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Effect of random roughness on Stokes flow
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Microscopic irregularity (roughness) of bounding surfaces affects macroscopic dynamics
of fluid flows. Its effect on bulk flow is usually quantified empirically by means of a
roughness coefficient. A new approach, which treats rough surfaces (e.g. parallel plates)
as random fields whose statistical properties can be inferred from measurements, is
presented. The mapping of a random flow domain onto its deterministic counterpart,
and the subsequent stochastic averaging of the transformed Stokes equations, yield
expressions for the effective viscosity and roughness coefficient in terms of the statistical
characteristics of the irregular geometry of the boundaries. The analytical nature of
the solutions allows one to handle surface roughness characterized by short correlation
lengths, a challenging feature for numerical stochastic simulations.
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1. Introduction

Microscopically irregular geometry of bounding walls affects a plethora of physical,
biological and chemical phenomena. For example, rough surfaces of rock fractures impact
both the extraction of natural resources and the subsurface migration of contaminants (e.g.
Lenci et al. 2022; Viswanathan et al. 2022). Irregular surfaces play an important role in
the design of miniaturized electro-mechanical devices (e.g. Nawaz et al. 2020; Navajas
et al. 2023) and computer technologies (Murthy, Duwensee & Talke 2010; Li et al. 2022).
Irregularity of a vessel’s cross-section lined with endothelial tissue can greatly alter blood
flow (Park, Intaglietta & Tartakovsky 2012; Yi et al. 2022) and biochemistry (Hightower
et al. 2011; Park, Intaglietta & Tartakovsky 2015). Surface irregularity of coronary arteries
is linked to the onset of atherosclerosis (Owen et al. 2020; Yamane et al. 2023), etc.

In these and other applications, the irregular geometry of bounding surfaces manifests
itself at length scales ranging from nanometres (e.g. in electronic and biomedical devices)
to millimetres (e.g. in geologic media). It is sometimes argued that in a channel of large
aperture, i.e. when the relative height of the non-smooth surface does not exceed 5 %

† Email address for correspondence: severino@unina.it

© The Author(s), 2024. Published by Cambridge University Press 1000 R1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
44

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:severino@unina.it
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.1044&domain=pdf
https://doi.org/10.1017/jfm.2024.1044


G. Severino

of aperture, the impact of surface roughness on laminar flow can be neglected (e.g.
Moody 1944; Webb & Kim 1994). Yet, in many cases of practical significance (see the
references above, among many others), the surface geometry is of paramount importance
and correlation between the surface texture and the flow variables is well established (e.g.
Brown 1987, 1989; Kandlikar et al. 2005). In particular, wall geometry directly affects
the friction factor (Wang, Yap & Mujumdar 2005) and can increase the Poiseuille number
by the factor of three relative to a smooth wall (Kandlikar et al. 2005, and references
therein).

Challenges in fluid-flow simulations in the presence of boundaries with an irregular
topology start with a proper representation of surface texture. One approach is to represent
a solid surface by canonical geometrical forms, such as sinusoidal or sawtooth shapes (e.g.
Plouraboué, Geoffroy & Prat 2004; Tavakol et al. 2017; Dewangan 2024) or fractals (Chen
et al. 2009). Such representations work well in some settings, but are often too simplistic
to mimic the disordered structures (Brown, Stockman & Reeves 1995; Wang et al. 2005;
Gamrat et al. 2008; Herwig, Gloss & Wenterodt 2008; Maggiolo, Manes & Marion 2013;
Severino et al. 2023). An alternative approach is to treat a rough surface as a random field,
whose statistics are either prescribed or inferred from observations (Bahrami, Yovanovich
& Culham 2006a,b; Yamane et al. 2023).

This approach, which we adopt in this study because of its generality, gives rise
to a class of problems involving partial differential equations on random domains
(Xiu & Tartakovsky 2006). Their numerical treatment typically involves a finite-term
representation of random surfaces via, for example, truncated Karhunen–Loève (KL)
expansions or Fourier series (Tartakovsky & Xiu 2006; Park et al. 2012; Zayernouri et al.
2013; Kwon & Tartakovsky 2020; Zheng et al. 2023). Since the convergence rate of KL
expansions deteriorates as the correlation length of the underling random field decreases,
such numerical solutions become computationally intractable when dealing with a surface
exhibiting short correlation lengths if not white noise (zero correlation length).

