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Improved Range in the Return Times
Theorem

Ciprian Demeter

Abstract. We prove that the Return Times Theorem holds true for pairs of Lp−Lq functions, whenever
1
p

+ 1
q
< 3

2
.

1 Introduction

Let X = (X,Σ, µ, τ ) be a dynamical system, i.e., a Lebesgue space (X,Σ, µ) equipped

with an invertible bimeasurable measure-preserving transformation τ : X → X. We

recall that a complete probability space (X,Σ, µ) is called a Lebesgue space if it is

isomorphic with the ordinary Lebesgue measure space ([0, 1),L,m), where L and m

denote the usual Lebesgue algebra and measure (see [10] for more on this topic). The

system X is called ergodic if A ∈ Σ and µ(A △ τ−1A) = 0 imply µ(A) ∈ {0, 1}.

Bourgain proved the following result [4] .

Theorem 1.1 (Return Times Theorem) For each function f ∈ L∞(X) there is a

universal set X0 ⊆ X with µ(X0) = 1 such that for each second dynamical system

Y = (Y,F, ν, σ), each g ∈ L∞(Y ), and each x ∈ X0, the averages

lim
N→∞

1

N

N∑

n=1

f (τ nx)g(σn y)

converge ν-almost everywhere.

Subsequent proofs were given in [6,18]. If in the above theorem f (or g) is taken to

be a constant function, one recovers the classical Birkhoff pointwise ergodic theorem;

see [3]. However, Theorem 1.1 is much stronger, in that it shows that given f for

almost every x, the sequence wn = ( f (τ nx))n∈N forms a system of universal weights

for the pointwise ergodic theorem.

The difficulty in Theorem 1.1 lies in the fact that the weights provided by f work

for every dynamical system Y = (Y,F, ν, σ). If, on the other hand, the system

Y = (Y,F, ν, σ) is fixed, then the result follows from an approximation argument

combined with applications of Birkhoff ’s theorem to the functions f ⊗ g j in the

product system X × Y, where (g j) j is a dense class of functions in L2(Y ).

A result by Assani, Buczolich, and Mauldin [1] shows that the return times theo-

rem fails when p = q = 1.
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Theorem 1.2 ([1]) Let X = (X,Σ, µ, τ ) be an ergodic dynamical system. There exist

a function f ∈ L1(X) and a subset X0 ⊆ X of full measure with the following property:

for each x0 ∈ X0 and for each ergodic dynamical system Y = (Y,F, ν, σ), there exists

g ∈ L1(Y ) such that the averages

lim
N→∞

1

N

N∑

n=1

f (τ nx0)g(σn y)

diverge for almost every y.

On the other hand, Hölder’s inequality and an elementary density argument show

that Bourgain’s theorem holds for f ∈ Lp(X) and g ∈ Lq(Y ), whenever 1 ≤ p,

q ≤ ∞, and 1
p

+ 1
q
≤ 1; see [18] or [9, §4]. It is an interesting question to understand

the precise range of p and q for which a positive result holds.

Significant progress on this issue appears in [9], where it was proved that the re-

turn times theorem remains valid when q ≥ 2 and p > 1. We build on the approach

from [9] and prove the following result.

Theorem 1.3 Let 1 < p, q ≤ ∞ be such that

(1.1)
1

p
+

1

q
<

3

2
.

For each dynamical system (X,Σ, µ, τ ) and each f ∈ Lp(X) there is a universal set

X0 ⊆ X with µ(X0) = 1 such that for each second dynamical system Y = (Y,F, ν, σ),

each g ∈ Lq(Y ), and each x ∈ X0, the averages

lim
N→∞

1

N

N∑

n=1

f (τ nx)g(σn y)

converge ν-almost everywhere.

Given the result in [9] and the convergence for L∞ functions f and g, an ap-

proximation argument will immediately prove Theorem 1.3, once we establish the

following maximal inequality.

Theorem 1.4 Let 1 < p < ∞ and 1 < q < 2 satisfy (1.1). For each dynamical

system X = (X,Σ, µ, τ ) and each f ∈ Lp(X)

∥∥∥∥ sup
(Y,F,ν,σ)

sup
‖g‖Lq(Y )=1

∥∥∥ sup
N

∣∣∣ 1

N

N∑

n=1

f (τ nx)g(σn y)
∣∣∣
∥∥∥

L
q
y (Y )

∥∥∥∥
L

p
x (X)

.p,q ‖ f ‖Lp(X),

where the first supremum in the inequality above is taken over all dynamical systems

Y = (Y,F, ν, σ).

