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Abstract
In this paper, we complete the proof of the conjecture of Gross and Zagier concerning algebraicity of higher
Green functions at a single CM point on the product of modular curves. The new ingredient is an analogue of the
incoherent Eisenstein series over a real quadratic field, which is constructed as the Doi-Naganuma theta lift of a
deformed theta integral on hyperbolic 1-space.
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1. Introduction

Just over half a century ago, Doi and Naganuma discovered a Hecke-equivariant lifting map from to
weight k elliptic modular forms to weight (𝑘, 𝑘) Hilbert modular forms for a real quadratic field F
[DN70]. This is a special case of cyclic base change [JL70], which has now become a basic and useful
tool in the theory of automorphic forms and automorphic representations. By the exceptional isogeny

O(2, 2) ∼ Res𝐹/Q SL2, (1.1)

the Doi-Naganuma lifting is also an instance of a theta lifting from SL2 to O(2, 2) [Kud78].

1.1. A problem posed by Gross and Zagier

In the seminal paper [GZ86], Gross and Zagier proved their formula relating the central derivative of
some Rankin-Selberg L-function attached to a weight 2 level N newform f and the Néron-Tate height
pairing of f -isopytic components of Heegner points in the Jacobian of the modular curve 𝑋0 (𝑁). This
was extended in [GKZ87] to describe the positions of these Heegner points in the Jacobian using Fourier
coefficients of modular forms. In the degenerate case 𝑁 = 1, the Gross-Zagier formula yields a beautiful
factorization formula of the norm of differences of singular moduli [GZ85].

To calculate the archimedean contribution to the height pairings, one requires the automorphic Green
function

𝐺Γ0 (𝑁 )
𝑠 (𝑧1, 𝑧2) := −2

∑
𝛾∈Γ0 (𝑁 )

𝑄𝑠−1

(
1 + |𝑧1 − 𝛾𝑧2 |2

2�(𝑧1)�(𝛾𝑧2)

)
, �(𝑠) > 1,

𝑄𝑠−1(𝑡) :=
∫ ∞

0
(𝑡 +
√

𝑡2 − 1 cosh(𝑢))−𝑠𝑑𝑢

(1.2)

on 𝑋0(𝑁) × 𝑋0 (𝑁). It is an eigenfunction with respect to the Laplacians in 𝑧1 and 𝑧2 with eigenvalue
𝑠(1−𝑠). The function vanishes when one of the 𝑧𝑖 approaches the cusps and has a logarithmic singularity
along the diagonal. In fact, these properties characterize it uniquely. Using Hecke operators acting on
either 𝑧1 or 𝑧2, we can define

𝐺Γ0 (𝑁 ) ,𝑚
𝑠 (𝑧1, 𝑧2) :=

∑
𝛾∈Γ0 (𝑁 )\𝑅𝑁 , det(𝛾)=𝑚

𝐺Γ0 (𝑁 )
𝑠 (𝑧1, 𝛾𝑧2)

= 𝐺Γ0 (𝑁 )
𝑠 (𝑧1, 𝑧2) | 𝑇𝑚,𝑧1 = 𝐺Γ0 (𝑁 )

𝑠 (𝑧1, 𝑧2) | 𝑇𝑚,𝑧2 ,

(1.3)

where 𝑅𝑁 := {
(
𝑎 𝑏
𝑁𝑐 𝑑

)
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z}. Then 𝐺Γ0 (𝑁 ) ,𝑚

𝑠 has a logarithmic singularity along the m-th
Hecke correspondence 𝑇𝑚 ⊂ 𝑋0 (𝑁)2 (see (1.2) in Chapter II of [GZ86]).

For integral parameters 𝑠 = 𝑟 + 1 ∈ N≥2, these functions are called higher Green functions. In
Section V.1 of [GKZ87], two problems about these functions were raised. The first one was to give an
interpretation of their values at Heegner points as archimedean contributions of certain higher weight
height pairings. This was answered by Zhang in [Zha97] (see also [Xue10]), where the Néron-Tate height
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pairing of Heegner points is replaced by the arithmetic intersection of Heegner cycles on Kuga-Sato
varieties.

The second problem dealt with the algebraicity of higher Green functions at a single CM point. Let
𝑀 !,∞

−2𝑟 (Γ0(𝑁)) be the space of weakly holomorphic modular forms for Γ0(𝑁) of weight −2𝑟 < 0 with
poles only at the cusp infinity (see (2.27)). Given 𝑓 =

∑
𝑚	−∞ 𝑐(𝑚)𝑞𝑚 ∈ 𝑀 !,∞

−2𝑟 (Γ0(𝑁)), we call the
following linear combination of higher Green functions

𝐺Γ0 (𝑁 )
𝑟+1, 𝑓 (𝑧1, 𝑧2) :=

∑
𝑚∈N

𝑐(−𝑚)𝑚𝑟𝐺Γ0 (𝑁 ) ,𝑚
𝑟+1 (𝑧1, 𝑧2) (1.4)

the principal higher Green function associated to f. Along the divisor

𝑍 𝑓 :=
∑

𝑚≥1, 𝑐 (−𝑚)≠0
𝑇𝑚,

the function 𝐺Γ0 (𝑁 )
𝑟+1, 𝑓 has a logarithmic singularity. Using Serre duality, this function is the same as the

higher Green function defined via relations in Section V.4 of [GZ86] (see Remark 2.5). We say that it is
rational when f has rational Fourier coefficients at the cusp infinity. Even though the theory of complex
multiplication does not directly apply as in the case of automorphic Green functions, the value of a
rational, principal higher Green function 𝐺Γ0 (𝑁 )

𝑟+1, 𝑓 at a single CM point on 𝑋0(𝑁) × 𝑋0(𝑁) should be
algebraic in nature, predicted by the following conjecture (see, for example, [Mel08] and [Via11]).