While posing a computational challenge that is often referred to as ‘the curse of
dimensionality’, short correlation lengths (accompanied by small standard deviations
from a flat surface) are well suited for perturbation-based strategies of stochastic
homogenization. We use this approach to derive analytical expressions for the effective
viscosity and friction factor for Stokes flow between two parallel plates whose irregular
geometry is treated within a stochastic framework that regards them as random fields.
Section 2 contains a problem formulation. The solution method (§ 3) consists of two parts:
a stochastic mapping of the random flow domain on its deterministic canonical counterpart
(§ 3.1), and averaging of the transformed flow equations (§ 3.2). Results are discussed in
§ 4 followed by concluding remarks.

2. Problem formulation

We consider steady, isothermal and fully developed Stokes flow of an incompressible fluid
with viscosity μ and density ρ. The flow takes place in an infinite horizontal channel D
bounded at the top and bottom by rough (orange face in figure 1) impermeable surfaces
ztop ≡ ztop(xr) and zbot ≡ zbot(xr), i.e. D = {x ≡ (x1, x2, x3) : xr ≡ (x1, x2) ∈ R

2, zbot ≤
x3 ≤ ztop}. The flow is driven by an externally imposed pressure gradient ∂p/∂x1 in the
x1 direction. Fluid velocity v(x) = (v1, v2, v3)

� and pressure p(x) satisfy momentum and
continuity equations

μ∇2v = ∇p,

∇ · v = 0,

}
x ∈ D, (2.1)
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b

(i) (ii)
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zbot ≤ x3 ≤ ztop

x3

x1

Figure 1. Frontal (i) and longitudinal (ii) views of two parallel plates (aperture b) hosting the flow. The domain
is such that (x1, x2) ∈ R

2, whereas the vertical coordinate x3 ∈ [zbot, ztop] is bounded between the top and
bottom irregular surfaces (orange face).

respectively. If the channel walls were smooth, the aperture would be constant b, and (2.1)
would give rise to the parabolic velocity profile (Hagen–Poiseuille law). Instead, the upper
and lower surfaces exhibit microscopic spatial fluctuations (figure 1), which are modelled
as random fields, i.e. ztop ≡ ztop(xr;ω) and zbot ≡ zbot(xr;ω), where ω is a realization
from the sample space.

The top ztop(xr;ω) and the bottom zbot(xr;ω) are assumed to be mutually independent
second-order stationary random fields with, in particular, standard deviations, σzbot and
σztop . In keeping with the physical meaning of wall roughness, we take σzbot , σztop � b, so
that the two surfaces do not overlap at any point xr with probability P = 1. Since P{ztop −
zbot > 0} = 1 and P{ztop > 0} = 1, we treat the random fields Y(xr;ω) = − ln(ztop − zbot)
and ζ(xr;ω) = − ln ztop as multivariate Gaussian. Finally, both ztop(xr;ω) and zbot(xr;ω)

are assumed to be mean-square differentiable with respect to xi (i = 1, 2) on their domains
of definition (Yaglom 1987). The accuracy and robustness of such an assumption (that
has been adopted in other works on similar topics, see e.g. Tartakovsky & Xiu 2006;
Zayernouri et al. 2013) have been assessed by Wang et al. (2005). However, it is worth
noting that the present study allows also dealing with other models (not necessarily
Gaussian) for the random fields Y and ζ .

We recast the problem in a dimensionless form by rescaling the coordinates and flow
variables,

x̂ = x
b
, v̂ = μv

ρgb2 , ĥ = p
ρgb

, ẑtop = ztop

b
, ẑbot = zbot

b
, (2.2a–e)

where g is the gravitational acceleration constant. Then, (2.1) is replaced with

∇̂2v̂ = ∇̂ĥ,

∇̂ · v̂ = 0,

}
x̂ ∈ D̂(ω). (2.3)

Randomness of D̂ renders v̂ ≡ (v̂1, v̂2, v̂3)� and ∇̂ĥ random, as well. In what follows,
we drop the hats ·̂ to simplify the notation. Our goal is to derive an ensemble-averaged
solution to this problem.