Here and in the following, we have subscripted some of our Lp norms to clarify

the variable of integration. As explained in [9], this theorem will follow by standard

transfer, from the following real line version.
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710 C. Demeter

Theorem 1.5 Let 1 < p < ∞ and 1 < q < 2 satisfy (1.1). For each f ∈ Lp(R) we

have

∥∥∥∥ sup
‖g‖Lq(R)=1

∥∥∥ sup
k∈Z

1

2k+1

∫ 2k

−2k

| f (x + y)g(z + y)| dy
∥∥∥

L
q
z (R)

∥∥∥∥
L

p
x (R)

.p,q ‖ f ‖Lp(R).

When 1 ≤ p, q ≤ ∞ are in the duality range, that is, when 1
p

+ 1
q
≤ 1, Theo-

rem 1.5 follows immediately from Hölder’s inequality. The case q = 2, 1 < p < ∞
was proved in [9]. The approach from [9] consists of treating averages and singular

integrals in a similar way: one performs Littlewood–Paley decompositions of each

average, combined with Gabor frames expansions of f , to obtain a model sum. This

discretized operator turns out to be a maximal truncation of the Carleson operator

[7]

C f (x, θ) = p.v.

∫

R

f (x + y)ei yθ dy

y
.

The analysis in [9] is then driven by time-frequency techniques combined with an L2

maximal multiplier result of Bourgain. Most of the work in [9] is L2 based, and in

particular, the fact that q = 2 in Theorem 1.5 is heavily exploited.

In this paper, we relax the restriction q = 2, and replace it with (1.1). There

are two key new ingredients. The first is a simplification of the argument from [9],

which consists in treating the Hardy–Littlewood kernel in a way distinct from the

Hilbert kernel. In [9], the two kernels were treated on equal footing, as a byproduct

of a unified approach for regular averages and signed averages. Here we treat each

average as a single Littlewood–Paley piece. This decomposition simplifies the model

sum to a significant extent, and is suited for analysis on spaces other than L2. The

main new ingredient we use here is the Lq version of Bourgain’s result on maximal

multipliers that was proved in [8] in the frequency separated case, and in [17] in the

general case (see Theorem 4.1 below).

It is interesting to remark that the range (1.1) that we establish is the same as the

range where the bilinear Hilbert transform (see [12, 13])

BHT( f , g)(x) = p.v.

∫

R

f (x + y)g(x − y)
dy

y

and the bilinear maximal function (see [11])

BM( f , g)(x) = sup
t>0

∣∣∣ 1

2t

∫ t

−t

f (x + y)g(x − y) dy
∣∣∣

are known to be bounded. This is perhaps not a coincidence, as the methods we use

to prove Theorem 1.5 are related to those used in the proof of the bilinear Hilbert

transform. Moreover, in both cases, the methods fail beyond the 3/2 threshold, es-

sentially because of the same reason. Even the model sum that contains a single scale

is unbounded if 1
p

+ 1
q
≥ 3/2. Another interesting connection is that both the bound-

edness of the bilinear maximal function and the return times theorem fail for pairs of
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L1 functions, and they do so in quite a dramatic way. Even the (smaller) tail operators

T1( f , g)(x) := sup
t>1

∣∣∣ 1

2t

∫ t+1

t

f (x + y)g(x − y) dy
∣∣∣ ,

T2( f , g)(x, y) := sup
n

∣∣∣ 1

n
f (τ nx)g(σn y)

∣∣∣ ,

fail to be bounded for pairs of L1 functions. See [1, 2].

2 Discretization

Let mk : R → R be a sequence of multipliers. For each 1 ≤ q ≤ ∞, the maximal

multiplier norm associated with them is defined as

‖(mk)k∈Z‖M∗

q (R) := sup
‖g‖q=1

∥∥∥∥ sup
k

∣∣∣
∫

mk(θ)ĝ(θ)e2πiθzdθ
∣∣∣
∥∥∥∥

L
q
z (R)

.

