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Introduction

Kato [3] has introduced a class of operators called strictly singular opera-
tors. These operators have many properties in common with compact operators.
In fact the concept of a strictly singular operator is an extension of the concept
of a compact operator. Kato has proved that if X and X' are Banach spaces,
then the strictly singular operators of X into X' form a closed subspace of the
space of bounded linear operators of X into X' and if X = X', then these oper-
ators form a two-sided ideal in the ring of bounded linear operators on X.
He has also shown that the Riers-Schauder theorem holds for the spectrum
of a strictly singular operator. Gohberg, Feldman and Markus [23] have treated
the same class of operators with an equivalent definition.

Goldberg and Thorp have observed that the adjoint of a strictly singular
operator is not necessarily strictly singular. Whitley [4] has dealt with the con-
jugates of such operators. Pelczynski [61 has introduced a dual concept to that
of a strictly singular operator, called a strictly cosingular operator. He has proved
that for Banach spaces X and X', a bounded linear operator T: X -» X' is strictly
singular (cosingular) if T* is strictly cosingular (singular) and T* is strictly
singular (cosingular) if T is strictly cosingular (singular) and X is reflexive.

In section 1 of this paper we have introduced the concept of improjective
operators. We have shown that the class of improjective operators is larger
than the classes of strictly singular and strictly cosingular operators and that
the improjective operators on a Banach space X form a two-sided ideal in the
multiplicative semigroup of bonded linear operators on X. We have also proved
that for Banach spaces X and X', a bounded linear operator T:X -> X' is im-
projective if T* is improjective and that T* is improjective if T is improjective
and X reflexive. The other important results of this section are (i) an improjective
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operator T:X -*• X' is strictly singular if X' is subprojective, and (ii) an impro-
jective operator T: X -> X' is compact if X and X' are Hilbert spaces.

In section 2 we consider some special Banach spaces X and X' such that
every bounded linear operator of X into X', or of X' into X is improjective.
For example,

(a) if X is a Banach space containing no copy of c0 and S a compact Haus-
dorff topological space, every bounded linear operator of X into C(S) is impro-
jective;

(b) if X is either a reflexive Banach space or a Banach space containing
no copy of /, and X' is a Banach space isomorphic to an abstract L-space, then
every bounded linear operator of X into X' or, of X' into X is improjective;

(c) if X is a Banach space isomoprhic to an abstract L-space and S a compact
Hausdorff topological space, then the same as in (b) is true for X and C(S); and

(d) if X is a separable Banach space, the same as in (b) ir true for X and m.
Lastly we have shown that every bounded linear operator of m into X

is strictly singular where Zis one of the space c0, lp{\ ^ p < oo), co(S), lp(S),
(1 ^ p < oo), S being countable and Lp(fi) (2 ^ p < oo) fi being a separable
measure.

In the final section we have introduced the concept of an ideal in a category
and defined a non-identity ideal in a category of Banach spaces. We have estab-
lished that the improjective operators form the largest non-identity ideal in the
category of all Banach spaces; strictly singular operators form the largest non-
identity ideal in the category of all subprojective spaces; compact operators
form the largest non-identity ideal in the category of all Hilbert spaces whereas
the compact operators form the largest ideal in the category of all separable
Hilbert spaces. Finally, we have proved that for Banach spaces X and X', the
improjective operators of X into X' form a closed set of the space of all bounded
linear operators of X into X'.

The author wishes to thank Professor B. Abrahamson for his advice and
constant encouragement during the preparation of this paper.

1. Improjective operators

A subspace Fof a Banach space X is said to be complemented in X if it is
closed, and there is a closed subspace Y' of X such that for each x in X there
existayinFandy' in Y' such that x — y + y'and if y + y' = 0, then y = y' = 0.

The following result is well known (e.g. [1], p. 211 or [2], p. 155-156):
A closed subspace Y of a Banach space X is complemented in X if and

only if there is a projection (a linear idempotent operator) of X onto Y.
By a projection we shall always mean a continuous projection.
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Every Banach space X is complemented in itself as we have always
X = X © {0} (© denotes direct sum), the identity map on X being the pro-
jection.

DEFINITION. A bounded linear operator T: X->X' of a Banach space X
into a Banach space X' will be said to be an improjective operator if there is
no infinite dimensional closed subspace M (not necessarily proper) of X such
that the map M -* TM (i.e. the restriction of T to M) is an isomorphism and
TM is complemented in X'. TM denotes the image of M under T.

Clearly an isomorphism T:X-+X' of a Banach space X onto X',
(dimZ = dimX' = oo), the identity operator on an infinite dimensional Banach
space X and a projection of X onto an infinite dimensional closedsub space Y
are not improjective.

The following definition is due to Kato [3] (also see [4] and [5]).

DEFINITION. A bounded linear operator T: X-+X' of a Banach space Xinto
a Banach space X' is said to be strictly singular if, for no infinite dimensional
closed subspace M of X, is the restriction of Tto M an isomorphism (i.e., the
restriction of Tto M has a bounded inverse). Pelczynski [6] has introduced a dual
concept called a strictly cosingular operator.

DEFINITION. An operator T: X-* X'ofa Banach space into a Banach space
X' is said to be strictly cosingular provided that for no infinite dimensional
Banach space Z do there exist epimorphisms (onto maps) 7\: AT -• Z and
T2.X'-*Z such that the diagram

is commutative.

