be a monoid, suppose that X satisfies condition (P) and suppose
that we have the system of equations

x1s1 = x2t2,

x2s2 = x3t3,

...

xn−1sn−1 = xntn,

where xi ∈ X, si, ti ∈ S. There then exist y ∈ X, ui ∈ S such that, for 1 � i � n − 1, we
have that xi = yui and uisi = ui+1ti+1.

Proof. We prove this by induction on n. Suppose then that n = 2. Our system is
then

x1s1 = x2t2,

and condition (P) means there exist y ∈ X, u1, u2 ∈ S with x1 = yu1, x2 = yu2 and
u1s1 = u2t2, as required.

https://doi.org/10.1017/S0013091513000618 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000618


Covers of acts over monoids and pure epimorphisms 611

Suppose then that the result is true for i � n and suppose that we have the system of
equations

x1s1 = x2t2,

x2s2 = x3t3,

...

xn−1sn−1 = xntn,

xnsn = xn+1tn+1.

By induction there exist y ∈ X, ui ∈ S such that, for 1 � i � n, we have that xi = yui

and, for 1 � i � n − 1, that uisi = ui+1ti+1. In addition, condition (P) means that
there exist y′ ∈ X, u′

n, v′
n ∈ S with xn = y′u′

n, xn+1 = y′v′
n and u′

nsn = v′
ntn+1. But

then xn = yun = y′u′
n, so there exist z ∈ X, p, q ∈ S with y = zp, y′ = zq and

pun = qu′
n. Hence, for 1 � i � n it follows that xi = z(pui) and, for 1 � i � n − 1,

(pui)si = (pui+1)ti+1, while xn+1 = z(qv′
n) and (pun)sn = qu′

nsn = (qv′
n)tn+1, as

required. �

The following was suggested to us by Philip Bridge (personal communication, 2010).
For a version involving more general categories see [5].

Proposition 5.4 (Bridge [5, Theorem 5.21]). Let S be a monoid and suppose
that S satisfies the following property:

∀s ∈ S, ∃k ∈ N such that ∀m ∈ S, |{p ∈ S | ps = m}| � k.

Every S-act then has an SF-cover and a CP-cover.

Proof. We show that every indecomposable S-act that satisfies condition (P) (and
hence every strongly flat indecomposable S-act) has a bound on its cardinality. Let X

be an indecomposable S-act that satisfies condition (P). It is then locally cyclic, so for
all x, y ∈ X there exist z ∈ X, s, t ∈ S such that x = zs, y = zt:

x y

z

s

���������� t

���������

We now fix x ∈ X and consider how many possible y ∈ X could satisfy these equations.
Firstly, we take a fixed s ∈ S and consider how many possible z ∈ X could satisfy x = zs.
By the hypothesis, there exists k ∈ N such that, for any m ∈ S, |{p ∈ S : ps = m}| � k.
We suppose that there exist at least k+1 distinct z such that x = zs. That is, x = z1s =

https://doi.org/10.1017/S0013091513000618 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000618


612 A. Bailey and J. H. Renshaw

z2s = · · · = zk+1s. By Lemma 5.3 there then exist w ∈ X, p1, . . . , pk+1 ∈ S such that
p1s = · · · = pk+1s and zi = wpi for each i ∈ {1, . . . , k + 1}:

x

z1

s

����������������� z2

s

����������
. . . zk

s

����������
zk+1

s

�����������������

w

p1

�����������������

p2

����������

pk

����������
pk+1

�����������������

However, by the hypothesis, this means at least two pi are equal and, hence, at least two
zi are equal, which is a contradiction. So, given some fixed s ∈ S, there exist at most k

possible z such that x = zs. Hence, there exist no more than ℵ0|S| possible z ∈ X, s ∈ S

such that x = zs. Similarly, given a fixed z ∈ X, there exist at most |S| possible t ∈ S

such that zt = y, and, hence, there exist no more than ℵ0|S|2 possible elements in X. So
the result follows by Corollary 4.14. �

A finitely generated monoid that satisfies this property is said to have finite geometric
type (see [21]). Let B be the bicyclic monoid and let (s, t) ∈ B. Suppose that (m, n) ∈ B

is fixed and suppose that (p, q) ∈ B is such that (p, q)(s, t) = (m, n). We count the
number of solutions to this equation. Recall that

(p, q)(s, t) = (p − q + max(q, s), t − s + max(q, s)) = (m, n).

If q � s, then (p, q) = (m, n − (t − s)) and there exists at most one solution to the
equation. Otherwise, (p, q) = (m − s + q, q), where q ranges between 0 and s − 1. There
exist, therefore, at most s+ 1 possible values of (p, q) that satisfy the equation, so B has
finite geometric type. Hence, we deduce the following.

Proposition 5.5. Let S be the bicyclic monoid. All S-acts then have an SF-cover
and a CP-cover.

On letting k = 1 in Proposition 5.4, we can deduce the following corollary.

