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This paper is concerned with the study on an open problem of classifying
conformally flat minimal Legendrian submanifolds in the (2n + 1)-dimensional unit
sphere S2n+1 admitting a Sasakian structure (ϕ, ξ, η, g) for n � 3, motivated by the
classification of minimal Legendrian submanifolds with constant sectional curvature.
First of all, we completely classify such Legendrian submanifolds by assuming that
the tensor K := −ϕh is semi-parallel, which is introduced as a natural extension of
C-parallel second fundamental form h. Secondly, such submanifolds have also been
determined under the condition that the Ricci tensor is semi-parallel, generalizing
the Einstein condition. Finally, as direct consequences, new characterizations of the
Calabi torus are presented.
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1. Introduction

The study on both extrinsic and intrinsic geometry of submanifolds in the unit
sphere is always an interesting topic, in which the classification research under suit-
able geometric conditions plays a significant role and has attracted many geometers.
It is well known that, as a real hypersurface of the complex Euclidean space C

n+1,
the unit sphere S

2n+1 of dimension (2n + 1) naturally admits a Sasakian structure
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2 C. Li, C. Xing and J. Yin

(ϕ, ξ, η, g) (cf. [30]). Moreover, an m-dimensional submanifold Mm in S
2n+1 is

said to be C-totally real (or equivalently, integral ) if the contact form η of S
2n+1

vanishes when it is restricted to Mm, namely η(X) = 0 for any X ∈ TMm. In par-
ticular, we call a C-totally real submanifold Mm Legendrian if it meets the smallest
possible codimension, that is to say, m = n (cf. [33]), and related to the classifica-
tion of such submanifolds in S

2n+1, many results have been established in the last
few decades, see e.g. [2, 9, 16–19, 23, 24, 27–29, 31, 36].

Recently, sharpening a theorem of Yamaguchi–Kon–Ikawa [34], Cheng–He–Hu
[7] gave a complete classification of all the n-dimensional minimal Legendrian sub-
manifolds in Sasakian space forms with constant sectional curvature, from which it
follows that

Theorem 1.1 cf. [7]. Let Mn (n � 2) be a minimal Legendrian submanifold in the
unit sphere S

2n+1 with constant sectional curvature. Then, either Mn is the totally
geodesic sphere, or Mn is the flat Clifford torus.

Regarding theorem 1.1, we see that a Legendrian submanifold Mn in the unit
sphere S

2n+1 is called minimal if its mean curvature H vanishes identically, while
the Clifford torus is given by the immersion Tn → S

2n+1 with the parameterization
as in (1.2) of [7], where Tn = S

1 × · · · × S
1 and S

1 is a circle of radius 1. It was shown
by direct calculation that the Clifford torus is a minimal Legendrian submanifold
with flat induced metric.

It is worth mentioning that various attempts to generalize the above theorem
have been made by geometers under suitable extrinsic and intrinsic conditions.
For instance, except the examples in theorem 1.1, Xing–Zhai [33] obtained new
ones constructed by the Calabi product (cf. [22]), when classifying n-dimensional
minimal Legendrian submanifolds with C-parallel second fundamental form in cases
n = 3, 4, where the second fundamental form h of Mn → S

2n+1 is called C-parallel
if it satisfies ∇̄ξh = 0 on Mn. Moreover, compact minimal Legendrian submanifolds
in the unit sphere S

2n+1 with non-negative sectional curvature have been studied by
Dillen–Vrancken [8] for n = 3 and Zhai–Zhang [38] for n = 4, and were completely
classified by Cheng–Hu [5] for n � 5. Meanwhile, a condition on the Ricci tensor Ric
called parallel Ricci tensor, i.e. ∇Ric = 0 with ∇ being the Levi-Civita connection,
has been applied by Hu–Li–Xing [12] to successfully classify natural subclasses
of such minimal Legendrian submanifolds in S

2n+1 for n = 3, 4, where it is clear
that the parallel Ricci tensor is a natural extension of the Einstein condition, i.e.
Ric = κg with κ a constant and g the induced metric. In particular, during this
process, there is always an open problem that can be stated as follows:

Problem. Classify conformally flat minimal Legendrian submanifolds in the unit
sphere S

2n+1 for n � 3.

Some facts about the above problem are as follows. First of all, a Riemannian
manifold (Mn, g) is said to be conformally flat if there exists a coordinate chart
{(Uα, φα); α ∈ Λ} covering Mn such that (φ−1

α )∗g = ραds2 for each α ∈ Λ, where
ds2 denotes the Euclidean metric on R

n and ρα is a positive function defined on
R

n. It is well known that a Riemannian surface is always conformally flat. In higher
dimensions, (Mn, g) of dimension n � 4 is conformally flat if and only if its Weyl
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Conformally flat minimal Legendrian submanifolds 3

curvature tensor vanishes identically, while (M3, g) is conformally flat if and only
if its Schouten tensor is a Codazzi tensor, where the Weyl curvature tensor of M3

vanishes automatically.
Next, as a conformally flat minimal Legendrian submanifold in the unit sphere

S
2n+1 with non-constant sectional curvature, the Calabi torus was characterized on

the pinching conditions of the sectional curvature by Dillen–Vrancken [8], the Ricci
tensor by Hu–Xing [14], and the scalar curvature by Luo–Sun [25], Luo–Sun–Yin
[26], respectively.

Example 1.2. The Calabi torus in the unit sphere S
2n+1 (cf. [26]).

Let γ = (γ1, γ2) : S
1 → S

3 ⊂ C
2 be a Legendrian curve, defined by

γ(t) =

(√
n

n + 1
ei(1/

√
n)t,

√
1

n + 1
e−i

√
nt

)
, (1.1)

and φ : S
n−1 → S

2n−1 ⊂ C
n the totally geodesic Legendrian sphere for n � 3. Then

f(t, y) = (γ1φ, γ2) : S
1 × S

n−1 → S
2n+1 ⊂ C

n+1 (1.2)

is a minimal Legendrian immersion and f(S1 × S
n−1) is called the Calabi torus.

In this paper, towards the above problem, we study the classification of confor-
mally flat minimal Legendrian submanifolds in S

2n+1 under some suitable extrinsic
and intrinsic conditions. As the first of our main results, motivated by above results,
we completely classify such submanifolds with semi-parallel tensor K, namely
R · K = 0 with R being the Riemannian curvature tensor, as a generalization of
C-parallel second fundamental form, where K : TMn × TMn → TMn is a (1, 2)-
tensor defined by K := −ϕh satisfying h(X, Y ) = ϕK(X, Y ) for any X, Y ∈ TMn

(see § 2.3 for details).

Theorem 1.3. Let Mn (n � 3) be a conformally flat minimal Legendrian subman-
ifold in the unit sphere S

2n+1. If Mn is of semi-parallel tensor K, then it is locally
congruent to one of the following three examples:

(a) Mn is the totally geodesic sphere;

(b) Mn is the flat Clifford torus;

(c) Mn is the Calabi torus.

Remark 1.4. In order to generalize theorem 1.1, Hu–Li–Xing [12] investigated
minimal Legendrian submanifolds in S

2n+1 with Einstein-induced metric and veri-
fied that each of such submanifolds must be of constant sectional curvature in case
of n = 4.

Recall that, for an n-dimensional Riemannian manifold (Mn, g), the traceless
Ricci tensor R̃ic of Mn is defined by R̃ic(X, Y ) = Ric(X, Y ) − (n − 1)χg(X, Y )
for X, Y ∈ TMn, where Ric and χ are the Ricci tensor and normalized scalar
curvature of Mn, respectively. Let ‖R̃ic‖ be the tensorial norm of R̃ic with respect
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4 C. Li, C. Xing and J. Yin

to the metric g. Applying theorem 1.3, we can prove the following two rigidity
theorems.

Corollary 1.5. Let Mn (n � 3) be a minimal Legendrian submanifold in the unit
sphere S

2n+1 with semi-parallel tensor K. Then, for its traceless Ricci tensor R̃ic,
it holds the pointwise inequality:

‖R̃ic‖2 � (n − 2)(n + 1)
n + 2

Sχ, (1.3)

where S and χ are the squared norm of the second fundamental form and the nor-
malized scalar curvature of Mn, respectively. Moreover, the equality in (1.3) holds
identically if and only if Mn is locally congruent to one of the examples (a)–(c) as
in theorem 1.3.

Corollary 1.6. Let Mn (n � 3) be a closed minimal Legendrian submanifold in
the unit sphere S

2n+1 with vanishing Weyl curvature tensor. Then, for its traceless
Ricci tensor R̃ic, it holds the integral inequality:∫

Mn

‖R̃ic‖2 dVMn � (n − 2)(n + 1)
n + 2

∫
Mn

Sχ dVMn , (1.4)

where S and χ are the squared norm of the second fundamental form and the nor-
malized scalar curvature of Mn, respectively. Moreover, the equality in (1.4) holds if
and only if Mn is locally congruent to one of the examples (a)–(c) as in theorem 1.3.

On the contrary, for the Riemannian manifold (Mn, g), its Ricci tensor Ric is
said to be semi-parallel if and only if R · Ric = 0 on Mn. This condition is obviously
weaker than that of parallel Ricci tensor, as stated above. Then, the second main
result of this paper can be given by

Theorem 1.7. Let Mn (n � 3) be a conformally flat minimal Legendrian subman-
ifold in the unit sphere S

2n+1. If Mn is of semi-parallel Ricci tensor, then it is
locally congruent to one of the following three cases:

(a) Mn is the totally geodesic sphere;

(b) Mn is the flat Clifford torus;

(c) Mn is the Calabi torus.

Remark 1.8. By means of theorem 1.7 and the calculations given in § 3, we see
that, for the conformally flat minimal Legendrian submanifolds in S

2n+1, the Ricci
tensor Ric is semi-parallel if and only if it is parallel, although such equivalence
does not hold for general Riemannian manifolds.

Finally, we further prove the following result, by which we can complete the
proofs of theorems 1.3 and 1.7, respectively.