In the sequel, by a space I or I ' we shall always mean a Banach space,
unless otherwise stated.

The proof of the following theorem is trivial.

THEOREM 1.1. Every strictly singular or strictly cosingular operator
T:X-*X' is improjective. In fact we have the following relations:

y, strictly singular v . .
compact < . , , z improjective.

\ strictly cosingular /
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There are operators which are improjective but not strictly singular or strictly
cosingular.

EXAMPLE 1. Let T be an isometric isomorphism of I2 into C[0,1]. Then
T being an isomorphism is not strictly singular. To prove that T is improjective
we use the following result due to Grothendiek [7]:

No infinite dimensional closed reflexive subspace of C[0,1] is comple-
mented.

Suppose that T is not improjective. Then there is an infinite dimensional
closed subspace M of I2 such that the map T:M -» TM is an isomorphism and
TM is complemented in C[0,1]. But M being a closed subspace of I2 is reflexive.
Hence TM is reflexive and thus by the above result cannot be complemented
in C[0,1]. This proved that Tmust be improjective. That the isometric isomor-
phism of I2 into C[0,1] (or B(S), S an infinite set) is improjective also follows
directly from our theorem 2.1.

EXAMPLE 2. The injection map Tof c0 into m is not strictly singular. That T
is improjective follows from our theorem 2.5.

EXAMPLE 3. Let Tbe a bounded linear operator of / onto I2. Such a map T
always exists by a theorem of Banach and Mazur ([8], p. 211) and is strictly
singular (see [5]). Hence T is improjective by theorem 1.1. But T being onto
is not strictly cosingular.

In the following example we prove the existence of improjective operators
which are neither strictly singular nor strictly cosingular.

EXAMPLE 4. Let S be a set of the power of the continuum and co(S), l(S),
m(S) be defined as in [9], p. 28. Then there exists an operator T:l(S)->co(S)
of l(S) onto co(S) such that Tis strictly singular but T*: l(S) -> m{S) is neither
strictly singular nor strictly cosingular (Pelczynski [6], ex. 1, p. 39-40). Ob-
viously T**: m(S)* -> m(S) is also neither strictly singular nor strictly cosingular
by virtue of prop. 3(a) of [6]. We shall prove that T* and T** are improjective.
We note that by a result of Phillips [10] (also see [9], p. 94) m(S) e pt

(1) and hence
there is an isometirc j of m(S) onto a space C(Sj) where St is compact, Haus-
dorff and extremally disconnected ([9], p. 95). We also note that m(S)* is an
abstract L-space ([9], p. 104). Thus by theorem 2.4 of section 2, jT** = Tt,
say, is improjective. Hence T** =j~1T1 is improjective by theorem 1.2 and by
our theorem 1.5, T* is improjective.

The above examples show that the class of improjective operators is larger
than the class of strictly singular and strictly cosingular operators.

We now prove the following useful lemma.

(1) For X 3; 1, a Banach space B is said to belong to fix if for each space B' 2 B, there
is a projectionPo(B' ontoB with \\P\\ ^ K
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LEMMA 1.1. / / T:X->X' is a bounded linear operator such that the
restriction of T to a closed subspace M of X is an isomorphism, and TM is
complemented in X', then M is complemented in X.

PROOF. Let T denote the 'restriction of T to; M, and T'~1:TM^-M
denote the operator inverse to T. Now since TM is complemented in X', there
is a projection P of X' onto TM. We define the bounded linear operator P': Z->M
by P' = T'~1PT. Now P'2 = T'-1PTT'~1PT= T'~iP2T = T~nPT = P ' .
Thus P' is a projection of X onto M. Hence M is complemented in X.

THEOREM 1.2. / / T:X->X' is improjective then TTy and T2T are also
improjective wehre Tt: Xx -* X and T2: X'-* X2 are arbitrary bounded linear
operators.

PROOF. If possible, let TTX be not improjective. Then there is an infinite
dimensional closed subspace M of I , such that the restriction of TT1 to M
is an isomorphism and TT^M is complemented in X'. Since the restriction
of TT, to M is an isomorphism, || TTxx || ;> y \\x | , y > 0, for all xeM. Set
7\M = M'. Now \\Tix\\ ^ y || T ||~^ I| JC ||» for all xeM. Thus W = TtM is
infinite dimensional and closed. Now for any y e M', there is a unique xeM such
that Tt(x) = y. Hence

\\Ty\\ = \\TTlX\\ ^ y || x || ^ y || T, j - 1 \\y\\ a s \\y\\ = || 7 \ x || £ | 7^ || flxfl.

This is true for all y e M'. Thus the restriction of T to M' is an isomorphism
and TM' — TTXM is compemented in AT' by hypothesis. These together contra-
dict that T is improjective.

Next, if possible, let T2Tbe not improjective. Then there is an infinite di-
mensional closed subspace Mx of X such that | T2Tx | 2: yt | x | , yt > 0, for
all x e M1 and T2TMt is complemented in X2. As before we have

(1) || Tx || ^ >-! || T2 || -
1 1 | x ||, for all x e Mx

and

(2) ||T2j>|| ^ y i l T f l - 1 ! ^ ! , for all yeTM,.

