ON NON-ORIENTABLE CLOSED SURFACES IN
EUCLIDEAN SPACES

C. T. YANG

Let us begin with a simple result.

PROPOSITION. Let X be a non-orientable closed surface differentiably imbedded
into the euclidean 4-space R*. Then there is a line in R* which intersects X at
more than two points.

Proof. Let ¢ be any point of R* and let 7 be the smallest number such that
X is contained in the closed 4-spheroid W of centre ¢ and radius r. Clearly
the boundary 3-sphere S of W intersects X.

Let a be a point of S/M X. Then there is a function f: X — .S defined as
follows:

) f(@) = a.

(ii) Whenever x € X — {a}, the line determined by a and x intersects S
at a and another point. The second point of intersection is taken to be f(x).

Obviously f is continuous at every point of X — {a}. Since X is differentiably
imbedded into R, every line which is tangent to X at a is also tangent to
S at a. It follows that f(x) — a¢ = f(a) as x — a. Hence f is also continuous at a.

Now we assert that there is a line in R* which contains ¢ and intersects X
at more than two points. If the assertion is false, then the map f constructed
above is one-to-one so that it is a homeomorphism of X into S. But it is well
known that such a homeomorphism into does not exist. The contradiction
proves the assertion and thus the proof is completed.

The purpose of the present paper is to establish a more general result. In
fact, we shall prove

THEOREM. Let X be a non-orientable closed surface topologically imbedded into
the euclidean n-space R*. Then there is an (n — 3)-plane in R™ which intersects
X at more than n — 2 points.

Notice that since any non-orientable closed surface cannot be topologically
imbedded into R?, the integer # in the theorem must be >3.

The statement of the theorem can be rephrased: ‘‘Any non-orientable closed
surface in the euclidean n-space cannot be (n — 3)-independent in the sense
of Borsuk (1).”” Hence the theorem confirms a special case of the following
conjecture of Professor A. M. Gleason: Any compact subset of the euclidean
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n-space which is k-independent in the sense of Borsuk can be topologically imbedded
into an (n — k)-sphere. The author learned the conjecture from Dr. R. R.
Phelps and a study on the conjecture in a forthcoming paper (2) induced the
author to prepare the present paper.

To prove the theorem we assume that the theorem is false, and then establish
a contradiction by computing the linking number of certain integral cycles.
The proof will be given after the following four lemmas.

LEMMA 1. Let X be a non-orientable closed surface. Let E be a closed 2-cell in
X, let a be the boundary of E and let ¥ = X — (E — «). Let B be a simple
closed curve in Y — a = X — E such that the local orientation of X at a point
x of B 1s reversed when x moves along 3 once. Let X be a homeomorphism of Y into
a 3-sphere S. Let S, AN(a), N(B) be oriented and let a, b be the integral fundamental
cycles on N(a), N(B) respectively. Then the linking number of a and b is odd.

Proof. Let k be the first mod 2 Betti number of X. Then we may regard X
as a decomposition space of the unit circular disk D: |zl £ 1 in the complex
plane obtained as follows. Let

A, = exp urr/k, r=1,...,2k 2k + 1;
AA,1 = {expi(rn/k + 0)|0 < 0 < 7 /k}, r=1,...,2k
Then X is obtained from D by identifying Ag;—142s with Aesdasrr, s = 1,

..,k
Let p be the projection of D onto X. Let E’ be the closed 2-cell |z| < 1/2.
Without loss of generality we may assume

E = p(E).
For every s =1,...,4,
Bs =.p(A2.v—lA23)

is a simple closed curve in ¥ — a and the local orientation of X at a point
x of B is reversed when x moves along B, once. 8;, when oriented, may be
regarded as a closed path of basic point p = p(4,). It is easily seen that the
fundamental group of ¥ — « is generated by the homotopy classes containing
B, . .., Bs respectively.