Conjecture 1.1. Suppose 𝑓 ∈ 𝑀 !,∞
−2𝑟 (Γ0(𝑁)) has rational Fourier coefficients at the cusp infinity.

Then for any CM point (𝑧1, 𝑧2) ∈ 𝑋0(𝑁)2\𝑍 𝑓 with 𝑧 𝑗 having discriminant 𝑑 𝑗 < 0, there exists
𝛼 = 𝛼(𝑧1, 𝑧2) ∈ Q ⊂ C such that

𝐺Γ0 (𝑁 )
𝑟+1, 𝑓 (𝑧1, 𝑧2) = |𝑑1𝑑2 |−𝑟/2 log |𝛼 |.

Over the years, there have been a lot of partial results toward this conjecture. When 𝑑1𝑑2 is a perfect
square, this conjecture was proved in [Zha97] conditional on the nondegeneracy of the height pairing
of CM cycles. Using regularized theta liftings, an analytic proof was given in [Via11] with restrictions
on 𝑁, 𝑑 𝑗 and later in full generality in [BEY21]. When 𝑑1𝑑2 is not a perfect square, less was known
before. For 𝑁 = 1, 𝑧1 = 𝑖 and 𝑟 = 1, Mellit proved the conjecture in his thesis [Mel08] using an algebraic
approach. When one averages over the full Galois orbit of the CM point (𝑧1, 𝑧2), the conjecture follows
from [GKZ87] for r even. More partial results are available when one averages over different Galois
orbits [Li22, BEY21] when 𝑁 = 1.

Motivated by Conjecture 1.1, the first and third author, together with S. Ehlen, considered its
generalization to the setting of orthogonal Shimura varieties in [BEY21]. More precisely, let V be a
rational quadratic space of signature (𝑛, 2) with 𝑛 ≥ 1, and 𝑋𝐾 be the Shimura variety associated to
�̃�V := GSpin(V) and a compact open subgroup 𝐾 ⊂ �̃�V(Q̂). For a nonnegative integer r and a vector-
valued harmonic Maass form f of weight 1−𝑛/2−2𝑟 , denote byΦ𝑟

𝑓 its regularized theta lift (see [Bru02]
or equation (2.41)). This function is an eigenfunction of the Laplacian on 𝑋𝐾 and has a logarithmic
singularity along the special divisor 𝑍 𝑓 associated to f (see (2.42)). We call it a higher Green function
on 𝑋𝐾 and say that it is principal, resp. rational, if f is weakly holomorphic, resp. has rational principal
part Fourier coefficients. When V = 𝑀2 (Q) and 𝑋𝐾 = 𝑋0 (𝑁)2, the function Φ𝑟

𝑓 becomes 𝐺Γ0 (𝑁 )
𝑟+1, 𝑓 (see

Corollary 2.4).
For a totally real field F of degree d and an F-quadratic space 𝑊 = 𝐸 with 𝐸/𝐹 a quadratic CM

extension, suppose there is an isometric embedding

𝑊Q := Res𝐹/Q𝑊 ↩→ V, (1.5)
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which in particular implies that 𝑛 + 2 ≥ 2𝑑. Then we obtain a CM cycle 𝑍 (𝑊) on 𝑋𝐾 from a torus 𝑇𝑊
in �̃�V (see section 2.4 for details). Note that 𝑍 (𝑊) is defined over F and is the big CM cycle 𝑍 (𝑊, 𝑧±0 )
in [BKY12]. We denote by 𝑍 (𝑊)Q the union of the F-conjugates of 𝑍 (𝑊). If F is quadratic, we write
𝑍 (𝑊)Q = 𝑍 (𝑊) ∪ 𝑍 (𝑊)′.

In [Li23], the second author studied the algebraicity of the difference of a rational, principal Φ𝑟
𝑓 at

two CM points in 𝑍 (𝑊) and was able to verify the analogue of Conjecture 1.1 in that setting. This opens
up the possibility of proving Conjecture 1.1 when one proves an algebraicity result for the averaged
value Φ𝑟

𝑓 (𝑍 (𝑊)). In this paper, we complete this step by proving the following result complementary
to [Li23].

Theorem 1.2 (Algebraicity and factorization). Let Φ𝑟
𝑓 be a rational, principal higher Green function on

𝑋𝐾 . Suppose that 𝐸/Q is a biquadratic CM number field with the real quadratic subfield 𝐹 = Q(
√

𝐷),
and 𝑍 (𝑊) ∩ 𝑍 𝑓 = ∅. Then there exists a positive integer 𝜅 and 𝑎1, 𝑎2 ∈ 𝐹× such that

Φ𝑟
𝑓 (𝑍 (𝑊)) = 1

𝜅

(
log|𝑎1 | +

√
𝐷 log|𝑎2 |

)
. (1.6)

For any prime 𝔭 of F, the value 𝜅−1 ord𝔭 (𝑎 𝑗 ) is given in (5.6). When 𝑛 = 2, we have 𝑎 𝑗 = 1 for
𝑗 ≡ 𝑟 mod 2.

Remark 1.3. The denominator 𝜅 appears as a consequence of our matching of sections (see Proposi-
tions 4.7 and 4.11) and only depends on 𝑍 (𝑊) and r when f has integral Fourier coefficients.

Remark 1.4. Theorem 1.2 also applies to the case 𝑟 = 0 when f has zero constant term, in which case
Φ0
𝑓 = Φ 𝑓 is the regularized Borcherds lift of f and we have 𝑎2 = 1.