(1) implies that the restriction of T to Mt is an isomorphism and TM1 = M[
is closed and infinite dimensional. (2) implies that the restriction of T2 to M[
is an isomorphism. Again since T2M\ is complemented in X2, M[ is by lemma
1.1 complemented in X'. Thus we have that the restriction of Tto Mt is an iso-
morphism and TMl = M[ is complemented in X'. But these contradict that
T is improjective.

The following definition of subprojective spaces is due to Whitley [4].

DEFINITION. A Banach space X is subprojective if, for every infinite dimen-
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sional closed subspace M of X, there exists an infinite dimensional closed sub-
space_Af contained in M and a projection of X onto JV.

Example of subprojective spaces: The Hilbert spaces and the spaces P
(1 £ p < oo), c0, Lp (2 ^ p< oo), l"(S) ( l ^ p < c o ) and co(S) are subprojec-
tive. (For proof see [4] and [1] and for definition of l"(S) and co(S) see [9],
p. 28).

THEOREM 1.3. / / T:X -*X' is improjective and X' is sub-projective, then
T is strictly singular.

PROOF. If possible, let Tbe not strictly singular. Then we can find an infinite
dimensional closed subspace M of X such that the restriction of T to M is an
isomorphism. Since TM is closed and X' is subprojective, there is an infinite
dimensional closed subspace N of TM such that there is a projection of X' onto
N, i.e. N is complemented in X'. Set T~1(N)nM = M'. Then M' is an infinite
dimensional closed subspace of X such that the restriction of Tto M' has a bounded
inverse and TM' = N is complemented in X'. These contradict that Tis impro-
jective. Hence Tis strictly singular.

COROLLARY 1.1. / / T:X-+X' is strictly cosingular and X' is subpro-
jective, then T is strictly singular.

PROOF. T being strictly cosingular is improjective. Hence the corollary
follows from the theorem 1.3.

COROLLARY 1.2. Every improjective operator T:X^X' of a Hilbert space
X into a Hilbert space X' is compact.

PROOF. AS X' is subprojective, T is strictly singular by theorem 1.3 and
by a result of Kato ([3], see remark p. 287-288) T is compact.

DEFINITION. A Banach space X is superprojective if, for every closed subspace
M with infinite co-dimension (i.e. dimX/M), there exists a closed subspace N
of infinite co-dimension containing M and a projection of X onto N.

The spaces F(S) (1 < p < oo) and Lp (1 < pf^2) are superprojective. (See [4]).

THEOREM 1.4. If X is reflexive and Y is superprojective, then every im-
projective operator T: X -> Y* is strictly singular.

PROOF. Suppose that T is not strictly singular. Then we can find an infinite
dimensional closed subspace M of X such that the restriction of T to M has a
bounded inverse. Since X is reflexive, M is reflexive. Hence TM is an infinite
dimensional closed reflexive subspace of Y*. Now by theorem 4.6 of [4] there
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is an infinite dimensional closed subspace JV contained in TM such that JV is
complemented in Y*. Setting

T'^N) C\M = M'

and considering the restriction of Tto M' we conclude that Tis not improjective,
which is a contradiction. This provers the theorem.

COROLLARY 1.3. If X is a Banach space and Y a reflexive superprojective
space, then every improjective operator T:X -* Y* is strictly singular.

PROOF. By corollary 4.7 of [4], Y* is sub-projective. Hence the corollary
follows from the theorem 1.3.

THEOREM 1.5. / / T:X-*X' is a bounded linear operator such that
T*: X'* -> X* is improjective then Tis improjective.

PROOF. If possible, let The not improjective. Then there is an infinite dimen-
sional closed subspace M of X such that the restricted map M -> TM is an
isomorphism and TM is complemented in X'. By lemma 1.1 M is also comple-
mented in X and there is a projection P' of X onto M where P' is given by
p> = T ' - ipT where P is the projection of X' onto TM and T' is the restriction
of T to M (see lemma 1.1).

Thus we can write

X = M@M' where M' is a closed subspace of X
and

X' = TM ® N where N is a clored subspace of X'.

We have also ([2]. p. 156)

X* = M±®M'±

and
X'* = (TM^eJV-1.

Now since P is an onto map, P* is a one-to-one bounded linear operator
onto an infinite dimensional closed subspace P*(TM)* = Z of X'* (see e.g.
[11], p. 237). Since the restriction of Tto M has a bounded inverse, the restric-
tion of T* to Z has a bounded inverse (see the proof of the theorem 2.2 in [4]).
We prove that T*Z is complemented in X*. Since P has a closed range, Z = JVX

N being the null space of P . Similarly considering the projection P' of X we can
show that P'*M* = M'x. We have

pi _ j "

Hence P'* = T*P*{T'~1)* i.e.,
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P'*M* = ^P^T'-^M* = T*P*(TM)*

as (T'-1)* maps M* onto (TM)*.
Hence MlJ- = T*Z. Thus T*Z is complemented in X*. Thus the restric-

tion of T* to Z has a bounded inverse and T*Z is complemented in X*. These
together contradict that T* is improjective.

COROLLARY 1.4. / / T:X->X' is improjective and X is reflexive, then T*
is improjective.

PROOF. Let J and J' be respectively the canonical embeddings of X onto
X** and X' into X'**. Then T** = J'TJ'1. Hence T** is improjective by
theorem 1.2 as Tis improjective. Hence by the theorem 1.5 T* is improjective.

