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Abstract

We investigate the number of symmetric matrices of nonnegative integers with zero diagonal such that
each row sum is the same. Equivalently, these are zero-diagonal symmetric contingency tables with
uniform margins, or loop-free regular multigraphs. We determine the asymptotic value of this number as
the size of the matrix tends to infinity, provided the row sum is large enough. We conjecture that one form
of our answer is valid for all row sums. An example appears in Figure 1.

2010 Mathematics subject classification: primary 05A16; secondary 62H17, 15B36.

Keywords and phrases: symmetric matrix, asymptotic enumeration, contingency table, multigraph,
degree sequence.

1. Introduction

Let M(n, `) be the number of n × n symmetric matrices over {0, 1, 2, . . . } with zeros
on the main diagonal and each row summing to `. Our interest is in the asymptotic
value of M(n, `) as n→∞ with ` being a function of n. Alternative descriptions of
the class M(n, `) are: adjacency matrices of loop-free regular multigraphs of order n
and degree `, and zero-diagonal symmetric contingency tables of dimension n with
uniform margins equal to `.

Very little seems to be known about this problem. The asymptotic value of M(n, 3)
was determined by Read in 1958 [12]. According to Bender and Canfield [3], de Bruijn
extended this to M(n, `) for fixed ` but failed to publish it. In any case, [3] generalized
the result to bounded but possibly nonequal row sums. By the method of switchings,
Greenhill and McKay [7] found the asymptotic number of matrices with given small
row sums over a range that includes M(n, `) for ` = o(n1/2).

In this paper we treat the case of large ` and manage to find the asymptotics
whenever ` >Cn/ log n for any C > 1

6 . We will use the multi-dimensional saddle-
point method, which was previously applied successfully to the corresponding {0, 1}
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n = 9

` = 20

λ = `
n−1 = 2.5

0 4 1 3 2 2 3 1 4
4 0 4 1 3 2 2 3 1
1 4 0 7 1 0 2 2 3
3 1 7 0 1 1 3 2 2
2 3 1 1 0 7 1 3 2
2 2 0 1 7 0 4 1 3
3 2 2 3 1 4 0 4 1
1 3 2 2 3 1 4 0 4
4 1 3 2 2 3 1 4 0

F 1. An example of a matrix counted by M(9, 20) = 1955487489759152410696.

problem by McKay and Wormald [11] and to the corresponding nonsymmetric
problem by Canfield and McKay [5]. For the nonsymmetric problem with mixed row
and column sums, see Barvinok and Hartigan [1].

Our theorem is as follows.

T 1.1. Let a and b be positive real numbers such that a + b < 1
2 . Let ` = `(n)

be such that `n is even and λ = `/(n − 1) satisfies

λ ≥
1

3a log n
. (1.1)

Then as n→∞,

M(n, `) =
√

2
(
2πn(1 + λ)−`−n+2λ`+1)−n/2exp

(14λ2 + 14λ − 1
12λ(1 + λ)

+ O(n−b)
)

=

(
λλ

(1 + λ)1+λ

)(n
2)
(
n + ` − 2

`

)n√
2 e3/4 (

1 + O(n−b)
)
.

(1.2)

In Section 2 we express M(n, `) as an integral in n-dimensional complex space and
divide the domain of integration into three parts, then in Section 3 we estimate the
integral in two of the parts. In Section 4 we show that the third part is negligible in
comparison provided ` is bounded by a polynomial in n. We complete the proof for
large ` in Section 5 using the theory of Ehrhart quasipolynomials.

In Section 6 we show that the form of expression (1.2) is motivated by a naïve
probabilistic model. We also note that (1.2) agrees with [7], apart from the error term,
when 1 ≤ ` = o(n1/2), and closely matches many exact values computed as described in
Section 7. This leads us to suspect that (1.2) is true whenever ` > 0, and we conjecture
explicit bounds for M(n, `) in Conjecture 7.1.

Throughout the paper, asymptotic notation like O( f (n)) refers to the passage of n
to ∞. We will also use a modified notation Õ( f (n)). A function g(n) belongs to this
class provided that

g(n) = O( f (n)naε),

for some numerical constant a that might be different at each use of the notation.

https://doi.org/10.1017/S1446788712000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000286


[3] Asymptotic enumeration of symmetric integer matrices with uniform row sums 369

2. An integral for M(n, `)

We now express M(n, `) as an integral in n-dimensional complex space and outline
a plan for estimating it.

We begin with a generating function in n variables x1, . . . , xn,∏
1≤ j<k≤n

(1 − x jxk)−1,

for which the coefficient of x`1
1 · · · x

`n
n is the number of n × n symmetric matrices over

{0, 1, 2, . . . } with zeros on the main diagonal and row sums `1, . . . , `n. In particular,
M(n, `) is the coefficient of x`1 · · · x

`
n.