3. Stochastic averaging of flow problem

Monte Carlo simulations, a go-to technique used to solve problems with random
coefficients, are ill-suited for solving (2.3). That is because each random realization of
the flow domain D(ω) requires a fine (and non-uniform) mesh to resolve small-scale
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geometry of the surface, and the between-realizations variability of the nodes in such
meshes complicates the sample averaging of model outputs. Instead, we pursue a two-stage
strategy detailed below.

3.1. Random domain mapping
We use the change of coordinates

ξ i = xi (i = 1, 2), ξ3 = x3 − zbot

ztop − zbot
, (3.1a,b)

to map the random domain D onto a deterministic domain A = {ξ ≡ (ξ1, ξ2, ξ3)� :
(ξ1, ξ2) ∈ R

2, 0 ≤ ξ3 ≤ 1}. A general mapping x �→ ξ transforms the differential
operators in (2.3), i.e. the gradient, the Laplacian and the divergence, according to Arfken
& Weber (2005):

∂

∂xi
�→ gik ∂

∂ξ k , ∇2 �→ 1√|g̃|
∂

∂ξ j

(√
|g̃|gjk ∂

∂ξ k

)
, ∇ · v �→ 1√|g̃|

∂

∂ξ k (
√

|g̃|vk).

(3.2a–c)
Here and below the Einstein notation is used to indicate the summation over repeated
indices, g̃ is the determinant of the covariant metric tensor g with components gik = εi ·
εk, where εi ≡ ∂x/∂ξ i. Components gik of the contravariant metric tensor are related to
their covariant counterparts gik via the transformation gik = C(gik)/|g̃|, where C(·) is the
operator of tensorial conjugation. This general mapping, x �→ ξ , transforms flow equations
(2.3) into

∂

∂ξ j

(
Gjk ∂vi

∂ξ k

)
= Gik ∂h

∂ξ k ,

∂

∂ξ k (vk|g̃|1/2) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

with Gij = |g̃|1/2gij.
For the particular mapping x �→ ξ in (3.1), these general expressions become (where ei

are the unit vectors)

εi = ∂

∂ξ i {ξ1e1 + ξ2e2 + [ξ3(ztop − zbot) + zbot]e3}, (3.4a)

[gij] =

⎡
⎢⎢⎣

1 + α2
1 α1α2 α1(ztop − zbot)

α1α2 1 + α2
2 α2(ztop − zbot)

α1(ztop − zbot) α2(ztop − zbot) (ztop − zbot)
2

⎤
⎥⎥⎦ , (3.4b)

αm = ξ3 ∂

∂ξm (ztop − zbot) + ∂zbot

∂ξm , m = 1, 2. (3.4c)
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Effect of random roughness on Stokes flow

The determinant of this [gij] is g̃ = (ztop − zbot)
2, which gives rise to the contravariant

tensor

[gij] ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 − α1

ztop − zbot

0 1 − α2

ztop − zbot

− α1

ztop − zbot
− α2

ztop − zbot

1 + α2
1 + α2

2
(ztop − zbot)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.4d)

and

[Gij] =

⎡
⎢⎢⎢⎢⎣

ztop − zbot 0 −α1

0 ztop − zbot −α2

−α1 −α2
1 + α2

1 + α2
2

ztop − zbot

⎤
⎥⎥⎥⎥⎦ . (3.4e)

With these results, flow equations (3.3) transform into

Gjk ∂2vi

∂ξ j∂ξ k + ∂Gjk

∂ξ j
∂vi

∂ξ k = Gik ∂h
∂ξ k ,

vk ∂

∂ξ k (ztop − zbot) + (ztop − zbot)
∂vk

∂ξ k = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ξ ∈ A. (3.5)

This procedure transforms deterministic partial differential equations (PDEs) on the
random domain D into PDEs with random coefficients on the deterministic domain A,
with the computational advantage of allowing to disregard the impact of the rough
topology of the domain D. If the walls were smooth, then ztop − zbot ≡ 1 and Gij ≡ δi

j ,
so that (3.5) would coincide with (2.3).