That the above corollary is not always true if the reflexivity on X is removed
can be seen from the following example.

EXAMPLE 5. Bn is the space of R. C. James ([12], theorem 2) with the pro-
perty that the 2nth conjugate space B(2n) of Br is separable and contains a com-
plemented subspace E isomorphic to /. Since B(

n
2n) is separable, Bn is separable.

Hence there is a bounded linear operator T mapping / onto Bn ([8], p. 211).
Pelczynski ([6], Ex. 3, p. 40) has proved that

(i) T( 2 n - 1 ) , the (2n — l)th adjoint operator to T is strictly co-singular;
(ii) T(2n) is neither strictly singular nor strictly cosingular; and jPT(2n):L(v)

-> / is not strictly singular,(2) where P is the projection of B^2n) onto E, j an
isomorphism between E and / and L(v) conjugate space of even order to /.

Now, T*-2"'1^ being strictly cosingular, is improjective. If possible, let
T(2n) be improjective. Then JPT(2n> is improjective. Then, since / is subprojective
jpj(2n) j s ^ theorem 1.3 strictly singular which contradicts the above result
of Pelczynski. Hence T(2n) is not improjective.

2. Improjective operators on some special Banach spaces

We consider the following spaces (for definitions see [13]).
(1) C{S), S a compact Hausdorff space;
(2) B(S), S a set;
(3) L00(S,E,^) and L(S,T,,n), (S,S,^) a positive measure;
(4) rca(S) and ba(S), which are isometrically isomorphic to the conjugate

spaces of, respectively, C(S) and B(S);
(5) Any complimented subspace of the spaces (l)-(4).

(2) v is a non-trivial measure defined on a field 2 of all Borel subsets of a topological space X
and L (v) = L (X, 2, v) is the Banach space of all v-equivalency classes of v-measurable and
v-absolutely summable scalar valued functions on A'(see [13], Chap. IV).
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Whitley [4] has proved that every bounded linear operator of a space X
of (l)-(5) into a reflexive space Y is strictly singular.

LEMMA 2.1. If X is any of the spaces (l)-(5) above, and Y an infinite
dimensional reflexive closed subspace of X, then Y is not complemented in X.

PROOF. Suppose that Y is complemented in X. Then there is a projection P
of X onto Y. Now Y being reflexive, by Whitley's result mentioned above, P is
strictly singular. This implies that Y is finite dimensional which is a contradiction.

THEOREM 2.1. Let X be an arbitrary reflexive Banach space and X' any
of the spaces (l)-(5) above. Then every bounded linear operator T of X into
X' is improjective.

PROOF. If possible, let T be not improjective. Then there there must be an
infinite dimensional closed subspace M of X such that the map M -» TM is an
isomorphism and TM is complemented in X'. M being a closed subspace of a
reflexive space is reflexive. Hence TM is an infinite dimensional closed reflexive
subspace of X'. Hence by the above lemma 2.1, TM cannot be complemented
in X'. This is a contradiction.

THEOREM 2.2. Let X be a Banach space containing no subspace isomorphic
to c0 and S a compact Hausdorff topological space. Then every bounded
linear operator T of X into C(S) is improjective [and every bounded linear
operator of C(S) into X is strictly singular (Pelczynski)].

PROOF. If possible, let T:X->C(S) be not improjective. Then there is an
infinite dimensional closed subspace M of X such that the map M -> TM is
an isomorphism and TM is complemented in C(S). Since TM is complemen-
ted in (CS) and TM is infinite dimensional, by corollary 2(3) of [1] TM
contains a closed subspace N isomorphic to c0. Set T~1(N) nM = M'. Now
since the map M' -* TM' = N is also an isomorphism, M' is isomorphic to c0

which is a contradiction.
Pelczynski [6] has proved that a bounded linear operator T of C(S) into

any Banach space X is weakly compact if and only if T is strictly singular. If X
is as above, then every bounded linear operator of C(S) into X is weakly compact
([1], theorem 5).

We note that if X is as in theorem 2.2 and S is compact, Hausdorff and
dispersed (i.e. S does not have any non-empty perfect set) then every bounded
linear operator T of X into C(S) is strictly singular. This is because every in-
finite dispensional closed subspace of C(S) contains a closed subspace isomor-
phic to c0 ([14], p. 214).

(3) Corollary 2 of [1] states that if S is a compact Hausdorff topological space and Xa closed
subspace complemented in C(5), then either X contains a subspace isomorphic to Co or X is of
finite dimension.
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THEOREM 2.3. Let X be a Banach space which is either reflexive or does
not contain any closed subspace isomorphic to I and X' a Banach space iso-
morphic to any abstract L-space. Then every bounded linear operator T of X
into X', or of X' into X is improjective.

PROOF. If T maps X into X' and is not improjective, then there is an infinite
dimensional closed subspace M of X such that the map M -»• TM is an isomor-
phism and TM is complemented in X'.Now by corollary 4(4) of [1], TM con-
tains a closed subspace N which is isomorphic to /. The closed subspace

r - ' ( )V)nM = M'

of X is then obviously isomorphic to / which is impossible.
Next let Tmap X' into X and Tbe not improjective. Then there is an in-

finite dimensional closed subspace M1 of X' such that the map Mt ~* TMt

is an isomorphism and TMY is complemented in X. By lemma 1.1 Mt is com-
plemented in X'. Hence again by corollary 4 of [1],MX contains a closed
subspace Nt isomorphic to /. Thus TNL is isomorphic to I which is impos-
sible.

