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Abstract. A multicurve C in a closed orientable surface Sg of genus g is defined
to be a finite collection of disjoint non-isotopic essential simple closed curves. A left-
handed Dehn twist tC about C is the product of left-handed Dehn twists about the
individual curves in C. In this paper, we derive necessary and sufficient conditions for
the existence of a root of tC in the mapping class group Mod(Sg). Using these conditions,
we obtain combinatorial data that correspond to roots, and use it to determine upper
bounds on the degree of a root. As an application of our theory, we classify all such
roots up to conjugacy in Mod(S4). Finally, we establish that no such root can lie in the
level m congruence subgroup of Mod(Sg), for m ≥ 3.

2010 Mathematics Subject Classification. 57M60, 57M99.

1. Introduction. For g ≥ 0, let Sg denote the closed, orientable surface of genus
g, and let Mod(Sg) denote the mapping class group of Sg. By a multicurve C in Sg, we
mean a finite collection of disjoint non-isotopic essential simple closed curves in Sg.
Given a multicurve C, we define the number | C | to be the size of C. Let tc denote the
left-handed Dehn twist about an essential simple closed curve c on Sg. Since the Dehn
twists about any two curves in C commute, we will define the left-handed Dehn twist
about C to be tC := ∏

c∈C tc. A root of tC of degree n is an element h ∈ Mod(Sg) such
that hn = tC .

When C comprises a single non-separating curve, Margalit and Schleimer [5]
showed the existence of roots of tC of degree 2g − 1 in Mod(Sg), for g ≥ 2. This
motivated [6], in which McCullough and the first author derived necessary and
sufficient conditions for the existence of a root of degree n. As immediate applications
of the main theorem in the paper, they showed that n must be odd and that n ≤ 2g − 1.
These results were also independently derived by Monden [7]. When C consists of a
single separating curve, the first author derived conditions [9] for the existence of a
root of tC . Furthermore, a stable quadratic upper bound on the degree of the root and
complete classifications of roots of Dehn twists about separating curves in Mod(S2)
and Mod(S3) were obtained in [9] as corollaries to the main result. In this paper, we
shall derive conditions for the existence of a root of tC when | C | ≥ 2.

In general, a root h of tC may permute some curves in C, while preserving
other curves (see Proposition 2.6). So, a root is said to be (r, k)-permuting, if it
preserves r curves in C, and induces k orbits on the remaining curves. The theory for
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Figure 1. A non-separating multicurve of size 5 in S5.
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Figure 2. The surface S5 with a separating multicurve.

(r, 0)-permuting roots, as we will see, can be obtained by generalizing the theories
developed in [6, 9], which involved the analysis of the fixed point data of finite cyclic
actions.

The theory that we intend to develop for (r, k)-permuting roots when k > 0 can be
motivated by the following example. Consider the multicurve C = {b1, b2, b3, b4, b5} in
S5 shown in Figure 1.
It is apparent that the rotation of S5 by 2π/5 composed with tbi for some fixed bi ∈ C
is a 5th root of tC in Mod(S5). This is a simple example of a (0, 1)-permuting root,
which is obtained by removing invariant disks around pairs of points in two distinct
orbits of a 2π/5 rotation of S0, and then attaching five 1-handles with full twists. This
example indicates that a classification of roots would require the examination of the
orbit information of finite cyclic actions, in addition to their fixed point data. This is
a significant departure from the existing theories that have been developed in [6, 9]. A
multicurve C in Sg is said to be non-separating if Sg \ C is connected, and is called a
separating multicurve otherwise. In Figure 2, the collection of curves {c1, c2, c3, c4}, and
its subcollections {c2, c3}, {c1, c2, c3} are separating multicurves, while the subcollection
{c2, c4} is a non-separating multicurve.

We start by generalizing the notion of a nestled (n, �)-action from [9] to a permuting
(n, r, k)-action. These are Cn-actions on Sg that have r distinguished fixed points, and k
distinguished non-trivial orbits. In Section 3, we introduce the notion of a permuting
(n, r, k)-data set, which is a generalization of a data set from [9]. We use Thurston’s
orbifold theory [11, Chapter 13] in Theorem 3.9 to establish a correspondence between
permuting (n, r, k)-actions on Sg and permuting (n, r, k)-data sets of genus g. In other
words, permuting data sets algebraically encode these permuting actions and contain
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all the relevant orbit and fixed-point information required to classify the roots that will
be constructed from these actions.

Let Sg(C) denote the surface obtained from Sg by removing a closed annular
neighbourhood N of C and then capping Sg \ N. In Section 4, we prove that conjugacy
classes of roots of Dehn twists about non-separating multicurves correspond to a
special subclass of permuting actions on the connected surface Sg(C). We use this to
obtain the following bounds for the degree of such a root.

COROLLARY . Let C be a non-separating multicurve in Sg of size m, and let h be an
(r, k)-permuting root of tC of degree n.

(i) If r ≥ 0, then

n ≤
{

4(g − m) + 2 : g − m ≥ 1

g : g = m.

Furthermore, if g = m, then this upper bound is realizable.
(ii) If r = 1, then n ≤ 2(g − m) + 1.

(iii) If r ≥ 2, then n ≤ g − m + r − 1
r − 1

.

Note that the bound obtained in (i) is not, in general, realizable as we will show in
Section 6.

When C is a separating, the action induced on the components of Sg(C) by a
root can have orbits that we call surface orbits. When a surface orbit is trivial, it is
homeomorphic to Sg′ , for some g′ ≤ g. In Section 5, we show that the root induces a
permuting (n′, r′, k′)-action on Sg′ for some n′ | n. Moreover, when a surface orbit is
non-trivial, it is homeomorphic to a disjoint union of m̃ copies of Sg̃ (for some g̃ ≤ g
and m̃ | n,) that we will denote by �g̃(m̃). As the induced action cyclically permutes the
m̃ components of �g̃(m̃), we show that it is of the form σm̃ ◦ t̃, where σm̃ can be viewed
as an m̃-cycle and t̃ is a permuting (̃n/m̃, r̃, k̃)-action on one of its components where
ñ | n. So, in general, a root induces a non-trivial partition Sg(C) = �s

i=1 �gi (mi), and
an action of the form σmi ◦ ti on each �gi (mi), where ti is a permuting (ni/mi, ri, ki)-
action on a surface homeomorphic to Sgi where ni | n. Conversely, given a partition
Sg(C) = �s

i=1 �gi (mi) and a collection of actions ti on the �gi (mi), for 1 ≤ i ≤ s, they
can be extended to a root of tC , provided these actions satisfy certain compatibility
criteria involving their distinguished orbits and fixed points. Using this theory, we shall
obtain bounds for the degree of the root.

In Section 6, we use this theory to obtain a complete classification of roots of tC in
Mod(S4). Finally, in Section 7, we conclude by proving that a root of tC cannot lie in
the level d congruence subgroup of Mod(Sg) for any integer d ≥ 3. In particular, this
implies that a root of tC cannot lie in the Torelli group, which is all the more interesting,
as Dehn twists about separating curves do lie in the Torelli group. We end this paper
by indicating how our results could be extended to classify roots of finite products of
powers of commuting Dehn twists.

2. Roots and their induced partitions. In this section, we shall introduce some
preliminary notions, which will be used in later sections.
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C(2)(2)

C(1)(3)

Figure 3. The surface S22 = �3(2)#C1 S5#C2 �3(3), where C1 = C(2)(2) and C2 = C(1)(3).

NOTATION 2.1. Let C be a multicurve in Sg, and let N be a closed annular
neighbourhood of C.

(i) We denote the surface Sg \ N by Ŝg(C).

(ii) The closed orientable surface obtained from Ŝg(C) by capping off its boundary
components is denoted by Sg(C).

DEFINITION 2.2. Let C be a multicurve in Sg. The multicurve C is said to be bounding
if C separates Sg, but no proper submulticurve of C separates Sg. In other words, C
cobounds two subsurfaces of Sg.

Note that we allow for the possibility that | C | = 1, in which case C consists of a single
separating curve. When | C | = 2, C is simply a bounding pair in the usual sense.

NOTATION 2.3.

(i) We will denote a bounding multicurve of size k by C(k).
(ii) A disjoint union of m copies of C(k) is denoted by C(k)(m), as illustrated in Figure 3.

(iii) For integers g ≥ 0 and m ≥ 1, we define �g(m) to be the disjoint union of m copies
{S1

g, S2
g, . . . , Sm

g } of Sg isometrically imbedded in �3. In particular, �g(1) ≈ Sg,
and hence we shall write Sg for �g(1).

(iv) Given two surfaces Sg1 and �g2 (m) and a fixed k ∈ �, we construct a new surface
Sg with g = (g1 + mg2 + (k − 1)m) containing a multicurve of type C(k)(m), in the
following manner. We remove km disks {D1

i,j : 1 ≤ j ≤ k, 1 ≤ i ≤ m} on Sg1 and k
disks {D2

i,j : 1 ≤ j ≤ k} on each Si
g2

. Now, connect ∂D1
i,j to ∂D2

i,j along a 1-handle
Ai,j, and choose the unique curve (up to isotopy) ci,j on each Ai,j. Let C = {ci,j},
then note that C = C(k)(m), so we write Sg1 #C �g2 (m) for the new surface Sg.

(v) Similarly, given surfaces {Sg1 , �g2,1(m1), . . . , �g2,s(ms)} and non-negative integers
{k1, k2, . . . , ks}, we construct a new surface Sg with g = g1 + ∑s

i=1 mi(g2,i + ki −
1), containing a multicurve of type C = �s

i=1 C(ki)(mi) in the following manner. Let
Sg′

i
:= Sg1 #C(ki )(mi) �g2,i(mi) and C i := C \ C(ki)(mi), we now define

Sg := #s
i=1

(
Sg1 #C(ki )(mi) �g2,i(mi)

)
:=

s⋃
i=1

Ŝg′
i
(C i).

If s = 2, we simply write Sg = �g2,1 (m1)#C(k1)(m1)Sg1 #C(k2)(m2) �g2,2 (m2). In Figure 3,

we give an example of a such a surface S22 with a multicurve C = C(2)(2) � C(1)(3).

DEFINITION 2.4. Let C be a multicurve in Sg. Suppose that there exists an integer
k ≥ 3 such that Sg(C) = �k

i=1Sgi , and that there exists submulticurves C i of C such that
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Figure 4. A cyclical multicurve of size 6 in S16.

C = �k
i=1 C i, and

Sg =
k⋃

i=1

̂�i(C \ C i),

where �i = Sgi #Ci Sgj and j ≡ (i + 1) (mod k). Then, C is a said to be a cyclical
multicurve (see Figure 4).

If C denotes a multicurve in Sg, our immediate goal is to show that any root of tC
must preserve C. In order to do this, we use the geometric intersection number i(a, b)
between the isotopy classes of two essential simple closed curves in a and b in Sg. In
particular, if ϕ ∈ Mod(Sg) is expressed as a product of Dehn twists, then its effect on
the geometric intersection number can be described using the following result from [2].

LEMMA 2.5 [2, Proposition 3.4]. Let a1, a2, . . . , an be a collection of pairwise
disjoint, simple closed curves in a surface S and let M = ∏n

i=1 tei
ai

. Suppose that ei > 0
for all i, or ei < 0 for all i. If b and c are arbitrary isotopy classes of simple closed curves
in S, then ∣∣∣∣∣i(M(b), c) −

n∑
i=1

|ei|i(ai, b)i(ai, c)

∣∣∣∣∣ ≤ i(b, c)

This leads us to the following proposition.