Applying Cauchy’s integral formula, we have

M(n, `) =
1

(2πi)n

	 ∏
1≤ j<k≤n(1 − x jxk)−1

x`+1
1 · · · x`+1

n
dx1 · · · dxn,

where each variable is integrated along a contour circling the origin once in the
anticlockwise direction. It will suffice to take the contours to be circles; specifically,
we will put x j = reiθ j for each j, where, for reasons that will become clear in Section 3,
we choose

r =

√
λ

1 + λ
.

This gives

M(n, `) =
1

(2π)n

(
λ−λ(1 + λ)1+λ)(n

2) I(n),

where

I(n) =

∫ π

−π

· · ·

∫ π

−π

∏
1≤ j<k≤n

(
1 − λ(ei(θ j+θk) − 1)

)−1

eil
∑n

j=1 θ j
dθ. (2.1)

Let F(θ) be the integrand in (2.1).
The quantity (1 − λ(ei(θ j+θk) − 1))−1, and thus F(θ), has greatest magnitude when

θ j + θk ∈ {0, 2π} for each distinct pair j, k. It is easy to see that these constraints have
only two solutions: θ j = 0 for all j, and θ j = π for all j. We will show that the value of
I(n) comes mostly from the neighbourhoods of these two points; specifically, it comes
from two boxes R0, Rπ ⊆ [−π, π]n defined, for sufficiently small ε, as

R0 = {θ : |θ j| ≤ n−1/2+ε(1 + λ)−1 for all j } and

Rπ = {θ : |θ j + π| ≤ n−1/2+ε(1 + λ)−1 for all j },

where θ j + π is taken mod 2π. Note that the operation θ j 7→ θ j + π for all j, which maps
R0 and Rπ onto each other, preserves F(θ) since n` is even. Also note that R0 ∩ Rπ = ∅.
We denote the region outside of the boxes as

Rc = [−π, π]n \ (R0 ∪ Rπ). (2.2)
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If X ⊆ [−π, π]n, then we let IX(n) =
∫

X
F(θ) dθ. For λ = O(n5) we will evaluate the

integral I(n) defined in (2.1) in the following way:

I(n) = IR0 (n) + IRπ(n) + IRc (n)

= 2IR0 (n) + O(1)
∫
Rc
|F(θ)| dθ

= 2IR′(n) + O(1)
∫
Rc
|F(θ)| dθ

for any R′ with R0 ⊆ R
′ ⊆ [−π, π]n \ Rπ.

3. The main part of the integral

In this section we estimate the value of the integral I(n) in a convenient region R′

that contains R0. We begin by quoting several results required for the calculation.
The following theorem, simplified from [9], estimates the value of a certain multi-

dimensional integral.

T 3.1. Let ε′, ε′′, ε′′′, ε̌ be constants such that 0 < ε′ < ε′′ < ε′′′, and ε̌ > 0. The
following is true if ε′′′ is sufficiently small.

Let Â = Â(n) be a real-valued function such that Â(n) = Ω(n−ε
′

). Let B̂ = B̂(n),
Ĉ = Ĉ(n), Ê = Ê(n), F̂ = F̂(n), Ĝ = Ĝ(n), Ĥ = Ĥ(n), and Î = Î(n) be complex-valued
functions of n such that B̂, Ĉ, Ê, F̂, Ĝ, Ĥ, Î = O(1). Suppose that ε̂(n) satisfies ε′′ ≤
2ε̂(n) ≤ ε′′′ for all n and define

Un =
{
z ⊆ Rn : |z j| ≤ n−1/2+ε̂(n) for 1 ≤ j ≤ n

}
.

Suppose that, for z = (z1, z2, . . . , zn) ∈ Un,

f (z) = exp
(
−Ân

n∑
j=1

z2
j + B̂n

n∑
j=1

z3
j + Ĉ

n∑
j,k=1

z jz
2
k + D̂n−1

n∑
j,k,p=1

z jzkzp

+ Ên
n∑

j=1

z4
j + F̂

n∑
j,k=1

z2
jz

2
k + Ĝn1/2

n∑
j,k=1

z jz
3
k

+ Ĥn−1/2
n∑

j,k,p=1

z jzkz2
p + În−3/2

n∑
j,k,p,q=1

z jzkzpzq + δ(z)
)
,

where δ(z) is continuous and δ(n) = maxz∈Un |δ(z)| = o(1). Then, provided the O(·) term
in the following converges to zero,∫

Un

f (z) dz =

(
π

Ân

)n/2

exp
(
Θ1 + O

(
n−1/2+ε̌ + (n−3/4 + δ(n))Ẑ

))
,
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where

Θ1 =
15B̂2

16Â3
+

3B̂Ĉ

8Â3
+

Ĉ2

16Â3
+

3Ê

4Â2
+

F̂

4Â2
and

Ẑ = exp
(15 Im(B̂)2 + 6 Im(B̂) Im(Ĉ) + Im(Ĉ)2

16Â3

)
.

The following lemma defines a linear transformation, adapted from [11].