LEMMA 2.2. / / S is compact, metrizable and dispersed, then C(S) is sub-
projective.

PROOF. By the result of [14], p. 214 it follows that every infinite dimensional
closed subspace M of C(S) contains a closed subspace JV isomorphic to c0.
Again since S is compact and metrizable, C(S) is separable. Hence by a result
of Sobczyk [15] (also see [1], theorem 4) JV is complemented in C(S). Thus
C(S) is subprojective.

COROLLARY 2.1. If X is a Banach space isomorphic to an abstract L-space
and S is compact, metrizable and dispersed, then every bounded linear operator
of X into C(S) is strictly singular and every bounded linear operator of C(S)
into X is improjective.

PROOF. By the result of [14], p. 214, no subspace of C(S) is isomorphic to/.
Hence by theorem 2.3 every bounded linear operator T of X into C(S) or, of
C(S) into X is improjective. Now, since C(S) is subprojective by the above lemma
2.2, Tis strictly singular by theorem 1.3 when Tmaps X into C(S).

The above corollary remains valid if we replace C(S) by c0. For we have
c0 at c = C(S) where S is the one point compactification of the integers. Now

(4) Corollary4of [l]states that if A'is a Banachspace isomorphic to an abstract L-space and
M is a closed subspace complemented in X, then either M contains a complemented subspace
which is isomorphic of / or M is to finite dimension.
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let T be any bounded linear operator of X into c0 or of c0 into X and j the
isomorphism of c0 onto C(S). Then jT = A or T/"1 = /I' is by the above co-
rollary strictly singular or improjective. Hence T = j~lA or, T = -4'j is respec-
tively strictly singular or improjective.

THEOREM 2.4. / / X is a Banach space isomorphic to an abstract L-space
and S a compact Hausdoejf topological space, then every bounded linear
operator Tof X into C(S), or of C{S) into X is improjective.

PROOF. If T maps X into C(S) and T is not improjective, then there is an
infinite dimensional closed subspace M of X such that the map M -* TM is an
isomorphism and TM is complemented in C(S). Hence by lemma 1.1, M is also
complemented in X. Thus we have

X = M®M' for some closed subspace M' of X
and C(S) — TM © N for some closed subspace N of C(S). Now by corollary 4
of [1] (already mentioned in theorem 2.3) M contains a complemented closed
subspace M, isomorphic to /. Since M1 is complemented in X, Mx is also com-
plemented in M (if P is the projection of X onyo M t , then the restriction of P
to M is the required projection of M onto Mj). Thus M = Mt © M2 for some
closed subspace M2 contained in M. Now since the restriction of T to M has a
bounded inverse, it is easy to check that TM = TMX © TM2. Thus we can
write C(S) = (TM^ © TM2)@N. Hence TMt is complemented in C(S) (com-
position of two projections is a projection). Now by corollary 2 of [1] (mentioned
in theorem 2.2) TMY contains a closed subspace isomorphic to c0. But TMX

being isomorphic to Mx is isomorphic to /. These together imply that / contains
a subspace isomorphic to c0 which is impossible (see [16], chap. 12).

Next, let T map C(S) into X and if possible, let T be not improjective. Then
there is an infinite dimensional closed subspace Y of C(S) such that the map
y-> TY is an isomorphism and 7T is complemented in X. By corollary 4 of
[1] Tycontains a complemented subspace Z isomorphic to /. Set T~l{Z) n Y=Z'.
Then by lemma 1.1, Z' is complemented in C(S) as the map Z' -> TZ' = Z is
also an isomorphism. Now by corollary 2 of [1], Z' contains a closed subspace
isomorphic to c0. But Z' , being isomorphic to Z, is isomorphic to /. These
will lead to a contradiction as above.

THEOREM 2.5. / / X is a separable Banach space, then every bounded
linear operator T of X into m, or of m into X is improjective where m is the
space of all bounded sequences.

PROOF. Let Tmap X into m. If Tis not improjective, then there is an infinite
dimensional closed subspace M of X such that the map M -> TM is an iso-
morphism and TM is complemented in m. Then by corollary 5 of [1] which
states that no infinite dimensional complemented subspace of m is separable,
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TM is not separable. This implies that M is not separable which is impossible.
Thus T is improjective.

If Tmaps m into X, then by applying the same corollary 5 of [1] and our
lemma 1.1 we can prove that T is improjective.

COROLLARY 2.2. Every bounded linear operator T of m into a separable
subprojective space X is strictly singular.

PROOF. Tis, by the above theorem 2.5, improjective. Hence by theorem 1.3
T is strictly singular as X is subprojective.

Thus every bounded linear operator of m into c0, F (l^p<oo),
Lp(S,T.,n) (2 ^ p< oo) where n is separable measure (see [17], p. 75), F(S)
(1 g p < oo) or co(S), S being countable in the latter two cases (see [9], p. 29)
is strictly singular.

Now by using the theorem 2 of [1] (which states that every infinite dimension-
al complemented subspace of c0 is isomorphic to c0) and our theorem 1.3 we
can prove the following theorem.