Let K : R → [0,∞) be a positive function with K(0) > 0, whose Fourier trans-

form is supported in, say, the interval [−1, 1]. In particular, one can take K to be

the inverse Fourier transform of η ∗ η̃, where η : R → R is supported in [−1/2, 1/2],∫
η 6= 0, and η̃(ξ) = η(−ξ). Of course, Theorem 1.5 will immediately follow if we

can prove the same thing with

sup
‖g‖Lq(R)=1

∥∥∥ sup
k∈Z

1

2k+1

∫ 2k

−2k

| f (x + y)g(z + y)| dy
∥∥∥

L
q
z (R)

replaced by

R f (x) := sup
‖g‖Lq(R)=1

∥∥∥∥ sup
k∈Z

1

2k

∣∣∣
∫

f (x + y)g(z + y)K
( y

2k

)
dy

∣∣∣
∥∥∥∥

L
q
z (R)

.

As remarked earlier, whenever p ≥ q
q−1

, we know that R maps Lp to Lp. By invoking

restricted weak type interpolation, it thus suffices to prove that

(2.1) m{x : R1F(x) > λ} .p,q
|F|

λp
,

for each p < 2, λ ≤ 1 and each finite measure set F ⊂ R.

We next indicate how to discretize the operator R. Rather than going through

the whole procedure in detail, we emphasize its key aspects. The interested reader is

referred to [9, §6] for details. We note however that our approach here is a simplified

version of the decomposition in [9], since we no longer perform Littlewood–Paley

decompositions of a given average.

Let ϕ be a Schwartz function such that ϕ̂ is supported in [0, 1] and such that

∑

l∈Z

∣∣∣ ϕ̂
(
ξ −

l

2

)∣∣∣
2

≡ C.
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712 C. Demeter

If C is chosen appropriately, it will follow that for each F and each k ∈ Z, one has the

following Gabor basis expansion:

∑

m,l∈Z

〈1F, ϕk,m,l/2〉ϕk,m,l/2 = 1F.

Here ϕk,m,l(x) := 2−
k
2 ϕ(2−kx − m)e2πi2−kxl is the L2 normalized wave packet that is

quasi-localized in time frequency in the rectangle [m2k, (m+1)2k]×[l2−k, (l+1)2−k].

Given a scale 2k, one uses this expansion to get

R1F(x)

= sup
‖g‖Lq(R)=1

∥∥∥ sup
k∈Z

∣∣∣
∑

m,l∈Z

〈1F, ϕk,m,l/2〉

∫
ϕk,m,l/2(x + y)g(z + y)2−kK

( y

2k

)
dy

∣∣∣
∥∥∥

L
q
z (R)

=

∥∥∥
( ∑

m,l∈Z

〈1F, ϕk,m,l/2〉F[ϕk,m,l/2(x + ·)2−kK(
·

2k
)](θ)

)
k∈Z

∥∥∥
M∗

q,θ(θ)
.

The key observation is that the function

φk,m,l/2(x, θ) = F

[
ϕk,m,l/2(x + ·)2−kK

( ·

2k

)]
(θ)

has the same decay (in x) as ϕk,m,l/2 and behaves like the function

ϕk,m,l/2(x)1[l2−k,(l+1)2−k](θ).

Note that in reality, the support in θ of φk,m,l/2(x, θ) is slightly larger than

[l2−k, (l + 1)2−k].

More precisely, it is a subset of [l2−k, (l+1)2−k]+[−2−k, 2−k]. This will force upon us

the use of shifted dyadic grids. But, as explained in [9], for simplicity of notation (but

not of the argument), we can really assume that we are working with the standard

dyadic grid.

We will denote by Suniv the collection of all tiles s = Is × ωs with area 1, where

both Is and ωs are dyadic intervals. We will refer to Is, ωs as the time and frequency

components of s.

Definition 2.1 A collection S ⊂ Suniv of tiles will be referred to as convex, if when-

ever s, s ′ ′ ∈ S and s ′ ∈ Suniv, ωs ′ ′ ⊆ ωs ′ ⊆ ωs and Is ⊆ Is ′ ⊆ Is ′ ′ will imply that

s ′ ∈ S.

The fact that we choose to work with convex collections of tiles is of a technical

nature. It will allow us to use some results like Proposition 3.7 which are known to

hold under the convexity assumption.

As explained in [9], (2.1) now follows from the following theorem.
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Theorem 2.2 Let 1 < q < 2. Let S be an arbitrary convex finite collection of tiles.