PROPOSITION 2.6. Let C be a multicurve in Sg, and h be a root of tC . Then, we can
modify h by an isotopy so that it preserves C.

Proof. Let C = {c1, c2, . . . , cm}, then h(C) = {h(c1), h(c2), . . . , h(cm)} consists of
disjoint non-isotopic simple closed curves. Since hn = tC , it follows that tC = htCh−1 =∏m

i=1 htci h
−1 = ∏m

i=1 th(ci). By Lemma 2.5, for each 1 ≤ j ≤ m, we have

0 =
m∑

i=1

i(ci, cj)2 = i(tC(cj), cj) = i

((
m∏

i=1

th(ci)

)
(cj), cj

)
=

m∑
i=1

i(h(ci), cj)2,
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and so it follows that i(h(ci), cj) = 0 for all 1 ≤ i, j ≤ m. Now suppose that h(ci) �

c1 for all 1 ≤ i ≤ m; then there exists a neighbourhood N of c1 such that th(ci)|N=
idN and tci |N= idN for all i �= 1. However,

tc1 |N= tC |N= th(c1)th(c2) . . . th(cm)|N= idN,

which is a contradiction. So there exists 1 ≤ i ≤ m such that h(ci) ∼ c1. Hence, up to
isotopy, we may assume that h(ci) = c1. Now note that h(cj) � c1 for all j �= i, which
allows us to proceed by induction on | C | to conclude that, up to isotopy, h(C) = C. �

DEFINITION 2.7. Let C be a multicurve of size m in Sg. Then, for integers r, k ≥ 0,
an (r, k)-partition of C is a partition �r,k(C) = {C ′

1, . . . , C ′
r, C1, . . . , Ck} of the set C into

subsets such that for all i,

(i) | C ′
i | = 1, | C i | > 1, and

(ii) C i comprises only separating or only non-separating curves.

Note that by Proposition 2.6, any root of tC partitions C into a collection of orbits that
form an (r, k)-partition of C.

DEFINITION 2.8. Let C be a multicurve in Sg. Then, for integers r, k ≥ 0, a root h
of tC of is said to be (r, k)-permuting if it induces an (r, k)-partition of C.

3. Permuting actions and permuting data sets. In this section, we shall introduce
permuting (n, r, k)-actions, which are generalizations of the nestled (n, �)-actions
from [9]. We shall also introduce the notion of a permuting (n, r, k)-data set, which is an
abstract tuple involving non-negative integers that algebraically encodes a permuting
(n, r, k)-action.

DEFINITION 3.1. For integers n ≥ 1, and r, k ≥ 0, an orientation-preserving Cn-
action t on Sg is called a permuting (n, r, k)-action if

(i) there is a set �(t) of r distinguished fixed points of t, which correspond to r
distinguished cone points of order n in the quotient orbifold, and

(ii) there is a set �(t) of k distinguished non-trivial orbits of t.

NOTATION 3.2. Let t be a permuting (n, r, k)-action on Sg.

(i) Fix a point P ∈ Sg, and consider t∗ : TP(Sg) → Tt(P)(Sg), where Tx(Sg) denotes
the tangent space at x. By the Nielsen realisation theorem [4], we may change t by
isotopy so that t∗ is an isometry. Hence, t∗ induces a local rotation by an angle,
which we shall denote by θP(t). Note that if P ∈ �(t), then θP(t) = 2πa/n, where
gcd(a, n) = 1.

(ii) Fix an orbit � = {Q1, . . . , Qs} ∈ �(t). If s < n, then s | n, and there exists a cone
point in the quotient orbifold of degree n/s. Each Qi has stabilizer generated
by ts and the rotation induced by ts around each Qi must be the same, since its
action at one point is conjugate by a power of t to its action at each other point
in the orbit. So, the rotation angle is of the form 2πc−1/(n/s) (mod 2π ), where
gcd(c, n/s) = 1 and c−1 denotes the inverse of c (mod n/s). We now associate to
this orbit a pair p(�) as follows:

p(�) :=
{

(c, n/s), if s < n, and

(0, 1), if s = n.
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(iii) For any orbit � ∈ �(t), if p(�) = (a, b), then we define

θ�(t) :=
{

2πa−1/b, if a �= 0, and

0, otherwise.

DEFINITION 3.3. Consider a permuting (n, r, k)-action t on Sg with �(t) =
{P1, . . . , Pr} and �(t) = {�1, �2, . . . , �k}.

(i) We write S(t) =
{{| �1 |, | �2 |, . . . , | �k |}}. Note that we will henceforth use the

symbol
{{}}

to denote a multiset.

(ii) For each p ∈ {p(�i) : 1 ≤ i ≤ k}, define mp = |{j : p(�j) = p}|. We define the orbit
distribution of t to be the set �t = {(p, mp) : p ∈ {p(�i) : 1 ≤ i ≤ k}}.

DEFINITION 3.4. Let t1 and t2 be two permuting (n, r, k)-actions on Sg with
�(ts) = {Ps,1, Ps,2, . . . , Ps,r} and �(ts) = {�s,1, �s,2, . . . , �s,k}, for s = 1, 2. We say t1

is equivalent to t2 if �t1 = �t2 and there is an orientation-preserving homeomorphism
φ on Sg such that

(i) φ(P1,i) = P2,i for 1 ≤ i ≤ r, and
(ii) for each 1 ≤ j ≤ k, if �s,j = {Qs

j,1, Qs
j,2, . . . , Qs

j,msj
}, then m1j = m2j and φ(Q1

j,i) =
Q2

j,i for all 1 ≤ i ≤ m1j , and
(iii) φt1φ

−1 is isotopic to t2 relative to �(t2) � (∪k
j=1 �2,j).

The equivalence class of a permuting (n, r, k)-action will be denoted by � t �.

We now introduce the notion of an (n, r)-data set, which encodes the signature
of the quotient orbifold of a permuting (n, r, k)-action and the turning angles around
its distinguished fixed points. Furthermore, the (n, r)-data set will be combined with
an orbit distribution of the action to form a pair, which we will call a permuting
(n, r, k)-data set.

DEFINITION 3.5. Given n ≥ 1 and r ≥ 0, an (n, r)-data set is a tuple

D = (n, g0, �, (a1, a2, . . . , ar); (c1, n1), (c2, n2), . . . , (cs, ns)),

where n ≥ 1, g0 ≥ 0, and � ≥ 0 are integers, each ai is a residue class modulo n, and
each ci is a residue class modulo ni such that:

(i) 0 ≤ � ≤ n − 1, and � > 0 if, and only if r = s = 0,
(ii) each ni | n,

(iii) for each i, gcd(ai, n) = gcd(ci, ni) = 1, and

(iv)
r∑

i=1

ai +
s∑

j=1

n
ni

ci ≡ 0 (mod n).

The number g determined by the equation

2 − 2g
n

= 2 − 2g0 + r
(

1
n

− 1
)

+
s∑

j=1

(
1
nj

− 1
)

is called the genus of the data set.
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p1

p2
q1

q2

Figure 5. The quotient orbifold O.

REMARK 3.6. The data set in Definition 3.5 above is a generalisation of the notion
of a data set from [9]. As in [9], the data set here will correspond to the equivalence class
� t � of a permuting (n, r, k)-action. The quantity � in the data set D will be non-zero if
and only if the action is a free rotation of Sg by 2π�/n.

DEFINITION 3.7. Fix an (n, r)-data set D of genus g as above.

(i) For each (a, b) ∈ {(0, 1), (c1, n1), . . . , (cs, ns)}, we write

θ ((a, b)) :=
{

0, if a = 0, and

2πa−1/b, otherwise.

(ii) For each p ∈ {(0, 1), (c1, n1), . . . , (cs, ns)}, choose a non-negative integer mp, with
the caveat that m(0,1) > 0 only if one of the following conditions hold:

(a) � > 0,
(b) r > 0, or
(c) ni = n for some 1 ≤ i ≤ s.

Then, the set �D = {(p, mp) : mp > 0} is called an orbit distribution of D.
(iii) Given an orbit distribution �D associated with an (n, r)-data set D, the pair

(D, �D) is called a permuting (n, r, k)-data set of genus g, where k = ∑
p mp.

DEFINITION 3.8. Let D = (n, g0, �, (a1, . . . , ar); (c1, n1), . . . , (cs, ns)) and D′ =
(n, g′

0, �
′, (a′

1, . . . , a′
r); (c′

1, n′
1), . . . , (c′

s, n′
s)) be two (n, r)-data sets as in Definition 3.5.

(i) D and D′ are said to be equivalent if � = �′,
{{

a1, a2, . . . , ar
}} =

{{
a′

1, a′
2, . . . , a′

r

}}
and

{{
(c1, n1), . . . , (cs, ns)

}} =
{{

(c′
1, n′

1), . . . (c′
s, n′

s)
}}

.

(ii) Two permuting (n, r, k)-data sets (D, �D) and (D′, �D′) are said to be equivalent
if D and D′ are equivalent as above, and �D = �D′ .

Note that equivalent data sets have the same genus.

THEOREM 3.9. Given n ≥ 1 and g ≥ 0, there exists a bijective correspondence from
the set of equivalence classes of permuting (n, r, k)-data sets of genus g to the set of
equivalence classes of permuting (n, r, k)-actions on Sg.

Proof. Let t be a permuting (n, r, k)-action on Sg with quotient orbifold O, whose
underlying surface has genus g0. If t is a free rotation of Sg by 2π�/n, for some 0 ≤ � ≤
n − 1, then O = Sg0 , where g0 = ((g − 1)/n) + 1, and we simply write D = (n, g0, �; )
and �D = {((0, 1), k)}. Otherwise, let pj be the image in O of the Pj, for 1 ≤ j ≤ r, and
let q1, q2, . . . , qs be the other possible cone points of O as in Figure 5.

Let αi be the generator of the orbifold fundamental group πorb
1 (O) that goes around

the point pi, 1 ≤ i ≤ r, and let γj be the generators going around qj, 1 ≤ j ≤ s. Let xp

and yp, 1 ≤ p ≤ g0, be the standard generators of the ‘surface part’ of O, chosen to
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give the following presentation of πorb
1 (O):

πorb
1 (O) = 〈α1, α2, . . . , αr, γ1, γ2, . . . , γs, x1, y1, x2, y2, . . . xg0 , yg0 |

αn
1 = . . . = αn

r = γ
n1
1 = . . . = γ ns

s = 1, α1 . . . αrγ1 . . . γs =
g0∏

p=1

[xp, yp]〉.

From orbifold covering space theory [11], we have the following exact sequence:

1 → π1(Sg) → πorb
1 (O)

ρ−→ Cn → 1,

where Cn = 〈t〉. The homomorphism ρ is obtained by lifting path representatives of
elements of πorb

1 (O). Since these do not pass through the cone points, the lifts are
uniquely determined.

For 1 ≤ i ≤ s, the preimage of qi consists of n/ni points cyclically permuted by t.
As in Notation 3.2, the rotation angle at each point is of the form 2πc−1

i /ni where ci is a
residue class modulo ni and gcd(ci, ni) = 1. Lifting the γi, we have that ρ(γi) = t(n/ni)ci .
Similarly, lifting the αi gives ρ(αi) = tai , where gcd(ai, n) = 1. Finally, we have

ρ

⎛⎝ g0∏
p=1

[xp, yp]

⎞⎠ = 1,

since Cn is abelian,

1 = ρ(α1 . . . αrγ1 . . . γs) = ta1+···+ar+(n/n1)c1+···+(n/ns)cs,

giving

r∑
i=1

ai +
s∑

j=1

n
nj

cj ≡ 0 (mod n).