3.2. Stochastic averaging
In (3.5), the surface roughness is represented by two log-normal random fields, ztop −
zbot = exp(−Y) and ztop = exp(−ζ ). Since σY and σζ , the standard deviations of Y(xr;ω)

and ζ(xr;ω), are small, we expand the model inputs and outputs into asymptotic series
(e.g. Severino & De Bartolo 2015, and references therein):

ztop − zbot =
∑

n

(−Y)n

n!
, ztop =

∑
n

(−ζ )n

n!
,

v =
∑

n

v(n), h =
∑

n

h(n), Gij =
∑

n

Gij
(n),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

where the subscript (n) denotes terms of order O(γ n), for γ ≡ Y, ζ . Substituting (3.6) into
(3.5) and collecting the terms of equal orders yields a recursive set of boundary-value

1000 R1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
44

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1044


G. Severino

problems (BVPs),

∇2vi
(n) − ∂

∂ξ i h(n) = F i
(n)

∇ · v(n) = Q(n)

⎫⎬
⎭ n = 0, 1, 2, (3.7a)

with F i
(0) = Q(0) ≡ 0;

F i
(1) ≡ Gik

(1)

∂h(0)

∂ξ k − ∂

∂ξ j

[
Gjk

(1)

∂vi
(0)

∂ξ k

]
, Q(1) ≡ v(0) · ∇Y (3.7b)

and

F i
(2) ≡ Gik

(2)

∂h(0)

∂ξ k + Gik
(1)

∂h(1)

∂ξ k − ∂

∂ξ j

[
Gjk

(2)

∂vi
(0)

∂ξ k + Gjk
(1)

∂vi
(1)

∂ξ k

]
,

Q(2) ≡ ∇ · [Yv(1)] − v(0)

2
· ∇Y2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7c)

The algebraic manipulations leading to these expressions account for the divergent-free
condition, ∇ · v(0) = 0, satisfied by the leading-order approximation of the velocity field
v(ξ). The first-order term in the expansion of tensor G in (3.4e) is

[Gij
(1)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Y 0
∂ζ

∂ξ1 − (1 − ξ3)
∂Y
∂ξ1

0 −Y
∂ζ

∂ξ2 − (1 − ξ3)
∂Y
∂ξ2

∂ζ

∂ξ1 − (1 − ξ3)
∂Y
∂ξ1

∂ζ

∂ξ2 − (1 − ξ3)
∂Y
∂ξ2 Y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.8)
and the ensemble mean of the second-order term is E{Gij

(2)} = δi
jσ

2
Y /2.

The leading-order BVP in (3.7) is deterministic, corresponding to the classical problem
of Stokes flow between smooth parallel plates. Its solution is the Hagen–Poiseuille law,

v1
(0)(ξ

3) = J
2

(1 − ξ3)ξ3, v2
(0) = v3

(0) ≡ 0,
dh(0)

dξ1 = J . (3.9a–c)

The first-order correction is E{v(1)(ξ)} = 0 and E{h(1)(ξ)} = 0. By limiting the analysis
to the case of a signal w characterized by a long range of correlation, the second-order
correction satisfies the deterministic BVP (Appendix A)

∇2v̄i
(2) = −J σ 2

Y δi
1,

∇ · v̄(2) = 0,

}
(3.10)

where E{A} ≡ Ā for any random variable A.