Combining Theorem 1.2 with the main result in [Li23], we deduce the algebraicity of a rational,
principal higher Green function at a single CM point when 𝐸/Q is biquadratic – hence, Conjecture 1.1
in particular.

Theorem 1.5. In the setting of Theorem 1.2, there exists 𝜅 ∈ N and Galois equivariant maps 𝛼1, 𝛼2 :
𝑇𝑊 (Q̂) → 𝐸ab such that

Φ𝑟
𝑓 ([𝑧0, ℎ]) =

1
𝜅

(
log |𝛼1 (ℎ) | +

√
𝐷 log |𝛼2 (ℎ) |

)
for all [𝑧0, ℎ] ∈ 𝑍 (𝑊). Furthermore, for 𝑛 = 2, we can choose 𝛼 𝑗 (ℎ) = 1 for 𝑗 ≡ 𝑟 mod 2; that is, there
exists a Galois-equivariant map 𝛼 : 𝑇𝑊 (Q̂) → 𝐸ab such that

Φ𝑟
𝑓 ([𝑧0, ℎ]) =

1
𝜅
√

𝐷
𝑟 log |𝛼(ℎ) |

for all ℎ ∈ 𝑇𝑊 (Q̂). In particular, Conjecture 1.1 is true.

1.2. Comparison to previous works

There has been an extensive literature on the CM-value of regularized theta lifts. When 𝑟 = 0, 𝑛 = 2
and f is weakly holomorphic, the CM-value Φ 𝑓 (𝑍 (𝑊)Q) was the subject of the classical work of
Gross-Zagier on singular moduli [GZ85] and generalizations by the first and third author [BY06]. More
generally for arbitrary n, totally real field F and harmonic Maass form f, the value Φ 𝑓 (𝑍 (𝑊)Q) is the
archimedean contribution of the derivative of a Rankin-Selberg L-function involving the shadow 𝜉 ( 𝑓 )
at 𝑠 = 0 [BY09, BKY12, AGHMP18].
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A crucial ingredient in these works is a real-analytic Hilbert Eisenstein series 𝐸∗ of parallel weight 1
over F. It is an incoherent Eisenstein series in the sense of the Kudla program [Kud97]. The arithmetic
Siegel-Weil formula predicts that the Fourier coefficients of its derivative, 𝐸∗,′, are arithmetic degrees
of special cycles [HY11, HY12], which are logarithms of rational numbers.

Using suitable weight 1 harmonic Maass forms in place of incoherent Eisenstein series, the first and
third author, together with S. Ehlen, could prove the algebraicity result for higher Green function at a
partially averaged CM cycle and deduce the Gross-Zagier conjecture for 𝑋𝐾 = 𝑋0 (1)2 when the class
group of one of the imaginary quadratic fields in E is an elementary 2 group [BEY21, Theorem 1.2].
However, the factorization of the ideal generated by the algebraic numbers is not explicitly given.

Our main result in Theorem 1.2 goes far beyond these aforementioned works in an essential way
by studying the regularized theta lifts at the partially averaged CM cycle 𝑍 (𝑊), which is in general
only half of 𝑍 (𝑊)Q and a priori defined over F. For 𝑟 = 0 and f weakly holomorphic, this means that
Φ 𝑓 (𝑍 (𝑊)) is the logarithm of a number in the real quadratic field F and therefore cannot be related to
the Fourier coefficients of incoherent Eisenstein series!

Furthermore, this partial average is quite different, yet more natural, than the one studied in [BEY21].
Instead of using the weight 1 harmonic Maass form loc. cit., which is an elliptic modular form, we
explicitly construct a Hilbert modular form Ĩ, serving as a companion and substitute for the incoherent
Eisenstein series, and obtain precise information concerning its Fourier coefficients. This is the main
innovation of the paper and allows us to prove the exact factorization formula for the ideal generated by
the algebraic numbers in the spirit of [GZ85], which was not possible in [BEY21]. Most importantly,
we are able to achieve this for arbitrary open compact subgroup K, just as in [Li23] for the difference
of two CM-values, whereas the ingredients in [BEY21] could only handle the level 1 case. This enables
us to prove Theorem 1.5 for arbitrary level K, which encompasses the case in Conjecture 1.1. In that
sense, this paper is the complement to [Li23], both in results and methods, for biquadratic E.

Besides the analytic approach to Conjecture 1.1, which originated from the work of Viazovska for
𝐹 = Q⊕Q [Via11], there is also an algebraic approach in [Zha97, Mel08]. However, one must overcome
serious obstacles to prove Theorem 1.5 via this approach. For 𝐹 = Q ⊕ Q, one needs to assume
in an essential way the nondegeneracy of the restriction of the Gillet-Soulé height pairing, which is
defined on Kuga-Sato varieties, to the subgroup of the Chow group spanned by CM cycles [Zha97,
Theorem 5.2.2]. The nondegeneracy of this height pairing on a slightly larger subgroup is conjectured
by Beilinson [Bei87] and Bloch [Blo84] (see Conjecture 1.3.1 in [Zha97]). For real quadratic F, one
needs to find a substitute for the Kuga-Sato variety, construct canonical models, and define suitable
cycles and arithmetic intersections such that the archimedean contribution is given by the CM-values of
higher Green functions.1 Assuming that the conjecture of Beilinson and Bloch holds in this case, one
can then deduce the result in Theorem 1.5. For 𝑛 = 2 and concrete families of CM points, it is possible
verify Conjecture 1.1 by explicit constructions of cycles and calculations (see [Mel08]). In general, it is
not clear at all how to construct suitable cycles, not to mention remove the nondegeneracy assumption.
However, it would be very interesting to see if Theorem 1.5, which is proved via the analytic approach,
can be used to prove the conjectural nondegeneracy when restricted to the above subgroup of the Chow
group in [Zha97].