Consider also two collections, {φs, s ∈ S} and {ϕs, s ∈ S}, of Schwartz functions. We

assume the functions φs : R2 → R satisfy

suppθ(φs(x, θ)) ⊆ ωs for each x,(2.2)

suppξ(Fx(φs(x, θ))(ξ)) ⊆ ωs for each θ,(2.3)

sup
c∈ωs

∥∥∥ ∂n

∂θn

∂m

∂xm
[φs(x, θ)e−2πicx]

∥∥∥
L∞

θ (R)

.n,m,M |Is|
(n−m−1/2)χM

Is
(x) ∀n,m,M ≥ 0,

(2.4)

uniformly in s. We also assume that the functions ϕs : R → R satisfy supp(ϕ̂s) ⊆ ωs

and

(2.5) sup
c∈ωs

∣∣∣ ∂n

∂xn
[ϕs(x)e−2πicx]

∣∣∣ .n,M |Is|
−n− 1

2 χM
Is

(x) ∀n,M ≥ 0,

uniformly in s.

Then the following inequality holds for each measurable F ⊂ R with finite measure,

each 0 < λ ≤ 1, and each 1 < p < 2 such that 1
p

+ 1
q
< 3

2
:

m
{

x :
∥∥∥
( ∑

s∈S
|Is|=2k

〈1F, ϕs〉φs(x, θ)
)

k∈Z

∥∥∥
M∗

q,θ(R)
> λ

}
.

|F|

λp
.

The implicit constant depends only on p, q and on the implicit constants in (2.4) and

(2.5) (in particular, it is independent of S, F and λ).

The rest of the paper is devoted to proving this theorem. We fix the collection S

throughout the rest of the paper.

3 Some Results on Trees

We now recall some facts about trees. We refer the reader to [12, 16, 19] for more

details.

Definition 3.1 (Tile order) For two tiles s and s ′ we write s ≤ s ′ if Is ⊆ Is ′ and

ωs ′ ⊆ ωs.

Definition 3.2 (Trees) A tree with top (IT, ξT), where IT is an arbitrary (not nec-

essarily dyadic) interval and ξT ∈ R, is a convex collection of tiles T ⊆ S such that

Is ⊂ IT and ξT ∈ ωs for each s ∈ T.

We will say that the tree has top tile T ∈ T if s ≤ T for each s ∈ T.

Remark 3.3 Not all trees have a top tile, but, of course, each tree can be (uniquely)

decomposed into a disjoint union of trees with top tiles, such that these top tiles are

pairwise disjoint.
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Note also each tree T with top tile T can be regarded as a tree with top (I, ξ), for

each interval IT ⊆ I and each ξ ∈ ωT . If this is the case, we will adopt the convention

that IT := IT .

It is important to emphasize the following technical point. In [9] there is a clear

distinction between the so-called 1-trees (overlapping) and 2-trees (lacunary) that is

completely ignored in the current argument. This simplification is due to the fact

that we only investigate maximal functions, rather than singular integrals. But in

many ways, the trees in the current setting behave like overlapping trees.

We now recall a few definitions and results from [8]. We will denote by Tm the

Fourier quasi-projection associated with the multiplier m:

Tm f (x) :=

∫
f̂ (ξ)m(ξ)e2πiξx dξ.

We will use the notation

χ̃I(x) =
(

1 +
|x − c(I)|

|I|

)−1

.

Definition 3.4 Let f be an L2 function and let S ′ ⊂ S. We define the size of S ′

relative1 to f as

size(S ′) := sup
s∈S ′

sup
ms

1

|Is|1/2
‖χ̃10

Is
(x)Tms

f (x)‖L2
x
,

where ms ranges over all functions adapted to 10ωs.

Each tree defines a region in the time-frequency plane. A good heuristic for the

size of the tree is to think of it as being comparable to the L∞ norm of the restric-

tion of f to this region. This heuristic is made precise by means of the phase space

projections. We refer the reader to [8, 15] for more details.

We recall two important results regarding the size. The first one is immediate.

Proposition 3.5 For each S ′ ⊂ S and each f ∈ L1(R) we have

size(S ′) . sup
s∈S ′

inf
x∈Is

M f (x),

where the size is understood with respect to f .

The following Bessel type inequality from [14] will be useful in organizing collec-

tions of tiles into trees. See also [8, Lemma 4.11] for a proof.

1The function with respect to which the size is computed will change throughout the paper; however,
it will always be clear from the context
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Proposition 3.6 Let S ′ ⊆ S be a convex collection of tiles and define

∆ := [− log2(size(S ′))],

where the size is understood with respect to some function f ∈ L2(R). Then S ′ can be

written as a disjoint union S ′
=

⋃
n≥∆

Pn, where size(Pn) ≤ 2−n and each Pn is convex

and consists of a family FPn
of pairwise disjoint trees (that is, distinct trees do not share

tiles) T with top tiles T satisfying

∑

T∈FPn

|IT | . 22n‖ f ‖2
2,

with bounds independent of S ′, n, and f .

