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Recent progress in scanning transmission electron microscopy has enabled the collection of four-

dimensional datasets (4D-STEM) that are incredibly rich in information at atomistic levels of detail. 

These datasets typically occupy 20-50 GiB on disk. Montaging and related automated acquisition 

methods promise to increase these data sizes many-fold in the near term. As data collection has 

advanced, so has our statistical modeling and computational capacity. Electron ptychography via 

iterative optimization is a computationally intensive method that uses 4D-STEM datasets to reconstruct 

2D and 3D images with sufficient resolution to resolve individual atoms. Modern approaches to 

ptychography use high-performance computing with distributed computation to compute these image 

reconstructions in an acceptable timeframe. This necessitates transferring of tens to hundreds of 

gigabytes of data between microscope control computers and data centers which are typically housed in 

separate buildings or even separate facilities. Still, most 4D-STEM data collection methods write data in 

formats that are not optimized for network transfers or space efficiency. In this work, we have explored 

an array of existing and novel compression methods and found that custom approaches provide the 

highest compression ratios for this task. 

 

It is now standard practice to incorporate deep learning (DL) into many phases of microscopy analysis 

pipelines. Within the past few years, the DL community has made great strides in developing models 

that can learn compression codecs directly from image datasets [1]; see for example the learned lossless 

compression (L3C) model used in our present work [2]. We investigated the use of DL as well as other 

compression methodologies that exploit the unique structure in 4D-STEM datasets to drastically reduce 

bandwidth and storage requirements. We have developed novel techniques for compressing 4D-STEM 

datasets which leverage the unique features of this type of data. Using the fact that important image 

contrast is contained in the center of the image while the periphery is dominated by background noise, 

we have employed entropy coding using pixel-specific histograms. The results show that this simple 

approach can significantly reduce the size of 4D-STEM data, up to nearly nine-fold compared to the 

current uncompressed output provided by the Nion Swift software. We have validated this approach 

using real observed 4D-STEM datasets and are extending these results to simulations covering a diverse 

range of materials and experimental conditions. Our results suggest that up to ten-fold lossless 

compression of 4D-STEM data may be achievable in practice. In future work, we plan to explore much 

larger compression ratios using lossy compression methods that preserve reconstructed image quality 

[3]. 
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Figure 1. Size of a 4D-STEM dataset compressed using various lossless compression methods. Pixel-

local histograms with arithmetic coding performs best, achieving an 8.6x compression ratio, or 3.70 bits 

per pixel. Our method surpasses off-the-shelf methods like gzip and PNG by at least two-fold. Notably, 

the deep learning approach we tried (L3C) showed lackluster performance, most likely because its 

convolutional architecture is unable to leverage location-specific differences in pixel distributions found 

in 4D-STEM data. 
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