1.3. Proof strategy

For simplicity, we focus on the case 𝑛 = 2, from which the general case is not hard to derive (see
Section 5 for details). Applying the strategy in [Kud03] and the Rankin-Cohen operator, one can express
Φ𝑟
𝑓 (𝑍 (𝑊)) + (−1)𝑟Φ𝑟

𝑓 (𝑍 (𝑊)′) as an F-linear combination of Fourier coefficients of the holomorphic
part of 𝐸∗,′, which are logarithms of rational numbers. This is a standard procedure involving the
Siegel-Weil formula and Stokes’ Theorem (see, for example, the proof of Theorem 3.5 in [Li21]).

1An idea is to consider powers of the Kuga-Satake abelian scheme over an integral model of 𝑋𝐾 , though the dimension of such
an abelian scheme is 2𝑛+1 and the fiber product becomes untractable quickly.
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A crucial property of the incoherent Eisenstein series is the following differential equation: (see [BKY12,
Lemma 4.3])

2(𝐿1 + 𝐿2)𝐸∗,′(𝑔, 0,Φ(1,1) ) = 𝐸∗(𝑔, 0,Φ(1,−1) ) + 𝐸∗(𝑔, 0,Φ(−1,1) ). (1.7)

Here, 𝐿 𝑗 are lowering operators in the j-th variable, andΦ(𝜖1 , 𝜖2) = Φ 𝑓 ⊗Φ(𝜖1 , 𝜖2)
∞ are Siegel-Weil sections

in the degenerate principal series 𝐼 (0, 𝜒) with 𝜒 = 𝜒𝐸/𝐹 being the quadratic Hecke character of F
associated to 𝐸/𝐹 (see Section 2.6 for details). In particular, 𝐸∗(𝑔, 0,Φ(𝜖 ,−𝜖 ) ) is a coherent Eisenstein
series of weight (𝜖,−𝜖) for 𝜖 = ±1. To prove Theorem 1.2, it suffices to understand Φ𝑟

𝑓 (𝑍 (𝑊)) −
(−1)𝑟Φ𝑟

𝑓 (𝑍 (𝑊)′), which means we need a substitute of 𝐸∗,′ on the left-hand side of (1.7) such that the
right-hand side is 𝐸∗(𝑔, 0,Φ(1,−1) ) − 𝐸∗(𝑔, 0,Φ(−1,1) ).

To obtain this minus sign, we apply the exceptional isogeny in (1.1) and view the coherent Eisenstein
series as modular forms on the group 𝐻0 := SO(𝑉0) for the quadratic space 𝑉0 of signature (2, 2) defined
in Section 3.1. Since 𝐸/Q is biquadratic, there is an odd character 𝜚 = 𝜚 𝑓 · sgn of [𝐹1] = 𝐹1\A1

𝐹 such
that 𝜒 = 𝜚 ◦ Nm− (see Remark 2.1). By viewing 𝜚 as an automorphic form on 𝐻1 := SO(𝑉1) for the
quadratic space 𝑉1 = (𝐹, Nm), we can consider its theta lift following the diagram

𝐻1
𝜃1→ 𝐺

𝜃0→ 𝐻0, (1.8)

where 𝐺 = SL2. The first map lifts 𝜚 to a weight one holomorphic cusp form 𝜗(𝑔′, 𝜑−
1 , 𝜚) on G, which

was first studied by Hecke. Here, 𝜑±
1 is a Schwartz function on 𝑉1(A) whose archimedean component 𝜑±

∞
is the Schwartz function in 𝑉1(R) defined in (2.65). Then the second map lifts it to a coherent Eisenstein
series and is an instance of the Rallis tower property ([Ral84]).2 From this, 𝜃0 ◦ 𝜃1 gives us the equation

I (𝑔, 𝜑 (±1,∓1) , 𝜚) :=
∫
𝐺 (Q)\𝐺 (A)

𝜃0(𝑔′, 𝑔, 𝜑 (±1,∓1)
0 )𝜗(𝑔′, 𝜑−

1 , 𝜚)𝑑𝑔′

=
3
𝜋

𝐸∗(𝑔, 0,Φ(±1,∓1) ),
(1.9)

where 𝜃0 is a theta kernel for the quadratic space 𝑉0, 𝜑 (±1,∓1) = 𝜑 (±1,∓1)
0 ⊗ 𝜑−

1 is a Schwartz function
on 𝑉 (A) with 𝑉 := 𝑉0 ⊕ 𝑉1 and Φ(±1,∓1) = 𝐹𝜑, 𝜚 is the section defined in (3.37). Our first main result
is Theorem 3.3, which ensures that all coherent Eisenstein series can be realized as such lifts. This is
reduced to the corresponding local problem and solved in Section 3.5.

To construct Ĩ, we first modify the character 𝜚 to the function �̃�𝐶 on 𝐻1(A) defined in (2.76). It
is a preimage of 𝜚 under the first order invariant differential operator 𝑡 𝑑𝑑𝑡 on 𝐻1(R) � R×, and hence
not a classical automorphic form on 𝐻1. We call its lift 𝜗(𝑔′, 𝜑+

1 , �̃�𝐶 ) to G a deformed theta integral,
since the archimedean component of �̃�𝐶 is essentially log 𝑡 and comes from the first term in the Laurent
expansion of 𝑡𝑠 at 𝑠 = 0. This deformed theta integral was first studied in [CL20]. It satisfies the following
important property (see Theorem 2.7):

𝐿𝜗(𝑔′, 𝜑+
1 , �̃�𝐶 ) = 𝜗(𝑔′, 𝜑−

1 , 𝜚) + error. (1.10)