L 3.2. Define c and z = (z1, z2, . . . , zn) by

c = 1 −

√
n − 2

2(n − 1)
= 1 − 2−1/2 + O(n−1),

(1 + λ) θ j = z j −
c
n

n∑
k=1

zk (1 ≤ j ≤ n). (3.1)

The transformation θ = T (z) defined by (3.1) has determinant (1 − c)/(1 + λ)n. For
m ≥ 1, define µm =

∑n
j=1 zm

j . Then we have the following translations.

(1 + λ)
n∑

j=1

θ j = (1 − c)µ1,

(1 + λ)2
∑

1≤ j<k≤n

(θ j + θk)2 = (n − 2)µ2,

(1 + λ)3
∑

1≤ j<k≤n

(θ j + θk)3 = (n − 4)µ3 +
(
3(1 − 2c) + 12c/n

)
µ1µ2

+
(
(−6c + 12c2 − 4c3)/n − 4c2(3 − c)/n2)µ3

1,

(1 + λ)4
∑

1≤ j<k≤n

(θ j + θk)4 = (n − 8)µ4 + 3µ2
2 +

(
4(1 − 2c) + 32c/n

)
µ1µ3

−
(
24c(1 − c)/n + 48c2/n2)µ2

1µ2

+
(
8c2(1 − c)(3 − c)/n2 + 8c3(4 − c)/n3)µ4

1.

From Taylor’s theorem with remainder we have the following lemma.

L 3.3. For all real X,(
1 − λ(eiX − 1)

)−1
= exp

(
λiX − 1

2λ(1 + λ)X2 − 1
6 iλ(1 + λ)(1 + 2λ)X3

+ 1
24λ(1 + λ)(1 + 6λ + 6λ2)X4 + O((λ + λ5)X5)

)
.

We now present the main result of this section.

T 3.4. Under the conditions of Theorem 1.1, there is a region R′ such that
R0 ⊆ R

′ ⊆ 3R0 ⊆ [−π, π]n \ Rπ and

IR′(n) =
1
√

2

( 2π
λ(1 + λ)n

)n/2
exp

(14λ2 + 14λ − 1
12λ(λ + 1)

+ O(n−b)
)
.
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P. Consider the transformation θ = T (z) defined by (3.1). Define

Rz = {z : |z j| ≤ 2n−1/2+ε} and R′ = T (Rz).

From (3.1),

|θ j| ≤ y for all j =⇒ |z j| ≤ (1 + λ)(1 − c)−1y for all j,

|z j| ≤ y for all j =⇒ |θ j| ≤ (1 + λ)−1(1 + c)y for all j.

These imply, for n ≥ 2, that T−1R0 ⊆ Rz and

R0 ⊆ R
′ ⊆ 3R0.

From Lemma 3.3 we have, for θ ∈ R′,

F(θ) = exp
(
−A2

∑
1≤ j<k≤n

(θ j + θk)2 − iA3

∑
1≤ j<k≤n

(θ j + θk)3

+ A4

∑
1≤ j<k≤n

(θ j + θk)4 + Õ(n−1/2)
)
,

where

A2 = 1
2λ(1 + λ), A3 = 1

6λ(1 + λ)(1 + 2λ), A4 = 1
24λ(1 + λ)(1 + 6λ + 6λ2).

The absence of a linear term is due to our particular choice of r in Section 2.
Using Lemma 3.2, we perform the transformation θ = T (z). This diagonalizes the

quadratic form in F(θ), and IR′ becomes:

1
√

2

( 2π
λ(1 + λ)n

)n/2∫
Rz

F
(
T (z)

)
dz,

where

F
(
T (z)

)
= exp

(
−A2B2(1 + λ)−2µ2 − iA3B3(1 + λ)−3µ3

− iA3B1,2(1 + λ)−3µ1µ2 − iA3B1,1,1(1 + λ)−3µ3
1

+ A4B4(1 + λ)−4µ4 + A4B2,2(1 + λ)−4µ2
2

+ A4B1,3(1 + λ)−4µ1µ3 − A4B1,1,2(1 + λ)−4µ2
1µ2

+ A4B1,1,1,1(1 + λ)−4µ4
1 + Õ(n−1/2)

)
,

in which

B2 = n − 2,

B3 = n − 4,

B4 = n − 8,

B1,2 = 3(1 − 2c) +
12c
n

= −3 + 3
√

2 + O(n−1),

B1,3 = 4(1 − 2c) +
32c
n

= −4 + 4
√

2 + O(n−1),
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B2,2 = 3,

B1,1,1 =
−6c + 12c2 − 4c3

n
−

4c2(3 − c)
n2

=
2 − 2

√
2

n
+ O(n−2),

B1,1,2 = −
24c(1 − c)

n
+

48c2

n2
= O(n−1),

B1,1,1,1 =
8c2(1 − c)(3 − c)

n2
+

8c3(4 − c)
n3

= O(n−2).