Let ¢ be a point of 8 and let ¥ be a path in ¥ — a from p to ¢. Since 8, when
oriented, may be regarded as a closed path of basic point ¢, y8y~! is a closed
path of basic point p. Therefore there are integers

ky, ... k€ {1, ...k},
not necessarily distinct, such that y8y~! is homotopic to B, ... 8 in ¥ — a.
Since every one of y8y71, By, . . ., Bx has the property that the local orientation

of X at a point x of the curve is reversed when x moves along the curve once,
it follows that j is odd.
Let
a, b, by, ..., b

https://doi.org/10.4153/CJM-1962-056-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-056-1

662 C. T. YANG

be the integral fundamental cycles on A(a), N(8), N(B1), ..., N(8:) respect-
ively. Then & and by, + ... + by, as singular cycles in N(¥ — &) are homo-
logous. Hence we remain to prove that the linking number of @ and b,, for
every s = 1,...,k, is not congruent to 0 mod 2.

Let 0 <8 < (sinw/2k)/2 and let » = 1, ..., 2k. Denote by 0.1, the radius
of D of terminal point 4,, let K, be the circle of centre .1, and radius 6 and
let B,, C,, D, be the respective points of intersection of K, with .1, 4,,
04,, A,4,+1, where 4y = Ao, and Aoy = Ay, Let B,C,D, be the arc of K,
of endpoints B,, D, containing C, and let B,C,, C,D, be the subarcs of B,C.D,
of endpoints B,, C, and C,, D, respectively. The circle K’ of centre 0 and radius

1 — & clearly contains Cy, ..., Co. Let C,_1C,C, 4, be the arc of K’ of endpoints
C,_1, Cry1 containing C, and let C,_,C, be its subarc of endpoints C,_;, C,.
Fix an integer f,¢t = 1,..., k. Clearly p maps the union of the arcs
By 1Cayy, sz—lczzczzﬂ, C2t+lD2H—1;
B,.C.D,,r=1,...,2t—2,2t+2,...,2k,

into a simple closed curve v, in ¥ — « which is the boundary of a M&bius
band M, containing B, in its interior, where Coxi1Doy1 = CiD1. Let N(yy)
be oriented and let ¢, be the integral fundamental cycle on A(y,). A direct

observation yields that the linking number of ¢, and b, is not congruent to
0 mod 2.
For every s = 1, ..., k, p maps the union of the arcs

B28C28y CZsCZH—l, B2s+lc2s+1

into a simple closed curve 8y, where Bayy1Corr1 = B1Ci. Let 8, be oriented
and let b, be the integral fundamental cycle on A(8,"). Then a is homologous to

c.+201+ ...+ 0+ b+ ...+ b)) =¢c, mod2

in A\(Y — (M, — v,)). Hence the linking number of a and 4, is not congruent
to 0 mod 2. The proof of Lemma 1 is thus completed.

LeMMA 2. Let YV, «, B be as in Lemma 1 and let YV be topologically imbedded
into the euclidean n-space R". Let x1, . .., X,_3 be n — 3 points of R* such that
every (n — 3)-plane containing these n — 3 points intersects YV at no more than
one point. Let P be the (n — 4)-plane determined by xi, ..., X,_3, let Px, for
every x € Y, denote the half (n — 3)-plane of boundary P containing x, and let

Po = UzwPx.
Then in the one-point-compactification R*\J { =} of R", Pa\J {x} is homeo-
morphic to an (n — 2)-sphere and is contained in the complement of 3. Moreover,

if we orient R*\J { o}, Pa\U { o} and B, then the linking number of the integral
fundamental cycle on Pa\J {»} and that on B is odd.

Proof. We first note that since, by hypothesis, every (z — 3)-plane containing
X1, ..., X,_3 intersects ¥ at no more than one point, x1, ..., x,_3 are distinct
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and cannot be contained in the same (n — 5)-plane so that they determine
a unique (n — 4)-plane P. Moreover, it follows from the hypothesis that
P MY = ¢ so that P and any point x of ¥V determine a unique (n — 3)-
plane. Hence Px for x € Y and then Pa are well-defined. For any two distinct
points x and x’ of @, Px # Px’ and so Px N Px' = P. We infer that Pa is
homeomorphic to an (z — 2)-plane.

Let Q be a 4-plane orthogonal to P and let S be a 3-sphere in Q with P M Q
as its centre. Then for every x € ¥, Px M .S contains exactly one point. The
function A: ¥ — .S mapping every x € Y into the point in Px M S is clearly
continuous and one-to-one so that it is a homeomorphism into.

Let A(a), N(B), S be oriented and let a, b be the respective integral funda-
mental cycles on A(a), A(8). Then, by Lemma 1, the linking number of @ and &
is odd.