Here, L is the lowering operator on G, and error is the special value of the theta kernel on 𝑉1.
We now define Ĩ (𝑔) := I (𝑔, 𝜑 (1,1) , �̃�𝐶 ) in (4.2) using the theta kernel 𝜃0(𝑔′, 𝑔, 𝜑 (1,1)

0 ) with the
archimedean component of 𝜑 (1,1)

0 being the Schwartz function 𝜑 (1,1)
0,∞ defined in (4.1) (the integral is

similar to (1.9)). A key observation is that there is an identity between the actions of the universal

2By a change of integration order, we can also rewrite the map as

𝐺
𝜃→ 𝐻

Pullback−→ 𝐻0,

where 𝐻 = SO(𝑉 ) contains 𝐻0 × 𝐻1.
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enveloping algebras of 𝐻0 and G, which gives in this special case (see (4.7) and Lemma 4.1)

(𝐿1 + 𝐿2)𝜃0(𝑔′, 𝑔, 𝜑 (1,1)
0 ) = 𝐿𝜃0 (𝑔′, 𝑔, 𝜑 (1,−1)

0 ) − 𝐿𝜃0 (𝑔′, 𝑔, 𝜑 (−1,1)
0 ), (1.11)

where 𝐿1, 𝐿2, resp. L, are differential operators for the variable 𝑔 ∈ 𝐻0, resp. 𝑔′ ∈ 𝐺. Putting these
together, we see that Ĩ satisfies the following property (see the proof of Proposition 4.2 with 𝑟 = 0 for
details):

−(𝐿1 + 𝐿2)Ĩ (𝑔) = 𝐸∗(𝑔, 0,Φ(1,−1) ) − 𝐸∗(𝑔, 0,Φ(−1,1) ) + error′.

Up to this the term error′, which is a manifestation of the error term in (1.10), we have constructed the
Hilbert modular form satisfying the desired analogue of the differential equation (1.7).

In addition to satisfying the differential equation, we still need to better understand the Fourier
coefficients of Ĩ and compare them to those of 𝐸∗,′. This is done in Section 4.2, where we show that
they are logarithms of algebraic numbers and give precise factorization information. To achieve this,
we introduce a new local section with an s-variable in (3.54) and match it with the standard section
involving the s-variable up to an error of 𝑂 (𝑠𝑚) for any positive integer m. This builds upon the results in
Section 3.5 and is accomplished in Theorem 3.14. These new local sections are of independent interest,
as they do not come from pullback of the standard section on 𝐻 � SO(3, 3). In fact, they do not even
tensor together to form a global section with an s-variable.

Finally, we still need to handle the term arising from the error on the right-hand side in (1.10). This
boils down to proving the rationality of a Millson theta lift, which is given in Proposition 4.9. For
this, we need the Fourier expansion of such a lift computed in [ANS18], and to choose the matching
section with a suitable invariance property. Proceeding essentially as in [GKZ87] or [BEY21], with 𝐸∗,′

replaced by its sum with Ĩ, we complete the proof of Theorem 1.2.

1.4. Outlook and organization

The factorization of the algebraic numbers appearing in the Fourier coefficients of Ĩ are very closely
related to the Fourier coefficients of 𝐸∗,′, which suggests that they should reflect the non-archimedean
part of the arithmetic intersection between integral versions of 𝑍 𝑓 and 𝑍 (𝑊) defined over the ring
of integers of F. It would be very interesting to relate this arithmetic intersection to special values of
derivatives of L-functions as in [BKY12] by applying and refining the results in [AGHMP18].

It would be interesting to investigate the analogues of Theorems 1.2 and 1.5 for other CM, étale
Q-algebras 𝐸/Q. When 𝐸/Q has degree 4, there are four cases

1. 𝐸/Q is biquadratic,
2. 𝐸/Q is a product of imaginary quadratic fields,
3. 𝐸/Q is cyclic,
4. 𝐸/Q is a non-Galois, quartic extension.

The CM points 𝑍 (𝑊) have a moduli interpretation as abelian surfaces with CM by the reflex CM algebra
𝐸#. The present paper treats case (1). In cases (2) and (3), the reflex algebras 𝐸# are quartic, abelian
field extensions of Q, and the CM cycle 𝑍 (𝑊) is already defined over Q. In the last case, 𝐸#/Q is a
quartic, non-Galois field, and 𝑍 (𝑊) is defined over a real quadratic field. We plan to extend the ideas
and techniques in this paper to prove the analogue of Theorem 1.5 in cases (2)–(4). One difficulty that
arises is that the quadratic space of signature (3, 3) will have Witt rank less than 3, making it impossible
to apply the Siegel-Weil formula to identify the theta integral with an Eisenstein series. Instead, one
could try to add a twist to the theta integral (see [Li16]), compute its Fourier expansion and match it
with that of an Eisenstein series. When 𝐸/Q is a field of degree greater than 4, the Hilbert Eisenstein
series are over totally real fields of degree greater than 2 and hence do not arise from theta integral of
elliptic modular forms. For such cases, one would need some new ideas.
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In addition, there are other applications of these expected results. For cases (2) and (3), by combining
the analogue of Theorem 1.2 and the idea in [Li21], we hope to obtain a non-existence result of genus
2 curves with CM Jacobian and having everywhere good reduction in certain families, generalizing the
main result in [HP17]. In the last case, we expect a variation of our construction to lead to a proof of
the factorization conjecture of CM-values of twisted Borcherds product in [BY07].

The paper is organized in the following way. Section 2 contains preliminaries. Most of these are
standard, except for Section 2.8, which contains the adelic version of the results in [CL20]. Section 3
matches the coherent Eisenstein series with the Doi-Naganuma lift of Hecke’s cusp form. Section 4
defines Ĩ and studies its various properties. Finally, we give the proofs of Theorems 1.2 and 1.5 in the
last section.