In order to apply Theorem 3.1 we choose ε̂(n) = ε + log 2/log n, ε′ = 1
2 ε, ε′′ = ε,

ε′′′ = 3ε, ε̌ = ε, δ(n) = Õ(n−1/2) and

Â =
A2B2

(1 + λ)2n
= −

λ

2(1 + λ)

(
1 −

2
n

)
,

B̂ = −i
A3B3

(1 + λ)3n
= −i

λ(1 + 2λ)
6(1 + λ)2

+ O(n−1),

Ĉ = −i
A3B1,2

(1 + λ)3
= i

λ(1 + 2λ)(1 −
√

2)
2(1 + λ)2

+ O(n−1),

D̂ = −i
A3B1,1,1n
(1 + λ)3

= −i
λ(1 + 2λ)(1 −

√
2)

3(1 + λ)2
+ O(n−1),

Ê =
A4B4

(1 + λ)4n
=
λ(1 + 6λ + 6λ2)

24(1 + λ)3
+ O(n−1),

F̂ =
A4B2,2

(1 + λ)4
=
λ(1 + 6λ + 6λ2)

8(1 + λ)3
,

Ĝ =
A4B1,3

(1 + λ)4n1/2
= O(n−1/2),

Ĥ =
A4B1,1,2n1/2

(1 + λ)4
= O(n−1/2),

Î =
A4B1,1,1,1n3/2

(1 + λ)4
= O(n−1/2),

Ẑ = exp
(nA2

3(15B2
3 + 6B3B1,2n + B2

1,2n2)

16B3
2A3

2

)
= exp

( (1 + 2λ)2

3λ(1 + λ)
+ Õ(n−1)

)
,

Θ1 =
2λ2 + 2λ − 1
12λ(1 + λ)

+ Õ(n−1).

Theorem 3.4 now follows from Theorem 3.1. �
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4. Concentration of the integral

In the previous section we proved that the contribution to I(n) from the box R′ is

IR′(n) =

(
π

A2n

)n

exp
(
O(1 + λ−1)

)
.

We now consider the contribution to I(n) from the region Rc (defined in (2.2)) and
show, provided λ is not too large, that it is negligible compared to IR′(n).

First we import from [5] some useful lemmas.

L 4.1. The absolute value of the integrand F(θ) of (2.1) is

|F(θ)| =
∏

1≤ j<k≤n

f (θ j + θk),

where
f (z) =

(
1 + 4A2(1 − cos z)

)−1/2
.

Moreover, for all real z with |z| ≤ 1
10 (1 + λ)−1,

0 ≤ f (z) ≤ exp
(
−A2z2 + ( 1

12 A2 + A2
2)z4). (4.1)

L 4.2. Define t = 1
60 (1 + λ)−1 and g(x) = −A2x2 + ( 3

4 A2 + 9A2
2)x4. Then,

uniformly for λ > 0 and K ≥ 1,∫ 2t

−2t
exp

(
Kg(x)

)
dx ≤

√
π/(A2K) exp

(
O(K−1 + (A2K)−1)

)
.

T 4.3. Suppose that the conditions of Theorem 1.1 hold, and in addition that
λ = nO(1). Then ∫

Rc
|F(θ)| dθ = O(n−1)IR′(n).

P. The proof follows a similar pattern to that of [11, Theorem 1]. Define t and
g(z) as in Lemma 4.2.

Define n0, n1, n2, n3, functions of θ, to be the number of indices j such that θ j lies
in [−t, t], (t, π − t), [π − t, π + t], and (−π + t, −t), respectively. Let R′′ be the set of all
θ such that

max
{

n0n2,

(
n1

2

)
,

(
n3

2

)}
≥ n1+ε.

Any θ ∈ R′′ has the property that f (θ j + θk) ≤ f (2t) for at least n1+ε pairs j, k. Since
f (z) ≤ 1 for all z, and the volume of R′′ is less than (2π)n,∫

R′′
|F(θ)| dθ ≤ (2π)n f (2t)n1+ε

.

Applying (4.1) and the assumption that λ = O(nO(1)),∫
R′′
|F(θ)| dθ = O(e−c1n1+ε/2

)IR′(n) (4.2)

for some c1 > 0.
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For θ ∈ Rc \ R′′ we must have n1, n3 = O(n1/2+ε) and either n0 = O(n1/2+ε) or n2 =

O(n1/2+ε). The latter two cases are equivalent, so we will assume that n2 = O(n1/2+ε),
which implies that n0 = n − O(n1/2+ε).

Define S 0, S 1, S 2, functions of θ, as follows.

S 0 = { j : |θ j| ≤ t},

S 1 = { j : t < |θ j| ≤ 2t},

S 2 = { j : |θ j| > 2t}.

Define si = |S i| for each i. Since s0 = n0, we know that s1 + s2 = O(n1/2+ε). Now we
bound |F(θ)| in Rc \ R′′ using

f (θ j + θk) ≤


f (t) ≤ exp

(
−

λ

14400(1 + λ)

)
if j∈S 0, k∈S 2,

exp
(
−A2(θ j + θk)2 + ( 1

12 A2 + A2
2)(θ j + θk)4) if j, k∈S 0,

1 otherwise.