THEOREM 2.6. Let X be as in theorem 2.2. Then every bounded linear
operator of X into c0 is strictly singular and every bounded linear operator
of c0 into X is improjective.

We can also deduce the above theorem as a corollary of our previous theo-
rem 2.2.

REMARK. The above result as to strictly singular operators is already known
[18] and ours is only a new proof. In fact, Lacey andWhitley have the stronger
result ([18], p. 3):

Every bounded linear operator of c0 into X is compact iff X contains
no copy ofc0, iff every bounded linear operator ofc0 into X (or of X into c0)
is strictly singular.

However, the converse of the statement in (•) is not true, i.e., if every bounded
linear operator of X into c0 is strictly singular, then it does not imply that X
contains no copy of c0. In fact, we have proved (corollary 2.2) that every bounded
linear operator of m into c0 is strictly singular. Clearly m contains c0.

In a letter, H. E. Lacey has pointed out that the converse of the above would
be true if X is taken to be separable (in this case the above result can even be
slightly generalized by taking C(S) in place of c0 where S is compact, metrizable
and dispersed (infinite)). The proof is as follows.

Combining the results of Pelczynski ([6], theorem 1) and ([1] theorem 5),
and Lacey and Morris ([19] theorem 5), it can be proved that if S is compact,
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infinite, metrizable and dsipersed and X any Banach space, then the following
four statements are equivalent:

1) X contains no copy of cQ;
2) Every bounded linear operator T: C(S) -*• X is weakly compact;
3) Every bounded linear operator T: C(S) -* X is compact;
4) Every bounded linear operator T: C(S) ->• X is strictly singular.

Since c0 c^ c = C(S) where S is the one point compactification of the in-
tegers, the above four statements will remain equivalent if we replace C(S) by c0.

If X contains no copy of c0, then every bounded linear operator T: X -* c0

is strictly singular by our theorem 2.5 and every bounder linear operator
T: X -> C(S) is strictly singular by the note following theorem 2.2.

Now if X is separable and every bounded linear operator T: X -* C(S) or
c0 is strictly singular, then X contains no copy of c0. For, if X contains a copy
of c0, then by the result of Sobczyk, c0 is complemented in X, i.e. there is a pro-
jection P of X onto c0. But P and jP: X -* C(S) where j is the injection of c0

into C(S) are not strictly singular. Thus if X is separable and S is as above, then
every bounded linear operator of C(S) (or c0) into X is compact iff X contains
no copy of c0, iff every bounded linear operator of V(S) (or c0) into X (or of
X into C(S) (or (c0)) is strictly singular.

3. Ideals in a category

For the definition of a category, see [20]. The concept of ideals in a category
introduced in this section differs from the known ones, e.g. Isbell [21J, Kelly
[22] and Sulgeifer [23] and [24].

DEFINITION. In a category &, a collection / of morphisms will be said to
form a two-sided ideal or simply an ideal in ^ if cdel and dc'el, whenever
del ,c,c' eff and dc and dc' are defined in <$. An ideal / in ^ is said to be proper
if I ?± V, and I j * <l>.

EXAMPLE OF IDEALS. In a category of Banach spaces and bounded linear
operators, the completely continuous operators, the finite-dimensional operators,
the strictly singular operators, the improjective operators introduced in the
section 1, form ideals. In a category of topological spaces and continuous maps,
the collection of maps f:X-*Y such that f{X) is relatively compact in Y: in
a category of sets and maps the collection of maps having finite images; in a
category of groups and homomorphisms, the collection of homomorphisms
having abelian images; in a category of pairs A c B of sets and morphisms
f: A<= B -> A±c Bt, f(A) <= At, f(B) <r Bx the collection of morphisms / such
that/(B) c Ax, are further examples of ideals.

Zero maps in every category with zero objects trivially form an ideal. Any
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ideal different from the zero ideal is called a non-zero ideal. In what follows,
by 'ideal' we shall mean 'non-zero ideal'.

A proper ideal in a category ^ is said to be largest if it contains every proper
ideal of # and smallest if it is contained in every ideal of # .

Our aim in this section is to study some of the ideals in a category of Banach
or Hilbert spaces. Our morphisms in either case will always be bounded linear
operators (the domain of an operator being the entire space in which the operator
is denned).

DEFINITION. A category J1 of Banach spaces is said to be regular if for every

The proof of the following theorem is easy and can be omitted.

THEOREM 3.1. If I is a proper ideal in a regular category 38 of reflexive
Banach spaces, then I* is also a proper ideal in 38 -where

I* = {Te<M: T*el}

and T* is the conjugate {adjoint) operator of T.

THEOREM 3.2. For an arbitrary ideal I in a category «5f of Hilbert spaces,
I = /*.

PROOF. Let T:X-*X' be an arbitrary bounded linear operator belonging
to / . We consider | T\ - (T*!1)* which is a self-adjoint operator on X. By the
polar decomposition theorem (e.g. see [25], p. 4), there is a partially isometric
operator U: X -* X' such that T = 171 T\ and | T\ = U*T. Hence j T\ el as
Tel. Now T* = |T | l 7*e / as | T | e J . Hence Tel*. Thus /<=/*. Similarly
we can prove that I* c I. Hence 1 = 1*.