We next recall an important decomposition from [9]. Let T be a tree with top

(IT, ξT). For each s ∈ T and scale l ≥ 0 we split φs(x, θ) as

φs(x, θ) = φ̃(l)
s,T(x, θ) + φ(l)

s,T(x, θ).

For convenience, we set φ(0)
s,T := φs for each s ∈ T. For l ≥ 1 we define the first piece

to be localized in time:

supp φ̃(l)
s,T(·, θ) ⊆ 2l−1Is, for each θ ∈ R.

For the second piece we need some degree of frequency localization, but obviously

full localization, as in the case of φs is impossible. We will content ourselves with

preserving the mean zero property with respect to the top of the tree. The advantage

of φ(l)
s,T over φs is that it gains extra decay in x. More precisely, we have for each s ∈ T

and each M ≥ 0,

φ(l)
s,T(x, θ)e−2πiξTx has mean zero , θ ∈ R,(3.1)

φ(l)
s,T(x, θ)e−2πiξTx is c(M)2−Ml-adapted to Is for some constant c(M), θ ∈ R,(3.2)

suppφ(l)
s,T(x, ·) ⊂ ωs,2, for each x ∈ R,(3.3)

∣∣∣ d

dθ
φ(l)

s,T(x, θ)
∣∣∣ . 2−Ml|Is|

1
2 χM

Is
(x), uniformly in x, θ ∈ R.(3.4)

We achieve this decomposition by first choosing a smooth function η such that

supp(η) ⊂ [−1/2, 1/2] and η = 1 on [−1/4, 1/4]. We then define

φ̃(l)
s,T(θ; x) := φs(θ; x)Dil∞2lIs

η(x) −
e2πiξTxDil∞2lIs

η(x)∫
R

Dil∞2lIs
η(x)dx

∫

R

φs(θ; x)e−2πiξTxDil∞2lIs
η(x) dx

and

φ(l)
s,T(θ; x) :=

e2πiξTxDil∞2lIs
η(x)∫

R
Dil∞2lIs

η(x)dx

∫

R

φs(θ; x)e−2πiξTxDil∞2lIs
η(x) dx + φs(θ; x)(1 − Dil∞2lIs

η(x)).
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716 C. Demeter

Properties (3.1) through (3.4) are now easy consequences of (2.2), (2.3) and (2.4).

The following result is essentially Proposition 4.9 from [8]. It can also be regarded

as the “overlapping” counterpart of the “lacunary” result in Theorem 9.4 from [9].

Proposition 3.7 For each tree T with top (IT, ξT), and each l,M ≥ 0, r > 2 and

1 < t < ∞,

∥∥∥∥
∥∥∥
∑

s∈T
|Is|=2k

〈 f , ϕs〉φ
(l)
s,T(x, ξT)

∥∥∥
V r

k

∥∥∥∥
Lt

x(R)

. 2−Ml size(T)|IT|
1/t ,

with the implicit constants depending only on r, t and M.

4 A Result on Maximal Multipliers

Consider a finite set Λ = {λ1, . . . , λN} ⊂ R. For each k ∈ Z define Rk to be the

collection of all dyadic intervals of length 2k containing an element from Λ.

For each 1 ≤ r < ∞ and each sequence (xk)k∈Z ∈ C, define the r-variational

norm of (xk)k∈Z to be

‖xk‖V r
k

:= sup
k

|xk| + ‖xk‖Ṽ r
k
,

where

‖xk‖Ṽ r
k

:= sup
M, k0<k1<···<kM

( M∑

m=1

|xkm
− xkm−1

|r
) 1/r

.

For each intervalω ∈ Rk, let mω be a complex valued Schwartz function C-adapted

to ω, that is, supported on ω and satisfying

‖∂αmω‖∞ ≤ C|ω|−α, α ∈ {0, 1, . . . ,M},

for some M large enough, whose value is not important. Define

∆k f (x) :=
∑

ω∈Rk

∫
mω(ξ) f̂ (ξ)e2πiξxdξ,

and also

‖mω‖V r,∗ := max
1≤n≤N

‖{mωk
(λn) : λn ∈ ωk ∈ Rk}‖V r

k
.

The following result was proved in [8] for the case when frequencies in Λ are sepa-

rated. The general case was proved in [17].