4. Discussion and concluding remarks

We now aim at deriving Stokes equations satisfied by mean velocity v̄ = v(0) + v̄(2) and
mean pressure head h̄ = h(0) + h̄(2). This is achieved by summing up (3.7) and taking the

1000 R1-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
44

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1044


Effect of random roughness on Stokes flow

expectation after replacing F̄ i
(2) �→ −J σ 2

Y δi
1 to have

∇2v̄ i − ∂ h̄
∂ξ i = −J σ 2

Y δi
1

∂v̄ i

∂ξ i = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ξ ≡ (ξ1, ξ2, ξ3) ∈ R
2 × [0, 1]. (4.1)

Due to the deterministic nature of the head gradient, it yields ∇h̄ ≡ (J , 0, 0)� = ∇h̄(0)

and concurrently the system (4.1) of mean equations writes as

∇2v̄ i − ∂

∂ξ i h(0) = −J σ 2
Y δi

1,

∂v̄ i

∂ξ i = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

4.1. Effective viscosity
From comparison with (2.3), it is natural to seek for that (effective) viscosity μeff
(generally a tensor) which would lead to the same Hagen–Poiseuille solution (3.9). In a
different manner, the effective viscosity is the parameter which a naive observer would
infer from a viscometer experiment whose walls are treated as smooth. By introducing a
parameter Ψ such that −J σ 2

Y = Ψ (∂2v1
(0)/(∂ξ3∂ξ3)) (or Ψ ≡ σ 2

Y ), the effective Stokes
flow-model writes as

μ�
eff ∇2v(0) = ∇h(0)

∇ · v(0) = 0

}
, μ�

eff ≡ μeff

μ
=
⎡
⎣ 1 + σ 2

Y 0 0
0 1 0
0 0 1

⎤
⎦ . (4.3)

It is seen that the correction to the fluid’s viscosity due to the irregular geometry of the
walls is O(σ 2

Y ), and therefore μeff → μI for σ 2
Y → 0. Unlike μ, its effective counterpart

is a property not only of the fluid but also of the statistical features of the walls’ geometry.
More important is the fact that the correction to the flow is achieved by replacing μ �→ μeff
in the homogeneous (smooth) Hagen–Poiseuille solution (3.9). Hence, the velocity field
results as

v1
(0) = J ρg

μ

(b − ξ3)ξ3

1 + σ 2
Y

, v2
(0) = v3

(0) = 0, ξ3 ∈ [0, b]. (4.4)

As expected, the overall effect translates into an extra viscous resistance which dampens
down the velocity’s distribution, more and more with increasing σ 2

Y (figure 2). Likewise,
the mean velocity V� results from the homogeneous one, i.e. V , as follows:

V� = V

1 + σ 2
Y

= J ρgb2

12μ(1 + σ 2
Y )

. (4.5)

By the same token, one can compute the friction coefficient λ�. More precisely,
substitution of (4.5) in the Darcy–Weisbach law, i.e. λ = cf μ/(ρV) (being, for the
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0

0

0.2

0.4

0.6

0.8

σ2
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Y = 0.05
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ξ3/b
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μv1
(0)/(Jρgb2)

Figure 2. Non-dimensional velocity’s profile μv1
(0)/(J ρgb2) as affected by different degrees of the

roughness’ heterogeneity. Red thick line corresponds to the homogeneous solution (3.9).

problem at stake, cf = 96 whereas  is a characteristic length scale), leads to

λ� = 96μ

ρV
(1 + σ 2

Y ) = 96
Re�

, Re� = Re

1 + σ 2
Y

. (4.6)

Like above, the friction coefficient λ� is obtained by replacing the homogeneous Reynolds
number, i.e. Re = ρV/μ, with its modified version, i.e. Re�. Any increase in the degree
of irregularity (i.e. σ 2

Y ) in the wall’s geometry generates a larger friction (for fixed velocity
distribution). Finally, unlike v̄, the pressure p is not affected by the wall’s geometry. This is
explained by noting that p obeys Stevin’s law, and therefore it is not affected by the fluid’s
viscosity.

The aim of the present study was to develop a procedure of solving Stokes flow
between two parallel plates which, unlike the homogeneous case, here exhibit an irregular
geometry. The spatial distribution of the latter is regarded as a stationary, log-normal,
random field. We present a new methodology which allows mapping the actual domain
upon another one of regular boundaries. The utility of such a procedure relies upon the fact
that now the random nature of the signal characterizing the walls’ topology is encompassed
in the transformed stochastic equations, that can be solved by means of standard (either
numerical or analytical) tools. In particular, we develop a model of the mean flow variables
by regarding the variance of the log-transform of the above signal as a small parameter.