Let I2(s2) be the contribution to I(n) from those θ ∈ Rc \ R′′ with the given value of s2,
and let θ′ denote the vector (θ j) j∈S 0 . The set S 2 can be chosen in at most ns2 ways.
Applying the bounds above, and allowing (2π)s1+s2 for integration over θ j ∈ S 1 ∪ S 2,

I(s2) ≤ ns2 (2π)s1+s2 exp
(
−

s0s2λ

14400(1 + λ)

)
I′(s0), (4.3)

where

I′(s0) =

∫ t

−t
· · ·

∫ t

−t

∏
j,k∈S 0, j<k

f (θ j + θk) dθ′

≤

∫ t

−t
· · ·

∫ t

−t
exp

(
−A2

∑
j,k∈S 0, j<k

(θ j + θk)2

+ ( 1
12 A2 + A2

2)
∑

j,k∈S 0, j<k

(θ j + θk)4
)

dθ′

≤

∫ t

−t
· · ·

∫ t

−t
exp

(
−A2(s0 − 2)

∑
j∈S 0

θ2
j

+ 8(s0 − 1)( 1
12 A2 + A2

2)
∑
j∈S 0

θ4
j

)
dθ′

≤

( ∫ t

−t
exp

(
−(s0 − 2)g(z)

)
dz

)s0

for s0 ≥ 10,

≤

(√
π

A2(s0−2)
exp

(
O(1 + λ−1)n−1))s0

≤

(
π

A2n

)n/2

exp
(
O(n1/2+2ε)

)
.

https://doi.org/10.1017/S1446788712000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000286


376 B. D. McKay and J. C. McLeod [10]

The third line of the above follows from the bounds∑
1≤ j<k≤p

(x j + xk)2 ≥ (p − 2)
p∑

j=1

x2
j and

∑
1≤ j<k≤p

(x j + xk)4 ≤ 8(p − 1)
p∑

j=1

x4
j

valid for all x1, x2, . . . , xp. The fifth line follows from Lemma 4.1, and the last line
follows from s0 = n − O(n1/2+ε). Substituting this bound into (4.3),∑

s2≥1

I2(s2) = O
(
exp(−c2n/ log n)

)
IR′(n) (4.4)

for some c2 > 0.
With the cases of (4.2) and (4.4) excluded, we are left with the problem of bounding

the contribution of θ ∈ [−2t, 2t]n \ R′. Let u = n−1/2+ε/(1 + λ). First note that, by
arguing as above,

|F(θ)| ≤
n∏

j=1

exp
(
(n − 2)g(θ j)

)
for all θ ∈ [−2t, 2t]n. Also note that, by Lemma 4.2,∫ 2t

−2t
exp

(
(n − 2)g(z)

)
dz ≤

√
π/(A2n) exp

(
O(1 + λ−1)n−1). (4.5)

The function g(z) has at most one minimum in [u, 2t], and g(2t) < g(u) for sufficiently
large n, so (∫ −u

−2t
+

∫ 2t

u

)
exp

(
(n − 2)g(z)

)
dz ≤ 4t exp

(
(n − 2)g(u)

)
≤ exp

(
−

λ

4(1 + λ)
nε

)
. (4.6)

Let J1, J2 be the right-hand sides of (4.5) and (4.6), respectively. Then∫
[−2t,2t]n\R

|F(θ)| dθ ≤
n∑

q=1

(
n
q

)
Jq

2 Jn−q
1

= Jn
1
(
(1 + J2/J1)n − 1

)
= O

(
e−c3nε)IR′(n) (4.7)

for some c3 > 0.
The lemma now follows from (4.2), (4.4) and (4.7). �

5. Proof of Theorem 1.1

In the case where λ = nO(1), Theorem 1.1 follows from Theorems 3.4 and 4.3. For
larger λ, the method used in the proof of Theorem 4.3 is insufficient so we need a new
approach.
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Let us assume that we have already proved Theorem 1.1 for λ = O(n5). Now we
want to show that it must be true for larger λ as well. First note that for such large λ
(indeed for λ/n→∞), Theorem 1.1 is equivalent to

M(n, `) =
√

2
(
λ + 1

2

)n(n−3)/2 e(n
2)+7/6

(2πn)n/2

(
1 + O(n2/λ2 + n−b)

)
. (5.1)

Let Pn be the polytope of symmetric n × n real nonnegative matrices with zero
diagonal whose rows sum to 1. Then M(n, `) is the number of integer points in `Pn.
That is, M(n, `) is the Ehrhart quasipolynomial of Pn.

According to [4, Theorem 8.2.6], the vertices of Pn are the adjacency matrices of
graphs whose components are either isolated edges of weight 1 or odd cycles with
edges of weight 1

2 . That is, the coordinates of the vertices are multiples of 1
2 . By a

result of Ehrhart (see [2, Example 3.25]), there is a polynomial fn(z) with nonnegative
integer coefficients such that ∑

`≤0

M(n, `)z` =
fn(z)

(1 − z2)d+1
, (5.2)

where d is the dimension of Pn. By [13], d = n(n−3)/2.
By applying the binomial expansion to (1 − z2)−d−1 in (5.2), we find that M(n, `)

is a polynomial in ` for even ` and a possibly different polynomial in ` for odd `.
Explicitly, there are nonnegative integers h0, . . . , hd (dependent on n and the parity of
`) such that

M(n, `) =

d∑
i=0

hd−i

(
` + i

d

)
.