Theorem 4.1 Let 1 < q < 2 and r > 2. There exists ǫ(r) → 0 as r → 2, such that

for each f ∈ Lq(R) we have the inequality

‖ sup
k

|∆k f (x)|‖L
q
x(R) . N1/q−1/2+ǫ(r)(C + ‖mω‖V r,∗)‖ f ‖q,

with the implicit constant depending only on r and q.
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5 Pointwise Estimates Outside Exceptional Sets

Let P be a finite convex collection of tiles which can be written as a disjoint union of

trees T with tops T P =
⋃

T∈F
T. To better quantify the contribution coming from

individual tiles, we need to reorganize the collection F in a more suitable way. For

each T ∈ F define its saturation G(T) := {s ∈ P : ωT ⊆ ωs}. For the purpose

of organizing G(T) as a collection of disjoint and better spatially localized trees we

define for each l ≥ 0 and m ∈ Z the tree Tl,m to include all tiles s ∈ G(T) satisfying

the following requirement:

• Is ∩ 2lIT 6= ∅, if m = 0.
• Is ∩ (2lIT + 2lm|IT |) 6= ∅ and Is ∩ (2lIT + 2l(m − 1)|IT |) = ∅, if m ≥ 1.
• Is ∩ (2lIT + 2lm|IT |) 6= ∅ and Is ∩ (2lIT + 2l(m + 1)|IT |) = ∅, if m ≤ −1.

We remark that since |Is| ≤ |IT | for each s ∈ G(T), for a fixed l ≥ 0, each Is can

intersect at most two intervals 2lIT + 2lm|IT | (and they must be adjacent). Obviously,

for each l ≥ 0 the collection consisting of (Tl,m)m∈Z forms a partition of G(T) into

trees. The top of Tl,m is formally assigned to be the pair (ITl,m
, ξT), where ITl,m

is the

interval (2l + 2)IT + 2lm|IT |, while ξT is the frequency component of the top (IT, ξT)

of the tree T.

Denote by Fl,m the collection of all the trees Tl,m. Consider σ, γ > 0, β ≥ 1, r > 2,

and the complex numbers as, s ∈ P.

Theorem 5.1 Let 1 < q < 2. Assume we are in the settings from above and also that

the following additional requirement is satisfied:

sup
s∈P

|as|

|Is|1/2
≤ σ.

Define the exceptional sets

E(1) :=
⋃

l≥0

{
x :

∑

T∈F

12lIT
(x) > β22l

}
,

E(2) :=
⋃

l,m≥0

⋃

T∈F
l,m

{
x :

∥∥∥
∑

s∈T
|Is|=2 j

asφ
(α(l,m))
s,T (x, ξT)

∥∥∥
V r

j (Z)
> γ2−10l(|m| + 1)−2

}
,

where the α(l,m) equals l if m ∈ {−1, 0, 1} and l + [log2 |m|] otherwise.

Then for each 0 < ǫ < 1 (say) and for each x /∈ E(1) ∪ E(2) we have

(5.1)
∥∥∥
( ∑

s∈P

|Is|=2k

asφs(x, θ)
)

k∈Z

∥∥∥
M∗

q,θ(R)
. β1/q−1/r+ǫ(γ + σ),

with the implicit constants depending only on r, ǫ, and q.
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Proof For each l ≥ 0 and each x ∈ R, define inductively

F0,x := {T ∈ F, x ∈ IT},

Fl,x := {T ∈ F, x ∈ 2lIT \ 2l−1IT}, l ≥ 1,

P0,x :=
⋃

T∈F0,x

G(T)

Pl,x :=
⋃

T∈Fl,x

G(T) \
⋃

l ′<l

Pl ′,x, l ≥ 1,

F̃l,x := {T ∈ Fl,x : G(T) \
⋃

l ′<l

Pl ′,x 6= ∅},

Ξx,l := {c(ωT) : T ∈ F̃l,x}.

Note that for each x ∈ R, {Pl,x}l≥0 forms a partition of P. Since x /∈ E(1), it also

follows that #Ξx,l ≤ β22l.

Fix x 6∈ E(1) ∪ E(2). Next, we fix l and try to estimate

∥∥∥
( ∑

s∈Pl,x

|Is|=2k

asφs(x, θ)
)

k∈Z

∥∥∥
M∗

q,θ(R)
.