Theorem 1.9. Let Mn (n � 3) be a minimal Legendrian submanifold in the unit
sphere S

2n+1. If (Mn, g) is locally isometric to a Riemannian product I × M2 =
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(I × M2, dt2 ⊕ g2), where I ⊂ R, g is the induced metric on Mn and (M2, g2) has
constant sectional curvature c �= 0, then Mn is locally congruent to the Calabi torus.

The outline of this paper is as follows: in § 2, we give a brief review of the
local theory of Legendrian submanifolds in the unit sphere S

2n+1 with the Sasakian
structure (ϕ, ξ, η, g), and then collect necessary material on the conformally flat
structure of Riemannian manifolds. For better illustrating our results, we compute
in § 3 the invariants of Calabi torus with details. Section 4 is dedicated to studying
the properties of Legendrian submanifolds under some certain geometric conditions.
In § 5, applying these properties, we complete the proofs of theorems 1.3–1.9 and
corollaries 1.5 and 1.6.

2. Preliminaries

In this section, we first collect some necessary material on Sasakian structure
(ϕ, ξ, η, g) of the unit sphere S

2n+1 that can be regarded as a Sasakian space form
with constant ϕ-sectional curvature 1. Then, we briefly review the local theory of
Legendrian submanifolds in S

2n+1. Finally, some basic notions and facts relative to
conformally flat structure of Riemannian manifolds are presented for later use. For
more details, we refer to [12, 17, 32] and the monographs [3, 35].

2.1. Sasakian structure (ϕ, ξ, η, g) of the unit sphere S
2n+1

As a real hypersurface of the complex Euclidean space C
n+1 with canonical com-

plex structure J , the (2n + 1)-dimensional unit sphere S
2n+1 naturally admits a

Sasakian structure (ϕ, ξ, η, g): ξ = JN̄ is the structure vector field with the unit
normal vector field N̄ of the inclusion S

2n+1 ↪→ C
n+1; g is the induced metric on

S
2n+1; η(X) = g(X, ξ) and ϕX = JX − 〈JX, N̄〉N̄ for any tangent vector field X

on S
2n+1, where 〈·, ·〉 denotes the standard Hermitian metric on C

n+1. In particu-
lar, for any tangent vector fields X, Y on S

2n+1, the Sasakian structure (ϕ, ξ, η, g)
of S

2n+1 satisfies the following properties:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ),

ϕξ = 0, η(ϕX) = 0, rank (ϕ) = 2n,

ϕ2X = −X + η(X)ξ, dη(X,Y ) = g(X,ϕY ),

∇̄Xξ = −ϕX, (∇̄Xϕ)Y = g(X,Y )ξ − η(Y )X,

(2.1)

where ∇̄ is the Levi-Civita connection with respect to the induced metric g on
S

2n+1.

2.2. Local theory of Legendrian submanifolds in the unit sphere S
2n+1

Let Mn be a Legendrian submanifold in the unit sphere S
2n+1, i.e. the contact

form η restricted to Mn vanishes. Consequently, ξ is a normal vector field over Mn.
Denote by N a unit normal vector field along Mn, and by U, X, Y, Z the tangent
vector fields on Mn in the subsequent paragraphs. Then, we have the Gauss and
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6 C. Li, C. Xing and J. Yin

Weingarten formulas:

∇̄XY = ∇XY + h(X,Y ), ∇̄XN = −ANX + ∇⊥
XN, (2.2)

where ∇ is the Levi-Civita connection of the induced metric on Mn, still denoted
by g, h (resp. AN ) is the second fundamental form (resp. the shape operator with
respect to N) of Mn → S

2n+1, and ∇⊥ is the normal connection in the normal
bundle T⊥Mn. Then, by means of (2.2) it can be verified that

g(h(X,Y ), N) = g(ANX,Y ). (2.3)

Note from the facts η(X) = 0 and dη(X, Y ) = g(X, ϕY ) that ϕ maps the tangent
vector fields of Mn to the normal vector fields in T⊥Mn. Applying (2.2), we further
have

∇⊥
XϕY = ϕ∇XY + g(X,Y )ξ, AϕXY = −ϕh(X,Y ) = AϕY X, (2.4)

and thus g(h(X, Y ), ϕZ) is totally symmetric in X, Y , and Z:

g(h(X,Y ), ϕZ) = g(h(X,Z), ϕY ) = g(h(Y,Z), ϕX). (2.5)

It follows from (2.1), (2.3), and the Weingarten formula that

g(h(X,Y ), ξ) = g(AξX,Y ) = 0. (2.6)

Moreover, the equations of Gauss, Ricci, and Codazzi are respectively given by

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + [AϕX , AϕY ]Z, (2.7)

R⊥(X,Y )ϕZ = ϕ[AϕX , AϕY ]Z, (2.8)

(∇̄h)(X,Y,Z) = (∇̄h)(Y,X,Z), (2.9)

where, by definitions:

[AϕX , AϕY ] = AϕXAϕY − AϕY AϕX ,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

R⊥(X,Y )ϕZ = ∇⊥
X∇⊥

Y ϕZ −∇⊥
Y ∇⊥

XϕZ −∇⊥
[X,Y ]ϕZ,

(∇̄h)(X,Y,Z) = ∇⊥
Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ).

From now on, we assume that Mn is a minimal Legendrian submanifold in the
sphere S

2n+1, unless otherwise stated. Contracting the Gauss equation (2.7) twice,
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Conformally flat minimal Legendrian submanifolds 7

we have

n(n − 1)χ = n(n − 1) − S, S = ‖h‖2, (2.10)

where χ is the normalized scalar curvature and ‖ · ‖2 denotes the squared norm
relative to the metric g. Furthermore, the Ricci identity reads:

(∇̄2h)(U,X, Y, Z) − (∇̄2h)(X,U, Y, Z) = (R̄ · h)(U,X, Y, Z)

= R⊥(U,X)h(Y,Z) − h(R(U,X)Y,Z) − h(Y,R(U,X)Z),
(2.11)

where R̄ is the curvature tensor of the Van der Waerden–Bortolotti connection and

(∇̄2h)(U,X, Y, Z) =∇⊥
U ((∇̄h)(X,Y,Z)) − (∇̄h)(∇UX,Y,Z)

− (∇̄h)(X,∇UY,Z) − (∇̄h)(X,Y,∇UZ).
(2.12)

As usual, the so-called local Legendre frame {e1, . . . , en, e1∗ , . . . , en∗ , e2n+1}
along Mn can be chosen such that, restricted to Mn, the vector fields e1, e2, . . . , en

are orthonormal and tangent to Mn, whereas {e1∗ = ϕe1, . . . , en∗ = ϕen, e2n+1 =
ξ} are the orthonormal normal vector fields of Mn in S

2n+1. In the sequel, we shall
make the following convention on range of indices:

i, j, k, �,m, p = 1, . . . , n; α, β = 1, . . . , n + 1,

i∗, j∗, k∗, �∗,m∗, p∗ = n + 1, . . . , 2n; α∗ = α + n, β∗ = β + n.

Set hk∗
ij = g(h(ei, ej), ϕek) and h2n+1

ij = g(h(ei, ej), e2n+1). Denote by hα∗
ij,� and

hα∗
ij,�m the first and the second covariant derivatives of hα∗

ij with respect to ∇̄,
respectively. Let Rijk� = g(R(ei, ej)e�, ek) and Rijα∗β∗ = g(R⊥(ei, ej)eβ∗ , eα∗)
be the components of the curvature tensors of ∇ and ∇⊥. Denote by Rij =∑

k g(R(ei, ek)ek, ej) the components of the Ricci tensor of g. As Mn is minimal
in S

2n+1, it is known from (2.5)–(2.9) that

Rijk� = δikδj� − δi�δjk +
∑
m

(hm∗
ik hm∗

j� − hm∗
i� hm∗

jk ), Rijk∗(2n+1) = 0, (2.13)

Rij = (n − 1)δij −
∑
k,�

h�∗
ikh�∗

jk, Rijk∗�∗ =
∑
m

(hm∗
ik hm∗

j� − hm∗
i� hm∗

jk ), (2.14)

hk∗
ij = hj∗

ik = hi∗
kj , h2n+1

ij = 0, hα∗
ij,k = hα∗

ik,j ,
∑

i

hα∗
ii = 0. (2.15)

In this situation, the Ricci identity (2.11) can be rewritten as follows:

hα∗
ij,�p − hα∗

ij,p� =
∑
m

hα∗
mjRmi�p +

∑
m

hα∗
imRmj�p +

∑
β

hβ∗
ij R�pβ∗α∗ . (2.16)

Finally, the following uniqueness theorem for the Legendrian submanifolds in the
unit sphere S

2n+1 is also needed.
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8 C. Li, C. Xing and J. Yin

Theorem 2.1 (cf. [12]). Let f and f̄ : Mn → S
2n+1 be two Legendrian immersions

of a connected manifold Mn into the unit sphere S
2n+1 with the second fundamental

forms h and h̄, respectively. Assume that

g(f∗X, f∗Y ) = g(f̄∗X, f̄∗Y ), g(h(X,Y ), ϕf∗Z) = g(h̄(X,Y ), ϕf̄∗Z), (2.17)

where X, Y, Z are any tangent vector fields on Mn. Then there exists an isometry
τ of S

2n+1 such that f = τ ◦ f̄ .