The fact that the data set D has genus g follows easily from the multiplicativity of the
orbifold Euler characteristic for the orbifold covering Sg → O:

2 − 2g
n

= 2 − 2g0 + r
(

1
n

− 1
)

+
s∑

j=1

(
1
nj

− 1
)

.

Thus, t gives a (n, r)-data set

D = (n, g0, 0; (a1, a2, . . . , ar); (c1, n1), (c2, n2), . . . , (cs, ns))

of genus g, and hence (D, �t) forms a permuting (n, r, k)-data set.
Consider another permuting (n, r, k)-action t′ in the equivalence class of t with a

distinguished fixed point set �(t′) = {P′
1, P′

2, . . . , P′
r}. Then, by definition, there exists

an orientation-preserving homeomorphism φ on Sg such that φ(Pj) = P′
j, for all j, and

φtφ−1 is isotopic to t′ relative to �(t′). Therefore, θPj (t) = θP′
j
(t′), for 1 ≤ j ≤ r, and

since �t = �t′ , the two actions will produce the same permuting (n, r, k)-data sets.
Conversely, given a permuting (n, r, k)-data set (D, �D), we construct the orbifold

O and a representation ρ : πorb
1 (O) → Cn. Any finite subgroup of πorb

1 (O) is conjugate
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to one of the cyclic subgroups generated by αj or γi, so condition (iii) in the definition
of the data set ensures that the kernel of ρ is torsion free. Therefore, the orbifold
covering S → O corresponding to the kernel is a manifold, and calculation of the
Euler characteristic shows that S = Sg. Thus, we obtain a Cn-action t on Sg with
r distinguished fixed points �(t). We now construct �t from �D in the following
manner. For each pair (p, mp) ∈ �D, write p = (a, b). If a = 0, then choose mp orbits
of size n (this is permitted by the conditions of Definition 3.7(ii)). If a �= 0, then there
exists a cone point in O of degree b, so there exists an orbit of t of size n/b in Sg. Once
again, by considering a small neighbourhood of this orbit, we may choose mp distinct
orbits {�1

p, �2
p, . . . , �mp

p } and set �(t) := ⊔
(p,mp)∈�D

{�1
p, �2

p, . . . , �mp
p }, which in turn

gives �t = �D.
It remains to show that the resulting action on Sg is determined up to our

equivalence. Suppose that two permuting (n, r, k)-actions t and t′ have the same
permuting (n, r, k)-data set (D, �D). D encodes the fixed point data of the periodic
transformation t, so by a result of Nielsen [8] (or by a subsequent result of
Edmonds [1, Theorem 1.3]), t and t′ have to be conjugate by an orientation-preserving
homeomorphism φ. LetO′ be the quotient orbifold of the action t′, and ρ ′ : πorb

1 (O′) →
Cn be the induced representations. Then φ induces a map φ# : πorb

1 (O) → πorb
1 (O′) such

that ρ ′ ◦ φ# = ρ as in [6, Theorem 2.1]. If γ is a loop around a cone point in O, then
φ#(γ ) is a loop around a cone point in O′, and these cone points are associated to the
same pair in D since ρ ′(φ#(γ )) = ρ(γ ). Once again, as in [6, Theorem 2.1], a careful
choice of φ will ensure that it maps �(t) to �(t′) and �(t) to �(t′). Furthermore,
�t = �D = �t′ by construction, and hence the permuting data set determines t up to
equivalence. �

4. Non-separating multicurves. Recall that a multicurve C is said to be non-
separating if Sg(C) is connected. In this section, we establish that a root of tC
corresponds to a special kind of permuting action on Sg(C).

DEFINITION 4.1. Let ti be a permuting (ni, ri, ki)-action on Sgi for i = 1, 2. Two
orbits �i ∈ �(ti) are said to be equivalent (in symbols, �1 ∼ �2) if

(i) | �1 | = | �2 |, and
(ii) if | �1 | < n := lcm(n1, n2), then we further require that

θ�1 (t1) + θ�2 (t2) ≡ 2π/n (mod 2π ).

In this section, we will only need the case when t1 = t2, but we will need the general
case in Section 5.

DEFINITION 4.2. Let C be a non-separating multicurve in Sg. A permuting
(n, 2r, 2k)-action t on Sg(C) is said to be non-separating with respect to C if

(i) there exists r mutually disjoint pairs {Pi, P′
i} of distinguished fixed points in �(t)

such that θPi (t) + θP′
i
(t) ≡ 2π/n (mod 2π ), for 1 ≤ i ≤ r,

(ii) there exists k mutually disjoint pairs {�i, �′
i} of distinguished non-trivial orbits

in �t such that �i ∼ �′
i, for 1 ≤ i ≤ k, and

(iii) r + ∑k
i=1 | �i | = | C |.
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Pi

P ′
i

θPi
(t)

θP ′
i
(t)

Figure 6. Angle compatibility at each pair {Pi, P′
i} ⊂ �(t).

THEOREM 4.3. Let C be a non-separating multicurve in Sg. Then, for n ≥ 1,
equivalence classes of permuting (n, 2r, 2k)-actions on Sg(C) that are non-separating
with respect to C correspond to the conjugacy classes in Mod(Sg) of (r, k)-permuting
roots of tC of degree n.

Proof. First, we shall prove that a conjugacy class of an (r, k)-permuting root h of
tC of degree n yields an equivalence class of a permuting (n, 2r, 2k)-action that is non-
separating with respect to C. We assume that r, k > 0, with the implicit understanding
that, when either of them is zero, the corresponding arguments may be disregarded.

Let �r,k(C) = {C ′
1, C ′

2, . . . , C ′
r, C1, C2, . . . , Ck} be the partition of C induced by h

as in Definition 2.7. Choose a closed tubular neighborhood N of C, and consider
Sg(C) as in Definition 2.1. By isotopy, we may assume that tC(C) = C, tC(N) = N, and
tC |̂Sg(C) = id

̂Sg(C). Suppose that h is a root of tC of degree n, then by Proposition 2.6, we
may assume that h preserves C and takes N to N.

By the Nielsen–Kerckhoff theorem [4], t̂ := h|
̂Sg(C) is isotopic to a homeomorphism

whose nth power is id
̂Sg(C). So, we may change h by isotopy so that t̂n = id

̂Sg(C). We fill

in the 2m boundary circles of Ŝg(C) with disks and extend t̂ to a homeomorphism t on
Sg(C) by coning. Thus, t defines a Cn-action on Sg(C), where Cn = 〈t | tn = 1〉.

The Cn-action t fixes the centres Pi and P′
i of the 2r disks Di and D′

i of Sg \ Ŝg(C),
for 1 ≤ i ≤ 2r, whose boundaries are the components of ∂N which are preserved by
t. The orientation of Sg determines one for Sg(C), so we may speak of directed angles
of rotation about the centres of these disks. Since hn = tC , it follows from [6, Theorem
2.1] that θPi (t) + θP′

i
(t) ≡ 2π/n (mod 2π ), as illustrated in Figure 6.

The remaining disks occurring in Sg \ Ŝg(C) form k pairs of orbits, whose sizes we
denote by m1, m2, . . . , mk. For 1 ≤ j ≤ k, we denote the centres of these pairs of disks
by Qi,j and Q′

i,j, and the orbits of these centres by �j and �′
j. Thus, t is a permuting

(n, 2r, 2k)-action with �(t) = {P1, P′
1, . . . , Pr, P′

r} and �(t) = {�1, �′
1, . . . , �k, �′

k}.
It remains to show that �i ∼ �′

i for each i. By construction, | �i | = | �′
i | = mi, and

if mi = n, then �i ∼ �′
i holds trivially. If not, we write �i = {Qi,1, Qi,2, . . . , Qi,mi}, �′

i =
{Q′

i,1, Q′
i,2, . . . , Q′

i,mi
} and note that hmi is an (n/mi)th root of tC such that hmi (ci,1) =

ci,1, where Ci,1 is a curve in C i. Hence, θQi,1 (tmi ) + θQ′
i,1

(tmi ) ≡ 2π/(n/mi) (mod 2π ),
which implies that miθ�i (t) + miθ�′

i
(t) ≡ 2π/(n/mi) (mod 2π ). Since tn is induced by

tC |̂Sg(C), it follows that θ�i (t) + θ�′
i
(t) ≡ 2π/n (mod 2π ). Hence �i ∼ �′

i, and since
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r + ∑k
i=1 mi = | C | clearly holds by construction, we obtain a permuting (n, 2r, 2k)-

action t on Sg(C) that is non-separating with respect to C.
Now suppose h1, h2 ∈ Mod(Sg) are two roots of tC that are conjugate in Mod(Sg)

via 
 ∈ Mod(Sg), and let ts denote the finite order homeomorphisms on Sg(C) induced
by hs, for s = 1, 2. Then, tC = 
tC
−1 = t
(C), so we may assume up to isotopy that

(C) = C (as in Proposition 2.6) and that 
(N) = N. We extend 
 |

̂Sg(C) to an element
φ ∈ Mod(Sg(C)) by coning. Now, φ maps �(t1) to �(t2), and �(t1) to �(t2) bijectively
as in Definition 3.4. Since hs and 
 all preserve N, φt1φ

−1 is isotopic to t2 preserving
�(t2) and �(t2). Furthermore, for each � ∈ �(t1), p(φ(�)) = p(�). Hence, �t1 = �t2

and so t1 and t2 will be equivalent permuting (n, 2r, 2k)-actions.
Conversely, given a permuting (n, 2r, 2k)-action t on Sg(C) that is non-separating

with respect to C, we can reverse the argument to produce the (r, k)-permuting root h.
If �(t) = {P1, P′

1, . . . , Pr, P′
r}, then for 1 ≤ i ≤ r, we remove disks Di and D′

i invariant
under the action of t around the Pi and P′

i and attaching r annuli to obtain the
surface Sg(C \ C ′). The condition on the angles {θPi (t), θP′

i
(t)} ensures that the rotation

angles work correctly to allow an extension of t to obtain an h0 with hn
0 = tC′ in

Mod(Sg(C \ C ′)), where C ′ = ∪r
i=1 C ′

i.
If �(t) = {�1, �′

1, . . . , �k, �′
k}, we write �1 = {Q1,1, Q1,2, . . . , Q1,m1}, and

consider disks D1,i around Q1,i such that t(D1,i) = D1,i+1. Similarly, write �′
1 =

{Q′
1,1, Q′

1,2, . . . , Q′
1,m1

} and consider disks D′
1,i as earlier. Then, we attach m1 annuli

connecting ∂D1,i to ∂D′
1,i. Each such annulus contains a non-separating curve c1,i,

which is unique unto isotopy. Repeating this process for 1 ≤ i ≤ m1, we obtain the
surface Sg(C \(C ′ ∪ C1)). Since t(D1,i) = D1,i+1, we may extend the homeomorphism
h0 to a homeomorphism h̃0 ∈ Mod(Sg(C ′ ∪ C1)), which cyclically permutes the c1,i. If
| �1 | = | �′

1 | = n, then define h1 := h̃0tc1,1 . Otherwise, since �1 ∼ �′
1, the difference in

the turning angles around Q1,i and Q′
1,i is 2π/n. Let h̃1 be the (1/n)th-twist around c1,1.