Corollary 5.6. Let S be a right cancellative monoid. Every right S-act then has an
SF-cover and a CP-cover.

It also now follows that not every SF-cover is a strongly flat cover, as it was shown
in [13, Remark 3.6] that (N, ·) is a monoid in which the 1-element act Θ does not have
a strongly flat cover. It is, however, obviously right cancellative.

Recall [9] that a monoid S is said to satisfy condition (A) if all right S-acts satisfy
the ascending chain condition for cyclic subacts. This is equivalent to saying that every
locally cyclic right S-act is cyclic.

Proposition 5.7. Let S be a monoid that satisfies condition (A). Every right S-act
then has an SF-cover and a CP-cover.
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Proof. By [19, Theorem 3.7] the indecomposable acts in CP and SF are the locally
cyclic acts, but since S satisfies condition (A) all the locally cyclic acts are cyclic. If S/ρ

is cyclic, then clearly |S/ρ| � |S| and the result follows from Corollary 4.14. �

It is well known that not every monoid that satisfies condition (A) is perfect, so we
can then deduce that P-covers are, in general, different from SF-covers and CP-covers.
Also, given that indecomposable projective acts are cyclic, the indecomposable S-acts
are bounded in size, so by Corollary 4.14 we can deduce the following.

Proposition 5.8. Let S be a monoid. Every S-act has a P-precover.

Lemma 5.9. Let S be a monoid. If A is a right S-act and if k : C → A is an SF -cover
with C projective, then C is a P-cover.

Proof. If P is projective and if g : P → A is an S-map, then P is strongly flat, so
there exists h : P → C with kh = g, so P is a projective cover. �

Since right perfect monoids satisfy condition (A), we have the following.

Corollary 5.10. Let S be a right perfect monoid. Every right S-act then has an
SF-cover.

In addition, since S is right perfect if and only if all strongly flat S-acts are projective,
we have the following.

Corollary 5.11. S is right perfect if and only if every right S-act has a projective
SF-cover.

From [10, Examples 2.9 and 2.10] we can deduce the following.

Theorem 5.12. The following classes of monoids satisfy condition (A), so every right
S-act over such a monoid has an SF-cover and a CP-cover:

(1) finite monoids;

(2) rectangular bands with a 1 adjoined;

(3) right groups with a 1 adjoined;

(4) right simple semigroups with a 1 adjoined;

(5) (N, max).

The previous results rely on us showing that the indecomposable strongly flat S-acts are
bounded in size, and hence that the class of indecomposable strongly flat S-acts forms a
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set. We show that there exists a monoid S with a proper class of indecomposable strongly
flat acts by constructing an indecomposable strongly flat act of arbitrary cardinality.

Example 5.13. Let S = T (N) be the full transformation monoid over the set of
natural numbers and let φ : N × N → N be a bijection of sets. For convenience, we
write maps on the right. Given any set X �= ∅, let AX = {f : X → N} be the set of
all maps from X to N. We can make AX into an S-act by composition of maps: for
f ∈ AX , s ∈ S define fs ∈ AX by x(fs) = (xf)s. Given any f, g ∈ AX , let h ∈ AX be
defined as xh = (xf, xg)φ. Then define u, v ∈ S to be u = φ−1π1 and v = φ−1π2, where
(x, y)π1 = x and (x, y)π2 = y. Therefore, f = hu, g = hv and AX is locally cyclic (hence
indecomposable) and has cardinality at least |X|. We now show that AX is strongly flat.
Let f, g ∈ AX , s, t ∈ S such that fs = gt. Define h ∈ AX as before, pick some x ∈ X

and define ux, vx ∈ S by

nux =

{
nu if n ∈ im(h),
xf otherwise,

nvx =

{
nv if n ∈ im(h),
xg otherwise.

Then f = hux, g = hvx and uxs = vxt, so AX satisfies condition (P). Let f ∈ AX ,
s, t ∈ S such that fs = ft. Pick some x ∈ X and define w ∈ S,

nw =

{
n if n ∈ im(f),
xf otherwise.

Then f = fw and ws = wt, so AX satisfies condition (E) and is strongly flat.

Let T be a monoid and let S be a submonoid of T . If X is an S-act that satisfies
condition (P), then X ⊗S T is a T -act and X → X ⊗S T , given by x �→ x ⊗ 1, is an
S-monomorphism (since X is flat). Moreover, if X is locally cyclic, then so is X ⊗S T ,
since if x1 ⊗ t1, x2 ⊗ t2 ∈ X ⊗S T , then there exist z ∈ X, u1, u2 ∈ S with x1 = zu1,
x2 = zu2. So x1 ⊗ t1 = z ⊗ u1t1 = (z ⊗ 1)u1t1 and, similarly, x2 ⊗ t2 = (z ⊗ 1)u2t2.