2.3. Equivalent properties of parallel or semi-parallel tensor K

Recall that, for the Legendrian submanifold Mn in the unit sphere S
2n+1, its

second fundamental form h is said to be parallel if ∇̄h = 0 on Mn, and as a direct
generalization, h is said to be semi-parallel if R̄ · h = 0 on Mn, where R̄ denotes
the curvature tensor corresponding to the Van der Waerden–Bortolotti connection.
For the latter one, it is easy to see from the Ricci identity (2.11) that, for tangent
vector fields U, X, Y, Z on Mn,

(∇̄2h)(U,X, Y, Z) = (∇̄2h)(X,U, Y, Z), (2.18)

which, under the Legendre frame {e1, . . . , en, e1∗ , . . . , en∗ , e2n+1} on Mn, is
equivalent to

hα∗
ij,�p = hα∗

ij,p�, (2.19)

where 1 � i, j, �, p � n and α∗ = α + n for 1 � α � n + 1.
In addition, associated with ∇̄ and ξ, a covariant differentiation ∇̄ξ can be defined

such that it acts on h as

(∇̄ξh)(X,Y,Z) = (∇̄h)(X,Y,Z) − g(h(Y,Z), ϕX)ξ. (2.20)

Under the Legendre frame on Mn, setting (∇̄ξh)(ek, ei, ej) =
∑

� h̃�∗
ij,ke�∗ and

(∇̄ξ
ep

(∇̄ξh))(e�, ei, ej) = ((∇̄ξ)2h)(ep, e�, ei, ej) =
∑

k

h̃k∗
ij,�pek∗ , (2.21)

we obtain the following relations (cf. [17]):

h̃�∗
ij,k = h�∗

ij,k, hk∗
ij,�p = h̃k∗

ij,�p − h�∗
ij δkp, h2n+1

ij,�p = 2h�∗
ij,p. (2.22)

In particular, h is called C-parallel if it satisfies ∇̄ξh = 0 on Mn.
For our purposes, we introduce the (1, 2)-tensor K : TMn × TMn → TMn

defined by K := −ϕh satisfying h(X, Y ) = ϕK(X, Y ). A straightforward calcu-
lation shows that

Lemma 2.2. For the tensor K of the Legendrian submanifold Mn in S
2n+1, we

have

(1) KXY = K(X, Y ) = AϕXY and g(K(X, Y ), Z) is totally symmetric;

(2) Mn is minimal if and only if trace KX = 0 for any X ∈ TMn;
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Conformally flat minimal Legendrian submanifolds 9

(3) (∇K)(X, Y, Z) = (∇K)(Y, X, Z) for any X, Y, Z ∈ TMn;

(4) the Ricci identity for the tensor K is given by

(∇2K)(U,X, Y, Z) − (∇2K)(X,U, Y, Z) = (R · K)(U,X, Y, Z)

= R(U,X)K(Y,Z) − K(R(U,X)Y,Z) − K(Y,R(U,X)Z),

where (∇2K)(U, X, Y, Z) = (∇U (∇K))(X, Y, Z) for any U, X, Y, Z ∈
TMn.

Furthermore, it can be checked by using (2.20) and (2.21) that

(∇̄ξh)(X,Y,Z) = ϕ(∇K)(X,Y,Z),

((∇̄ξ)2h)(U,X, Y, Z) − ((∇̄ξ)2h)(X,U, Y, Z) = ϕ(R · K)(U,X, Y, Z).
(2.23)

Consequently, ∇K = 0 if and only if ∇̄ξh = 0, and R · K = 0 if and only if

((∇̄ξ)2h)(U,X, Y, Z) = ((∇̄ξ)2h)(X,U, Y, Z), (2.24)

which, under the Legendre frame {e1, . . . , en, e1∗ , . . . , en∗ , e2n+1} on Mn, is
equivalent to

h̃k∗
ij,�p = h̃k∗

ij,p�. (2.25)

Here, we shall call the tensor K parallel (resp. semi-parallel ) if ∇K = 0 (resp.
R · K = 0) holds on Mn.

Lemma 2.3. Let Mn (n � 2) be a Legendrian submanifold in the unit sphere S
2n+1.

Then, Mn is of C-parallel second fundamental form if and only if ∇K = 0 on Mn,
where ∇ denotes the Levi-Civita connection, and Mn satisfies equation (2.24) if and
only if R · K = 0 on Mn, where R denotes the curvature tensor of the connection ∇.

Assume that the tensor K of Legendrian submanifold Mn does not vanish at some
point x ∈ Mn. We shall consider UxMn = {v ∈ TxMn | g(v, v) = 1} and then define
a function F on UxMn by F (u) := g(K(u, u), u) = g(Aϕuu, u) for u ∈ UxMn.
Since UxMn is compact, there exists a unit vector e1 ∈ UxMn at which the function
F (u) attains an absolute maximum, denoted by λ1 and λ1 > 0. As a result, it holds
that:

g(Ke1e1, u) = 0, g(Ke1e1, e1) � 2g(Ke1u, u), u ⊥ e1, u ∈ UxMn. (2.26)

Lemma 2.4 (cf. [12]; Lemma 5.1 and Corollary 5.1 of [11]). There exists an
orthonormal basis {e1, . . . , en} of TxMn so that Ke1ei = λiei for 1 � i � n, where
λ1 is the maximum value of F on UxMn. Also, λ1 � 2λi for i � 2, and if λ1 = 2λj

for some j � 2, then F (ej) = 0. Moreover, for a unit vector u ∈ TxMn, if Kuu =
λu, then λ is an extremal value of the function F on UxMn.
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2.4. Conformally flat Riemannian manifolds and product manifolds

Let (Mn, g) be an n-dimensional connected Riemannian manifold with the nor-
malized scalar curvature χ and the Levi-Civita connection ∇ of the metric g. The
Schouten tensor P of (1, 1)-type defined by

P =
Q

n − 2
− nχ

2(n − 2)
id (2.27)

is a self-adjoint operator with respect to the metric g, where Q and id denote the
Ricci operator and the identity transformation, respectively. By definition there
holds:

g(X,QY ) = Ric(X,Y ) = g(QX,Y ), (2.28)

where Ric denotes the Ricci tensor of Mn and X, Y are vector fields tangent to
Mn.

Recall that (Mn, g) is said to be conformally flat if around each point of Mn

there exists a neighbourhood which can be conformally immersed into the Euclidean
space R

n. When n � 4, it is known that (Mn, g) is conformally flat if and only if
its Weyl curvature tensor vanishes. In this situation, the curvature tensor R of g
can be rewritten as below:

R(X,Y )Z = g(Y,Z)PX − g(X,Z)PY + g(PY,Z)X − g(PX,Z)Y, (2.29)

where X, Y, Z are tangent vector fields of Mn, and the Schouten tensor P is
Codazzi, i.e.:

(∇XP )Y = (∇Y P )X. (2.30)

When n = 3, we should remark that the Weyl curvature tensor vanishes auto-
matically, and (M3, g) is conformally flat if and only if P is a Codazzi tensor
as above.

Moreover, the Ricci tensor Ric of Mn is called parallel or semi-parallel if it
satisfies ∇Ric = 0 or R · Ric = 0. In the latter case, by definition one has:

(R · Ric)(X,Y ) = R(X,Y )Ric = ∇X∇Y Ric −∇Y ∇XRic −∇[X,Y ]Ric. (2.31)

In addition, we call the Riemannian manifold (Mn, g) quasi-Einstein if its Ricci
operator Q admits exactly two distinct eigenvalues at each point, one of which is
simple, and the traceless Ricci tensor R̃ic of Mn is defined by

R̃ic(X,Y ) = Ric(X,Y ) − (n − 1)χg(X,Y ). (2.32)

Finally, we recall the following theorem for later use.

Theorem 2.5 (cf. Theorem 3.7 of [4]). Let (Mn, g) = (I × M2, dt2 ⊕ g2) be a Rie-
mannian product, where I ⊂ R and dim M2 � 2. Then, (Mn, g) is conformally flat
if and only if (M2, g2) is a space form of constant curvature.
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3. Geometric invariants of the Calabi torus

In [25], Luo and Sun have made some calculations about the Calabi torus in the
unit sphere S

2n+1. In this section, in order to obtain the exact knowledge about
the Calabi torus, we compute its geometric invariants with more details.

Proposition 3.1. The Calabi torus in the unit sphere S
2n+1 with the immersion

given by f as in example 1.2 is indeed a minimal Legendrian submanifold with C-
parallel second fundamental form and conformally flat induced metric for n � 3,
satisfying the identity:

‖R̃ic‖2 =
(n − 2)(n + 1)

n + 2
Sχ, (3.1)

where R̃ic is the traceless Ricci tensor, S is the squared norm of the second fun-
damental form, and χ is the normalized scalar curvature. In particular, the Calabi
torus is quasi-Einstein and its Ricci tensor is parallel with respect to the Levi-Civita
connection.

Proof. Note from the induced metric of f(t, y) : S
1 × S

n−1 → S
2n+1 ⊂ C

n+1:

f∗(g) = (dt)2 +
n

n + 1
[(dy1)2 + · · · + (dyn)2]

that f is an isometric immersion, where y = (y1, . . . , yn) ∈ S
n−1 ⊂ R

n and∑n
i=1 y2

i = 1. Adopting the following local reparametrization:

(y1, y2, . . . , yn) = (sin θ1, cos θ1 sin θ2, . . . , cos θ1 cos θ2 · · · cos θn−2 cos θn−1),

we obtain a local orthonormal frame {ei}n
i=1 on f(S1 × S

n−1) =: Mn with respect
to the metric g, satisfying the relations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
e1 = −ft, e2 =

√
n + 1

n
fθ1 ,

e3 =

√
n + 1

n
cos−1 θ1fθ2 , . . . , en =

√
n + 1

n

n−2∏
�=1

cos−1 θ� fθn−1 .

(3.2)

As the unit sphere S
2n+1 admits a natural Sasakian structure (ϕ, ξ, η, g), by

definition we see that η(ei) = 0 for 1 � i � n and thus f is a Legendrian immersion.
Denote by h the second fundamental form of f : S

1 × S
n−1 → S

2n+1. Then, direct
calculations by using the Gauss formula show that (cf. [12]):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇ei
ej = −

√
n + 1

n

sin θj−1∏j−1
k=1 cos θk

ei, 2 � j < i � n,

∇ei
ei =

√
n + 1

n

i−1∑
�=2

sin θ�−1∏�−1
k=1 cos θk

e�, 3 � i � n,

∇ei
ej = 0, otherwise,

(3.3)

https://doi.org/10.1017/prm.2024.57 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.57


12 C. Li, C. Xing and J. Yin

where ∇ denotes the Levi-Civita connection of the metric g, and

h(e1, e1) =
n − 1√

n
ϕe1, h(e1, ei) = − 1√

n
ϕei, h(ei, ej) = − 1√

n
δijϕe1, 2� i, j � n.