Now h1 := h̃0h̃1 is an (r, 1)-permuting root of tC ′ ∪ C1
of degree n in Mod(Sg(C \(C ′ ∪ C1))).

We now repeat this process inductively to obtain an (r, k)-permuting root h := hk of tC
of degree n.

It remains to show that the resulting root h of tC is determined up to conjugacy.
Suppose t1 and t2 are two equivalent (n, 2r, 2k)-actions on Sg(C) that are non-separating
with respect to C with �(ts) = {Ps,1, Ps,2, . . . , Ps,r} and �(ts) = {�s,1, �s,2, . . . , �s,k},
for s = 1, 2. Let φ be an orientation-preserving homeomorphism on Sg(C) satisfying
the conditions in Definition 3.4. Then, repeating the argument from [6, Theorem 2.1],
φ extends to a homeomorphism 
0 on Sg(C \ C ′)) such that 
0h1,0


−1
0 = h2,0, where

hs,0 is the root of tC′ obtained from ts, for s = 1, 2, as above. Furthermore, since φ maps
�1,i to �2,i as in Definition 3.4, we may once again extend 
0 to a homeomorphism

 satisfying 
h1


−1 = h2, where hs is the root of tC obtained from ts, for s = 1, 2. �

Note that if C is a non-separating multicurve of size m, then Sg(C) ≈ Sg−m. A result of
Wiman [3, Theorem 6] states that, if g ≥ 1, then the highest order of a cyclic action on
Sg is (4g + 2). Furthermore, if | C | = 1 and g ≥ 2, then it was shown in [6, Corollary
2.2] that the degree n of a root of tC is necessarily odd, and that n ≤ 2g − 1. These
results, together with Theorems 3.9 and 4.3, lead to the following corollary.

COROLLARY 4.4. Let C be a non-separating multicurve in Sg of size m, and let h be
an (r, k)-permuting root of tC of degree n.
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(i) If r ≥ 0, then

n ≤
{

4(g − m) + 2, if g − m ≥ 1, and
g, if g = m.

Furthermore, if g = m, then this upper bound is realizable.
(ii) If r ≥ 1, then n is odd.

(iii) If r = 1, then n ≤ 2(g − m) + 1.

(iv) If r ≥ 2, then n ≤ g − m + r − 1
r − 1

.

Proof. If g − m ≥ 1, then by Wiman’s result, the highest order of a cyclic action on
Sg(C) is 4(g − m) + 2. If g = m, then consider the permuting (n, 2r, 2k)-action t on S0

that is non-separating with respect to C guaranteed by Theorem 4.3. Since t is a cyclic
action of order n on S0, it must be a rotation by 2π�/n radians, where gcd(�, n) = 1.
Since the two fixed points of this action are not compatible in the sense of Definition
4.2, r = 0 and every non-trivial orbit has size n. Hence, m = nk and so n | m, and in
particular, n ≤ m = g. Furthermore, if g = m, let t be the rotation of Sg by 2π/m.
Then, t ◦ tc, for some c ∈ C, is a root of tC of degree m (as in Figure 1), so (i) follows.

Parts (ii) and (iii) follow from [6, Corollary 2.2] that was stated in the discussion
preceding this Corollary. If r ≥ 2, then consider the corresponding permuting (n, 2r, 2k)
data set from Theorem 3.9. Note that the genus (g − m) of the permuting data set is
given by

2 − 2(g − m)
n

= 2 − 2g0 + 2r
(

1
n

− 1
)

+
s∑

j=1

(
1
nj

− 1
)

.

Since (1 − 1/nj) ≥ 0 and g0 ≥ 0, we have (g − m) − 1 + r ≥ n(−1 + r), from which (iv)
follows. �

As mentioned earlier, the bound obtained in Corollary 4.4 (i) is not realizable in general,
as we will show in Section 6.

5. Separating multicurves. A separating multicurve C in Sg is one where Sg(C) is
disconnected. In this case, we will require multiple finite order actions on the individual
components of Sg(C) to come together to form a root of tC on Sg.

To begin with, a root h of tC induces a non-trivial permutation of the components
of Sg(C). Since h is a homeomorphism, it maps one component to another of the same
genus. Thus, we obtain a decomposition Sg(C) = �s

i=1 �gi (mi), where h|�gi (mi) induces a
transitive action on each �gi (mi). The number s above will be referred to as the number
of surface orbits of h.

To improve the exposition, we consider simpler separating multicurves first, and
then combine them inductively to obtain the general theory. We first consider the case
when C = C(m), so Sg(C) has exactly two components, which leads to the following two
possibilities.

DEFINITION 5.1. Suppose that Sg = Sg1 #CSg2 , where C = C(m). Then a root h of tC
is said to be side-preserving if h(Sgi ) = Sgi , for i = 1, 2, and side-reversing otherwise.

https://doi.org/10.1017/S0017089517000283 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089517000283


568 KASHYAP RAJEEVSARATHY AND PRAHLAD VAIDYANATHAN

c1

c2

c3

Figure 7. A multicurve C = C(3) = {c1, c2, c3} in S7 = S2#CS3.

5.1. Case 1: C = C(m) and the root is side-preserving. In this case, we will require
a pair of compatible actions on two components of Sg(C) that need to come together
to yield a root of tC . For example, in Figure 7, a root of tC would require a pair of
compatible actions (t1, t2), where t1 acts on S2 and t2 acts on S3.

DEFINITION 5.2. Equivalence classes � ti � of permuting (ni, ri, ki)-actions on Sgi , for
i = 1, 2, are said to form an (u,v)-compatible pair (� t1 �, � t2 �) of degree n for integers
0 ≤ u ≤ ri and 0 ≤ v ≤ ki, if

(i) n = lcm(n1, n2),
(ii) there exists {Pi,1, Pi,2, . . . , Pi,u} ⊂ �(ti) such that for 1 ≤ j ≤ u,

θP1,j (t1) + θP2,j (t2) ≡ 2π

n
(mod 2π ), and

(iii) there exists {�i,1, �i,2, . . . , �i,v} ⊂ �(ti) for i = 1, 2 such that �1,j ∼ �2,j as in
Definition 4.1, for 1 ≤ j ≤ v.

The number g := g1 + g2 + u + ∑v
j=1 | �1,j | − 1 is called the genus of the pair

(� t1 �, � t2 �). Note that two actions are (1, 0)-compatible if they are compatible
as nestled actions in the sense of [9, Definition 3.2]. We write �(t1, t2) :=
{P1,1, P1,2, . . . , P1,u} and �(t1, t2) := {�1,1, �1,2, . . . , �1,v}. We define �(t2, t1) and
�(t2, t1) similarly.

LEMMA 5.3. Let C = {c1, c2, . . . , cm} be a multicurve on Sg, and Ni be annular
neighbourhood of ci. Write N = �m

i=1Ni, and suppose t ∈ Mod(Sg) is such that t|Sg\N=
idSg\N, then there exists d1, d2, . . . , dm ∈ � ∪ {0} such that t = td1

c1
. . . tdm

cm
.

Proof. Since t|Sg\N= idSg\N , t fixes ∂N. By definition, each h ∈ Mod(Ni) fixes ∂Ni

pointwise, and Mod(Ni) is a cyclic group generated by tci (as stated in [2, Proposition
2.4]). So, the lemma now follows from the fact that

Mod(N) ∼= ⊕m
i=1 Mod(Ni) = ⊕m

i=1〈tci〉.
�

THEOREM 5.4. Suppose that Sg = Sg1 #CSg2 , where C = C(m). Then, (u, v)-permuting,
side-preserving roots of tC of degree n correspond to the (u, v)-compatible pairs
(� t1 �, � t2 �) of equivalence classes of permuting (ni, ri, ki)-actions on the Sgi , of degree n.

Proof. As before, we assume m > 1, and first show that every (u, v)-permuting
root h of tC of degree n yields a compatible pair (� t1 �, � t2 �) of degree n. Consider
the (u, v)-partition �u,v(C) = {C ′

1, . . . C ′
u, C1, . . . , Cv} of C induced by h as in Definition

2.7. Let Ŝgs , for s = 1, 2, denote the two components of Ŝg(C). Let N be a closed
annular neighborhood of C. By isotopy, we may assume that tC(C) = C, tC(N) = N ,
and tC |Ŝgs

= idŜgs
. Putting t̂s = h|Ŝgs

, we may assume up to isotopy that t̂s
n|Ŝgs

= idŜgs

for s = 1, 2.
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Let ns be the smallest positive integer such that t̂s
ns = idŜgs

, for s = 1, 2, and let
q = lcm(n1, n2). Then, t := hq satisfies the hypotheses of Lemma 5.3. Hence, there
exists dc ∈ � ∪ {0} such that hq = ∏

c∈C tdc
c . Since hn|Ŝg1

= idŜg1
it follows that n1 | n, and

similarly n2 | n. Hence, q | n and so
∏

c∈C tc = tC = (hq)n/q = ∏
c∈C tndc/q

c . Fix c ∈ C and
restrict the functions on both sides of this equation to a closed annular neighbourhood
of c disjoint from other curves in C. As in Proposition 2.6, we see that ndc/q = 1,
and hence n = q = lcm(n1, n2). We fill in ∂Ŝgs with disks to obtain the closed oriented
surfaces Sgs for s = 1, 2. We then extend t̂s to a permuting (ns, rs, ks)-action ts on Sgs ,
where ns | n, for s = 1, 2, and n = lcm(n1, n2).

When u > 0, the homeomorphism ts fixes the centre points {Ps,1, . . . , Ps,u} of u
disks in Sgs \ Ŝgs , for s = 1, 2. Hence, we may write �(t1, t2) = {P1,1, . . . , P1,u} and
�(t2, t1) = {P2,1, . . . , P2,u}. For 1 ≤ j ≤ u, the proof of [9, Theorem 3.4] implies that
the corresponding turning angles around P1,j and P2,j must be compatible in the sense
of condition (ii) of Definition 5.2.

When v > 0, let C i = {ci,1, c1,2, . . . , ci,mi}, for 1 ≤ i ≤ v. Associated with each
curve ci,j ∈ C i, is a disk Ds

i,j in each Sgs \ Ŝgs for s = 1, 2. The centres Qs
i,j of the mi

disks Ds
i,j for 1 ≤ j ≤ mi form an orbit �s,i in Sgs for s = 1, 2. Thus, we obtain a

collection �ts = {�s,1, . . . , �s,v} of v distinguished non-trivial orbits on Sgs for s = i, j.
It remains to show that �1,i ∼ �2,i, for 1 ≤ i ≤ v, but the argument for this is similar
to that of Theorem 4.3. Hence, the pair (� t1 �, � t2 �) forms a (u, v)-compatible pair of
degree n.

The arguments for the converse, and the fact that the resulting root is determined
up to conjugacy, are analogous to that of Theorem 4.3. �

We are now in a position to adapt the arguments from [9] to obtain an upper
bound on the degree of a root of tC . In [9, Proposition 8.4], it was proved that if c
is a separating curve and Sg = Sg1 #cSg2 , then the degree n of a root of tc is bounded
above by 16g1g2 + 4(2g1 − g2) − 2. Furthermore, if g ≥ 2, then it was proved in [9,
Proposition 8.6] that n ≤ 4g2 + 2g. These results and their proofs will be used below.

COROLLARY 5.5. Suppose that Sg = Sg1 #CSg2 , where C = C(m). If n denotes the degree
of a side-preserving root of tC , then

n ≤ 4(g − m)2 + 10(g − m) + 25
4

.