Finally, we can also deduce that X ⊗S T satisfies condition (P) as, if (x ⊗ t1)r1 =
(x′ ⊗ t2)r2, then there exist x2, . . . , xn ∈ X, u2, . . . , un, v2 . . . , vn ∈ S, p2, . . . pn−1 ∈ T

such that

x = x2u2, u2t1r1 = v2p2,

x2v2 = x3u3, u3p2 = v3p3,

...
...

xn−1vn−1 = xnun, unpn−1 = vnt2r2,

xnvn = x′.
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So, by Lemma 5.3, there exist y ∈ X and wi ∈ S such that xi = ywi and wivi = wi+1ui+1

(x = yw1, w1 = w2u2 and x′ = ywn+1, wnvn = wn+1), so we have a scheme of the form

x = yw1 = yw2u2, u2t1r1 = v2p2,

yw2v2 = yw3u3, u3p2 = v3p3,

...
...

ywn−1vn−1 = ywnun, unpn−1 = vnt2r2,

ywnvn = ywn+1 = x′.

Hence, x ⊗ t1 = (y ⊗ 1)w1t1, x′ ⊗ t2 = (y ⊗ 1)wn+1t2 and

(w1t1)r1 = w2u2t1r1 = w2v2p2 = w3u3p2 = w3v3p3 = · · ·
= wn−1vn−1pn−1 = wnunpn−1 = wnvnt2r2 = (wn+1t2)r2.

In a similar way, if X is strongly flat, then whenever (x ⊗ t)r1 = (x ⊗ t)r2 in X ⊗S T we
can proceed as above and deduce the existence of a scheme

x = yw1 = yw2u2, u2tr1 = v2p2,

yw2v2 = yw3u3, u3p2 = v3p3,

...
...

ywn−1vn−1 = xnun, unpn−1 = vntr2,

ywnvn = ywn+1 = x.

Now, since yw1 = ywn+1 and since X satisfies condition (E), there exist z ∈ X, u ∈ S

with y = zu and uw1 = uwn+1, so x ⊗ t = (z ⊗ 1)uw1t and, as before, (uw1t)r1 = · · · =
uwn+1tr2 = (uw1t)r2. So X also satisfies condition (E).

Let T be a monoid that satisfies condition (A), let S be a left pure submonoid of T

(in the sense that the inclusion S → T is a left pure S-monomorphism) and let X be a
locally cyclic right S-act. Then, from above, we see that X ⊗S T is a locally cyclic right
T -act, so is cyclic. Hence, there exist x0 ∈ X, t0 ∈ T such that X ⊗S T ∼= (x0 ⊗ t0)T .
We show that X is also cyclic. First, we say that a left S-monomorphism f : C → D is
stable if, for all right S-monomorphisms λ : A → B,

im(1B ⊗ f) ∩ im(λ ⊗ 1D) = im(λ ⊗ f).

It was shown in [18, Theorem 3.1] that left pure monomorphisms are stable. In particular,
the above remarks hold when λ : x0S → X, f : S → T are the inclusions. Consequently,
if x ∈ X, then x ⊗ 1 = x0 ⊗ t in X ⊗S T for some t ∈ T . Hence, there exists s ∈ S such
that x ⊗ 1 = x0s ⊗ 1 in X ⊗S T , and since X → X ⊗S T is a monomorphism, by left
purity of S → T , x = x0s, as required. Hence, we can deduce the following.

Proposition 5.14. The class of monoids that satisfy condition (A) is closed under
the taking of left pure submonoids.
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We can also deduce the following theorem.

Theorem 5.15. Let T be a monoid and let XT = SFT or XT = CPT . Let M be the
class of monoids such that, for all T ∈ M, there exists a cardinal κ with |X| < κ for all
locally cyclic right T -acts X ∈ XT . Then M is closed under submonoids. In addition, for
any monoid S ∈ M, every right S-act has an SF-cover and a CP-cover.

Proof. Let T ∈ M and let S be a submonoid of T . If X ∈ XS is a locally cyclic right
S-act, then X ⊗S T ∈ XT is a locally cyclic right T -act. By assumption, there exists a
cardinal κ such that |X ⊗S T | < κ, so, since X → X ⊗S T is a monomorphism, |X| < κ,
and hence S ∈ M. �

Corollary 5.16. Let S be any submonoid of the bicyclic monoid. Every S-act then
has an SF-cover and a CP-cover.

Many of the results in this paper involve monoids belonging to M. However, Exam-
ple 5.13 demonstrates that M is not the class of all monoids. One of the proofs of the flat
cover conjecture in [4] involved showing that every module over a unitary ring satisfied
a condition very similar to that given in Theorem 4.17. We feel that a similar situation
should hold in the category of S-acts.

We hope to consider the classes of torsion-free, divisible, injective and free acts in a
subsequent paper.

Acknowledgements. Parts of this work will be included in a PhD thesis to be
submitted to the University of Southampton by A.B., who thanks his supervisor, J.H.R.,
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