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Abstract

We address the construction and approximation for feed-forward neural networks
(FNNs) with zonal functions on the unit sphere. The filtered de la Vallée-Poussin
operator and the spherical quadrature formula are used to construct the spherical FNNs.
In particular, the upper and lower bounds of approximation errors by the FNNs are
estimated, where the best polynomial approximation of a spherical function is used as a
measure of approximation error.
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1. Introduction

Feed-forward neural networks (FNNs) with single hidden layer are a class of basic
neural networks, which can be described mathematically as

N(x) =

N∑
i=1

ciφ(ωi · x + θi), (1.1)

where φ : R→ R is the activation function, x = (x1, x2, . . . , xn)> ∈ Rn is the input, ci ∈ R
(i = 1, . . . ,N) are the output weights connecting the N nodes, ωi = (ωi1, ωi2, . . . , ωin) ∈
Rn are the input weights connecting the ith hidden node and the input and θi ∈ R
(i = 1, . . . ,N) are the biases of hidden nodes.

It is well known that FNNs are universal approximators. In many applications in
geophysics and metrology, the data are collected over the surface of the Earth by
satellite or ground stations. Naturally, the FNNs as in (1.1), defined on the sphere,
should be a powerful tool for solving this problem [2, 6, 7, 9]. There are usually
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two kinds of activation functions used to construct FNNs for the approximation of
spherical functions. One is the sigmoidal function [1, 7] and the other is the spherical
radial basis function, also called the zonal function, which can be derived from a real
function φ defined on the interval [−1, 1]. Recently, there have been a lot of results
about approximation by spherical positive-definite radial basis functions, because this
kind of network has the property of interpolation to the target function and has been
proved to be very applicable in data fitting, especially in the case of scattered data
(see [7, 9] and the references therein). Mhaskar et al. [9] considered another kind of
radial basis function, for which none of the Fourier–Legendre coefficients of φ is zero,
and they discussed the approximation of networks derived from φ for functions defined
on the unit sphere. In this paper, we further study the construction and approximation
of this kind of spherical neural network.

This paper first uses the filtered de la Vallée-Poussin operator and a spherical
quadrature formula to construct the explicit FNNs on the unit sphere. Then an upper
bound of error is obtained; especially, a lower bound of approximation error for the
networks is estimated by using a constructive method.

2. Preliminaries
Let S2 = {x ∈ R3 | |x|2 = 1} be the two-dimensional unit sphere embedded in R3,

where | · |2 denotes the Euclidean norm. The surface measure on S2 is denoted by
µ and we assume that it is normalized such that

∫
S2 dµ = 4π. The space L2 = L2(S2)

is the usual Hilbert space of square-integral functions on S2 with the inner product
( f , g) =

∫
S2 f (x)g(x) dµ(x) and the norm ‖ f ‖2 =

√
( f , f ). The space of continuous

functions on S2 is denoted by C(S2), which is a Banach space with respect to the
supremum norm ‖ f ‖∞ = supx∈S2 | f (x)|.

For an integer l ≥ 0, the restriction to S2 of a homogeneous harmonic polynomial
of degree l is called a spherical harmonic of degree l. The class of all spherical
harmonics of degree l is denoted by Hl and the class of all spherical harmonics of
degree l ≤ n is denoted by Πn. The spaces Hl are mutually orthogonal and, obviously,
Πn =

⊕n
l=0 Hl. The dimension of Hn is 2n + 1 and that of Πn is

∑n
l=0(2l + 1) =

(n + 1)2. It is well known that L2(S2) = closure
⊕∞

l=0 Hl. For any l ∈ N, the set
{Yl,k | k = 1, 2, . . . , 2l + 1} denotes a real L2-orthonormal basis of Hl. And, {Yl,k | l =

0, 1, . . . , n, k = 1, 2, . . . , 2l + 1} forms an L2-orthonormal basis of Πn. We have the
well-known addition formula

2l+1∑
k=1

Yl,k(x)Yl,k(y) =
2l + 1

4π
Pl(x · y),

where x · y denotes the usual inner product on R3, and Pl is the Legendre polynomial
with the degree l with Pl(1) = 1. If φ ∈ L1[−1, 1] and Yl ∈ Hl, then we have the
following Funk–Hecke formula [5]:∫

S2
φ(x · y)Yl(y) dµ(y) = 2πYl(x)

∫ 1

−1
φ(t)Pl(t) dt = 2πφ̂(l)Yl(x). (2.1)
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Since the set {Yl,k l = 0, 1, . . . ; k = 1, 2, . . . , 2l + 1} is an orthonormal basis for L2(S2),
any function f ∈ L2 can be expanded into a Fourier–Laplace series with respect to
this orthonormal system in the L2 sense, that is, f (x) =

∑∞
l=0

∑2l+1
k=1 f̂l,kYl,k(x), where the

Fourier coefficients are given by

f̂l,k = ( f ,Yl,k) =

∫
S2

f (x)Yl,k(x) dµ(x).