Proof. From Theorem 5.4, an (r, k)-permuting root of tC of degree n corresponds
to a (r, k)-compatible pair (� t1 �, � t2 �) of equivalence classes of permuting (ni, ri, ki)-
actions on the Sgi , of degree n. We shall first establish that, if g1 ≥ g2, then

n ≤ 16g1g2 + 4(2g1 − g2) − 2. (*)

If r > 0, (*) follows from [9, Proposition 8.4]. By an analogous argument, it can
be shown (*) also holds when �(t1, t2) (and hence �(t2, t1)) contains at least one orbit
whose size is a proper divisor of both n1 and n2.

Suppose that r = 0 and every orbit of �(t1, t2) is of size n1, and every orbit
of �(t2, t1) is of size n2. Since �(t1, t2) �= ∅, it follows that n1 = n2, and hence
n = lcm(n1, n2) = n1 ≤ 4g1 + 2, by Wiman’s result [3, Theorem 6] (as stated before
Corollary 4.4 in Section 4). Once again, we conclude that (*) holds.
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C(2)(2)

C(1)(2) C(1)(3)

Figure 8. A multicurve C = C(2)(2) � C(1)(2) � C(1)(3) in S25 with
S25(C) = S6 � �3(2) � �1(2) � �3(3).

Denoting the expression on the right hand side of (*) by M(g1, g2) and putting
g2 = g − g1 − m + 1, we obtain a quadratic polynomial in g1 as in [9, Theorem 8.6],
which attains its maximum at g1 = 1

2 (g − m) + 7
8 , and consequently, g2 = 1

2 (g − m) +
1
8 . Upon substituting these values of g1 and g2 in the expression for M(g1, g2), we get
the required result. �

5.2. Case 2: C is non-cyclical and the root has exactly one surface orbit of cardinality
1. In this case, the action induced by h on Sg(C) has one distinguished surface orbit
of cardinality one, and so it decomposes Sg(C) in the form Sg(C) = Sg1 �s

i=1 �g2,i (mi)
where mi > 1, for 1 ≤ i ≤ s. Note that h has s non-trivial surface orbits. Furthermore, h
partitions C as C = �s

i=1 C(ki)(mi) as in Notation 2.3(v). (We refer the reader to Figure 8
for an example.) We thus require an action on Sg1 that is pairwise compatible with
actions on each �g2,j(mj). In order to classify roots in this case, we generalize the
notion of a permuting (n, r, k)-action to encompass the action on �g(m) induced by h.

DEFINITION 5.6. Fix integers g ≥ 0 and m ≥ 1.

(i) An orientation-preserving Cn-action t on �g(m) is said to be a permuting (n, r, k)-
action if m | n and t = σm ◦ t̃, where t̃ is a permuting (n, r, k)-action on each S1

g and
σm is a cyclical permutation of the components of �g(m), which may be viewed
as an m-cycle (1 2 . . . m).

(ii) Let t1 and t2 be two permuting (n, r, k)-actions on �g(m). Then we say t1 is
equivalent to t2 if for all i, t1

m|Si
g

and t2
m|Si

g
are equivalent as permuting (n/m, r̃, k̃)-

actions on Si
g in the sense of Definition 3.4.

REMARK 5.7. Suppose that t̃ ∈ Mod(Sg) defined a permuting (n, r, k)-action and
t = σm ◦ t̃, then ti := tm|Si

g
∈ Mod(Si

g) defines a permuting (n/m, r̃, k̃)-action on Si
g.

Furthermore, all the ti are conjugate to each other via σm.
Conversely, if t′ ∈ Mod(Sg) is a permuting (n/m, r̃, k̃)-action on Sg that has an

mth root t̃ ∈ Mod(Sg), then the map t := σm ◦ t̃ defines a permuting (n, r, k)-action
on �g(m). Thus, a permuting (n, r, k)-action on �g(m) corresponds to a permuting
(n/m, r̃, k̃)-action on Sg that has an mth root in Mod(Sg).

We begin with the simple case when the root induces a single non-trivial surface orbit.

DEFINITION 5.8. Let t1 be a permuting (n1, r1, k1)-action on Sg1 , and let t2 be a
permuting (n2, r2, k2)-action on �g2 (m) such that t2 = σm ◦ t̃2 as in Remark 5.7. Then,
for fixed integers u, v ≥ 0, (� t1 �, � t2 �) forms a (u,v)-compatible pair of degree n if
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(i) n = lcm(n1, n2),
(ii) for 1 ≤ i ≤ m, (� t1

m �, � tm
2 |Si

g2
�) is a (u, v)-compatible pair of degree n/m,

(iii) for 1 ≤ i ≤ m and 1 ≤ j ≤ u, there exists mutually disjoint pairs {P1
i,j, P2

i,j}, where
P1

i,j ∈ �(tm
1 ) and P2

i,j ∈ �(tm
2 |Si

g2
) such that

θP1
i,j

(t1) + θP2
i,j

(t̃2) ≡ 2π/n (mod 2π ), and

(iv) for 1 ≤ i ≤ m and 1 ≤ j ≤ v, there exists mutually disjoint pairs {�1
i,j, �2

i,j}, where

�1
i,j ∈ �(t1) and �2

i,j ∈ �(t̃2), such that �1
i,j ∼ �2

i,j, as in Definition 4.1.

Let (� t1 �, � t2 �) be a (u, v)-compatible pair of degree n as above.

(i) We write �(t1, t2) = {P1
i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ u} and �(t2, t1) = {P2

i,j : 1 ≤ i ≤
m, 1 ≤ j ≤ u}.

(ii) Similarly, we define �(t1, t2) = {�1
i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ v} and �(t1, t2) = {�2

i,j :
1 ≤ i ≤ m, 1 ≤ j ≤ v}.

DEFINITION 5.9. Let t1 be a permuting (n1, r1, k1)-action on Sg1 , and
let t2,j be a permuting (n2,j, r2,j, k2,j)-action on �g2,j (mj), for 1 ≤ j ≤ s. Then,
(� t1 �, � t2,1 �, . . . , � t2,s �) forms a (s+1)-compatible tuple of degree n if:

(i) for each 1 ≤ j ≤ s, (� t1 �, � t2,j �) forms an (uj, vj)-compatible pair of degree n, for
some uj, vj ≥ 0 such that k2,j = uj + vj, and

(ii) for each i �= j, �(t1, t2,i) ∩ �(t1, t2,j) = ∅ = �(t1, t2,i) ∩ �(t1, t2,j).

The number g = g1 + ∑s
j=1 mj(g2,j + k2,j − 1) is called the genus of the (s + 1)-tuple.

The number k = ∑s
j=1 k2,j is called the orbit number of the tuple.

THEOREM 5.10. Let C be a non-cyclical separating multicurve. Then, conjugacy
classes of (0, k)-permuting roots of tC of degree n with s non-trivial surface orbits
correspond to (s + 1)-compatible tuples of degree n, genus g and orbit number k.

Proof. Let h ∈ Mod(Sg) be a (0, k)-permuting root of degree n on Sg. Since the
argument easily generalizes, we assume that h has exactly one non-trivial surface
orbit, so that C = C(k)(m) and Sg = Sg1 #C �g2 (m). Then, as in Theorem 5.4, we obtain
a permuting (n1, r1, k1)-action t1 on Sg1 and a Cn2 -action t2 on �g2 (m), where n =
lcm(n1, n2). Furthermore, h restricts to σm : �g2 (m) → �g2 (m) such that σm ◦ t2 = t2 ◦
σm. Hence, the maps t2,i := σ−1

m t|Si
g2

: Si
g2

→ Si
g2

are conjugate to each other, and so t2

is a permuting (n2, r2, k2)-action on �g2 (m), as in Definition 5.6.
Since hm is a root of tC of degree (n/m) that preserves m submulticurves C(k)

i of C, for
1 ≤ i ≤ m, it induces hi ∈ Mod(�i), where �i := Sg1 #C(k)

i
Si

g2
, and these hi are pairwise

conjugate to each other via h. Thus, it follows from Theorem 5.4 that there exist integers
u, v ≥ 0 such that (� tm

1 �, � tm
2 |Si

g2
�) forms a (u, v)-compatible pair of degree n/m, for

1 ≤ i ≤ m.
By condition (ii) of Definition 5.2, there exists mutually disjoint pairs {P1

i,j, P2
i,j},

where P1
i,j ∈ �(tm

1 ) and P2
i,j ∈ �(tm

2 |Si
g2

), such that

θP1
i,j

(tm
1 ) + θP2

i,j
(t̃2

m) ≡ 2π

(n/m)
(mod 2π ).
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Once again, since hm is a root of tC , it follows that

θP1
i,j

(t1) + θP2
i,j

(t̃2) ≡ 2π/n (mod 2π ).

Similarly, one obtains condition (iv) of Definition 5.8 as well. Hence, h yields a
compatible pair (� t1 �, � t2 �) of degree n, genus g, and orbit number k = k2. The
converse is a just a matter of reversing this argument. �

DEFINITION 5.11. Let C be a non-cyclical separating multicurve on Sg. We say that
a tuple of non-negative integers

ψ = (g1, (g2,1, k2,1, m1), (g2,2, k2,2, m2), . . . , (g2,s(ψ), k2,s(ψ), ms(ψ)))

is said to be admissible with respect to C if there is a decomposition of C in the form
C = �s(ψ)

j=1 C(k2,j)(mj) and Sg(C) in the form Sg(C) = Sg1 �s(ψ)
i=1 �g2,i (mi).

With a view towards computing bounds, to an admissible tuple ψ as above, we associate
the number

M(ψ) := min
1≤i≤s(ψ)

mi

[
4(g1 + g2,i − 1)2 + 10(g1 + g2,i − 1) + 25

4

]
.

Note that every root of tC yields an admissible tuple arising from the associated (s + 1)-
compatible tuple of actions from Theorem 5.10. While the converse is not necessarily
true, it is clear that, given a surface Sg and a multicurve C in Sg, there are only finitely
many such tuples that are admissible with respect to C. Hence, the supremum described
in the next corollary is taken over a finite set, and can thus be computed by elementary
means.

COROLLARY 5.12. Let C is a non-cyclical separating multicurve, and let h be a (0, k)-
permuting root of tC of degree n. Then, n ≤ supψ M(ψ), where the supremum is taken
over all tuples ψ that are admissible with respect to C.

Proof. By Theorem 5.10, we obtain an (s + 1)-compatible tuple (� t1 �, � t2,1 �,
. . . , � t2,s �). For each 1 ≤ i ≤ s, (� tmi

1 �, � tmi
2,i|S1

g2,i
�) forms a compatible pair of degree

n/mi as in Definition 5.2. By Corollary 5.5, it follows that n/mi ≤ [4(g1 + g2,i − 1)2 +
10(g1 + g2,i − 1) + 25

4 ], and the result follows. �

5.3. Case 3: C = C(m) and the root is side-reversing. Let Sg = Sg1 #CSg2 and h be
a root of tC . Then, as shown in Figure 9, we should have g1 = g2, and for i = 1, 2, the
actions hi = h2|Sgi

are now compatible (n/2, ri, ki)-actions in the sense of Definition
5.2. Furthermore, they are conjugate by h, so they define the same equivalence class.
Thus, the proof of Theorem 5.10 can be adapted to obtain side-reversing version of
Theorem 5.4 and its corollaries.