Arguing as in [5], we infer that there is a function α(n, `) such that

M(n, `) =

(
`

d

)( d∑
i=0

hi

)(
1 + α(n, `)/`

)
(5.3)

α(n, `) ≥ 0 for ` ≥ d (5.4)

α(n, ` + 2) ≤ α(n, `) for ` ≥ d. (5.5)

Equations (5.1) and (5.3) both apply for ` = Θ(n5), so for m ∈ {n5, n5 + 1},

M(n, 3m)
M(n, m)

= 3d
1 + 1

3α(n, 3m)/m5

1 + α(n, m)/m5

(
1 + O(n−1)

)
= 3d(1 + O(n−b)

)
,

where the first estimate comes from (5.3) and the second comes from (5.1). Comparing
these two estimates, and noting from (5.4) and (5.5) that 0 ≤ α(n, 3m) ≤ α(n, m), we
conclude that α(n, m) = O(n5−b). By (5.5), this implies that α(n, `) = O(n5−b) for all
` ≥ n5. Now we can see from (5.3) that

M(n, `) = M(n, m)
M(n, `)
M(n, m)

= M(n, m)
(
`

m

)d(
1 + O(n−b)

)
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and apply (5.1) to M(n, m). This shows that (5.1) holds for all ` ≥ n5. The proof of
Theorem 1.1 is now complete.

6. Naı̈ve thinking

In this section we consider a ‘naïve’ random matrix model and show how it
motivates our estimate for M(n, λ).

Define Gλ to be the geometric distribution with mean λ. That is, for a random
variable X distributed according to Gλ,

Prob(X = j) =
1

1 + λ

(
λ

1 + λ

) j

(6.1)

for j ≥ 0.
Define S = S(n, `) to be the probability space of n × n nonnegative symmetric

integer matrices with zero diagonal, where each element of the upper triangle is
independently chosen from Gλ. Define events on S:

E j : row j has sum `,

Eall :
n⋂

j=1

E j,

E0 : the whole matrix has sum n`.

Note that Eall ⊆ E0. Also note that each matrix in E0 has the same probability, namely

P0 =

( 1
1 + λ

)(n
2)( λ

1 + λ

)n`/2
.

(Proof: Apply (6.1) to each entry in the upper triangle and use the assumed
independence of the entries there. The result is independent of the actual matrix
entries.) Therefore,

M(n, `) =
Prob(Eall)

P0
.

Now make a naïve assumption that the events E j are independent. By symmetry,
Prob(E j) is independent of j, so we get a naïve estimate of M(n, `):

Mnaïve(n, `) =
Prob(E1)n

P0
. (6.2)

Now consider Prob(E1). The number of possible first rows is(
n + ` − 2

`

)
.
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(This is the number of ways of writing ` as the sum of n − 1 nonnegative integers.) In
space S, each such first row has probability( 1

1 + λ

)n−1( λ

1 + λ

)`
.

Therefore,

Prob(E1) =

(
n + ` − 2

`

)( 1
1 + λ

)n−1( λ

1 + λ

)`
.

Substituting this value into (6.2),

Mnaïve(n, `) =

(
λλ

(1 + λ)1+λ

)(n
2)
(
n + ` − 2

`

)n

.

Therefore, formula (1.2) in Theorem 1.1 can be written

M(n, `) = Mnaïve(n, `)
√

2 exp
( 3

4 + O(n−b)
)
.

Note that
√

2 e3/4 ≈ 2.9939.

7. Exact values

As noted in Section 5, M(n, `) is the number of integer points in `Pn, where Pn

is the polytope defined in that section. Lattice point enumeration techniques such as
the algorithm in [6] therefore allow the exact computation of M(n, `) for small n.
In practice this is feasible for n ≤ 9 or with difficulty n ≤ 10, almost irrespective
of `.

By interpolating the computed values, we obtain the Ehrhart quasipolynomial for
small n. Recall that M(n, `) is a polynomial Me(n, `) for even ` and a polynomial
Mo(n, `) for odd `. We have Mo(n, `) = 0 if n is odd, and the following.

Me(3, `) = 1

Me(4, `) = Mo(4, `) = 1
2 `

2 + 3
2 ` + 1

Me(5, `) = 5
256 `

5 + 25
128 `

4 + 155
192 `

3 + 55
32 `

2 + 47
24 ` + 1

Me(6, `) = 19
120960 `

9 + 19
5376 `

8 + 143
4032 `

7 + 5
24 `

6 + 4567
5760 `

5 + 785
384 `

4 + 10919
3024 `3

+ 955
224 `

2 + 857
280 ` + 1

Mo(6, `) = Me(6, `) − 5
256

Me(7, `) = 533
3633315840 `

14 + 533
86507520 `

13 + 279413
2335703040 `

12 + 9233
6488064 `

11

+ 3076459
265420800 `

10 + 151339
2211840 `

9 + 4679131
15482880 `

8 + 9367
9216 `

7 + 43502617
16588800 `

6

+ 478009
92160 `5 + 71076539

9123840 `4 + 661673
76032 `3 + 1712147

246400 `2 + 9649
2640 ` + 1
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Me(8, `) = 70241
5088422500761600 `