Set Kl(x, y) = Kl(x · y) =
∑2l+1

k=1 Yl,k(x)Yl,k(y) = {(2l + 1)/4π}Pl(x · y),

h(t) =


1, x ∈ [0, 1),
1 − 2(x − 1)2, x ∈ [1, 3/2),
2(2 − x)2, x ∈ [3/2, 2),
0, x ∈ [2,∞)

and introduce the operator

VL f (x) =

∫
S2

f (y)
2L∑
l=0

h
( l

L

)
Kl(x · y) dµ(y) =

2L∑
l=0

h
( l

L

) 2l+1∑
k=1

f̂l,kYl,k(x). (2.2)

Then VL is a de la Vallée-Poussin operator [10]. As Sloan [10] has pointed out, note
that the sequence of operators V1,V2, . . . ,VL, . . . has the properties: (A) VL reproduces
polynomials with degree up to L, that is, VL p = p for all p ∈ ΠL; (B) the linear operator
sequence V1,V2, . . . is bounded uniformly.

If φ(t) ∈ L1[−1, 1], then φ has the Fourier–Legendre polynomial expansions

∞∑
k=0

φ̂(k)Pk(t), (2.3)

where φ̂(k) =
∫ 1
−1 φ(t)Pk(t) dt. Let Sn(φ) = Sn(φ, t) denote the nth partial sum of

(2.3); then the de la Vallée-Poussin operator of φ is defined as hN(φ, t) = {1/(N +

1)}
∑2N

v=N Sv(φ, t), which has the properties [3]: (C) ĥN(φ)(l) = φ̂(l), l = 0, 1, 2, . . . , N;
(D) if φ(t) ∈ C[−1, 1], then there exists an absolute positive constant C such that
|hN(φ, t) − φ(t)| ≤ CEN(φ), where EN(φ) is the Nth best approximation of φ in C[−1,1].

3. The estimates of approximation errors

From the Funk–Hecke formula (2.1) and the property (C) of operator hN(φ),

Yl,k(x) =
1

2πĥN(φ)(l)

∫
S2

hN(φ, x · y)Yl,k(y) dµ(y) =
1

2πφ̂(l)

∫
S2

hN(φ, x · y)Yl,k(y) dµ(y),
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where l = 0, 1, . . . ,N and φ̂(l) , 0. So, from (2.2), it follows that

V[N/2]( f , x) =

2[N/2]∑
l=0

2l+1∑
k=1

V̂[N/2]( f )(l, k)Yl,k(x)

=
1

2π

2[N/2]∑
l=0

1
φ̂(l)

2l+1∑
k=1

∫
S2

V[N/2]( f , u)Yl,k(u) dµ(u)
∫
S2

hN(φ, x · y)Yl,k(y) dµ(y)

=
1

2π

2[N/2]∑
l=0

1
φ̂(l)

∫
S2

hN(φ, x · y)
(∫
S2

V[N/2]( f , u)
2l+1∑
k=1

Yl,k(u)Yl,k(y) dµ(u)
)

dµ(y)

=
1

8π2

2[N/2]∑
l=0

2l + 1
φ̂(l)

∫
S2

hN(φ, x · y)Yl(V[N/2]( f ), y) dµ(y), (3.1)

where Yl(V[N/2]( f ), y) denotes the projections of V[N/2]( f ) onto Hl and [a] denotes the
largest integer not greater than a.

Applying the quadrature formula [4, Theorem 5.1] to equation (3.1),

V[N/2]( f , x) =
1

8π2

2[N/2]∑
l=0

2l + 1
φ̂(l)

∑
ξ(l)

aξ(l)hN(φ, x · ξ(l))Yl(V[N/2]( f ), ξ(l)),

where ξ(l) denotes some point on the unit sphere, which changes with l, and aξ(l) are
nonnegative numbers. Now we can construct spherical FNNs as

TN( f , x) =
1

8π2

2[N/2]∑
l=0

2l + 1
φ̂(l)

∑
ξ(l)

aξ(l)φ(x · ξ(l))Yl(V[N/2]( f ), ξ(l)).