Let R*\U { »} be the one-point-compactification of R". Then topologically
R*\U { o} is an n-sphere, P\U { o} is an (n — 4)-sphere and Pa\U { o} is
an (n — 2)-sphere. Let R*\U {»} and P\U { =} be oriented such that the
integral fundamental cycle on P\ { o} and that on S have 1 as their linking
number. Let o and 8 be oriented such that the homeomorphisms A,: a — A(a)
and Ag: B — A(B) defined by X are orientation-preserving, and let Pa\J { o}
be oriented such that the integral fundamental cycle on P\U {»} and
that on « have 1 as their linking number. Then the linking number of
the integral fundamental cycle on Pa\U {~} and that on B is equal to
the linking number of @ and & and hence is odd. This completes the proof of
Lemma 2.

LEMMA 3. Let a and o' be simple closed curves and let K and K’ be triangulations
on a and o respectively. Let ¢: o' — o' be a simplicial 1nvolution without fixed
point and let u: o — o be a simplicial map of degree 1 such that whenever o 1s
a 1-simplex of K, u(o) is a 1-simplex of K'. Let

I'={(x,5) €aXalpx) = éu))}
and let p: I — a be given by
p(x,y) = x, (x,9) € L.

Then there is @ map v: o — I such that pv is homotopic to the identity map.

Proof. Since u is of degree 1, we may let 1-simplexes of K and those of K’
be oriented such that (i) the sum of the oriented 1-simplexes of K is an integral
fundamental cycle ¢ of «, (ii) the sum of the oriented 1-simplexes of K’ is an
integral fundamental cycle ¢’ of &’ and (iii) u(c) = ¢'. Then for every oriented
1-simplex ¢’ of K’ the number of those oriented 1-simplexes ¢ of K with
u(e) = ¢’ (that is, p maps ¢ onto ¢’ with orientation preserved) is exactly one
larger than the number of those ¢ with u(s) = —¢’ (that is, 4 maps ¢ onto
¢’ with orientation reversed).
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Let ¢’ be an oriented 1-simplex of K’ and let ¢; and 2 be oriented 1-simplexes
of K such that

por) = ad, p(oz) = ep(a’),
where €, e2 = 1 or —1. Let #/, v’ be vertices of ¢’ and let %1, v; and u,, v2 be
respective vertices of ¢; and ¢, such that

u(u) = o', u(vr) =o'

puz) = o),  plve) = o).

Then the diagonal of o1 X o2 joining (u1, #2) and (vi, v2), which we denote
by o1 A a9, is in 1.

It is easily seen that [ is the union of these ¢; A o2 and a finite set. Therefore
there is a natural triangulation on I with every o1 A o2 as a 1-simplex. Let
the 1-simplexes ¢; A o2 be oriented such that

po1 A gy) = a1 0r —0,y

according as u(os) has positive or negative orientation.

Whenever u;, u; are vertices of K such that (ui, us) € I, the l-simplexes
o1 A\ o2 having (u1, #2) as a vertex are either four or two or zero in number.
A direct observation yields that the sum of all the oriented 1-simplexes
g1 A o2 is an integral cycle z in I. Since the union of these l-simplexes is
connected, there is a map »: @« — I such that »(c) and 2, as singular cycles in I,
are homologous. Since up(z) = ¢/, we have p(z) = c. It follows that pr(c)
and ¢, as singular cycles in @, are homologous. Hence p» is homotopic to the
identity map. This proves Lemma 3.

LEMMA 4. In Lemma 3, if o is the boundary of a closed 2-cell E, a € E — «
and

H = {(x,y) € E X E|x # y},
then there is a map h: o X [0, 1] = H such that for x € a,
h(x,0) = (x,a), h(x1)c I

Proof. By Lemma 3, there is a map v: o — I such that p» is homotopic to
the identity map. Let us consider E as the unit circular disk [z| < 1 in the
complex plane with ¢ = 0 and let ¢: I — a be the map given by

q(x, y) =y, (x,9) € I
Let g:a X {0,1] > a be a map such that for x € q,
g, 0) ==, g(x 1) = pr(x).
Then the map A:a X [0, 1] —» H given by
hix,t) = (glx, t), tgv(x)), (x,t) € a X [0, 1],

is as desired. Hence Lemma 4 is proved.
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Proof of theorem. Suppose that our theorem is false. Then we may assume
that X is a non-orientable closed surface topologically imbedded into the
euclidean n-space R such that every (n — 3)-plane in R intersects X at no
more than # — 2 points. We recall again that » must be >3.