Calkin [26] has a similar result for an ideal in a ring of operators on a Hilbert
space.

COROLLARY 3.1. If a bounded linear operator T mapping a Hilbert space
X into a Hilbert space X' has a range of finite dimension n or an infinite di-
mension of cardinality a (^ Xo) > then T* has also a range of the same dimension,
i.e. dim R(T) = dimR(T*) where R(T) is the range of T.

PROOF. Let Jf be the category of all Hilbert spaces. Then TeJf. Suppose
Suppose that R(T) has a dimension n. Now all the bounded linear operators
of dimension :g n form an ideal / in <2f. Since Tel, T* el by virtue of theorem
3.2 and hence dim R(T*) ^ n = dim R(T). Similarly we can prove that
dimR(T) ^ dimR(T*). The rest of corollary 3.1 can be proved by repeating
the above argument and noting that the collection of all bounded linear operators
having ranges not containing closed subspaces of dimension of cardinality ex-
ceeding a forms an ideal in Jf.
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The above corollary is not in general true if X and X' are not Hilbert spaces.
For example, we consider the bounded linear operator T:l^c0 mapping /
onto c0 (such a map always exists by a theorem of Banach and Mazur ([8],
p. 211) already mentioned in example 3). Now T* is an isomorphism of I into m
and T** maps m* onto m. Hence the cardinality of the dimension R(T*) is not
equal to that of R(T**).

DEFINITION. An ideal / in a category 38 of Banach spaces will be said to be
a non-identity ideal if for every infinite dimensional Banach space I e J ,
Ix (identity on X)£I. The largest non-identity ideal is one which contains all
other non-identity ideals.

From the above definition of non-identity ideal, it is obvious that a non-
identity ideal in a category having at least one infinite dimensional Banach space
is always proper.

Throughout the rest of this paper we shall assume that a category 3S always
contains at least one infinite dimensional space.

THEOREM 3.3. In a category 3$ of Banach spaces the largest non-identity
ideal fi always exist.

PROOF. Let {Ix} be the family of all non-identity ideals in 3$. This is not
empty since the zero ideal belongs to it. Then n = [JJ,, is obviously an ideal
in 38. Let X be an arbitrary infinite dimensional Banach space in £8. Then
Ix$(i. For if Ixe(i, then there will be at least one a such that IxeIx which will
contradict that Ix is a.non-identity ideal in 3$. Thus by the definition of the largest
ideal, /i is the largest non-dentity ideal in 3S.

The proof of the following lemma is trivial.

LEMMA 3.1. / / / is a non-identity ideal in a regular category of reflexive
Banach spaces, then I* is also a non-identity ideal in $.

COROLLARY 3.2. In a regular category 3ft of reflexive Banach spaces, if
ju is the largest non-identity ideal, then fi = ft*.

PROOF. From the above lemma 3.1, n*czfi. Next, let Tepi. Then
r*e/i*cju. Hence T= T**efi* as T*efi. Thus fia/i*.

DEFINITION. A category & of Banach spaces is said to be hereditary if for
every Banach space Xe3$, Ye 38, whenever Y is a closed subspace of X. The
categories of all Banach spaces, all reflexive Banach spaces, all Hilbert spaces,
all separable Hilbert spaces, all subprojective spaces (see [4]) are all hereditary.

LEMMA 3.2. / / / is an ideal in a category 28 of Banach spaces and
T: X -y X' is in I, then the restriction t ofTto a closed subspace YofX also el
whenever Ye 0$.
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PROOF. Let i be the injection map of Y into X. Then obviously f = Tie I
as Tel and it

THEOREM 3.4. In a hereditary category 3$ of Banach spaces the collection
of all improjective operators forms the largest non-identity ideal.

PROOF. Let /i be the largest non-identity ideal in 3d (theorem 3.3) and let
P denote the collection of all improjective operators in 3d. Then obviously P c fi.
Now let T: X ->• X' be an arbitrary operator efi. If possible, let T be not im-
projective. Then there is an infinite dimensional closed subspace Y of X such
that the restriction t of T t o Y has a bounded inverse and TY is complemented
in X'. Now since 3d is hereditary, Ye 3d and hence, by lemma 3.2, tefi. Since
TY is complemented in X', there is a continuous projection Q of X' onto TY.
Again since 3$ is hereditary, Qe^. We consider the map QT = T'. T'en
as ten a n d 1" i s obviously one-to-one and onto. Hence IY = T'~iT'en as
T' en- This contradicts that /z is a non-identity ideal. Hence T i s improjective,
i.e. TeP. This completes the proof.

COROLLARY 3.3. In the category 3d of all Banach spaces the ideal P of
improjective operators is the largest non-identity ideal.

The proof is an immediate consequence of the above theorem 3.4 as 3$
is hereditary.

COROLLARY 3.4. In the category K of all reflexive Banach spaces the ideal
P of improjective operators is the largest non-identity ideal with P* = P .

PROOF. Since K is a hereditary category, P is the largest non-identity ideal
in K by theorem 3.4. P* = P follows from corollary 3.2 in view of the fact that
K is a regular category of reflexive Banach spaces.

COROLLARY 3.5. In a hereditary category Q of sub-projective spaces the
ideal S of strictly singular operators is the largest non-identity ideal.