Then the following theorem, which is related with the upper bound estimate for the
constructed zonal function networks, can be established.

Theorem 3.1. Let φ ∈ C[−1, 1] and the Fourier–Legendre coefficients φ̂(l) , 0,
l = 0, 1, . . . . If f ∈ C(S2), then

|TN( f , x) − f (x)| ≤ C
(
E[N/2]( f ) + EN(φ)(N + 1) max

0≤l≤N

1
|φ̂(l)|

‖ f ‖2
)
.

Proof. Note that

|TN( f , x) − f (x)| ≤ |TN( f , x) − V[N/2]( f , x)| + |V[N/2]( f , x) − f (x)| =: I1 + I2.

On one hand, from [10], it can be obtained that I2 ≤ CE[N/2]( f ). Here and in the
following, C denotes an absolute positive constant, and its value may be different at
different occurrences, even within the same formula.
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On the other hand,

I1 ≤
1

8π2

2[N/2]∑
l=0

2l + 1
|φ̂(l)|

∑
ξ(l)

|aξ(l)||hN(φ, x · ξ(l)) − φ(x · ξ(l))||Yl(V[N/2]( f ), ξ(l))|

≤CEN(φ)
2[N/2]∑

l=0

2l + 1
|φ̂(l)|

∑
ξ(l)

|aξ(l)||Yl(V[N/2]( f ), ξ(l))|

≤CEN(φ)(N + 1) max
0≤l≤N

1
|φ̂(l)|

2[N/2]∑
l=0

∑
ξ(l)

|aξ(l)||Yl(V[N/2]( f ), ξ(l))|.

Using a result of Filbir and Themistoclakis [4, (5.4) in Theorem 5.1] (p =∞) and the
L2 Marcinkiewicz–Zygmund inequality [4, Theorem 4.2],∑

ξ(l)

|aξ(l)||Yl(V[N/2]( f ), ξ(l))| ≤
∑
ξ(l)

|aξ(l)|
∑
ξ(l)

|aξ(l)||Yl(V[N/2]( f ), ξ(l))|2

= 4π
∑
ξ(l)

|aξ(l)||Yl(V[N/2]( f ), ξ(l))|2

≤C
∫
S2

∣∣∣∣∣2l+1∑
k=1

f̂l,kYl,k(x)
∣∣∣∣∣2dµ(x)

= C
2l+1∑
k=1

| f̂l,k|2.

Therefore, I1 ≤ CEN(φ)(N + 1) max0≤l≤N (1/|φ̂(l)|)‖ f ‖2. Hence,

|TN( f , x) − f (x)| ≤ C
(
E[N/2]( f ) + EN(φ)(N + 1) max

0≤l≤N

1
|φ̂(l)|

‖ f ‖2
)
.

This completes the proof of Theorem 3.1. �

Let Em denote a vector set, which consists of all vectors ε = (ε1, ε2, . . . , εm)
(m ∈ N) with coordinates ε1, ε2, . . . , εm = ±1, that is, Em = {ε = (ε1, ε2, . . . , εm) |
εi = ±1, i = 1, 2, . . . ,m}. Let m, s, p, q be natural numbers and πi j (i = 1, 2, . . . ,m;
j = 1, 2, . . . , q) be any algebraic polynomials with real coefficients in the variables
σ = (σ1, σ2, . . . , σp) ∈ Rp and each of degree s. Now we construct polynomials with
variables b = (b1, b2, . . . , bq) ∈ Rq and σ = (σ1, σ2, . . . , σp) ∈ Rp such that πi(b, σ) =∑q

j=1 b jπi j(σ), i = 1, 2, . . . ,m. Also, we construct a polynomial manifold in Rm:

Pm,s,p,q = {π(b, σ) = (π1(b, σ), π2(b, σ), . . . , πm(b, σ)) | (b, σ) ∈ Rq × Rp}.

To prove our main result in this section, we need the following lemma [8,
Theorem 4].