Suppose first that # > 4. Let E be a closed 2-cell in X, let @ be the boundary
of Eand let Y =X — (E — a). Let v be a simple closed curve in E — «
and let

X1, x2: [0, 1] — v

be maps such that
(1) #1(0) = x2(1) and x;(1) = x2(0) and
(i) x1(8) #= x2(t) for all ¢ € [0, 1].
Let x3,...,%,_3 be any n — 5 distinct points in E — («\U v). Then for every

t € [0, 1], x:1(8), x2(8), x3, ..., x,—3 determine a unique (# — 4)-plane P, As
in Lemma 2, we have P, and P, corresponding to P and Pa respectively when
{x1(t), x2(t), x3, . . ., x,_3} takes the place of {xi, x2, x3, ..., Xa_3}.

Let R"U {o} be the one-point-compactification of R" and assign an
orientation to R*\U { = }. Let P,a\U { =} be oriented such that the orienta-
tion is continuous in f, that means, the map %,: Poa\U {o} = P,a\U { o}
such that for every x € «, h, defines an affine transformation of Pyx into
P,x mapping x,(0), x2(0), x3, . .., X3, x into x1(t), x2(t), %3, . .., Xp3, %
respectively, is orientation-preserving, 0 < ¢ < 1. Let 8 be an oriented simple
closed curve in X — E such that the local orientation of X at a point x of 8
is reversed when x moves along 8 once. By Lemma 2, the linking number /,
of the integral fundamental cycle on P,a\J { =} and that on B is an odd
number. Since the orientation on P,a \J{®} is continuous in {, the number
!, is continuous in ¢ so that it is independent of ¢. Hence

l() = [1.

However, Poa\J {o} and P;a\J {»} are identical but have opposite
orientations. It follows that

lo = —ll.

Hence [y = I; = 0, contrary to the fact that it is an odd number.

Suppose now that » = 4. As in the proof of the proposition, there is a 4-
spheroid W containing X such that the boundary 3-sphere S of W intersects
X.Leta € SM X and let T be the 3-plane tangent to S at a. It is clear that
whenever F is a closed subset of X not containing @ there is a 3-plane 7"
which is parallel to T and separates a and F (that means, ¢ and F are contained
in different components of R* — T7).

Let A be a closed 2-cell in X containing ¢ in its interior. Then there is a
3-plane L which is parallel to 7" and separates ¢ and the boundary of 4. Let B
be a closed 2-cell which contains a in its interior and is contained in X — L, let
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D be the unit circular disk |z| £ 1 in the complex plane and let £ be a homeo-
morphism of D onto B mapping 0 into a. Let &’ be the boundary of D and let

w:B — {a} »d
be the map defined by
p(x) = &1 (x)/[E71 ()], x € B — {a}.

Let M be a 3-plane which is parallel to 7" and separates ¢ and the boundary
of B, and let F be the boundary of the component of B — M containing a.
Since

J={l,y) € FXF| |uk) —u| 21}

is compact and, for every (x,y) € J, the line joining x and vy does not inter-
sect the closed 3-cell L M W, there is a number ¢ > 0 such that whenever
(x',9") € B X B such that for some (x,y) € J, [£(x') — & 1(x)] < € and
|£71(y") — £ (¥)| < ¢ &’ and ¥’ are distinct and the line joining x’ and 3y’
does not intersect L M W.

Let ¢ be a number such that e Z ¢ > 0 and that whenever (x,y) € F X F
such that for some (¢',%) € B X B with [§1(x") — & 1(x)] < €, |£71(y)
— FU(y)| < € and p(x') = —u(), (x,y) belongs to J. Since F separates a
and the boundary of B in X, there is a simple closed curve « in the €-neigh-
bourhood of F which separates @ and the boundary of B in X. It is clear that
the curve a can be so chosen that there are triangulations K and K’ of « and o’
respectively such that (i) ¢: e’ — o given by ¢(3) = —3z, z € o/, is simplicial,
(i) pra—a given by u(x) = £1(x)/|Y(x)|, x € «, is simplicial, and (iii)
whenever ¢'is a 1-simplex of K, u(s) is a 1-simplex of K’.