2. Preliminaries

In this section, we introduce some preliminary notions, most of which are standard from the literature.
The only material not easily found in the literature are in Sections 2.7 and 2.8 concerning the weight
one cusp forms of Hecke in the adelic language, which are translated from the results in [CL20] in the
classical language.

Let N denote the set of positive integers and N0 := N ∪ {0}. For a number field E, let A𝐸 be its ring
of adeles, �̂� the finite adeles and A = AQ with 𝜓 = 𝜓 𝑓 𝜓∞ its usual additive character. For an algebraic
group G over E, denote [G] = G(𝐸)\G(A𝐸 ). As usual, let 𝐺 = SL2 with standard Borel 𝐵 = 𝑀𝑁 ⊂ 𝐺.
Denote also

𝑚(𝑎) =
( 𝑎

𝑎−1
)
∈ 𝑀, 𝑛(𝑏) =

( 1 𝑏
1
)
∈ 𝑁, 𝑤 =

( −1
1
)
∈ 𝐺,

and

𝑇 (𝑅) = {𝑡 (𝑎) = ( 𝑎 1 ) : 𝑎 ∈ 𝑅×} ⊂ GL2(𝑅).

Throughout the paper, F will be a real quadratic field (unless stated otherwise). Let ′ ∈ Gal(𝐹/Q) be the
nontrivial element. It induces an automorphism of A𝐹 ,A×

𝐹 and 𝐹𝑝 := 𝐹 ⊗Q𝑝 for each prime 𝑝 ≤ ∞, If
p is a finite prime that splits in F (resp. is the infinite place), then F has two embeddings into Q𝑝 (resp.
R), and 𝐹𝑝 is a 2-dimensional vector space over Q𝑝 (resp. R). For 𝜆 ∈ 𝐹, let 𝜆1, 𝜆2 denote the images
under those embeddings. We will also sometimes use 𝜆 to represent the pair (𝜆1, 𝜆2) in Q2

𝑝 (resp. R2),
and 𝜆′ would represent (𝜆2, 𝜆1). We have the incomplete Gamma function

Γ(𝑠, 𝑥) =
∫ ∞

𝑥
𝑡𝑠−1𝑒−𝑡𝑑𝑡.

2.1. Differential operators

For a real-analytic function f on 𝐺 (R), the Lie algebra 𝔰𝔩2(C) acts via

𝐴( 𝑓 ) (𝑔) := 𝜕𝑡 𝑓 (𝑔𝑒𝑡 𝐴) |𝑡=0, 𝐴 ∈ 𝔰𝔩2 (C). (2.1)

We define the raising and lowering operator

𝑅 :=
1
2

(
1 𝑖
𝑖 −1

)
, 𝐿 :=

1
2

(
1 −𝑖
−𝑖 −1

)
. (2.2)

If f is right 𝐾∞-equivariant of weight k, then we have

√
𝑣
−(𝑘+2)

𝑅( 𝑓 ) (𝑔𝜏) = 𝑅𝜏,𝑘 (
√

𝑣
−𝑘

𝑓 (𝑔𝜏)),
√

𝑣
−(𝑘−2)

𝐿( 𝑓 ) (𝑔𝜏) = 𝐿𝜏,𝑘 (
√

𝑣
−𝑘

𝑓 (𝑔𝜏)),
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where 𝑅𝜏,𝑘 and 𝐿𝜏,𝑘 are the usual raising and lowering operators given by

𝑅𝜏,𝑘 := 2𝑖𝜕𝜏 +
𝑘

𝑣
, 𝐿𝜏,𝑘 := −2𝑖𝑣2𝜕𝜏 . (2.3)

We say that f is holomorphic, resp. anti-holomorphic, if 𝐿( 𝑓 ) = 0, resp. 𝑅( 𝑓 ) = 0.
For 𝑟 ∈ N0 and 𝑘1, 𝑘2 ∈ 1

2Z, define

𝑄𝑟 , (𝑘1 ,𝑘2) (𝑋,𝑌 ) :=
𝑟∑
𝑠=0

(
𝑟 + 𝑘1 − 1

𝑠

) (
𝑟 + 𝑘2 − 1

𝑟 − 𝑠

)
𝑋𝑟−𝑠 (−𝑌 )𝑠 ,

�̃�𝑟 (𝑋,𝑌 ) :=
𝑄𝑟 , (1,1) (𝑋,𝑌 ) (𝑋 + 𝑌 )

𝑋 + (−1)𝑟𝑌

(2.4)

in Q[𝑋,𝑌 ]. We omit (𝑘1, 𝑘2) from the notation when it is (1, 1), in which case

𝑄𝑟 (𝑋,𝑌 ) = (𝑋 + 𝑌 )𝑟𝑃𝑟
(
𝑋 − 𝑌

𝑋 + 𝑌

)
,

with 𝑃𝑟 (𝑥) the r-th Legendre polynomial given explicitly by

𝑃𝑟 (𝑥) = 2−𝑟
𝑟∑
𝑠=0

(
𝑟

𝑠

)2
(𝑥 − 1)𝑟−𝑠 (𝑥 + 1)𝑠 = (−1)𝑟0

𝑟0∑
𝑠=0

(
𝑟0 − 𝑟 − 1/2

𝑟0 − 𝑠

) (
𝑟 − 𝑟0 − 1/2

𝑠

)
𝑥𝑟−2𝑠 , (2.5)

where 𝑟0 := �𝑟/2�. The second identity comes from (3.133) on page 38 of [Gou72] and direct calculation.
We thank Zhiwei Sun for pointing us to this reference.