Lemma 3.2. Let m, p, q, s be integers such that

p + q ≤
m
2

(3.2)
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and

p log2 4s + (p + 2) log2 (p + q + 1) + (p + q) log2

( 2em
p + q

)
≤

m
4
. (3.3)

Then there exist a vector ε = (ε̄1, ε̄2, . . . , ε̄m) ∈ Em and a constant C > 0 such that
dist(ε,Pm,s,p,q, l2) ≥ Cm1/2, where

dist(ε,Pm,s,p,q, l2) = inf
π(b,σ)∈Pm,s,p,q

{ m∑
j=1

(ε̄ j − π j(b, σ))2
}1/2

.

Now we also construct two sets of functions:

M = { f ∈ C(S2), ‖ f ‖∞ ≤ 1} (3.4)

and

Fs =

{
h | h(x) =

s∑
i=0

2i+1∑
j=1

ε(i, j)Yi, j(x)
}
,

where {ε(i, j) | i = 0,1, . . . , s; j = 1,2, . . . ,2i + 1} ⊂ E(s+1)2
. Then, for any h, the estimate

[5, inequality (3.1.4)], supx∈S2 |Yi, j(x)| ≤ {(2i + 1)/4π}1/2, implies that

‖h‖∞ ≤
s∑

i=0

2i+1∑
j=1

max
x∈S2
|Yi, j(x)| ≤ (2s + 3)5/2 ≤ C0s5/2,

so that h∗(x) = {1/C0s5/2}h(x) ∈M. In addition, we denote the set Φφ,n as

Φφ,n =

{
Nφ,n | Nφ,n(x) =

n∑
i=1

ciφ(ωi · x), x, ωi ∈ S
2
}

(3.5)

and define the distance of two function sets W from H (with W,H ⊂ C(S2)) by

dist(W,H,C(S2)) = sup
f∈W

dist( f ,H,C(S2)) = sup
f∈W

inf
h∈H
‖ f − h‖∞.

Note that for h ∈ Fs and g ∈ C(S2),

‖h − g‖2∞ ≥
1

4π

∫
S2
|h(x) − g(x)|2 dµ(x)

=
1

4π

∥∥∥∥∥ s∑
i=0

2i+1∑
j=1

ε(i, j)Yi, j(·) − g(·)
∥∥∥∥∥2

2

=
1

4π

∥∥∥∥∥ s∑
i=0

2i+1∑
j=1

ε(i, j)Yi, j(·) −
∞∑

i=0

2i+1∑
j=1

(g,Yi, j)Yi, j(·)
∥∥∥∥∥2

2

≥
1

4π

( s∑
i=0

2i+1∑
j=1

|ε(i, j) − (g,Yi, j)|2 +

∞∑
i=s+1

2i+1∑
j=1

|(g,Yi, j)|2
)

≥
1

4π

s∑
i=0

2i+1∑
j=1

|ε(i, j) − (g,Yi, j)|2.
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By the Funk–Hecke formula (2.1),

(g,Yi, j) =

n∑
k=1

ck(φ((ωk, ·)),Yi, j(·)) =

n∑
k=1

ck

∫
S2
φ(ωk · x)Yi, j(x) dµ(x)

= 2π
n∑

k=1

ck

∫ 1

−1
φ(t)Pi(t) dtYi, j(ωk).

Let σk be orthogonal matrices from the group S O(3) [11] for which ωk = σke with
e = (1, 0, 0) and let

bk,l(φ) =

2πck

∫ 1

−1
φ(t)Pi(t) dt, l = i,

0, l , i.

Then (g,Yi, j) =
∑n

k=1
∑s

l=0 bk,l(φ)Yi, j(σke), from which it follows that

inf
g∈Φφ,n

s∑
i=0

2i+1∑
j=1

|ε(i, j) − (g,Yi, j)|2 = inf
bk,l,σk

s∑
i=0

2i+1∑
j=1

∣∣∣∣∣ε(i, j) −
n∑

k=1

s∑
l=0

bk,l(φ)Yi, j(σke)
∣∣∣∣∣,

where the infimum is calculated over all collections of matricesσ1, σ2, . . . , σn ∈ S O(3)
and b1,0, b1,1, . . . , bn,s. We set p = 9n, q = n(s + 1) and

πi, j(b, σ) =

n∑
k=1

s∑
l=0

bk,l(φ)Yi, j(σke);

then πi, j(b, σ) is a polynomial in the variables b = (b1, b2, . . . , bq) ∈ Rq and σ =

(σ1, σ2, . . . , σp) ∈ Rp, each of degree not larger than s. So,

{dist(Fs,Φφ,n,C(S2))}2 ≥ max
ε(i, j)∈E(s+1)2

inf
b∈Rq,σ∈Rp

s∑
i=0

2i+1∑
j=1

|ε(i, j) − πi, j(b, σ)|2

= max
εk∈Em

inf
b∈Rq,σ∈Rp

m∑
k=1

|εk − πk(b, σ)|.