Note that for each λ ∈ Ξx,l,

(5.2) {s ∈ Pl,x : λ ∈ ωs} = G(T ′) ∩ Pl,x,

for some T ′ ∈ F̃l,x (and, perhaps surprisingly, if λ = c(ωT), T ′ is not necessarily the

tree whose top tile is T). Indeed, let ω be the shortest frequency component of a tile

s from Pl,x such that λ ∈ ω. In other words, ω = ωs. This tile belongs to G(T ′),

for some T ′ ∈ F̃l,x (if there are more such T ′, select any of them). Note that its top

tile T ′ must be in Pl,x (otherwise, it must be that T ′ ∈
⋃

l ′<l Pl ′,x, hence T ′ was

eliminated earlier, and thus the whole G(T) must have been eliminated at the same

stage). Equation (5.2) is now immediate.

For each T ∈ F̃l,x define Tl,m,x := Tl,m ∩ Pl,x, and note that (Tl,m,x)m partition

G(T)∩Pl,x. An important observation is that for each k, the set {s ∈ Tl,m,x : |Is| = 2k}
either equals {s ∈ Tl,m : |Is| = 2k}, or else it is empty. As a consequence,

(5.3)
∥∥∥

∑

s∈Tl,m,x

|Is|=2k

asφ
(α(l,m))
s,T (x, ξT)

∥∥∥
V r

k

≤
∥∥∥
∑

s∈Tl,m

|Is|=2k

asφ
(α(l,m))
s,T (x, ξT)

∥∥∥
V r

k

.

For each dyadic ω denote by

mω(θ) :=
∑

s∈Pl,x :ωs=ω

asφs(x, θ).
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The key observation is that if s ∈ Pl,x and l ≥ 1, then x /∈ 2l−1Is, as can be eas-

ily checked. This together with property (2.4) easily implies that mω is O(2−10lσ)-

adapted to ω. Theorem 4.1 applied to Λ := Ξl,x, and (5.2) imply that

∥∥∥
( ∑

s∈Pl,x

|Is|=2k

asφs(x, θ)
)

k∈Z

∥∥∥
M∗

q,θ(R)

. 24lβ1/q−1/r+ǫ
(

2−10lσ + max
T∈F̃l,x

∥∥∥
∑

s∈G(T)∩Pl,x

|Is|=2k

asφs(x, ξT)
∥∥∥

V r
k

)
.

It remains to show that for each T ∈ F̃l,x,

∥∥∥
∑

s∈G(T)∩Pl,x

|Is|=2k

asφs(x, ξT)
∥∥∥

V r
k

. 2−10lγ.

Another key observation is that if s ∈ Tl,m,x and l ≥ 1, then x /∈ 2α(l,m)−1Is. It follows

that for each l ≥ 0 and each m ∈ Z, φs(x, θ) = φ(α(l,m))
s,T (x, θ). Using this and (5.3) we

get that

∥∥∥
∑

s∈G(T)∩Pl,x

|Is|=2k

asφs(x, ξT)
∥∥∥

V r
k

≤
∑

m

∥∥∥
∑

s∈Tl,m,x

|Is|=2k

asφs(x, ξT)
∥∥∥

V r
k

=

∑

m

∥∥∥
∑

s∈Tl,m,x

|Is|=2k

asφ
(α(m,l))
s,T (x, ξT)

∥∥∥
V r

k

≤
∑

m

∥∥∥
∑

s∈Tl,m

|Is|=2k

asφ
(α(l,m))
s,T (x, ξT)

∥∥∥
V r

k

.

Finally, since x /∈ E(2), the last sum is O(2−10lγ), as desired. Now, (5.1) follows from

the triangle inequality.

6 Proof of Theorem 2.2

For each collection of tiles S ′ ⊆ S define the following operator

VS ′ f (x) :=
∥∥∥
( ∑

s∈S ′

|Is|=2k

〈 f , ϕs〉φs(x, θ)
)

k∈Z

∥∥∥
M∗

q,θ(R)
.

Note that for each S ′ the operator VS ′ is sublinear as a function of f . Also, for

each f and x the mapping S ′ → VS ′ f (x) is sublinear as a function of the tile set S ′.
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Let 1 < p < 2 be fixed such that 1
p

+ 1
q
< 3

2
. We will prove in the following that for

each δ > 0 and each 0 < λ < 1,

m{x : VS1F(x) & λ1−δ} .δ,p,q
|F|

λp
.

Since the range of p is open, this will immediately imply Theorem 2.2. Now fix δ > 0.

Let ǫ > 0 be sufficiently small, depending on δ. Its value will not be specified, but it

will be clear from the argument below that such an ǫ exists. Define Q =
1
q
− 1

2
+ ǫ.