(3.4)
It is obvious that such an immersion f is minimal. Combining with (3.3) and
(3.4), we further conclude from (2.4) and (2.20) that (∇̄ξh)(ei, ej , ek) = 0 holds
for 1 � i, j, k � n, i.e. the immersion f is of C-parallel second fundamental form.

For the Riemannian curvature tensor of Mn, applying (3.3) again, we easily get:

R(e1, ei)e1 = R(e1, ei)ej = R(ei, ej)e1 = 0,

R(ei, ej)ek =
n + 1

n
(δjkei − δikej), 2 � i, j, k � n.

(3.5)

Therefore, we obtain from (3.4) and (3.5) that

Ric(e1, e1) = Ric(e1, ei) = 0, Ric(ei, ej) =
(n − 2)(n + 1)

n
δij ,

S = ‖h‖2 =
(n − 1)(n + 2)

n
, χ =

(n − 2)(n + 1)
n2

, 2 � i, j � n,

(3.6)

and then (3.1) follows from (2.32). On the contrary, it is also known from (3.6) that

Qe1 = 0, Qei =
(n − 2)(n + 1)

n
ei, 2 � i � n, (3.7)

which shows that (Mn, g) is quasi-Einstein. Moreover, with the help of (2.27),
we conclude that both (2.29) and (2.30) hold. Consequently, the Weyl curvature
tensor of Mn vanishes and its Schouten tensor is Codazzi, meaning that (Mn, g)
is conformally flat. Finally, making use of (3.3) and (3.7), we calculate that:

(∇e1Q)e1 = (∇e1Q)ei = (∇ei
Q)e1 = (∇ei

Q)ej = 0, 2 � i, j � n. (3.8)

From this, it is easily seen that Ric is parallel with respect to the Levi-Civita
connection ∇, and hence we have completed the proof of proposition 3.1. �

4. Properties of the Legendrian submanifolds in the unit sphere S
2n+1

In this section, before completing the proofs of the main results, we will investigate
the properties of the Legendrian submanifolds in the unit sphere S

2n+1 under some
certain geometric conditions.

4.1. Minimal Legendrian submanifolds

For our purposes, we first calculate the Laplacian of S to derive the following:

Lemma 4.1. Let Mn (n � 2) be a minimal Legendrian submanifold in the unit
sphere S

2n+1. Then, it holds the identity:

1
2
ΔS = ‖∇̄ξh‖2 − ‖Rie‖2 − ‖Ric‖2 + n(n2 − 1)χ, (4.1)

where ‖Rie‖2 denotes the squared norm of the Riemannian curvature tensor with
respect to the metric g on Mn. Moreover, if it is of semi-parallel tensor K, we
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further have:

n(n − 1)Δχ + 2‖∇̄ξh‖2 = 0, (4.2)

n(n2 − 1)χ = ‖Rie‖2 + ‖Ric‖2. (4.3)

Proof. Choose the local Legendre frame {e1, . . . , en, e1∗ , . . . , en∗ , e2n+1} along
Mn as in § 2. By definition, we have

1
2
ΔS =

1
2
Δ
(∑

i,j,α

(hα∗
ij )2

)
=
∑

i,j,�,α

(hα∗
ij,�)

2 +
∑
i,j,α

hα∗
ij Δhα∗

ij . (4.4)

Applying the Ricci identity (2.16), we deduce from (2.15) that

Δhα∗
ij =

∑
�

hα∗
ij,�� =

∑
�

hα∗
i�,j�

=
∑

�

hα∗
i�,�j +

∑
�,m

hα∗
m�Rmij� +

∑
�,m

hα∗
imRm�j� +

∑
�,β

hβ∗
i� Rj�β∗α∗

=
∑

�

hα∗
��,ij +

∑
�,m

hα∗
m�Rmij� +

∑
m

hα∗
imRmj +

∑
�,m

hm∗
i� Rj�m∗α∗ .

(4.5)

This together with (2.13)–(2.15) yields that∑
i,j,α

hα∗
ij Δhα∗

ij =
∑

i,j,k,�,m

hk∗
ij hk∗

m�Rmij� +
∑

i,j,k,�,m

hk∗
ij hm∗

i� Rj�mk

+
∑

i,j,k,m

hk∗
ij hk∗

imRmj − S.
(4.6)

To go on from (4.6), we make use of the relation∑
i,j,k,�,m

hk∗
ij hm∗

i� Rj�mk = −
∑

i,j,k,�,m

hk∗
ij hm∗

i� Rkmj� = −
∑

i,j,k,�,m

hk∗
mjh

k∗
i� Rmij�, (4.7)

and (2.13) to calculate that:∑
i,j,k,�,m

hk∗
ij hk∗

m�Rmij� +
∑

i,j,k,�,m

hk∗
ij hm∗

i� Rj�mk = −
∑

i,j,�,m

(Rimj�)2 + 2n(n − 1)χ.

(4.8)
On the contrary, with the help of (2.14), it is easily seen that:∑

i,j,k,m

hk∗
ij hk∗

imRmj = −
∑
i,j

(Rij)2 + n(n − 1)2χ. (4.9)

Substituting (4.8) and (4.9) into (4.6), we then conclude that:∑
i,j,α

hα∗
ij Δhα∗

ij = −
∑

i,j,k,�

(Rijk�)2 −
∑
i,j

(Rij)2 + n(n2 − 1)χ − S. (4.10)
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As h2n+1
ij,� = h�∗

ij and hk∗
ij,� = h̃k∗

ij,� for any i, j, k, �, it follows that∑
i,j,�,α

(hα∗
ij,�)

2 =
∑

i,j,k,�

(hk∗
ij,�)

2 +
∑
i,j,�

(h�∗
ij )2 = ‖∇̄ξh‖2 + S, (4.11)

and thus we obtain (4.1) by substituting (4.10) and (4.11) into (4.4) immediately.
Now, if assuming that Mn has semi-parallel tensor K, then

0 = h̃k∗
ij,�p − h̃k∗

ij,p� =
∑
m

hk∗
mjRmi�p +

∑
m

hk∗
imRmj�p +

∑
m

hm∗
ij Rmk�p, (4.12)

where we used hk∗
ij,�p = h̃k∗

ij,�p − h�∗
ij δkp and h2n+1

ij,�p = 2h�∗
ij,p. Similarly, we obtain that∑

i,j,α

hα∗
ij Δhα∗

ij = −
∑

i,j,k,�,m

hk∗
ij hm∗

i� (δjmδ�k − δjkδ�m) = −S, (4.13)

which combining with (4.11) shows that

1
2
ΔS = ‖∇̄ξh‖2. (4.14)

This gives (4.2) by (2.10), and substituting (4.14) into (4.1) finally yields (4.3). �

Remark 4.2. It is known from (4.2) that, for closed minimal Legendrian sub-
manifolds or minimal Legendrian submanifolds with constant scalar curvature in
S

2n+1 with n � 2, the semi-parallelism of tensor K and the C-parallelism of second
fundamental form are equivalent.

Furthermore, recalling the components of the Weyl curvature tensor W of Mn

satisfy

Wijk� = Rijk� − 1
n − 2

(δikRj� + δj�Rik − δi�Rjk − δjkRi�) +
nχ

n − 2
(δikδj� − δi�δjk),

(4.15)
we have the following expression for n � 3 (cf. [15, 32]):

‖Rie‖2 = ‖W‖2 +
4

n − 2
‖Ric‖2 − 2n2(n − 1)

n − 2
χ2, (4.16)

where ‖W‖2 =
∑

i,j,k,�(Wijk�)2. From R̃ij = Rij − (n − 1)χδij , it is easy to see that

‖Ric‖2 = ‖R̃ic‖2 + n(n − 1)2χ2. (4.17)

Here, R̃ic is the traceless part of Ric and ‖R̃ic‖2 =
∑

i,j(R̃ij)2. From the combi-
nation of (2.10), (4.16), and (4.17), we then derive by using (4.1) the following
result:

Proposition 4.3. Let Mn (n � 3) be a minimal Legendrian submanifold in the
unit sphere S

2n+1. Then, it holds the identity:

1
2
ΔS = ‖∇̄ξh‖2 − ‖W‖2 − n + 2

n − 2
‖R̃ic‖2 + (n + 1)Sχ. (4.18)
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4.2. Conformally flat Legendrian submanifolds

Assume that Mn (n � 3) is a conformally flat Legendrian submanifold in the
unit sphere S

2n+1. Then, we shall prove that

Lemma 4.4. Let Mn (n � 3) be a conformally flat Legendrian submanifold in the
unit sphere S

2n+1. Then, for the tensor K and Schouten tensor P of Mn, it holds
that

S
U,X,Y

(g(U,Z)K(PX, Y ) − g(X,Z)K(PU, Y )

+ g(PX,K(Y,Z))U − g(PU,K(Y,Z))X) = 0,
(4.19)

where U, X, Y, Z are vector fields tangent to Mn and S denotes the cyclic
summation.

Proof. We begin with taking the covariant derivative of the Codazzi equation for
K along a vector field U tangent to Mn:

(∇2K)(U,X, Y, Z) − (∇2K)(U, Y,X,Z) = (∇G)(U,X, Y, Z) = 0, (4.20)

where, according to lemma 2.2 (3), G(X, Y, Z) := (∇K)(X, Y, Z) − (∇K)(Y,
X, Z) = 0 for tangent vector fields X, Y, Z on Mn. It is obvious from (4.20) that

S
U,X,Y

((∇2K)(U,X, Y, Z) − (∇2K)(U, Y,X,Z)) = 0. (4.21)

Furthermore, direct calculations by using the Ricci identity show that

0 = S
U,X,Y

((∇2K)(U,X, Y, Z) − (∇2K)(U, Y,X,Z))

= S
U,X,Y

((∇2K)(U,X, Y, Z) − (∇2K)(X,U, Y, Z))

= S
U,X,Y

(R(U,X)K(Y,Z) − K(R(U,X)Y,Z) − K(Y,R(U,X)Z)).