For given n ∈ N, p = 9n, q = n(s + 1),m = (s + 1)2 and s = 210n + 31, we observe that
p, q,m and s satisfy the conditions (3.2) and (3.3) of Lemma 3.2 (see the Appendix for
details) and thus we get {dist(Fs,Φφ,n,C(S2))}2 ≥ Cs2. Therefore,

{dist(M,Φφ,n,C(S2))}2 ≥
{
dist

( 1
C0s5/2Fs,Φφ,n,C(S2)

)}2
≥ Cs−1/2 ≥ Cn−1/2,

that is, dist(M,Φφ,n,C(S2)) ≥ Cn−1/4, which proves the following main result of this
section.

Theorem 3.3. For a given n ∈ N, for the sets of functionsM and Φφ,n defined as in (3.4)
and (3.5), respectively, we have dist(M,Φφ,n,C(S2)) ≥ Cn−1/4.
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4. Conclusion

Neural networks have become an important method in the research areas of
numerical analysis, machine learning, big data analytics and artificial intelligence. In
this paper, we studied the construction and approximation of spherical networks with
zonal functions, and obtained some theoretical results on the approximate capability of
networks, which may provide support for the design of networks in real applications.
Since the networks in this paper are determined by the input and output weights
besides the activation function, the algorithms for the weights and the optimal choice
of activation function are the issues we intend to study in a future work.

Appendix

We recall that p = 9n, q = n(s + 1),m = (s + 1)2 and n is a given integer. So, we can
choose s such that

m
211 ≤ p + q = n(s + 10) ≤

m
210 . (A.1)

Now we consider the equation 10n + ns = (s2 + 2s + 1)/x satisfied by the variable
s. Clearly, the roots of this equation are

s1,2 =
nx − 2 ±

√
(2 − nx)2 − 4(1 − 10nx)

2
.

Setting x = 2c, s1,2 = nc − 1 ±
√

n2c2 + 18nc. Considering c = 29, 210, respectively,
and recalling the inequalities

s ≥ 29n − 1 + 25
√

28n2 + 9n (A.2)

and

s ≤ 210n − 1 + 25
√

210n2 + 18n, (A.3)

we choose s = 210n + 31. Obviously, s satisfies (A.2) and (A.3). Thus, m =

(210n + 25)2 and we have validated (3.2) for the above m, s, p, q.
From (A.1),

(p + q) log2

( 2em
p + q

)
≤

m
210 log2(23 · 211) ≤

m
26 . (A.4)

We estimate the term (p + 2) log2 (p + q + 1) in (3.3) below. Since

(p + 2) log2 (p + q + 1) ≤ 2p log2 2(p + q) ≤ 2p log2

(
2 ·

m
210

)
= 18n log2

m
29 ,

we prove that 18n log2(2m/29
) ≤ m/16, that is, m/29 ≤ 2m/(16×18n) or m ≤ 29 · 2m/(16×18n).

Setting m = (210n + 25)2, the above inequality becomes

(210n + 25)2 ≤ 29 · 2(210n+25)2/(16×18n). (A.5)
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To obtain (A.5), we only need to prove that 222n2 ≤ 29 · 2(220n2)/(16×18n), that is, 2117n18 ≤

2215n. Since 214n ≥ 117, we have 215n − 117 ≥ 214n. So, it follows that the inequality
n18 ≤ 2214n leads to 2117n18 ≤ 2215n. Therefore,

(p + 2) log2 (p + q + 1) ≤
m
16
. (A.6)

Finally, we estimate p log2 4s. We will prove that

p log2 4s ≤
m
16
. (A.7)

Since p = 9n,m = (210n + 25)2 and s = 210n + 31, inequality (A.7) is equivalent to
4(210n + 31) ≤ 2(210n+25)2/(16×9n) and we only need to get the inequality 4 · 211n ≤
2(220n2)/(16×9n), that is,

2117n9 ≤ 2216n. (A.8)

Similarly, inequality (A.8) holds, which yields (A.7). Hence, from (A.1), (A.4), (A.6)
and (A.7), we observe that the inequalities (3.2) and (3.3) hold for given n and m, s, p,q
in Lemma 3.2.
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