THEOREM 5.13. Suppose that Sg = Sg1 #CSg2 , where C = C(m) and g1 = g2. Then,
(r, k)-permuting, side-reversing roots of tC of degree n correspond to the (r, k)-compatible
pairs (� t1 �, � t2 �) of equivalence classes of permuting (n, r, k)-actions on the Sg1 , of degree
n, where � t1 � = � t2 �
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C(3)

Figure 9. A multicurve C = C(3) in S6 = S2#CS2.

c1

c3

c2

c4

Figure 10. A cyclical multicurve C = {c1, c2, c3, c4} in S5.

Since side-reversing roots of degree n can be squared to obtain side-preserving roots
of degree n/2, the following corollary can be obtained by putting g1 = g2 = g−m+1

2 in
Equation (*) of Corollary 5.5.

COROLLARY 5.14. Suppose that Sg = Sg1 #CSg2 , where C = C(m). If n denotes the
degree of a side-reversing root of tC , then

n ≤ 8(g − m)2 + 20(g − m) + 8.

5.4. Case 4: C is cyclical and the root is (0, k)-permuting. In this case, a root
h of tC decomposes Sg(C) as Sg(C) = �s

i=1 �gi (mi), where each mi > 1. Note that, as
in Definition 2.4, we assume that Sg(C) has at least 3 components. For example, in
Figure 10, a root of tC may induce a partition of S5(C) in two different ways. It may
happen that h is a (0, 1)-permuting root, in which case S5(C) = �1(4). Alternatively, if
h is a (0, 2)-permuting root, then we would write S5(C) = �1(2) � �1(2).

REMARK 5.15. We claim that all the mi in the above decomposition of Sg(C) are
equal. To see this, consider the decomposition (as in Definition 2.4)

Sg =
k⋃

i=1

̂�i(C \ C i),

where �i = Sgi #Ci Sgj with j ≡ (i + 1) (mod k). The homeomorphism h induces a
homeomorphism h′ : �i → �′

i , where �′
i = Sg′

i
#h(C i)Sg′

j
and {gi, gj} = {g′

i, g′
j}. Hence,

mj = mi.
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DEFINITION 5.16. Let m ≥ 2, u, v ≥ 0 be fixed integers. Let ti be a permuting
(ni, ri, ki)-action on �gi (m) such that ti = σm,i ◦ t̃i, for i = 1, 2 as in Remark 5.7. Then,
the equivalence classes (� t1 �, � t2 �) are said to form a cyclical (u,v)-compatible pair of
degree n if

(i) n = lcm(n1, n2),
(ii) for 1 ≤ i ≤ m, (� t1

m|Si
g1

�, � tm
2 |Si

g2
�) is a (u, v)-compatible pair of degree n/m,

(iii) for 1 ≤ i ≤ m, 1 ≤ j ≤ u, there exists mutually disjoint pairs {P1
i,j, P2

i,j}, where
P1

i,j ∈ �(tm
1 |Si

g1
) and P2

i,j ∈ �(tm
2 |Si

g2
) such that

θP1
i,j

(t̃1) + θP2
i,j

(t̃2) ≡
{

0, if t̃i = idSj
gi

for i = 1, 2, and

2π/n (mod 2π ), otherwise, and

(iv) for 1 ≤ i ≤ m and 1 ≤ j ≤ v, mutually disjoint pairs {�1
i,j, �2

i,j}, where �1
i,j ∈ �(t̃1)

and �2
i,j ∈ �(t̃2), such that �1

i,j ∼ �2
i,j, as in Definition 4.1.

Let (� t1 �, � t2 �) be a cyclical (u, v)-compatible pair of degree n as in Definition 5.8. We
write

(i) �(t1, t2) = {P1
i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ u} and �(t2, t1) = {P2

i,j : 1 ≤ i ≤ m, 1 ≤ j ≤
u}.

(ii) Similarly, we define �(t1, t2) = {�1
i,j : 1 ≤ i ≤ m, 1 ≤ j ≤ v} and �(t1, t2) = {�2

i,j :
1 ≤ i ≤ m, 1 ≤ j ≤ v}.

(iii) Putting β(t1, t2) := u + ∑v
j=1 | �1

1,j | − 1 = u + ∑v
j=1 | �2

1,j | − 1, we define the
number g := m(g1 + g2 + β(t1, t2)) to be the genus of the pair.

DEFINITION 5.17. Let m ≥ 2 be a fixed integer. Let ti be permuting (ni, ri, ki)-actions
on �gi (m), for 1 ≤ i ≤ s. Then, (� t1 �, � t2 �, . . . , � ts �) forms a cyclical s-compatible tuple
of degree n if:

(a) For each 1 ≤ i ≤ s, n = lcm(ni, nj), where j ≡ (i + 1) (mod s).
(b) When s = 1,

(i) for 1 ≤ i ≤ m, (� tm
1 |Si

g1
�, � tm

1 |Sk
g1

�) is a (u, v)-compatible pair of degree n/m,
where k ≡ (i + 1) (mod m),

(ii) for 1 ≤ i ≤ m and 1 ≤ j ≤ u, there exists mutually disjoint pairs {P1
i,j, P2

i,j},
where P1

i,j ∈ �(tm
1 |Si

g1
) and P2

i,j ∈ �(tm
1 |Sk

g1
) such that

θP1
i,j

(t̃1) + θP2
i,j

(t̃1) ≡
{

0, if t̃1 = idSj
g1
, and

2π/n (mod 2π ), otherwise,

(iii) for 1 ≤ i ≤ m and 1 ≤ j ≤ v, there exists mutually disjoint pairs {�1
i,j, �2

i,j},
where �1

i,j ∈ �(t̃1) and �2
i,j ∈ �(t̃1), such that �1

i,j ∼ �2
i,j, as in Definition 4.1,

and
(iv) for 1 ≤ i ≤ m, if � ≡ (i − 1) (mod m), then with Notation as in Definition 5.2,

�(tm
1 |Si

g1
, tm

1 |Sk
g1

) ∩ �(tm
1 |Si

g1
, tm

1 |S�
g1

) = ∅ = �(tm
1 |Si

g1
, tm

1 |Sk
g1

) ∩ �(tm
1 |Si

g1
, tm

1 |S�
g1

), and
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(v) the numbers k := u + v and g := m(g1 + u + v − 1) are called the orbit
number and genus of the tuple respectively.

(c) When s > 1, for 1 ≤ i ≤ s,
(i) (� ti �, � tj �) forms a (ui, vi)-compatible pair of degree n for some ui, vi ≥ 0,

where j ≡ (i + 1) (mod s),
(ii) �(ti, tj) ∩ �(ti, t�) = ∅ = �(ti, tj) ∩ �(ti, t�), where � ≡ (i − 1) (mod s), and

(iii) if g̃i denotes the genus of the pair (� ti �, � tj �) where j = (i + 1) (mod s), then
k := ∑s

i=1(ui + vi) and g := m
(∑s

i=1[g̃i + β(ti, tj)]
)

are called the orbit number
and genus of the tuple, respectively.

The proof of the following theorem and its corollary are now analogous to that of
Theorem 5.10 and Corollaries 5.12 and 5.14, keeping in mind Remark 5.15.

THEOREM 5.18. Let C be a cyclical multicurve on Sg. Then, conjugacy classes of
(0, k) permuting roots of tC of degree n with s non-trivial surface orbits correspond to
cyclical s-compatible tuples of degree n, genus g and orbit number k.

As in Definition 5.11, every root of tC is naturally associated to a tuple of integers
arising from the decomposition of C and of Sg(C). Once again, an admissible tuple
does not necessarily imply the existence of a root as the tuple does not capture the
finite order actions and their compatibilities as in Theorem 5.18. Let C be a cyclical
multicurve on Sg. We say that a tuple

ψ = (0, (g1, k1, m), (g2, k2, m), . . . , (gs(ψ), ks(ψ), ms(ψ)))

is said to be admissible with respect to C if there is a decomposition of C in the
form C = �s(ψ)

i=1 �m
k=1 Ck,i and Sg(C) in the form Sg(C) = �s(ψ)

i=1 �gi (m) such that Sg =
∪s(ψ)

i=1 ∪m
k=1

̂�i,k(C \ Ck,i), where �i,k := Sk
gi

#Ck,i S
k
gj

with j ≡ (i + 1) (mod s(ψ)). Given
an admissible tuple ψ as above, we once again associate the number

M(ψ) = m min
1≤i≤s(ψ)

[
4(gi + gj − 1)2 + 10(gi + gj − 1) + 25

4

]
,

where j ≡ (i + 1) (mod s(ψ)). This tuple is now used to compute a bound on the degree
of a root as in Corollary 5.12.

COROLLARY 5.19. Let C be a cyclical multicurve on Sg, and let h be a (0, k′)-permuting
root of tC of degree n. Then, n ≤ supψ M(ψ), where the supremum is taken over all tuples
ψ that are admissible with respect to C.

5.5. Case 5: C is a non-cyclical and the root has multiple surface orbits of
cardinality 1. We now consider the case of an (r, k)-permuting root of tC where
r, k > 0. We begin by writing Sg as a connected sum of subsurfaces Sgi across those
bounding submulticurves that are preserved by h. The restriction of h to each Sgi is
then a (0, ki)-permuting root of the Dehn twist about the submulticurve Di := C ∩Sgi .
This allows us to apply Theorem 5.10 to obtain finite order actions on Sgi (Di)
such that pairs of actions on adjacent subsurfaces are compatible (in the sense of
Theorem 5.4).

Let C be a non-cyclical separating multicurve in Sg, and let h be an (r, k)-permuting
root of tC .
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C(2)(2)

C(1)(2)

C(3)

C(1)

C(1)(3)

Figure 11. S24 with a separating multicurve C.

(i) We shall denote the set of all bounding submulticurves of C that are preserved by
h by Fixh(C) = {E1, . . . , Em(h)}.

(ii) Writing Sg = #m(h)
i=1 (Sgi #E i Sgi+1 ) as in Notation 2.3, and Di := C ∩Sgi , we have that

for each i, Sgi ∩ Cr,k(h) is a (0, ki)-partition of Di, which has the form Sgi ∩ Cr,k(h) =
{C(ki,j)

i,j (mi,j) : 1 ≤ j ≤ ki}.
(iii) For 1 ≤ i ≤ r + 1, we write Sgi = #ki

j=1(Sgi,1 #Di,j �gi,2,j (mi,j)), where Di,j = C(ki,j)
i,j (mi,j)

and gi = gi,1 + ∑ki
j=1 mi,j(gi,2,j + ki,j − 1).

In Figure 11, we have the surface S24 with the multicurve

C = C(2)(2) � C(1)(2) � C(3) � C(1) � C(1)(3).

According to the notation introduced above, we have

S24 =
(

�3(2)#C(2)(2)S2#C(1)(2) �1(2)
)

#C(3) S2#C(1)

(
S1#C(1)(3) �3(3)

)
.

DEFINITION 5.20. Fix m, n ∈ �, and for 1 ≤ i ≤ m + 1, let t̄i = (� ti,1 �, . . . ,
� ti,2,si �) be an (si + 1)-compatible tuple as in Definition 5.9. Then, the tuple
(t1, . . . , tm+1) is said to form an (m+1)-compatible multituple of degree n if for each
1 ≤ i ≤ (m + 1),

(i) the pair (� ti,1 �, � ti+1,1 �) forms an (ri,1, ki,1)-compatible pair of degree n, and

(ii) �(ti,1, ti+1,1) ∩
(
�si

j=1 �(ti,1, ti,2,j)
)

= ∅ = �(ti,1, ti+1,1) ∩
(
�si

j=1 �(ti,1, ti,2,j)
)

.