(4.22)

Finally, the assertion immediately follows by substituting (2.29) into (4.22). �

Remark 4.5. The technique used to prove lemma 4.4 is called the Tsinghua prin-
ciple, which was first discovered by H. Li, L. Vrancken, and X. Wang (cf. [1]).
Recently, this remarkable principle has been widely applied, and turns out to be
very useful for various purposes, see e.g. [6, 10, 13, 20, 21, 37].

Choosing an orthonormal frame {ei}n
i=1 over Mn such that ei is the eigenvec-

tor field of the Ricci operator Q with μi the corresponding eigenvalue, by (2.27)
we easily see that Pei = νiei and νi = μi/(n − 2) − nχ/(2(n − 2)). Without loss
of generality, we shall suppose that Q has t distinct eigenvalues μ1, . . . , μt with
multiplicities n1, . . . , nt, respectively. Let D(μs) (resp. D(νs)) denote the distribu-
tion such that D(μs)(x) (resp. D(νs)(x)) is the eigenspace of μs(x) (resp. νs(x)) at
an arbitrary point x ∈ Mn for 1 � s � t, and n1 + · · · + nt = n. For simplicity of
notations, we also make the convention that, for i � t and j � t + 1, if μj = μi we
shall write nj = ni, D(μj) = D(μi) and D(νj) = D(νi).
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Lemma 4.6. Let Mn (n � 3) be a conformally flat Legendrian submanifold in the
unit sphere S

2n+1. Then, with respect to the orthonormal frame {ei}n
i=1 on Mn as

above, the tensor K of Mn satisfies the following properties:

(1) If νi �= νj and ni, nj � 2, then K(ei, ej) = 0;

(2) If ni = 1 and nj � 2, then there exist functions λi
j depending on the choice

of νi, νj such that K(ei, ej) = λi
jej;

(3) If there are at least two distinct eigenvalues νj , νk such that nj , nk � 2 and
ni = 1, then there exists a differentiable function λ̄i such that it satisfies that
(νi − νj)λi

j = (νi − νk)λi
k = λ̄i.

Proof. We begin with taking the product of equation (4.19) with vector field V and
setting U = ek, X = ei, Y = ej , Z = e�, and V = em to derive the relation:

0 = (νi − νj)(K�
ijδkm + Km

ij δk�)

+ (νj − νk)(K�
jkδim + Km

jkδi�)

+ (νk − νi)(K�
ikδjm + Km

ikδj�),

(4.23)

where 1 � i, j, k, �, m � n, and Km
ij := g(K(ei, ej), em).

First of all, we assume that νi �= νj = νk for distinct i, j, k, and then ei ∈ D(νi)
and ej , ek ∈ D(νj) for nj � 2. Taking m �= j, k, we therefore obtain from (4.23)
that

Km
ij δk� − Km

ikδj� = 0. (4.24)

Taking � = k yields that Km
ij = 0, by which we see that K(ei, ej) ∈ D(νj) for

nj � 2. Similarly, K(ei, ej) ∈ D(νi) for ni � 2. Combining with the assumption
νi �= νj , we can conclude that K(ei, ej) = 0 provided that ni, nj � 2. Hence,
we get assertion (1).

Next, if ni = 1 and nj � 2, some ek ∈ D(νj) different from ej can be chosen to
satisfy νi �= νj = νk for distinct i, j, k. In this situation, we take m = k in (4.23) to
deduce that

K�
ij + Kk

ijδk� − Kk
ikδj� = 0. (4.25)

It follows that Ki
jj = Ki

kk for � = j, Kk
ij = 0 for � = k, and moreover K�

ij = 0 for
� �= j, k. Consequently, assertion (2) follows by putting λi

j = Ki
jj , where λi

j does
not depend on the choice of ek ∈ D(νj).

Finally, for ni = 1 and νj �= νk with nj , nk � 2, by taking � = j in (4.23) and
applying assertion (1), we easily get:

(νi − νj)K
j
ijδkm + (νj − νk)Kj

jkδim + (νk − νi)(K
j
ikδjm + Km

ik ) = 0. (4.26)

Thus, taking m = k, and noting λi
j = Ki

jj = Kj
ij and λi

k = Ki
kk = Kk

ik, we further
have

(νi − νj)λi
j = (νi − νk)λi

k =: λ̄i. (4.27)

This verifies assertion (3). Hence, lemma 4.6 has been proved. �
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4.3. Conformally flat minimal Legendrian submanifolds with R · K = 0

In this subsection, we shall consider that Mn (n � 3) is a conformally flat mini-
mal Legendrian submanifold in the unit sphere S

2n+1 with semi-parallel tensor K.
Therefore, we obtain from lemma 2.2 (4) that

0 = (R · K)(X,Y,Z, U)

= R(X,Y )K(Z,U) − K(R(X,Y )Z,U) − K(Z,R(X,Y )U),
(4.28)

where X, Y, Z, U are vector fields tangent to Mn. According to lemma 2.3, we then
present the following lemma involving the number r of distinct eigenvalues of the
Schouten tensor P of Mn.

Lemma 4.7. Let Mn (n � 3) be a conformally flat minimal Legendrian submanifold
in the unit sphere S

2n+1 with R · K = 0. Then, either Mn is of constant sectional
curvature, or it is quasi-Einstein. In the latter case, the Schouten tensor of Mn

admits two distinct eigenvalues ν1 and ν2 at each point, where one of them is simple,
such that ν1 + ν2 = 0.

Proof. First of all, by taking X = ei, Y = ej , Z = ek, and U = e� in (4.28), we can
apply (2.29) to calculate the relation:

0 = (νi + νj)[g(K(ek, e�), ej)ei − g(K(ek, e�), ei)ej ]

+ (νi + νj)[δikK(ej , e�) − δjkK(ei, e�)]

+ (νi + νj)[δi�K(ej , ek) − δj�K(ei, ek)].

(4.29)

For k = � = i �= j in (4.29), it is easy to see that:

(νi + νj)[g(K(ei, ei), ej)ei − g(K(ei, ei), ei)ej + 2K(ei, ej)] = 0. (4.30)

Taking the inner product of (4.30) with ei, we then deduce from lemma 2.2 that:

(νi + νj)g(K(ei, ei), ej) = 0, ∀ i �= j. (4.31)

Similarly, interchanging the roles of ei and ej in (4.31) gives

(νj + νi)g(K(ej , ej), ei) = 0, ∀ i �= j. (4.32)

Furthermore, by taking the inner product of (4.30) with ej , we obtain that

(νi + νj)g(K(ei, ei), ei) = 0, ∀ i �= j, (4.33)

which together with (4.30) and (4.31) implies that

(νi + νj)K(ei, ej) = 0, ∀ i �= j. (4.34)

On the contrary, for k = i �= j = � in (4.29), we easily get:

0 = (νi + νj)[g(K(ei, ej), ej)ei − g(K(ei, ej), ei)ej ]

+ (νi + νj)[K(ej , ej) − K(ei, ei)].
(4.35)
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This combining with (4.31) and (4.32) yields that

(νi + νj)[K(ei, ei) − K(ej , ej)] = 0, ∀ i �= j. (4.36)

Next, we shall continue with the proof here by proving the following three claims.

Claim 1. If νi �= 0 and ni � 2, then g(K(u, v), ω) = 0 for any u, v, ω ∈ D(νi).
If νi �= 0 and ni � 2, taking νi = νj and ei = u in (4.33), then we easily con-

clude that g(K(u, u), u) = 0 for any unit vector field u ∈ D(νi). Consequently, the
assertion follows from the symmetry given in lemma 2.2.

Claim 2. If ν2
i �= ν2

j , then K(u, v) = 0 for any u, v ∈ D(νi) ⊕ D(νj).
If ν2

i �= ν2
j , it is obvious that (νi + νj)(νi − νj) �= 0 and we then obtain from

(4.33) that g(K(u, u), u) = 0 for any unit vector field u ∈ D(νi). From the result of
the symmetry in lemma 2.2, we have K(u, u) /∈ D(νi). Similarly, g(K(v, v), v) =
0 for any unit vector field v ∈ D(νj) and thus K(v, v) /∈ D(νj). Moreover, with
the help of (4.34) and (4.36), it can be checked that K(u, v) = 0 and K(u, u) =
K(v, v) /∈ D(νi) ⊕ D(νj). When r = 2, claim 2 holds immediately. When r � 3, for
an arbitrary eigenvalue νk different from νi and νj , it is known from ν2

i �= ν2
j that

either νi + νk �= 0 or νj + νk �= 0. In either case, we can apply (4.31) to obtain
K(u, u) = K(v, v) = 0. Hence, claim 2 has been proved.

Claim 3. If r � 2, there exist two distinct eigenvalues νi and νj such that
νi + νj = 0.

If r � 2, we suppose on the contrary that νi + νj �= 0 holds for any νi �= νj ,
namely ν2

i �= ν2
j . It then follows from claim 2 that K = 0 on Mn and hence h = 0

by definition. This together with the Gauss equation shows that Mn has constant
sectional curvature, which is a contradiction to r � 2, and thus we have verified
claim 3.

Now, according to claim 3, we denote by ν1 and ν2 the two distinct eigenvalues of
P such that ν1 + ν2 = 0. In this situation, we further claim that r � 2. Otherwise,
if r � 3, then (νi + ν1)(νi + ν2) �= 0 for an arbitrary eigenvalue νi different from
ν1 and ν2. Therefore, it satisfies that ν2

i �= ν2
1 and ν2

i �= ν2
2 , and so we obtain from

claim 2 that:

K(u, u) = K(v, v) = K(ω, ω) = 0, ω ∈ D(νi),

K(u, ω) = K(v, ω) = 0, u ∈ D(ν1), v ∈ D(ν2).
(4.37)

Furthermore, we see that K(u, v) = 0 in terms of the arbitrariness of νi, meaning
that h = 0 identically. This contradiction implies that the number r � 2.