The main result of our study is an effective Poiseuille-type equation relating the mean
velocity to the mean pressure. The tensor multiplying the Laplacian of the mean velocity is
coined as effective viscosity and, unlike its homogeneous counterpart, it cannot anymore
be regarded as a fluid’s property, solely. In particular, it is shown that one can still use
the classical Hagen–Poiseuille solution provided that the fluid’s viscosity is replaced with
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the effective one. Moreover, the present study also lends itself as a tool to identify the
main features of the roughness, by matching measurements of the flow variables (such as
the velocity) and/or the viscosity against the analytical model. To conclude, the stochastic
mapping that we have presented finds application to predict a bulk flow in a plane channel,
given the parameters describing the geometry of the walls.

Acknowledgements. The constructive comments from two anonymous referees have been deeply
appreciated, and they have significantly improved the early version of the manuscript.

Funding. This work was supported in part by the Departmental fund – project 3778/2022; and by the Italian
Ministry of University and Research (PRIN) under grant P2022WC2ZZ.

Declaration of interests. The author reports no conflict of interest.

Author ORCIDs.
Gerardo Severino https://orcid.org/0000-0003-4281-6596.

Appendix A. Second-order correction

The ensemble average of (3.7) with n = 2 is

∇2v̄i
(2) − ∂ h̄(2)

∂ξ i = F̄ i
(2),

∇ · v̄(2) = Q̄(2).

⎫⎪⎬
⎪⎭ (A1)

To compute the ensemble average E{F i
(2)} ≡ F̄ i

(2), we rewrite F i
(2) in (3.7c) as

F i
(2) = Gi1

(2)

∂h(0)

∂ξ1 + Gik
(1)[∇2vk

(1) − Fk
(1)] − ∂

∂ξ j

[
Gjk

(2)

∂vi
(0)

∂ξ k + Gjk
(1)

∂vi
(1)

∂ξ k

]
(A2)

or, accounting for (3.9) and (3.7) with n = 1, as

F i
(2) = JGi1

(2) − ∂

∂ξ j

(
Gjk

(2)

∂vi
(0)

∂ξ k

)
− Gik

(1)Fk
(1) + Gik

(1)∇2vk
(1) − ∂

∂ξ j

(
Gjk

(1)

∂vi
(1)

∂ξ k

)
. (A3)

Since E{Gij
(2)} = δi

jσ
2
Y /2, the ensemble average of this expression yields

F̄ i
(2) = δi

1J
σ 2

Y
2

+ δi
1J

σ 2
Y
2

− E

{
Gik

(1)Fk
(1) − Gik

(1)∇2vk
(1) + ∂

∂ξ j

(
Gjk

(1)

∂vi
(1)

∂ξ k

)}
. (A4)

It follows from (3.7b) and (3.8) that

F1
(1) = −2J Y −

∂Gk3
(1)

∂ξ k

∂v1
(0)

∂ξ3 , F2
(1) = 0, F3

(1) = JG31
(1). (A5a–c)

Combining these expressions with those for Gik
(1) in (3.8) and taking the ensemble average

yields

E{Gik
(1)Fk

(1)} = 2J σ 2
Y δi

1. (A6)

In order to simplify the required mathematical burden to compute the ensemble average
of the last two terms in (A4), hereafter the analysis is restricted to random fields γ ≡ Y , ζ

characterized by a long range of correlation. This implies that the integral scale of γ can be
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regarded as unbounded, and the same is valid for the integral length scale of the velocity’s
fluctuation since, within the perturbation expansion employed in the present study, one
has vi

(1) = O(γ ). As a consequence, the velocity’s fluctuation is scarcely varying in the
space, and therefore its derivatives can be neglected. Hence, one finally ends up with
F̄ i

(2) = −J σ 2
Y δi

1. A similar argument leads to Q̄(2) = 0. Finally, for the deterministic
externally imposed pressure gradient J , ∇h̄ = (J , 0, 0)� = ∇h̄(0), i.e. ∇h̄(2) = 0. This
leads to (3.10).
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