Since « is a simple closed curve in the closed 2-cell B, there is a closed 2-cell
E in B having « as its boundary and containing « in its interior. Let

H = {(x,y) € EX E|x # y},
I={(x,9 €aXalukx) = ou}.

It follows from Lemma 4 that there is a map
hia X [0,1] = H
such that for x € «,
h(x,0) = (x,a), h(x,1) € 1.

Since E is a closed 2-cell containing a in its interior, there is a homeomor-
phism 7 of D onto E mapping 0 into a. Let C be the complex plane and let
p, q: H— E be the maps given by

Pl y) =%, qlxy) =y, (x,y) € H.
Now we define a map

:CX[0,1] - R"
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as follows: Whenever r =2 0,2z € o’ and ¢ € [0, 1],

e f) = {n((f/t)n“qh(n(Z), ) if r <t;
' gh(n(z),t) + (r — 1) (ph(n(2), t) — qh(n(2), 1)) if r >t

For a fixed z € &/, 7 maps the half-line {(rz, 0)| » = 0} into the half-line
an(z) of endpoint a containing 7(z). It follows that

7(C X {0}) = U, X = aa.

Since every line intersects X at no more than two points, + maps C X {0}
homeomorphically onto aa.

Let 8 be an oriented simple closed curve in X — 4 such that the local
orientation of X at a point x of 8 is reversed when x moves along 8 once. Let
R*\U {o} and aa\U { »} be oriented. By Lemma 2, the linking number of
the integral fundamental cycle & on 8 and the integral fundamental cycle
con aa\U { »} does not vanish. Making use of the map 7 constructed above,
we can have a singular cycle ¢’ in 7(C X {1}) U { ®} which is homologous to
cin 7(C X [0,1]) U { =} C R* — B. The linking number of 4 and ¢’ is equal
to that of & and ¢ so that it does not vanish.

Let U be the component of W — L containing 8. Then b, as a singular cycle
in U, is bounding. For a fixed z € o,  maps the half line {(rz 1)|r = 0} into
the union of the arc {nrqy~'gh(n(z),1)|0 =7 < 1} in E and the half line of
endpoint ¢k (n(z), 1) containing pk(n(z), 1). Since

(Ph(n(2), 1), ¢h(n(2), 1)) = k(n(2), 1) € I,

there is some (x,y) € J such that [£71ph(n(2),1) — & (x)| < ¢ and
|£71gh(n(2), 1) — £ (y)| < €. By our choice of ¢, (x,y) belongs to J. It
follows that the line joining ph(n(z), 1) and g¢h(n(z), 1) does not intersect
L M W and then does not intersect U either. From this result, we infer that
7(C X {1}) does not intersect U. Hence & is bounding in R*\U {»} —
7(C X {1}) U { o}, contrary to the fact that b and ¢’ are linking. This com-
pletes the proof of our theorem.

Remark. For the case that # = 4 and X is not the projective plane, a simpler
proof of our theorem may be given as follows. Since the first mod 2 Betti
number of X is >1, there are two disjoint simple closed curves 8 and v in
X, such as 8; and B’ in the proof of Lemma 1, such that the local orientation
of X at a point x of each of the curves is reversed if x moves along the curve
once. Let D be the unit circular disk |z| = 1 in the complex plane. It is easy
to construct a map

fiDX[0,1] =X
such that
(i) f(0,0) = f(0, 1) and f(0, ¢) moves along vy once as ¢ varies from 0 to 1;

(i1) for every t € [0, 1], f maps D X {t} homeomorphically onto a closed
2-cell E,in X;
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(iii) f(D X [0,1]) C X — B;

(iv) for all z € D, f(3,0) = f(3, 1).
Let a, = f(0, {) and let o, be the boundary of E,. Let R*\U {»} and 8 be
oriented and let a,a,\J { ©} be oriented such that the orientation is con-
tinuous in ¢, 0 £ ¢ £ 1. By Lemma 2, the linking number I, of the integral
fundamental cycle on a,0, \J { ®} and that on 8 is an odd number. Since I,
is continuous in ¢, it is independent of ¢ so that I, = /;. On the other hand,
oo \J { @} and a1a;\U { »} are identical but have opposite orientations. It
follows that lo = —I; = —I,. Hence I = 0, contrary to the fact that it is odd.
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