Assume that r = 1. It is obvious that Mn has constant sectional curvature for
n � 3.

Assume that r = 2. We will denote these two distinct eigenvalues of P by ν1 and
ν2, whose multiplicities are n1 and n2, respectively. Together with claim 3, it follows
that ν2 = −ν1 �= 0. In what follows, we shall argue by contradiction and suppose
that n1 � 2 and n2 � 2. Let Xi

1, . . . , Xi
ni

be the orthonormal eigenvector fields of
P that span the distribution D(νi), i = 1, 2. Thus, we see from claim 1 and (4.36)
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that

g(K(Xi
p,X

i
q),X

i
s) = 0, K(Xi

p,X
i
p) = K(Xi

q,X
i
q), ∀ p, q, s, i = 1, 2. (4.38)

Since Mn is minimal in S
2n+1, by means of (4.38) we have

0 =
n1∑

p=1

g(K(X1
p ,X1

p), v) +
n2∑

q=1

g(K(X2
q ,X2

q ), v)

=
n1∑

p=1

g(K(X1
p ,X1

p), v) = n1g(K(X1
1 ,X1

1 ), v), v ∈ D(ν2),

(4.39)

which implies that g(K(u, u), v) = 0 for any u ∈ D(ν1) and v ∈ D(ν2). Similarly,
there holds that g(K(v, v), u) = 0 and therefore K(u, v) = 0. According to this
and (4.38), we get h = 0 identically, a contradiction to r = 2. Hence, lemma 4.7 has
been proved. �

Remark 4.8. By checking the proof of lemma 4.7 step by step, we see that the
assertion still holds for n = 3, when the conformally flat condition is replaced by
vanishing Weyl curvature tensor.

4.4. Conformally flat minimal Legendrian submanifolds with R · Q = 0

In this subsection, assuming that Mn (n � 3) is a conformally flat minimal Leg-
endrian submanifold in the unit sphere S

2n+1 such that the Ricci tensor Ric is
semi-parallel, by definition we have

0 = (R · Ric)(X,Y,U, Z) = (R(X,Y )Ric)(U,Z)

= −Ric(R(X,Y )U,Z) − Ric(U,R(X,Y )Z)

= g(R(X,Y )QZ,U) − g(QR(X,Y )Z,U)

= g((R(X,Y )Q)Z,U) = g((R · Q)(X,Y,Z), U),

(4.40)

where U, X, Y, Z are tangent vector fields on Mn. This implies that Ric is semi-
parallel if and only if the Ricci operator Q is semi-parallel, i.e. R · Q = 0.

Lemma 4.9. Let Mn (n � 3) be a conformally flat minimal Legendrian submanifold
in the unit sphere S

2n+1 with R · Q = 0. Then, either Mn is of constant sectional
curvature, or it is quasi-Einstein. In the latter case, the Schouten tensor of Mn

admits two distinct eigenvalues ν1 and ν2 at each point, where one of them is simple,
such that ν1 + ν2 = 0.

Proof. Under the orthonormal frame {ei}n
i=1 on Mn as in § 4.2, direct calculations

by using (2.29) yield that

0 = g((R(ei, ej)Q)ej , ei)

= g(R(ei, ej)Qej , ei) − g(QR(ei, ej)ej , ei)

= (n − 2)(νj + νi)(νj − νi), 1 � i �= j � n,

(4.41)

https://doi.org/10.1017/prm.2024.57 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.57


20 C. Li, C. Xing and J. Yin

where we used the relation μj − μi = (n − 2)(νj − νi). Consequently, the number r
of distinct eigenvalues of the Schouten tensor P is at most 2, and if r = 1, then we
conclude that Mn has constant sectional curvature.

If r = 2, then we obtain from (4.41) that ν1 + ν2 = 0 by expressing the two dis-
tinct eigenvalues of P by ν1 and ν2, respectively. Now, it suffices to prove that either
of ν1 and ν2 must be simple. For this purpose, we shall suppose on the contrary that
ni � 2, where ni is the multiplicity of νi for i = 1, 2. Let {Xi}n1

i=1 (resp. {Yj}n2
j=1)

be the orthonormal frame of D(ν1) (resp. D(ν2)). It then follows from lemma 4.6
(1) that

K(Xi,Xi) ∈ D(ν1), K(Yj , Yj) ∈ D(ν2), K(Xi, Yj) = 0, ∀ i, j. (4.42)

Applying lemma 2.2 (1), we deduce from the Gauss equation (2.7) that

g(R(Xi, Yj)Yj ,Xi) = 1. (4.43)

Since Mn is conformally flat, it is easy to see from (2.29) that

g(R(Xi, Yj)Yj ,Xi) = ν1 + ν2, (4.44)

which together with (4.43) yields that

ν1 + ν2 = 1. (4.45)

This contradicts with the fact ν1 + ν2 = 0, and thus lemma 4.9 has been proved. �

4.5. Conformally flat Legendrian submanifolds with quasi-Einstein
metric

In the following, according to lemmas 4.7 and 4.9, we shall deal with the case when
Mn (n � 3) is a conformally flat Legendrian submanifold in S

2n+1, such that it is
quasi-Einstein with ν1 and ν2 the distinct eigenvalues of its Schouten tensor, and
D(ν1) and D(ν2) the corresponding distributions of eigenspace, where ν1 + ν2 = 0
and ν1 is simple. Then, for a unit vector field E1 of D(ν1) and an orthonormal
frame {Ei}n

i=2 of D(ν2), we see from (2.27) and (2.29) that

R(E1, Ei)E1 = R(E1, Ei)Ej = R(Ei, Ej)E1 = 0,

R(Ei, Ej)Ek = 2ν2(δjkEi − δikEj), 2 � i, j, k � n,

QE1 = 0, QEi = nχEi, ν2 = −ν1 =
n

2(n − 2)
χ �= 0,

(4.46)

where we used the facts tr Q = n(n − 1)χ and νi = μi/(n − 2) − nχ/(2(n − 2)) for
i = 1, 2.

Lemma 4.10. Let Mn (n � 3) be a conformally flat Legendrian submanifold in the
unit sphere S

2n+1. Assume that Mn is quasi-Einstein with ν1 and ν2 the distinct
eigenvalues of its Schouten operator such that ν1 + ν2 = 0, where ν1 is simple. Then,
it holds that

∇E1E1 = 0, ∇Ei
E1 = −αEi, α =

E1(ν2)
ν2 − ν1

,

E1(α) = α2, Ei(α) = Ei(ν1) = Ei(ν2) = 0, 2 � i � n.

(4.47)
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Proof. For any tangent vector V on Mn, we denote by V � the projection of V onto
D(ν�) for � = 1, 2, respectively. A straightforward computation shows that

(∇E1P )Ei = E1(ν2)Ei + (ν2 − ν1)(∇E1Ei)1,

(∇Ei
P )E1 = Ei(ν1)E1 + (ν1 − ν2)(∇Ei

E1)2,
(4.48)

where 2 � i � n. As Mn is conformally flat, we have (∇E1P )Ei = (∇Ei
P )E1 and

then it follows that:

E1(ν2)Ei − Ei(ν1)E1 − (ν1 − ν2)[(∇E1Ei)1 + (∇Ei
E1)2] = 0. (4.49)

Multiplying the above equation with E1 and further with Ek for k � 2, we easily
get:

Ei(ν1) = (ν1 − ν2)g(∇E1E1, Ei), (4.50)

E1(ν2)g(Ei, Ek) = (ν1 − ν2)g(∇Ei
E1, Ek), (4.51)

where 2 � i, k � n. Similarly, we deduce from (∇Ei
P )Ej = (∇Ej

P )Ei that

Ei(ν2)Ej − Ej(ν2)Ei + (ν1 − ν2)[(∇Ej
Ei)1 − (∇Ei

Ej)1] = 0, (4.52)

where 2 � i �= j � n, and thus there holds

Ei(ν2)Ej − Ej(ν2)Ei + (ν1 − ν2)[(∇Ej
Ei)1 − (∇Ei

Ej)1] = 0, (4.53)

which together with the fact ν1 �= ν2 immediately yields that

g(∇Ei
Ej −∇Ej

Ei, E1) = 0, Ei(ν2) = 0, 2 � i �= j � n. (4.54)

Next, with the help of ν1 �= ν2, it is easy to see from (4.50) and (4.54) that

∇E1E1 = 0, (∇Ei
Ej −∇Ej

Ei) ∈ D(ν2), Ei(ν1) = Ei(ν2) = 0, 2 � i � n. (4.55)

On the contrary, by applying (4.51) we further have

∇Ei
E1 = −αEi, α =

E1(ν2)
ν2 − ν1

. (4.56)

Therefore, it can be checked from (4.46), (4.55) and (4.56) that

0 = R(Ei, E1)E1 = E1(α)Ei − α2Ei,

0 = R(Ei, Ej)E1 = Ej(α)Ei − Ei(α)Ej ,
(4.57)

where we made use of the definition of the curvature tensor R for 2 � i �= j � n.
Hence, E1(α) = α2 and Ei(α) = 0 for 2 � i � n. This completes the proof of lemma
4.10. �
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5. Proofs of the main results

In order to complete the proofs of the main results, we first verify the proposition:

Proposition 5.1. Let Mn (n � 3) be a conformally flat minimal Legendrian sub-
manifold in the unit sphere S

2n+1. Then, Mn is quasi-Einstein with ν1 and ν2

the distinct eigenvalues of its Schouten operator such that ν1 + ν2 = 0, where ν1

is simple, if and only if (Mn, g) is locally isometric to a Riemannian product
I × M2 = (I × M2, dt2 ⊕ g2), where I ⊂ R, g is the induced metric on Mn and
(M2, g2) has constant sectional curvature c �= 0.