If g(ti) denotes the genus of ti, and αi := ∑
�∈�(t1,i,t1,i+1) | � |, then the number

g =
m+1∑
i=1

g(ti) +
m∑

i=1

(r1,i + k1,iαi − 1)

is called the genus of the multituple.

The following theorem follows from Theorem 5.4 and 5.10.

THEOREM 5.21. Let C be a non-cyclical separating multicurve in Sg. Then, the
conjugacy class of a root h of tC of degree n with m surface orbits of cardinality 1
corresponds to an (m + 1)-compatible multituple of degree n and genus g.

Let C be a non-cyclical separating multicurve in Sg. We say that a tuple ψ =
(ψ1, ψ2, . . . , ψm(ψ)) is admissible with respect to C if there are disjoint submulticurves
{Ei}m

i=1 ⊂ C, and a decomposition of Sg in the form Sg = #m
i=1(Sgi #E i Sgi+1 ), where each ψi

is an admissible tuple with respect to C ∩Sgi ⊂ Sgi , 1 ≤ i ≤ m in the sense of Definition
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5.11. Using Theorem 5.21 and Corollary 5.12, we obtain the following bound on the
degree of a root in this case.

COROLLARY 5.22. Let C be a non-cyclical separating multicurve in Sg, and let h be
root of tC of degree n. Then,

n ≤ sup
ψ

min
1≤i≤m(ψ)

lcm([M(ψi)], [M(ψi+1)]),

where M(ψi) is as in Definition 5.11, [x] denotes the greatest integer ≤ x, and the
supremum is taken over all multituples ψ that are admissible with respect to C.

If C is a generic separating multicurve, then C can be expressed as a disjoint union
of non-separating multicurves and separating multicurves that are either cyclical or
bounding. Consequently, the general theory for a separating multicurve will encompass
the theories developed earlier sections. For the sake of brevity and clarity of exposition,
we shall refrain from developing a theory for this case. However, we will classify such
roots in Mod(S4), thereby indicating how such a theory would follow from the ideas
developed in Sections 4 and 5.

6. Classification of roots in Mod(S4). In this section, we classify roots of
Dehn twists about multicurves in Mod(S4). When classifying an (m + 1)-compatible
multituples (t1, . . . , tm+1) that corresponds to a root, Condition (i) of Definition 5.20
and Condition (ii) of Definition 5.9 help in eliminating data sets that do not lead
to roots. For the sake of brevity, we only list those data sets that do lead to roots.
Furthermore, in each case, a careful examination of the data set D also gives �D, and
so we only display the former.

Finally, when ti is a permuting (ni, ri, ki)-action on �gi (mi), we use Remark 5.7 and
replace ti by the corresponding action on Sgi , which has a root t̃i of degree mi, whose
equivalence class can be encoded by a data set Di. Therefore, an (m + 1)-compatible
multituple (t1, . . . , tm+1) is described by a tuple (D1, D2, . . . , Dm+1) of data sets, which
will be listed in a table. While enumerating the curves in a multicurve, as a general
convention, separating curves will be denoted with the letter c, while non-separating
curves will be denoted with the letter d.

C is a non-separating multicurve

(n, r, k) C D1

(4, 0, 1) {d1, d2, d3, d4} (4, 0, 1; (1, 4), (1, 4))
(4, 0, 1) {d1, d2, d3, d4} (4, 0, 3; (3, 4), (3, 4))
(2, 0, 2) {d1, d2, d3, d4} (2, 0, 1; (1, 2), (1, 2))
(3, 0, 1) {d1, d2, d3} (3, 1, 1; )
(3, 0, 1) {d1, d2, d3} (3, 1, 2; )
(2, 0, 1) {d1, d2} (2, 1, 0; (1, 2), (1, 2))

Note that this shows that a non-separating multicurve of size 3 on S4 does not
have a root of degree 6. Hence, the upper bound obtained in part (i) of Corollary 4.4
is not realizable in general.
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C is a separating multicurve

Table 1. C = {c1, c2, c3, c4}, S4 = S0#CS1(4)

(n, r, k) D1 D2

(4, 0, 1) (4, 0, 1; (1, 4), (1, 4)) (1, 1; )
(4, 0, 1) (4, 0, 3; (3, 4), (3, 4)) (1, 1; )

Table 2. C = {c1, c2, c3, c4}, S4 = S1(2)#{c1,c2}S0#{c3,c4}S1(2)

(n, r, k) D1 D2 D3

(2, 0, 2) (1, 1, 0; ) (2, 0, 1; (1, 2), (1, 2)) (1, 1, 0; )
(6, 0, 2) (6, 0, 0; (1, 6), (1, 2), (1, 3)) (2, 0, 1; (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))

Table 3. C = {c1, c2, c3}, S4 = S1#CS1(3)

(n, r, k) D1 D2

(3, 0, 1) (3, 1, 0; ) (1, 1, 0; )
(6, 0, 1) (6, 0, 0; (1, 6), (1, 2), (1, 3)) (1, 1, 0; )
(6, 0, 1) (6, 0, 0; (5, 6), (1, 2), (2, 3)) (1, 1, 0; )
(6, 0, 1) (3, 1, 1; ) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 1) (3, 1, 1; ) (6, 0, 0; (5, 6), (1, 2), (2, 3))

Table 4. C = {d1, d2, d3} is
cyclical

(n, r, k) D1

(3, 0, 1) (1, 1, 0; )
(3, 0, 1) (3, 0, 0, (2, 2); (2, 3))

Table 5. C = {c1, c2, c3}, S4 = S1#c1 S1#{c2,c3}S1(2)

(n, r, k) D1 D2 D3

(4, 1, 1) (1, 1, 0, (1); ) (4, 0, 0, (1); (1, 2), (1, 4)) (1, 0, 1; )
(6, 1, 1) (1, 1, 0, (1); ) (6, 0, 0, (1); (1, 2), (1, 3)) (1, 0, 1; )
(6, 1, 1) (3, 0, 0, (2); (2, 3), (2, 3)) (2, 0, 0, (1); (1, 2), (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))

Table 6. C = {c1, c2, c3}, S4 = S1#c1 S1#c2 S1#c3 S1

(n, r, k) D1 D2 D3 D4

(3, 3, 0) (3, 0, 0, (2); (2, 3), (2, 3)) (3, 0, 0, (2, 2); (2, 3)) (3, 0, 0, (2, 2); (2, 3)) (3, 0, 0, (2); (2, 3), (2, 3))
(12, 3, 0) (3, 0, 0, (1); (1, 3), (1, 3)) (4, 0, 0, (3, 3); (1, 2)) (3, 0, 0, (1, 1); (1, 3)) (4, 0, 0, (3); (1, 2), (3, 4))
(12, 3, 0) (4, 0, 0, (3); (1, 2), (3, 4)) (3, 0, 0, (1, 1); (1, 3)) (4, 0, 0, (3, 2); (1, 2)) (3, 0, 0, (1); (1, 3), (1, 3))

Table 7. C = {c1, c2}, S4 = S2#CS1(2)

(n, r, k) D1 D2

(6, 0, 1) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 1) (2, 1, 0; (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 1) (6, 0, 0; (5, 6), (1, 3), (5, 6)) (1, 1, 0; )

Table 8. C = {c1, c2}, S4 = S1#c1 S1#c2 S2.

(n, r, k) D1 D2 D3

(6, 2, 0) (6, 0, 0, (5); (1, 2), (2, 3)) (3, 0, 0, (1, 1); (1, 3)) (6, 0, 0, (5); (1, 3), (5, 6))
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Table 9. C = C(3), S4 = S1#CS1. The last three roots are side-reversing

(n, r, k) D1 D2

(3, 0, 1) (3, 0, 0; (1, 3), (1, 3), (1, 3)) (3, 0, 0; (1, 3), (1, 3), (1, 3))
(3, 0, 1) (3, 0, 0; (1, 3), (1, 3), (1, 3)) (3, 0, 0; (2, 3), (2, 3), (2, 3))
(3, 0, 1) (3, 0, 0; (2, 3), (2, 3), (2, 3)) (3, 0, 0; (2, 3), (2, 3), (2, 3))
(3, 0, 1) (3, 0, 0; (2, 3), (2, 3), (2, 3)) (3, 0, 0; (1, 3), (1, 3), (1, 3))
(6, 0, 1) (3, 0, 0; (1, 3), (1, 3), (1, 3)) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 1) (3, 0, 0; (1, 3), (1, 3), (1, 3)) (6, 0, 0; (5, 6), (1, 2), (2, 3))
(6, 0, 1) (3, 0, 0; (2, 3), (2, 3), (2, 3)) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 1) (3, 0, 0; (2, 3), (2, 3), (2, 3)) (6, 0, 0; (5, 6), (1, 2), (2, 3))
(4, 1, 1) (2, 0, 0, (1); (1, 2), (1, 2), (1, 2)) (4, 0, 0, (3); (1, 2), (3, 4))
(3, 3, 0) (3, 0, 0, (2, 2, 2); ) (3, 0, 0, (2, 2, 2); )
(6, 3, 0) (3, 0, 0, (2, 2, 2); ) (2, 0, 0, (1, 1, 1); (1, 2))
(3, 0, 1) (1, 0, 0, 1; ) (1, 0, 0, 1; )
(3, 0, 1) (1, 0, 0, 2; ) (1, 0, 0, 2; )
(6, 3, 0) (3, 0, 0, (2, 2, 2); ) (3, 0, 0, (2, 2, 2); )

Table 10. C = C(2)(2), S4 = S1#C(2) S0#C(2) S1

(n, r, k) D1 D2 D3

(2, 0, 2) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2)) (2, 0, 0; (1, 2), (1, 2)) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2))
(4, 0, 2) (4, 0, 0; (1, 4), (1, 2), (1, 4)) (2, 0, 0; (1, 2), (1, 2)) (4, 0, 0; (1, 4), (1, 2), (1, 4))
(4, 0, 2) (4, 0, 0; (1, 4), (1, 2), (1, 4)) (2, 0, 0; (1, 2), (1, 2)) (4, 0, 0; (3, 4), (1, 2), (3, 4))
(4, 0, 2) (4, 0, 0; (3, 4), (1, 2), (3, 4)) (2, 0, 0; (1, 2), (1, 2)) (4, 0, 0; (3, 4), (1, 2), (3, 4))
(6, 0, 2) (6, 0, 0; (1, 6), (1, 2), (1, 3)) (2, 0, 0; (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 2) (6, 0, 0; (1, 6), (1, 2), (1, 3)) (2, 0, 0; (1, 2), (1, 2)) (6, 0, 0; (5, 6), (1, 2), (2, 3))
(6, 0, 2) (6, 0, 0; (5, 6), (1, 2), (2, 3)) (2, 0, 0; (1, 2), (1, 2)) (6, 0, 0; (5, 6), (1, 2), (2, 3))

Table 11. C = C(2)(2), S4 = S0#CS1(2)

(n, r, k) D1 D2

(2, 0, 2) (2, 0, 0; (1, 2), (1, 2)) (1, 1, 0; )
(6, 0, 2) (2, 0, 0; (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))