20 + 70241
72691750010880 `

19 + 18703309
585359881666560 `

18

+ 12330581
18582853386240 `

17 + 428460619
44144787456000 `

16 + 33009749
310542336000 `

15

+ 90842880341
100429391462400 `

14 + 5580172163
910924185600 `

13 + 1110632463421
33108590592000 `

12

+ 4381892419
29196288000 `

11 + 304644862903
551809843200 `

10 + 22001378209
13138329600 `

9

+ 262880239845943
62768369664000 `8 + 12867890603299

1494484992000 `7 + 3890196991231
269007298560 `6

+ 9530810537
485222400 `5 + 76295531167

3592512000 `4 + 1100694281
61776000 `3

+ 50787821048
4583103525 `2 + 135038369

29099070 ` + 1

Mo(8, `) = Me(8, `) − 35
1048576 `

5 − 1225
2097152 `

4 − 13685
3145728 `

3 − 17885
1048576 `

2

− 233261
6291456 ` −

78057
2097152

Me(9, `) = 863924282670630091
7732694804887618394297204736000000 `

27

+ 863924282670630091
71599025971181651799048192000000 `

26

+ 10311705659720524879
16522852147195765799780352000000 `

25

+ 44159888290330963
2145824954181268285685760000 `

24 + 44603828594214317123
91793623039976476665446400000 `

23

+ 4134171051301720697
472621628924364010291200000 `

22 + 2139768518991928638127
17143275449165567282380800000 `

21

+ 2365877475528196499
1632692899920530217369600 `

20 + 167364777037473990001
12005094852356839833600000 `

19

+ 43210221809651966023
383621452048996761600000 `

18 + 7598908879241416557943
9846283935924250214400000 `

17

+ 78473046995519797477
17375795181042794496000 `

16 + 2690417378247820105229333
118589802110617072435200000 `

15

+ 12598164604216578106061
128343941678157004800000 `

14 + 39802237244716247322233
108598719881517465600000 `

13

+ 183315648883655207683
155141028402167808000 `

12 + 11492891877126624163867
3496549693154918400000 `11

+ 20646561932994651460327
2622412269866188800000 `10 + 12699041960623534314853039

784756871757456998400000 `9

+ 3536936635157608410019
124564582818643968000 `8 + 602776622158017864239297

14273025114636288000000 `7

+ 8959111748174759872739
169916965650432000000 `6 + 62149609860286754066479

1139859644571648000000 `5

+ 416558573311485749
9089789829120000 `4 + 7739053944610908107

254233401117696000 `3

+ 1309315468639693
85753329742080 `2 + 94565099767

17847429600 ` + 1.

The same method would yield M(10, `) with a plausible but large amount of
computation. For completeness, we also give the Ehrhart series Ln(x) =

∑
`≥0 M(n, `)x`

for n ≤ 9.

(1 − x2)L3(x) = 1

(1 − x)3L4(x) = 1

(1 − x2)6L5(x) = (x8 + 1) + 16 (x6 + x2) + 41 x4

(1 − x)10(1 + x)L6(x) = (x6 + 1) + 6 (x5 + x) + 30 (x4 + x2) + 40 x3

https://doi.org/10.1017/S1446788712000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000286


[15] Asymptotic enumeration of symmetric integer matrices with uniform row sums 381

(1 − x2)15L7(x) = (x24 + 1) + 807 (x22 + x2) + 81483 (x20 + x4)

+ 1906342 (x18 + x6) + 15277449 (x16 + x8)

+ 50349627 (x14 + x10) + 74301542 x12

(1 − x)21(1 + x)6L8(x) = (x20 + 1) + 90 (x19 + x) + 4726 (x18 + x2)

+ 107050 (x17 + x3) + 1261121 (x16 + x4)

+ 8761248 (x15 + x5) + 39187016 (x14 + x6)

+ 119662536 (x13 + x7) + 259344246 (x12 + x8)

+ 408811676 (x11 + x9) + 475095180 x10

(1 − x2)28L9(x) = (x48 + 1) + 52524 (x46 + x2)

+ 169345602 (x44 + x4)

+ 78276428212 (x42 + x6)

+ 10217460516057 (x40 + x8)

+ 527531262668208 (x38 + x10)

+ 13016462628712186 (x36 + x12)

+ 172410423955058664 (x34 + x14)

+ 1322251960254170931 (x32 + x16)

+ 6176715510750440488 (x30 + x18)

+ 18182086106689738044 (x28 + x20)

+ 34470475812807166836 (x26 + x22)

+ 42606701216240491693 x24.

For larger n, Pn has too many vertices for this method to be useful, but we can use
the technique of [5] and [8]. Define f (z) = 1 + z + z2 + · · · + z`. Then M(n, `) is the
coefficient of x`1x`2 · · · x

`
nyn`/2 in

∏
1≤ j<k≤n f (x jxky).