Proof. First of all, omitting the upper index i = 1 for λi
j , by lemma 4.6 (2) we can

write

K(E1, E1) = λ1E1, K(E1, Ej) = λ2Ej , 2 � j � n, (5.1)

where E1 is a unit vector field of D(ν1) and {Ej}n
j=2 is an orthonormal frame of

D(ν2). By means of the Gauss equation (2.7) and (4.46), it can be checked that:

0 = R(Ei, E1)E1 = (1 + λ1λ2 − λ2
2)Ei, 2 � i � n. (5.2)

Combining with the Codazzi equation for K, we can apply (4.47) to calculate that:

0 = (∇K)(E1, Ei, E1) − (∇K)(Ei, E1, E1)

= (E1(λ2) − α(2λ2 − λ1))Ei − Ei(λ1)E1,

0 = (∇K)(Ei, Ej , E1) − (∇K)(Ej , Ei, E1)

= Ei(λ2)Ej − Ej(λ2)Ei, 2 � i �= j � n.

(5.3)

Consequently, E1(λ2) = α(2λ2 − λ1) and Ei(λ1) = Ei(λ2) = 0 for all i � 2.
Secondly, noting from the minimality of Mn that 0 = trace KE1 = λ1 + (n −

1)λ2, we solve from (5.2) to obtain that

λ1 =
n − 1√

n
, λ2 = − 1√

n
. (5.4)

where, replacing E1 by −E1 if necessary, we can always assume that λ1 � 0. Thus,
α = 0 and it then follows from (4.47) that ν1, ν2 are constant and

∇E1E1 = 0, g(∇Ei
Ej , E1) = 0, 2 � i, j � n. (5.5)

Therefore, D(ν1) and D(ν2) are both totally geodesic in Mn, and so (Mn, g) is
locally a Riemannian product manifold I × M2, where I ⊂ R and M2 is the integral
manifold of D(ν2). Let R2 be the Riemannian curvature tensor of M2. Using (4.46),
we easily get:

g(R2(Ei, Ej)Ej , Ei) = g(R(Ei, Ej)Ej , Ei) = 2ν2, 2 � i, j � n. (5.6)

From this, we see that (M2, g2) has constant sectional curvature 2ν2 and g2 is the
metric of M2. As a result, (Mn, g) is locally isometric to the Riemannian product
I × M2 = (I × M2, dt2 ⊕ g2), where (M2, g2) has constant sectional curvature c =
2ν2 �= 0.
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Finally, if assuming that (Mn, g) is locally isometric to a Riemannian product I ×
M2 = (I × M2, dt2 ⊕ g2), where (M2, g2) has constant sectional curvature c �= 0,
then

g(R(E1, Ei)Ei, E1) = 0, g(R(Ei, Ej)Ej , Ei) = c, 2 � i �= j � n, (5.7)

where E1 is a unit vector field tangent to I and {Ei}n
i=2 is an orthonormal frame

on M2. Applying (5.7), we can verify the assertion by direct calculation. �

Now, by means of proposition 5.1 we are ready to prove the following theorem:

Theorem 5.2 (cf. theorem 1.9). Let Mn (n � 3) be a minimal Legendrian sub-
manifold in the unit sphere S

2n+1. If (Mn, g) is locally isometric to a Riemannian
product I × M2 = (I × M2, dt2 ⊕ g2), where I ⊂ R, g is the induced metric on Mn

and (M2, g2) has constant sectional curvature c �= 0, then Mn is locally congruent
to the Calabi torus.

Proof. According to theorem 2.5, it is known that (Mn, g) is conformally flat for
n � 3, and therefore we obtain from proposition 5.1 that Mn is quasi-Einstein
with ν1 and ν2 the distinct eigenvalues of its Schouten operator such that ν1 +
ν2 = 0, where ν1 is simple. Let E1 ∈ D(ν1) be a unit vector field and {Ei}n

i=2 an
orthonormal frame of D(ν2). Here, I ⊂ R and M2 are the integral manifolds of D(ν1)
and D(ν2), respectively. Related to the Schouten tensor P of Mn, by calculation
we have

PE1 = ν1E1 = − c

2
E1, PEi = ν2Ei =

c

2
E1, 2 � i � n. (5.8)

Similar argument as in the proof of proposition 5.1 shows that

K(E1, E1) =
n − 1√

n
E1, K(E1, Ei) = − 1√

n
Ei,

K(Ei, Ej) = − 1√
n

δijE1 +
n∑

k=2

Kk
ijEk, 2 � i, j � n,

(5.9)

where Kk
ij := g(K(Ei, Ej), Ek).

Next, we claim that Kk
ij ≡ 0. To verify this, we argue by supposing on the contrary

that there exists some point x ∈ Mn at which Kk
ij �= 0, and then divide the proof

into the following four steps.

Step 1. There exists an orthonormal basis {Yi}n−1
i=1 of TxM2 such that the tensor

K of Mn takes the forms:

K(Y1, Y1) = − 1√
n

X + (n − 2)

√
(n + 1) − nc

n(n − 1)
Y1, K(Y1, Yi) = −

√
(n + 1) − nc

n(n − 1)
Yj ,

(5.10)
where X := E1(x), (n + 1) − nc > 0, and 2 � j � n − 1.

Since Kk
ij(x) �= 0 for some point x ∈ Mn, the symmetry of Kk

ij in all indices
implies that there exists a unit vector Y1 ∈ UxM2 := {v ∈ TxM2 | g(v, v) = 1},
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which is a compact set, such that the function g(K(u, u), u) defined on
UxM2 attains an absolute maximum α1 := g(K(Y1, Y1), Y1) > 0 and therefore
K(Y1, Y1) = −(1/

√
n)X + α1Y1. Then, a self-adjoint operator A(Y ) : TxM2 →

TxM2 can be defined by

A(Y ) := KY1Y − g(K(Y1, Y ),X)X. (5.11)

It is obvious that A(Y1) = α1Y1. Choosing the unit eigenvectors {Yj}n−1
j=2 of A

orthogonal to Y1 satisfying A(Yj) = αjYj , we can conclude from lemma 2.4 that
α1 � 2αj , where αj := g(K(Y1, Yj), Yj). It then follows that

K(Y1, Y1) = − 1√
n

X + α1Y1, K(Y1, Yj) = αjYj , 2 � j � n − 1. (5.12)

Therefore, a straightforward calculation by using (2.7) and (2.29) shows that

2ν2Yj = R(Yj , Y1)Y1 =
(

n + 1
n

+ α1αj − α2
j

)
Yj , (5.13)

which together with (5.8) immediately gives

α2
j − α1αj + c − n + 1

n
= 0, 2 � j � n − 1. (5.14)

On the contrary, by the minimality of Mn we easily get:

0 = trace KY1 = α1 + α2 + · · · + αn−1. (5.15)

This combining with (5.14) yields that

(n + 1) − nc =
n

n − 2
(α2

1 + α2
2 + · · · + α2

n−1) > 0. (5.16)

Consequently, noting the fact α1 � 2αj , we solve from (5.14) and (5.15) to obtain
that

α1 = (n − 2)

√
(n + 1) − nc

n(n − 1)
, α2 = · · · = αn−1 = −

√
(n + 1) − nc

n(n − 1)
. (5.17)

Hence, the assertion of step 1 follows immediately.

Step 2. There exists a vector field V̄1 on a neighbourhood Ū of x such that the
tensor K of Mn takes the form:

K(V̄1, V̄1) = − 1√
n

g(V̄1, V̄1)E1 + α1V̄1. (5.18)

where α1 is defined as in (5.17).
Choose an arbitrary differentiable orthonormal frame {Ȳ }n−1

i=1 on a neighbour-
hood U of x ∈ Mn such that Ȳi(x) = Yi, and define a mapping ϕ : R

n−1 × U →
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R
n−1 by

ϕ(a1, a2, . . . , an−1, x̃) = (b1, b2, . . . , bn−1), (5.19)

where

bk :=
n−1∑
i,j=1

aiajg(K(Ȳi, Ȳj), Ȳk) − α1ak, 1 � k � n − 1, (5.20)

are regarded as functions on R
n−1 × U : bk = bk(a1, a2, . . . , an−1, x̃). By means of

(5.10), it is easy to see that bk(1, 0, . . . , 0, x) = 0 for all k, and

∂bk

∂aj

∣∣∣∣∣
(1,0,...,0,x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(n − 2)

√
(n + 1) − nc

n(n − 1)
> 0, k = j = 1,

−
√

n(n + 1) − n2c

n − 1
�= 0, 2 � k = j � n − 1,

0, 1 � k �= j � n − 1.

(5.21)

This implies that (∂bk/∂aj) is invertible at the point (1, 0, . . . , 0, x) ∈ R
n−1 × U .

Consequently, by the implicit function theorem there exist differentiable functions
{ai(x̃)}1�i�n−1 which are defined on a neighbourhood Ū ⊂ U of x and satisfy the
relations:

a1(x) = 1, a2(x) = · · · = an−1(x) = 0,

bk(a1(x̃), a2(x̃), . . . , an−1(x̃), x̃) ≡ 0, 1 � k � n − 1, ∀ x̃ ∈ Ũ .
(5.22)

Now, we put V̄1 =
∑n−1

i=1 aiȲi and thus V̄1(x) = Y1. Finally, we obtain (5.18) by
applying (5.20) and (5.22). Hence, step 2 has been proved.

Step 3. There exists an orthonormal frame {Ỹi}n−1
i=1 on a neighbourhood Ũ ⊂ Ū of

x such that the tensor K of Mn takes the forms:

K(Ỹ1, Ỹ1) = − 1√
n

E1 + (n − 2)

√
(n+1) − nc

n(n−1)
Ỹ1, K(Ỹ1, Ỹj) = −

√
(n+1) − nc

n(n − 1)
Ỹj ,

(5.23)
where (n + 1) − nc > 0 and 2 � j � n − 1.