Table 12. C = {c1} � C(2), S4 = S1#c1 S1#C(2) S1

(n, r, k) D1 D2 D3

(6, 1, 1) (3, 0, 0, (2); (2, 3), (2, 3)) (2, 0, 0, (1); (1, 2), (1, 2), (1, 2)) (6, 0; (1, 6), (1, 2), (1, 3))
(6, 1, 1) (1, 1, 0, (1); ) (6, 0, 0, (1); (1, 2), (1, 3)) (2, 0; (1, 2), (1, 2), (1, 2), (1, 2))
(3, 3, 0) (3, 0, 0, (2); (2, 3), (2, 3)) (3, 0, (2, 2, 2); ) (3, 0, (2, 2); (2, 3))
(12, 3, 0) (4, 0, 0, (3); (1, 2), (3, 4)) (3, 0, (1, 1, 1); ) (4, 0, (3, 3); (1, 2))

Table 13. C = C(1)(4) � {d1, . . . , d4},
S4 = S0#C(1)(4)S1(4) with di ∈ Ŝi

1

(n, r, k) D1 D2

(4, 0, 2) (4, 0, 0; (1, 4), (1, 4) (1, 0, 0; )

Table 14. C = C(1)(4) � {d1, d2, d ′
1, d ′

2},
S4 = S1(2)#C(1)(2)S0#C(1)(2)S1(2) with di, d ′

i ∈ Ŝi
1

(n, r, k) D1 D2 D3

(2, 0, 4) (1, 0, 0; ) (2, 0, 0; (1, 2), (1, 2)) (1, 0, 0; )
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Table 15. C = C(1)(4) � {d1, d2}, S4 = S1(2)#C(1)(2)S0#C(1)(2)S1(2)

with di ∈ Ŝi
1

(n, r, k) D1 D2 D3

(2, 0, 3) (1, 1, 0; ) (2, 0, 0; (1, 2), (1, 2)) (1, 0; )

Table 16. C = C(1)(2) � {c1, c2, d1, d2}, S4 = S1(2)#C(1)(2)

(
S1#c1 S0#c2 S1

)
with

di ∈ Ŝi
1

(n, r, k) D1 D2 D3 D4

(2, 2, 2) (1, 0; ) (1, 1, 1; ) (2, 0, 1; (1, 2)) (1, 1, 1; )

Table 17. C = C(1)(3) � {d1, d2, d3}, S4 =
S1#C(1)(3)S1(3) with di ∈ Ŝi

1

(n, r, k) D1 D2

(3, 0, 2) (3, 1, 1; ) (1, 0, 0; )

Table 18. C = C(1)(2) � {c1, d1, d2}, S4 = S1#c1 S1#C(1)(2)S1(2) with

di ∈ Ŝi
1

(n, r, k) D1 D2 D3

(2, 1, 2) (2, 0, 1; (1, 2), (1, 2), (1, 2)) (1, 1, 1; ) (4, 0; (1, 4), (1, 4))

Table 19. C = C(1)(2) � {d1, d2}, S4 = S2#C(1)(2)S1(2) with di ∈ Ŝi
1

(n, r, k) D1 D2

(2, 0, 2) (2, 0; (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)) (4, 0; (1, 4), (1, 4))
(2, 0, 2) (2, 1; (1, 2), (1, 2)) (4, 0; (1, 4), (1, 4))

Table 20. C = C(1)(2) � {d1, d2}, S4 = S2#C(1)(2)S1(2) with

di ∈ Ŝ2.

(n, r, k) D1 D2

(2, 0, 2) (2, 0; (1, 2), (1, 2)) (4, 0; (1, 4), (1, 2), (1, 4))
(2, 0, 2) (2, 0; (1, 2), (1, 2)) (4, 0; (3, 4), (1, 2), (3, 4))

Table 21. C = {c1, d1, d2}, S4 = S1#c1 S3 with
{d1, d2} ⊂ Ŝ3

(n, r, k) D1 D2

(2, 1, 1) (1, 1, 1; ) (2, 0, 1; (1, 2), (1, 2), (1, 2))

Table 22. C = C(2) �{d1, d2}, S4 = S2#C(2) S1 with {d1, d2} ⊂ Ŝ2

(n, r, k) D1 D2

(2, 0, 2) (2, 0; (1, 2), (1, 2)) (2, 0; (1, 2), (1, 2), (1, 2), (1, 2))
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Table 23. C = C(2), S4 = S2#CS1

(n, r, k) D1 D2

(4, 0, 1) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)) (4, 0, 0; (1, 4), (1, 2), (1, 4))
(4, 0, 1) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)) (4, 0, 0; (3, 4), (1, 2), (3, 4))
(4, 0, 1) (2, 1, 0; (1, 2), (1, 2)) (4, 0, 0; (1, 4), (1, 2), (1, 4))
(4, 0, 1) (2, 1, 0; (1, 2), (1, 2)) (4, 0, 0; (3, 4), (1, 2), (3, 4))
(4, 0, 1) (4, 0, 0; (1, 2), (1, 2), (3, 4)) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2))
(4, 0, 1) (4, 0, 0; (1, 2), (1, 2), (3, 4)) (2, 1, 0; )
(4, 0, 1) (4, 0, 0; (1, 2), (1, 2), (2, 4)) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2))
(4, 0, 1) (4, 0, 0; (1, 2), (1, 2), (2, 4)) (2, 1, 0; )
(6, 0, 1) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 1) (2, 1, 0; (1, 2), (1, 2)) (6, 0, 0; (1, 6), (1, 2), (1, 3))
(6, 0, 1) (6, 0, 0; (5, 6), (1, 3), (5, 6)) (2, 0, 0; (1, 2), (1, 2), (1, 2), (1, 2))
(6, 0, 1) (6, 0, 0; (5, 6), (1, 3), (5, 6)) (2, 1, 1; )
(2, 2, 0) (1, 2, 0, (1, 1); ) (2, 0, , 0(1, 1); (1, 2), (1, 2))
(2, 2, 0) (2, 0, 0, (1, 1); (1, 2), (1, 2), (1, 2), (1, 2)) (1, 1, 0, 1, 1); )
(2, 2, 0) (2, 1, 0, (1, 1); ) (1, 1, 0, (1, 1); )
(3, 2, 0) (1, 2, 0, (1, 1); ) (3, 0, 0, (1, 1); (1, 3))
(3, 2, 0) (3, 0, 0, (1, 1); (2, 3), (2, 3)) (1, 1, 0, (1, 1); )
(3, 2, 0) (3, 0, 0, (2, 2); (1, 3), (1, 3)) (3, 0, 0, (2, 2); (1, 3), (1, 3))
(4, 2, 0) (1, 2, 0, (1, 1); ) (4, 0, 0, (1, 1); (1, 2))
(5, 2, 0) (5, 0, 0, (1, 1); (3, 5)) (1, 1, 0, (1, 1); )
(6, 2, 0) (6, 0, 0, (1, 1); (2, 3)) (1, 1, 0, (1, 1); )
(6, 2, 0) (2, 0, 0, (1, 1); (1, 2), (1, 2), (1, 2), (1, 2)) (3, 0, 0, (2, 2); (2, 3))
(6, 2, 0) (2, 0, 0, (1, 1); (1, 2), (1, 2), (1, 2), (1, 2)) (3, 0, 0, (2, 2); (2, 3))
(6, 2, 0) (2, 1, 0, (1, 1); ) (3, 0, 0, (2, 2); (2, 3))
(6, 2, 0) (3, 0, 0, (2, 2); (1, 3), (1, 3)) (2, 0, 0, (1, 1); (1, 2), (1, 2))
(6, 2, 0) (6, 0, 0, (5, 5); (1, 3) (3, 0, 0, (1, 1); (1, 3))
(12, 2, 0) (3, 0, 0, (1, 1); (2, 3), (2, 3)) (4, 0, 0, (3, 3); (1, 2))
(12, 2, 0) (6, 0, 0, (5, 5); (1, 3)) (4, 0, 0, (1, 1); (1, 2))
(15, 2, 0) (5, 0, 0, (3, 3); (4, 5)) (3, 0, 0, (2, 2); (2, 3))
(20, 2, 0) (5, 0, 0, (4, 4); (2, 5)) (4, 0, 0, (1, 1); (1, 2))

7. Concluding remarks.

7.1. Roots and the Torelli group. Let � : Mod(Sg) → Sp(2g, �) be the symplectic
representation of Mod(Sg) arising out of its action on H1(Sg, �). For m ∈ �, the natural
surjection Sp(2g, �) → Sp(2g, �/m�) induces a map �m : Mod(Sg) → Sp(2g, �/m�).
For m ≥ 3 and g ≥ 1, the kernel of this map, denoted by Mod(Sg)[m], is a torsion-free
subgroup of finite index in Mod(Sg) [2, Theorem 6.9], called the level m congruence
subgroup of Mod(Sg).

THEOREM 7.1. Let h be the root of the Dehn twist tC about a multicurve C in Sg.
Then, h /∈ Mod(Sg)[m], for m ≥ 3.

Proof. Let î(a, b) denote the algebraic intersection number between isotopy classes
a, and b of simple closed curves in Sg. If c is a non-separating curve in Sg, there
is a non-separating curve d such that î(c, d) = 1, and {c, d} can be extended to a
geometric symplectic basis of H1(Sg; �). Now, [2, Proposition 6.3] states that, for any
k ≥ 0, �(tk

b)([a]) = [a] + kî(a, b)[b], and so we have �(tc)[d] = [c] + [d]. Hence, if C is
a multicurve contains at least one non-separating curve, then tC /∈ Mod(Sg)[m], for all
m ≥ 1. So, we assume that every curve in C is a separating curve, and we fix m ≥ 3.
From the theory developed in earlier sections, we know that a root of tC induces a
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non-trivial partition Sg(C) = �s
i=1 �gi (mi), and an action of the form σmi ◦ ti on each

�gi (mi), where ti is a permuting (ni/mi, ri, ki)-action on a surface S1
gi

.
Suppose that some mi > 1, then we must have that gi > 0 since all the curves in

C are separating. If tmi
i = idS1

gi
, then ti is equivalent to idS1

gi
(by Definition 5.6), and

so h induces a non-trivial permutation of the 2gimi standard generators of H1(Sg; �)
contributed by �gi (mi), and hence �m(h) is non-trivial. If tmi

i �= idS1
gi

, then �m(tmi
i )

forms a finite order subblock of �m(hmi ). Since Mod(Sg)[m] is torsion-free, it follows
that hmi /∈ Mod(Sg)[m], and so h /∈ Mod(Sg)[m].

Suppose that every mj = 1. Then, there must exist some component Sgk of Sg(C)
with gk > 1, where h induces a non-trivial permuting action. This action yields a non-
trivial finite order subblock of �m(h), and since Mod(Sg)[m] is torsion-free, we have
that h /∈ Mod(Sg)[m]. �

Note that the above theorem does not hold for m = 2 as the first root listed in Table
10 provides a counterexample.

7.2. Roots of finite product of powers. We believe that the theory developed in
this paper for classifying roots up to conjugacy for finite products of commuting Dehn
twists can be naturally generalised to one that classifies roots of finite products of
powers of commuting twists.

Currently, the compatibility condition requires that pairs of distinguished orbits
(or fixed points) of permuting actions should have associated angles that add up to
2π/n (mod 2π ). When c is a single non-separating curve, the roots of t�c for 1 ≤ � < n,
were classified in [10] by using a variant of this condition, which required that the angles
associated with compatible fixed points add up to 2π�/n (mod 2π ). This notion of
compatibility of fixed points can be generalized to orbits, and this could lead to the
classification of roots of homeomorphisms of the form

∏m
i=1 t�i

ci
, where {c1, c2, . . . , cm}

is a multicurve and each �i ∈ �. In particular, this will account for bounding pair maps,
which are maps of the form tct−1

d where c and d are homologous non-separating simple
closed curves.
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