If q is any integer greater than max{n`/2, n2(n − 1)/2 − n`/2}, then M(n, `) is the
coefficient of the only term in

y−n`/2x1 · · · xn

∏
1≤ j<k≤n

f (x jxky)

in which each x j appears with a power that is a multiple of ` + 1 and y appears with
a power that is a multiple of q. Now let p be a prime number for which p − 1 is a
multiple of both ` + 1 and q. Let α and β be a primitive (` + 1)th root and a primitive
qth root of unity in Zp, respectively. Then, modulo p,

M(n, `) =
n!

q(` + 1)n

×
∑

r0+···+rd=n

d∏
i=0

αiri

ri!

q−1∑
k=0

β−kn`/2
d∏

i=0

f (α2iβk)(
ri
2)

∏
0≤i< j≤d

f (αi+ jβk)rir j ,
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where the first summation is over all nonnegative integers r0, r1, . . . , rd which sum
to n. Using sufficiently many primes p, we can extract the exact value of M(n, `)
using the Chinese Remainder Theorem. As an example of a value computed using this
method,

M(19, 10) = 613329062511931789477677176839174642138032757885191693120,

which is about 2% higher than the estimate of Theorem 1.1.
Machine-readable versions of these exact formulas, along with many other exact

values of M(n, `), can be found in [10].
After observing a large number of exact values, we have noted that (1.2) appears to

have an accuracy much wider than we can prove. We can even guess extra terms. We
express our observations in the following conjecture.

C 7.1. For even n`, define ∆(n, `) by

M(n, `) = Mnaïve(n, `)
√

2 exp
(3
4

+
3` + 1

12`(n − 1)
+

∆(n, `)
n(n − 1)

)
.

Then |∆(n, `)| < 1 for n ≥ 5, ` ≥ 1.

8. The minimum entry

In this section we note a simple corollary of Theorem 1.1. Choose X uniformly at
random from the setM(n, `) of zero-diagonal symmetric nonnegative integer matrices
of order n and row sums `. Let Xmin be the least off-diagonal entry of X. If
Xmin ≥ k for integer k ≥ 0, we can subtract k from each entry to make a matrix of
row sums ` − (n − 1)k. This elementary observation shows that

Prob(Xmin ≥ k) =
M(n, ` − (n − 1)k)

M(n, `)
.

Theorem 1.1 can thus be used to estimate this probability whenever it applies to the
quantities on the right. We can provide some information even in other cases; note
that (1.1) is not required for the following.

T 8.1. Let k = k(n) ≥ 0 and ` = `(n) ≥ 0 with n` even. Define a = kn3/`. Then,
as n→∞,

Prob(Xmin ≥ k)

→ 0 if a→∞,

∼ e−a/2 if a = O(1).

P. We begin with a case incompletely covered by Theorem 1.1, namely ` = o(n3).
DefineM0,M1 to be the sets of those matrices inM(n, `) with no off-diagonal zeros,
and exactly two or four off-diagonal zeros, respectively. Given X ∈M0, choose distinct
q, r, s, t and replace aqr, ars, ast, atq (and arq, asr, ats, aqt consistently) by aqr − δ, ars +

δ, ast − δ, atq + δ, where δ = min{aqr, ast}. This can be done in Θ(n4) ways and creates
an element ofM1. Alternatively, if X ∈M1, choose distinct q, r, s, t such that either aqr

https://doi.org/10.1017/S1446788712000286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000286


[17] Asymptotic enumeration of symmetric integer matrices with uniform row sums 383

or ast or both are 0. Then replace aqr, ars, ast, atq (and arq, asr, ats, aqt consistently)
by aqr + δ, ars − δ, ast + δ, atq − δ, where 1 ≤ δ ≤min{ars, atq} − 1. If this produces an
element ofM0, it is the inverse of the previous operation. Given a choice of aqr = 0,
s and δ can be chosen in at most ` ways since

∑
s ars = `, then t can be chosen in at

most n ways. Similarly for qst = 0. Therefore, this operation can be done in at most
O(`n) ways. It follows that either |M0| = 0 or |M0| = o(|M1|), which completes this
case since Prob(Xmin ≥ k) ≤ Prob(Xmin ≥ 1) for k ≥ 1.

In case ` = Θ(n3), define k′ = min{k, b`/(2n)c} and estimate the value of
Prob(Xmin ≥ k′) using (5.1). This gives the desired result when k = k′. For k > k′ the
value obtained tends to 0, so again the desired result follows by monotonicity with
respect to k. �

9. Concluding remarks

In this paper we have begun the asymptotic enumeration of dense symmetric
nonnegative integer matrices with given row sums, by considering the special case
of uniform row sums and zero diagonal. Further cases, which can be approached by
the same method, are to allow the row sums to vary, and to allow diagonals other
than zero. The structure of random matrices in the class can also be investigated by
specifying some forced matrix entries. We hope to return to these problems in the
future.
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