For our purposes, we shall verify that the set

Λx :=
{

α̃1 ∈ R | ∃V1 ∈ UxM2, s. t. K(V1, V1) = − 1√
n

X + α̃1V1

}
(5.24)

consists of finite numbers, which are independent of the point x ∈ Mn. With the
help of (5.10), we first find that Λx is non-empty. Furthermore, for an arbitrary
α̃1 associated with V1 ∈ UxM2 satisfying K(V1, V1) = −(1/

√
n)X + α̃1V1, we can

define another self-adjoint operator B(Y ) : TxM2 → TxM2 by

B(Y ) := KV1Y − g(K(V1, Y ),X)X, (5.25)

where X := E1(x). As a result, B(V1) = α̃1V1. Let {Vj}n−1
j=2 be the unit eigenvectors

of B, orthogonal to V1, with the corresponding eigenvalues {α̃j}n−1
j=2 , respectively.
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Then

K(V1, V1) = − 1√
n

X + α̃1V1, K(V1, Vj) = α̃jVj , 2 � j � n − 1. (5.26)

In this situation, applying (2.7) and (2.29), we easily get:

α̃2
j − α̃1α̃j + c − n + 1

n
= 0, 2 � j � n − 1, (5.27)

which combining with (n + 1) − nc > 0 implies that there exists an integer 0 � k �
n − 2 such that, if necessary, after renumbering the basis, we have

α̃2 = · · · = α̃k+1 =
1
2

(
α̃1 +

√
α̃2

1 − 4
(

c − n + 1
n

))
,

α̃k+2 = · · · = α̃n−1 =
1
2

(
α̃1 −

√
α̃2

1 − 4
(

c − n + 1
n

))
.

(5.28)

As 0 = trace KV1 = α̃1 + α̃2 + · · · + α̃n−1, it can be checked from (5.28) that

nα̃1 − (n − 2k − 2)

√
α̃2

1 − 4
(

c − n + 1
n

)
= 0. (5.29)

Hence, Λx consists of finite numbers that are independent of the point x ∈ Mn.
According to step 2, we see that ‖V̄1‖(x) = 1 for ‖V̄1‖ :=

√
g(V̄1, V̄1). For this

reason, there exists a neighbourhood Ũ ⊂ Ū of x so that V̄1 does not vanish on Ũ .
Thus, setting Ỹ1 = V̄1/‖V̄1‖, we derive from (5.18) that

K(Ỹ1, Ỹ1) = − 1√
n

E1 +
α1

‖V̄1‖ Ỹ1, (5.30)

where α1 is defined as in (5.17). As α1/‖V̄1‖ changes continuously on Ũ , we conclude
that ‖V̄1‖(x̃) = ‖V̄1‖(x) = 1 for any x̃ ∈ Ũ , because Λx consists of finite numbers.
Similarly, after taking orthonormal vector fields Ỹ2, . . . , Ỹn−1 orthogonal to Ỹ1 such
that {Ỹi}n−1

i=1 forms an orthonormal frame on Ũ , we follow the proof of step 1 to
obtain (5.23) and finally complete the proof of step 3.

Step 4. Show that g(K(Ei, Ej), Ek) = Kk
ij ≡ 0 for 2 � i, j, k � n.

Direct calculations by using (5.23) shows that

(∇Ỹj
K)(Ỹ1, Ỹ1) = (α1 − 2α2)∇Ỹj

Ỹ1,

(∇Ỹ1
K)(Ỹj , Ỹ1) = α2∇Ỹ1

Ỹj − K(∇Ỹ1
Ỹj , Ỹ1) − K(Ỹj ,∇Ỹ1

Ỹ1),
(5.31)

where α1 and α2 are defined as in (5.17) and 2 � j � n − 1. Based on the relation

g((∇Ỹj
K)(Ỹ1, Ỹ1), Ỹ1) = g((∇Ỹ1

K)(Ỹj , Ỹ1), Ỹ1), (5.32)

we deduce from (5.23) that ∇Ỹ1
Ỹ1 = 0 and thus (∇Ỹ1

K)(Ỹj , Ỹ1) = 0 for 2 � j �
n − 1. Together with the fact α1 − 2α2 �= 0, it is seen from (5.31) that ∇Ỹj

Ỹ1 = 0
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for all j � 2. By the definition of the curvature tensor, we apply (4.46) and (5.8) to
obtain that

c = 2ν2 = g(R(Ỹ2, Ỹ1)Ỹ1, Ỹ2) = 0. (5.33)

This is a contradiction to c �= 0 and hence we complete the proof of step 4.
Now, for the orthonormal frame {Ei}n

i=1 on Mn, from (5.9) it follows that

h(E1, E1) =
n − 1√

n
ϕE1, h(E1, Ei) = − 1√

n
ϕEi,

h(Ei, Ej) = − 1√
n

δijϕE1, 2 � i, j � n.

(5.34)

Consequently, by applying theorem 2.1 we conclude from (3.4) and (5.34) that Mn

is locally congruent to the Calabi torus. �

5.1. Completion of the proof of theorem 1.3

Mn (n � 3) be a conformally flat minimal Legendrian submanifold in the unit
sphere S

2n+1 with semi-parallel tensor K. By means of lemma 4.7, we see that
either Mn is of constant sectional curvature, or it is quasi-Einstein with ν1 and ν2

the distinct eigenvalues of its Schouten operator such that ν1 + ν2 = 0, where ν1 is
simple. In the former case, theorem 1.1 states that Mn is the totally geodesic sphere
or the flat Clifford torus. In the latter case, according to proposition 5.1 and theorem
5.2, we conclude that Mn is locally congruent to the Calabi torus. Conversely, these
calculations in § 3 guarantee that examples (a)–(c) are all conformally flat minimal
Legendrian submanifolds in S

2n+1 with semi-parallel tensor K.

5.2. Completion of the proof of corollary 1.5

Let Mn (n � 3) be a minimal Legendrian submanifold in the unit sphere S
2n+1

with semi-parallel tensor K. By means of lemma 4.1 and proposition 4.3, we
calculate that

‖∇̄ξh‖2 =
1
2
ΔS = ‖∇̄ξh‖2 − ‖W‖2 − n + 2

n − 2
‖R̃ic‖2 + (n + 1)Sχ. (5.35)

Consequently, we have

(n + 1)Sχ =
n + 2
n − 2

‖R̃ic‖2 + ‖W‖2 � n + 2
n − 2

‖R̃ic‖2, (5.36)

by which we obtain (1.3) and find that the equality holds on Mn if and only if
the Weyl curvature tensor of Mn vanishes identically. When n � 4, the assertion
immediately follows from theorem 1.3 and proposition 3.1. When n = 3, according
to lemma 4.7 and remark 4.8, either M3 has constant sectional curvature, or M3 is
quasi-Einstein with ν1 and ν2 the distinct eigenvalues of its Schouten operator so
that ν1 + ν2 = 0, where ν1 is simple. In the former case, we obtain from theorem
1.1 that M3 is the totally geodesic sphere or the flat Clifford torus. In the latter
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case, by remark 4.8 and claim 1, we deduce from (4.34) and (4.36) that

g(K(Ei, Ej), Ek) = 0, 2 � i, j, k � 3,

K(Ei, Ei) = K(Ej , Ej), K(Ei, Ej) = 0, 2 � i �= j � 3,
(5.37)

where E1 is a unit vector field of D(ν1) and {E2, E3} is an arbitrary orthonormal
frame of D(ν2). As M3 is minimal in S

7, we further have

g(K(E1, E1), E1) = −2g(K(Ei, Ei), E1), 2 � i � 3,

g(K(E1, E1), Ei) = −
3∑

j=2

g(K(Ej , Ej), Ei) = 0, 2 � i � 3.
(5.38)

Therefore, similar calculations as in the proof of proposition 5.1 show that

h(E1, E1) =
2√
3
ϕE1, h(E1, Ei) = − 1√

3
ϕEi,

h(Ei, Ej) = − 1√
3
δijϕE1, 2 � i, j � 3.

(5.39)

Finally, combining with (3.4) and (5.39), we derive from theorem 2.1 that Mn is
locally congruent to the Calabi torus. Conversely, by § 3 these examples (a)–(c) for
n = 3 are all minimal Legendrian submanifolds in S

7 with semi-parallel tensor K.

5.3. Completion of the proof of corollary 1.6

Let Mn (n � 3) be a closed minimal Legendrian submanifold in the unit sphere
S

2n+1 with vanishing Weyl curvature tensor. By calculation we apply (4.18) to
obtain that

1
2
ΔS = ‖∇̄ξh‖2 − n + 2

n − 2
‖R̃ic‖2 + (n + 1)Sχ � −n + 2

n − 2
‖R̃ic‖2 + (n + 1)Sχ.

(5.40)
Now, by using the compactness of Mn, we can integrate inequality (5.40) to obtain
the integral inequality in (1.4), according to the divergence theorem, where the
equality holds on Mn if and only if Mn is of C-parallel second fundamental form,
i.e. ∇̄ξh = 0, which implies that R · K = 0. When n � 4, the assertion follows from
theorem 1.3 and proposition 3.1 immediately. When n = 3, Theorem 1.3 and (1.5)
of Xing–Zhai [33] state that M3 is locally congruent to one of the examples (a)–(c)
for n = 3. Conversely, by § 3 the examples (a)–(c) for n = 3 are closed minimal
Legendrian submanifolds in S

7 with C-parallel second fundamental form.

5.4. Completion of the proof of theorem 1.7

Let Mn (n � 3) be a conformally flat minimal Legendrian submanifold in the
unit sphere S

2n+1 with semi-parallel Ricci tensor. Together with (4.40), it then
follows from lemma 4.9 that either Mn has constant sectional curvature, or Mn is
quasi-Einstein with ν1 and ν2 the distinct eigenvalues of its Schouten operator such
that ν1 + ν2 = 0, where ν1 is simple. In the former case, either Mn is the totally
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geodesic sphere, or Mn is the flat Clifford torus, in terms of theorem 1.1. In the
latter case, applying proposition 5.1 and theorem 5.2, we derive that Mn is locally
congruent to the Calabi torus. Conversely, it is easy to see from proposition 3.1
that examples (a)–(c) are all conformally flat minimal Legendrian submanifolds in
S

2n+1 with semi-parallel Ricci tensor.
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