We can arrange that Q < 1 − 1
p

, and define b := 1−pQ
1−2Q

. It will follow that 0 < b < p.

We can also arrange that ǫ + (2 + ǫ)Q < 1.

Define the first exceptional set E := {x : M1F(x) ≥ λb}. Note that

(6.1) |E| .
|F|

λp
.

Split S = S1 ∪ S2 where

S1 := {s ∈ S : Is ∩ Ec 6= ∅}, S2 := {s ∈ S : Is ∩ Ec
= ∅}.

We first argue that

(6.2) m{x ∈ R : VS1
1F(x) & λ1−δ} .

|F|

λp
.

Proposition 3.5 guarantees that size(S1) . λb, where the size is understood here

with respect to the function 1F . Define ∆ := [− log2(size(S1))]. Use the result of

Proposition 3.6 to split S1 as a disjoint union S1 =
⋃

n≥∆
Pn, where size(Pn) ≤ 2−n

and each Pn consists of a family FPn
of trees satisfying

(6.3)
∑

T∈FPn

|IT | . 22n|F|.

For each n ≥ ∆ define σ = σn := 2−n, β = βn := 2(2+ǫ)nλp, γ = γn :=

2−n[(2+ǫ)Q+ǫ]λ1−Qp−3ǫ. Define as := 〈1F, ϕs〉 for each s ∈ Pn and note that the col-

lection Pn together with the coefficients (as)s∈Pn
satisfy the requirements of Theo-

rem 5.1. Let FPn,l,m be the collection of all the trees Tl,m obtained from all the trees

T ∈ FPn
by the procedure described in the beginning of the previous section. Let

r > 2 be any number such that 1
q
− 1

r
< Q. Define the corresponding exceptional

sets

E(1)
n :=

⋃

l≥0

{
x :

∑

T∈FPn

12lIT
(x) > βn22l

}
,

E(2)
n :=

⋃

l,m≥0

⋃

T∈FPn ,l,m

{
x :

∥∥∥ sum s∈T
|Is|<2 j

asφ
(α(l,m))
s,T (x, ξT)

∥∥∥
V r

j (Z)
> γn2−10l(|m| + 1)−2

}
.
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By (6.3) we get |E(1)
n | . 2−nǫλ−p|F|. By Theorem 3.7, for each 1 < s < ∞ we get

|E(2)
n | . γ−s

n σs−2
n |F| . 2−n[−2−s(−1+(2+ǫ)Q+ǫ)]λ−s(1−Qp−3ǫ)|F|.

Define E∗ :=
⋃

n≥∆
(E(1)

n ∪ E(2)
n ). Trivial computations show that since λ ≤ 1 and

2−∆ . λb, we have |E∗| . λ−p|F| (work with a sufficiently large s, depending only

on p, q,Q, ǫ).

For each x /∈ E∗, Theorem 5.1 guarantees that

VS1
1F(x) ≤

∑

n≥∆

VPn
1F(x) .

∑

n≥∆

βQ
n (γn + σn).

The latter sum is easily seen to be O(λ1−δ) if ǫ is sufficiently small. This ends the

proof of (6.2). We next prove that (and note that this is enough, due to (6.1))

m{x /∈ E : VS2
1F(x) & λ1−δ} .

|F|

λp
.

To achieve this, we split S2 :=
⋃

κ>0 S2,κ, where

S2,κ := {s ∈ S2 : 2κ−1Is ∩ Ec
= ∅, 2κIs ∩ Ec 6= ∅},

and we prove that, uniformly over κ > 0,

(6.4) m{x /∈ E : VS2,κ
1F(x) & 2−κλ1−δ} . 2−κ |F|

λp
.

Note further that if s ∈ S2,κ then

|〈1F, ϕs〉|

|Is|1/2
. inf

x∈Is

M1F(x) . 2κ inf
x∈2κIs

M1F(x) . λb2κ,

and thus S2,κ has size O(λb2κ). Note also that S2,κ remains convex. The proof of (6.4)

now follows exactly the same way as the proof of (6.2). The fact that the size of S2,κ is

(potentially) greater than that of S1 by a factor of 2κ is compensated by the fact that

for each x /∈ E and each s ∈ S2,κ, x /∈ 2κ−1Is. It follows that in the definition of the

exceptional sets E(1)
n and E(2)

n for this case, we can can restrict the union to l ≥ κ− 1.

We leave the details to the interested reader.
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