From the differential equation satisfied by 𝑃𝑟 , we have

(𝜕𝑋𝜕𝑌 ) (𝑄𝑟 (𝑋,𝑌 ) (𝑋 + 𝑌 )) = (𝑟 + 1) (𝜕𝑋 + 𝜕𝑌 )𝑄𝑟 (𝑋,𝑌 ). (2.6)

For 𝐴 ∈ 𝔰𝔩2(C), denote

𝐴1 = (𝐴, 0), 𝐴2 = (0, 𝐴) (2.7)

in 𝔰𝔩2(C)2. Then we have two operators

RC𝑟 , (𝑘1 ,𝑘2) := (−4𝜋)−𝑟𝑄𝑟 ,𝑘1 ,𝑘2 (𝑅1, 𝑅2), R̃C𝑟 := (−4𝜋)−𝑟 �̃�𝑟 (𝑅1, 𝑅2) (2.8)

on real-analytic functions on 𝐺 (R)2. If 𝑓 : 𝐺 (R)2 → C is holomorphic and right 𝐾2
∞-equivariant of

weight (𝑘1, 𝑘2), then RC𝑟 , (𝑘1 ,𝑘2) ( 𝑓 )Δ : 𝐺 (R) → C is holomorphic and right 𝐾∞-equivariant of weight
𝑘1 + 𝑘2 + 2𝑟 , and the operator RC is usually called the Rankin-Cohen operator. Here, 𝑓 Δ (𝑔) := 𝑓 (𝑔Δ ) =
𝑓 (𝑔, 𝑔) is the restriction of f to the diagonal 𝐺 (R) ⊂ 𝐺 (R)2. In fact, we have (see [BvdGHZ08,
Proposition 19])

RC𝑟 , (𝑘1 ,𝑘2) ( 𝑓 )Δ (𝑔𝑧) = (2𝜋𝑖)−𝑟
(
𝑄𝑟 (𝜕𝑧1 , 𝜕𝑧2) 𝑓 (𝑔𝑧1 , 𝑔𝑧2 )

)
|𝑧1=𝑧2=𝑧 .

For example, if 𝑓 (𝑔𝑧1 , 𝑔𝑧2) = e(𝑚1𝑧1 + 𝑚2𝑧2), then

RC𝑟 , (𝑘1 ,𝑘2) ( 𝑓 )Δ (𝑔𝑧) = 𝑄𝑟 , (𝑘1 ,𝑘2) (𝑚1, 𝑚2)e((𝑚1 + 𝑚2)𝑧). (2.9)
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From Lemma 2.2 in [Li23], we know that there are unique constants 𝑐 (𝑟 ;𝑘1 ,𝑘2)
ℓ ∈ Q such that

(4𝜋)−𝑟 (𝑅𝑟1 𝑓 )Δ =
𝑟∑
ℓ=0

𝑐 (𝑟 ;𝑘1 ,𝑘2)
ℓ (4𝜋)−𝑟+ℓ𝑅𝑟−ℓRCℓ, (𝑘1 ,𝑘2) ( 𝑓 )Δ (2.10)

whenever 𝑘1 + 𝑘2 + 2𝑟 < 2.

2.2. Quadratic space associated to real quadratic field

Let 𝐹 = Q(
√

𝐷) be a real quadratic field, which becomes a Q-quadratic space of signature (1, 1) with
respect to the quadratic form

𝑄𝑎 (𝜆) := 𝑎Nm(𝜆), 𝜆 ∈ 𝐹

for any 𝑎 ∈ Q×. We denote this quadratic space by 𝑉𝑎 and identify

𝜄𝑎 : 𝑉𝑎 (R) = 𝐹 ⊗Q R � R2

(𝜆1, 𝜆2) ↦→ (𝜆1, sgn(𝑎)𝜆2)
√
|𝑎 |.

(2.11)

This is an isometry, where the quadratic form on R2 is given by 𝑄((𝑥1, 𝑥2)) = 𝑥1𝑥2. The special
orthogonal group 𝐻𝑎 := SO(𝑉𝑎) satisfies

𝐻𝑎 (Q) � 𝐹1(� 𝐹×/Q×),

where 𝐹1 := {𝜇 ∈ 𝐹 : Nm(𝜇) = 1} acts on V via multiplication. Furthermore, we identify

𝐻𝑎 (R) � R×,

where 𝑡 ∈ R× acts on 𝑉𝑎 (R) = 𝐹 ⊗Q R � R2 via (𝑥1, 𝑥2) ↦→ (𝑡𝑥1, 𝑡
−1𝑥2). Note that the invariant measure

on 𝐻 (R) � R× is 𝑑𝑡
|𝑡 | . We have a character sgn : 𝐻𝑎 (R) � R× → {±1}. Denote

𝐻𝑎 (R)+ := ker(sgn) � R>0

its kernel, which is the connected component of 𝐻𝑎 (R) containing the identity. We also denote

𝐻𝑎 (Q)+ := 𝐻𝑎 (R)+ ∩ 𝐻𝑎 (Q) (2.12)

which is an index 2 subgroup of 𝐻𝑎 (Q).