PROOF. P, the ideal of improjective operators of Q is the largest non-identity
ideal in Qby theorem 3.4 as Q is hereditary. Now let T: X-+ X' be an arbitrary
operator belonging to P . By theorem 1.3, TeS as X' is sub-projective. Hence
P c S. This completes the proof.

COROLLARY 3.6. In the category R of all subprojective spaces the ideal
S of all strictly singular operators is the largest non-identity ideal.

PROOF. Since R is a hereditary category of subprojective spaces, the proof
follows from the corollary 3.5.

COROLLARY 3.7. In a hereditary category JC of Hilbert spaces the ideal
C of compact operators is the largest non-identity ideal.
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PROOF. Since ̂ f is a hereditary category, P the ideal of improjective operators
of Jf is the largest non-identity ideal in 3/P. Now by corollary 1.2, P cC.

COROLLARY 3.8. In the category Jf' of all Hilbert spaces the ideal C of
compact operators is the largest non-identity ideal.

PROOF. Since 3%" is a hereditary category of Hilbert spaces, the proof is an
immediate consequence of the above corollary 3.7.

LEMMA 3.3. / / / is an ideal in a category %> and Ixel for X e%, then
for any object X'e<£, Hom(X,X')) <= / and ftom(X',X) c / , where Hom(X,X')
denotes the class of all maps from X to X' in *€.

The proof is trivial.

THEOREM 3.5. In the category U of all separable Hilbert spaces the ideal
C of compact operators is the largest ideal.

PROOF. By corollary 3.7, C is the largest non-identity ideal in U as U
U is a hereditary category. Let / be a proper ideal in U which is not contained
in C. Then / is not a non-identity ideal in U, i.e. there must be an infinite dimen-
sional separable Hilbert space X such that Ixel. Now let X' be an arbitrary
infinite dimensional separable Hilbert space in U. Then there is an isomorphism
T of X onto X'. Now TIX = Tel as Ixel. Hence Ix, = TT~lel as Tel.
Thus by lemma 3.3 H o m ^ I J c / and Hom(X1,X')ci I for arbitrary in-
finite dimensional space X' e U and arbitrary X1eU (1).

Next, let Y be an arbitrary finite dimensional space of dimension n. Now
for any finite integer k, let Mk be a /c-dimensional subspace of X. Then the
restriction Jx' of Ix to Mk is in / by lemma 3.2. Let P be the projection of X onto Mk.
Then IMk = PIx e / and Ixel. Hence for an n-dimensional subspace Mn of
X, IMeI. Now since the dimension of Yis n, there is an isomorphism T' of
Yonto Mnand T =IMT'eI as / M n e / . Hence IY = T ' - 'T ' e / a s T el. Thus
by lemma 3.3, Hom(y, X2) <= / and Hom(X2, Y) <= / for arbitrary finite dimen-
sional space YeU and arbitrary X2eU (2).

Combining (1) and (2) we conclude I — U which contradicts that / is a proper
ideal. This completes the proof.

LEMMA 3.4. Let X be an infinite dimensional Banach space and Tn :X -»X,
n = 1,2,3,••• a sequence of improjective operators. Then | Tn — Ix\\ cannot
tend to zero as n —> oo.

PROOF. If possible, let | Tn — Ix | -* 0 as n -> oo . Let 0 < e < 1. Then we
can find a sufficiently large value m of n such that | Tm — Ix || < e. Now

I Tmx 1 = | [Ix - {Ix- TJ]x! £ [! Ixx || - I (Ix- Tm)x |] ^ (1 - £ ) I x I
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for all x e l . But since (1-e) > 0, Tm is an isomorphism of X into X. Again
since

\\ T * — T *\ — \ T —I II <- p

we can similarly show that Tm* is an isomorphism of X* into X*. Now since
Tm* is an isomorphism of X* into X*, it is well known that Tm is onto. Thus
Tm, being an isomorphism of X onto X, is not an improjective operator which
is a contradiction. This proves the lemma.

THEOREM 3.6. IfX and X' are Banach spaces and Tn:X -> X',n = 1 ,2 ,3 , - -

is a sequence of improjective operators such that | Tn — T | -> 0 as n -* oo

for some bounded linear operator T:X-+X', then T is improjective.

PROOF. Let 38 be the category of all Banach spaces. Let / be the collection
of all bounded linear operators t in 8$ such that for each f el, there is a sequence
tn, n = 1,2,3, ••• of improjective operators such that | tn — f\ -» 0 as n -> co.
Evidently T of our theorem belongs to / . Now since | ATn — At | -> 0 as n -» oo
and | TnB - TB \\ - • 0 as n -> oo whenever \\tn-f\\-+0asn-+co,A,Be3

and ATn and TnB are defined, it is clear that / is an ideal in 98. Because of lemma
3.4 / is a non-identity ideal. Hence J c P b y corollary 3.3 where P is the ideal
of improjective operators of J1. Hence TeP. This completes the proof.

Thus all the improjective operators of a Banach space X into a Banach
space X' form a closed subset of the space B(X,X') of all bounded linear operators
of X into X'. We do not know if the improjective operators form a subspace
of the space B(X, X'). However, to prove this we need only to prove that given
an infinite dimensional Banach space X, Ix cannot be expressed as the sum of
two improjective operators on X. We do not know if the above is true.
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