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Abstract. Planetary influence on a stellar convective shell can result in a periodic modulation of
stellar dynamo drivers. Similar modulation can arise in stellar binary systems. Using the Parker
low-mode dynamo model we investigate the properties of nonlinear parametric resonance. This
model is a system of four ordinary differential equations and, in the first approximation, describes
the processes of generation and oscillation of large-scale magnetic fields in stellar systems. In
the absence of nonlinear suppression effects, the problem, by analogy with a system of harmonic
oscillations, allows an asymptotic selection of multiple resonant frequencies. Despite the fact
that at first glance at these frequencies it is reasonable to expect an increase in the amplitude,
the behavior of the system can be just the opposite. All this stuff deserves a systematic analysis
of swing excitation in the dynamo sistems in comparison with classical swing excitation in the
framework of the Mathieu equation.
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1. Introduction

Solar activity cycle is a (quasi-)periodic phenomenon. Activity cycles similiar to the
solar one are known for many stars similar to the Sun. The activity cycles are believed
to be supported by a process in the stellar convective zone known as stellar dynamo. On
the other hand, stellar convective zones may be affected by various periodic processes,
say, tidal forces arising by gravitational forces from planetary systems and/or members
of the binary system. The idea of swing excitation participating in the stellar activity
cycles looks natural. The idea was addressed in some papers for quite a long time (see,
e.g. Gilman, Dikpati 2011, Moss, Sokoloff 2013). Indeed, numerical modelling provides
particular dynamo models which demonstrate behavior similar to the swing excitation
(e.g. Moss, Piskunov, Sokoloff 2002) however there are examples of more complicated
behavior (e.g. Moss, Sokoloff 2017) rather than just a parametric resonance.The situ-
ation becomes dramatic because Jupiter orbital period (about 11 yrs) is closed to the
nominal solar cycle length (about 11 yrs) and the idea that this is something more
rather a coincidence is discussed in astronomical community (e.g. Klevs, Stefani, Jouve
2023) while search of similar cases in exoplanetary systems with known activity of cen-
tral star (Obridko, Katsova, Sokoloff 2022) do not support this expectation. It is why
a systematic comparison and confrontation of dynamo parametric resonance and clas-
sical swing excitation undertaken recently by Kitchatinov, Nepomnyashchikh 2015 and
Serenkova, Sokoloff, Yushkov 2023 from different viewpoints becomes important. Here
we concentrate on the last approach.
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2. Comparing dynamo resonance and classical swing excitation

Comparing dynamo resonance and classical swing excitation we have to take into
account that the last one is considered in terms of ordinary differential equations
(Mathieu equation), i.e. for system with finite degrees of freedom, while standard solar
and stellar dynamo models contain partially differential equations, i.e. consider systems
with infinite degrees of freedom (field equations). Of course, any particular kind of swing
excitation can be developed to include field equations, however more practical is to
reduce a dynamo model to a dynamical system. This can be done by presenting corre-
sponding partial differential equations by Fourier series with further truncation to keep
as few variables (degrees of freedom) to get a cyclic behaviour. Nefedov, Sokoloff 2010
performed such truncation for the classical Parker migratory dynamo with an algebraic
α-quenching to get a four-dimensional dynamical system which we exploit below. In
contrast, the second-order Mathieu equation corresponds to a second order dynamical
system. There is no problem to perform such truncation for, say, much more realistic con-
temporary flux-transport dynamo models, however the exploited over-simplified model is
sufficient to isolate substantial difference between dynamo resonance and classical swing
excitation.

2.1. Mathieu resonance

The classical parametric resonance is described by the Mathieu equation (e.g.
McLachlan 1947):

f̈ + ω2
0(1 + σ sin(ωt))f = 0. (1)

Resonant solutions for the Mathieu equation are sought in the form of a harmonic function
with small exponential growth:

f(t) = f1 exp(st+ i(ω0 + ε/2)t) + f∗1 exp(st− i(ω0 + ε/2)t). (2)

Exponential growth is observed in a small corridor near the doubled frequency of the
system. In the nonlinear case of parametric resonance for the system, with an increase in
the amplitude, the parameter ω2

0 decreases, due to which the system gradually decouples,
and this, in turn, leads to stabilization of exponential growth and quasistationary output.
Stationary is understood in the sense that the solution oscillates, but the energy of the
oscillations remains constant. The parameter ω2

0 reduction is set as follows:

ω2
eff =

ω2
0

1 + 〈f2〉 . (3)

2.2. Dynamo resonance

Let us consider the case of dynamo resonance on the example of the Parker system.
The key simplification proposed by Parker in the transition to a spherical coordinate
system consists in dividing the axially symmetric magnetic field into poloidal and toroidal
components (A and B respectively):

Ȧ=RαB +Aθθ − μ2A,

Ḃ =Rω(A sin(θ))θ +Bθθ − μ2B.
(4)

The migration waves generated in such a system (they are often called dynamo waves)
are most sensitive to the dynamo number D, i.e. the product of dimensionless parameters
responsible for differential rotation (Rω) and helicity (Rα). The number μ determines the
radial part of the diffusion and is proportional to the ratio of the radius to the thickness of
the convective shell. Hypothetically, some periodic influence on the system (for example,
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binary stars on each other or exoplanets on their star) can lead to periodic changes in
Rα or Rω, which, in turn, can cause parametric resonance. To analyze such a situation,
the following change is made to the system:

Rω →Rω(1 + σ sin(ωt)), (5)

here, σ is the amplitude of the parametric effect. A more convenient approach for math-
ematical interpretation of the solution is the so-called low-mode approximation, which
has already been used in some works (e.g. Kalinin, Sokoloff 2018, Tarbeeva, Semikoz,
Sokoloff 2011). In the case of expansion by four principal modes of the Fourier series, it
is possible to obtain a system of Mathieu-type equations:

f̈1 − (RαRω/2)(1 + σ sin(ωt))(f1 − f2) = 0,

f̈2 − (RαRω/2)(1 + σ sin(ωt))(f1 + f2) = 0.
(6)

In this case, the solution has the form of four complex-conjugate exponentials, since now
the frequencies have a complex additive responsible for generating outside of a narrow
corridor about twice the frequency (see for details Serenkova et al.):

f1,2 = f̄1,2 exp((γ0 + s+ iβ)t+ i(ω0 + ε/2)t) + f̄∗1,2 exp((γ0 + s− iβ)t− i(ω0 + ε/2)t)+

+ ¯̄f1,2 exp((γ0 + s− iβ)t+ i(ω0 + ε/2)t) + ¯̄f∗1,2 exp((γ0 + s+ iβ)t− i(ω0 + ε/2)t). (7)

In the case, when the field is non-linearly stabilized, the growth of the magnetic field
leads to a decrease in hydrodynamic helicity, the oscillations have a constant amplitude,
and with resonance it can become larger than in the absence of exposure. To ensure
stabilization, we will nonlinearly suppress the parameter Rα:

Rα → Rα

1 +max |B2| . (8)

Some differences between the dynamo resonances and classical swing excitation are
clear from advance. Indeed, dynamo systems include self-excitation, i.e. initial exponen-
tial growth, and a nonlinear saturation. Natural oscillators with swing excitation may
contain similar features however they are not included in the classical Mathieu equation.
It is however far to be clear which difference and to what extent is responsible for specific
properties of dynamo resonances known from available numerics. In order to clarify this
point we mimic the classical derivation of the Mathieu equation to get a similar equation
for the dynamical system under consideration. Below we refer to this equation as a gen-
eralised Mathieu equation. Because parametric resonance can be interesting for another
physical problems with self-excitation and its further nonlinear suppression and in order
to mimic somehow more complicated dynamo models we consider numerical coefficients
in the generalised Mathieu equation as free parameters and play with numbers nearby
their nominal quantities obtained for the Parker migratory dynamo.

3. Specific features of dynamo resonances

The generalised Mathieu equation is quite similar to the classical one however is more
bulky. It admits numerical as well to some extent analytical investigation (see for details
Serenkova, Sokoloff, Yushkov 2023). Performing the analysis we arrive at the following
conclusions.
First of all, periodic modulation of dynamo equations may result in two types of effects,

i.e. effects associated with a specific frequency as well as effects presented for a wide range
of frequencies. We describe both effects separately.
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3.1. Wide-range effect

Stellar dynamo excitation is a threshold effect, i.e. intensity of dynamo drivers pre-
sented in dynamo equations as dimensionless dynamo numer D should exceed a marginal
value D0 to get self-excitation. Periodic modulation can slightly diminish D0. In other
words, periodic modulation can transform a slightly subcritical dynamo into a slightly
supercritical one (Sokoloff, Serenkova, Yushkov 2022). It looks quite improbable that the
dynamo number for a particular stellar dynamo is so close to the corresponding marginal
value however if it happens the resulting effect on the dynamo supported magnetic field
occurs to be crucial.
This effect does not require a fine tuning of the modulation frequency. Because standard

swings do not presume self-excitation without modulation, the effect is impossible for this
case. We do not insist that the effect have to be referred to as a resonance however it
looks interesting by itself.

3.2. True resonances

The generalized Mathieu equation contains growing solutions associated with a partic-
ular value of the perturbation frequency. In order to separate them from the wide-range
effect we refer to them as true resonances. Depending on coefficients in the dynamical
system, i.e. on details of dynamo system, we can obtain a resonance peak at a particular
modulation frequency which may coincide with the eigenfrequency of the system or do
not coincide with it or do not obtain a peak at any frequency. In some cases resonance
effects diminish the amplitude of the stellar cycle rather than enlarge it. In other words,
a resonant absorption instead of resonant excitation is possible. In any case, resonance
effects are not very strong, they modify the stellar cycle amplitude of about 10% at most.

4. Conclusions

We conclude that varity of the effects associated with periodic modulation of dynamo
drivers is much more wide rather that one for the standard swing excitation. From the
other hand, the effects are not very strong in comparison with the initial dynamo self-
excitation and hardly can be very important in many stellar systems. From the other
hand the effects can be important for some quite rare stellar systems.

A.S. and D.S. are grateful to the Basis Foundation for financial support under grant
21-1-1-4-1.
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