Remark 2.1. Let 𝜒 = 𝜒𝐸/𝐹 be a Hecke character associated to a quadratic extension 𝐸/𝐹. Suppose
𝐸/Q is biquadratic. Then 𝜒 |A× is trivial and 𝜒 factors through the map Nm− : A×

𝐹 → 𝐻𝑎 (A); that is,
there exists 𝜚 = 𝜚𝐸/𝐹 : 𝐻𝑎 (A) → {±1} such that

𝜚 ◦ Nm− = 𝜒. (2.13)

Note that 𝜚 is odd if and only if E is totally imaginary. We also denote the compact subgroup

𝐾𝜚 := 𝐻𝑎 (Ẑ) ∩ ker(𝜚). (2.14)

Note that 𝐻𝑎 (Q)\𝐻𝑎 (Q̂)/𝐾𝜚 is a finite set.
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2.3. The Weil representation and theta functions

Let (𝑉, 𝑄) be a rational quadratic space of signature (𝑝, 𝑞), and 𝐻𝑉 := SO(𝑉). For a subfield 𝐸 ⊂ C,
we denote S (�̂� ; 𝐸), resp. S (𝑉𝑝; 𝐸), to denote the space of Schwartz functions on �̂� := 𝑉 (Q̂), resp.
𝑉𝑝 := 𝑉 (Q𝑝), with values in E, which is an E-vector space. We omit E from the notation if it is Q.
However, we write S (𝑉 (R)) and S (𝑉 (A)) for the space of Schwartz function on 𝑉 (R) and 𝑉 (A) valued
in C, respectively.

For a lattice3 𝐿 ⊂ 𝑉 , we denote 𝐿∨ ⊂ 𝑉 its dual lattice, �̂� := 𝐿 ⊗ Ẑ, �̂�∨ := 𝐿∨ ⊗ Ẑ and

𝐿𝑚,𝜇 := {𝜆 ∈ 𝐿 + 𝜇 : 𝑄(𝜆) = 𝑚} (2.15)

for 𝑚 ∈ Q, 𝜇 ∈ 𝐿∨/𝐿. The finite dimensional E-subspace

S (𝐿; 𝐸) := {𝜙 ∈ S (�̂� ; 𝐸) : 𝜙 is �̂�-invariant with support on �̂�∨} ⊂ S (�̂� ; 𝐸), (2.16)

is spanned by {𝜙𝐿+𝜇 : 𝜇 ∈ �̂�∨/�̂� � 𝐿∨/𝐿} with

𝜙𝐿+𝜇 := Char( �̂� + 𝜇) ∈ S (�̂�). (2.17)

For full sublattices 𝑀 ⊂ 𝐿 ⊂ 𝑉 , it is clear that

S (𝐿; 𝐸) ⊂ S (𝑀; 𝐸) ⊂ S (�̂� ; 𝐸). (2.18)

As above, we also denote S (𝐿) := S (𝐿;Q). Furthermore, since

S (�̂�) =
⋃

𝐿⊂𝑉 lattice
S (𝐿),

we have S (�̂� ; 𝐸) = S (�̂�) ⊗Q 𝐸 for any subfield 𝐸 ⊂ C.
Suppose 𝑉 = 𝑉1 ⊕ 𝑉2 is a decomposition of rational quadratic spaces. For any lattice 𝐿𝑖 ⊂ 𝑉𝑖 , we

have S (𝐿1 ⊕ 𝐿2; 𝐸) = S (𝐿1; 𝐸) ⊗ S (𝐿2; 𝐸) ⊂ S (�̂�1; 𝐸) ⊗ S (�̂�2; 𝐸) via the natural restriction map.
This also gives us

S (�̂� ; 𝐸) = S (�̂�1; 𝐸) ⊗ S (�̂�2; 𝐸) =
⊕

𝐿1⊂𝑉1 , 𝐿2⊂𝑉2 lattices
S (𝐿1; 𝐸) ⊗ S (𝐿2; 𝐸). (2.19)

Combining with equation (2.18), we see that for any given 𝜙 ∈ S (�̂� ; 𝐸), we can find a lattice 𝐿 =
𝐿1 ⊕ 𝐿2 ⊂ 𝑉 such that 𝐿𝑖 ⊂ 𝑉𝑖 and

𝜙 ∈ S (𝐿; 𝐸) = S (𝐿1; 𝐸) ⊗ S (𝐿2; 𝐸). (2.20)

Let �̃� (A) := Mp2 (A) be the metaplectic cover of 𝐺 (A). The group �̃� (A) ×𝐻𝑉 (A) acts on S (𝑉 (A))
via the Weil representation 𝜔 = 𝜔𝑉 ,𝜓 (see [Kud94, section 5] for explicit formula). For each prime
𝑝 ≤ ∞, we also have the local Weil representation 𝜔𝑝 of 𝐺 (Q𝑝) acting on S (𝑉 (Q𝑝);C). Then
𝜔 𝑓 := ⊗𝑝<∞𝜔𝑝 gives a representation of 𝐺 (Q̂) on S (�̂� ;C).

For any lattice 𝐿 ⊂ 𝑉 , the subspace S (𝐿;C) defined in (2.16) is a 𝐾 𝑓 -invariant subspace with
𝐾 𝑓 := 𝐺 (Ẑ). It has a unitary pairing 〈, 〉 with the vector space C[𝐿∨/𝐿] := ⊕𝜇∈𝐿∨/𝐿C𝔢𝜇 given by

〈𝔢𝜇, 𝜙𝜇′ 〉 := 〈𝔢𝜇, 𝜙𝜇′〉𝐿 :=

{
1, 𝜇 = 𝜇′,

0, otherwise.
(2.21)

3Lattices will be even and integral throughout the paper.
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More generally, if 𝐿 = 𝐿1 ⊕ 𝐿2, we have 𝐿∨/𝐿 = 𝐿∨
1 /𝐿1 ⊕ 𝐿∨

2 /𝐿2 and C[𝐿∨/𝐿] � C[𝐿∨
1 /𝐿1] ⊗

C[𝐿∨
2 /𝐿2]. Therefore, we can extend the pairing above to

〈·, ·〉𝐿2 : C[𝐿∨/𝐿] × S (𝐿2;C) → C[𝐿∨
1 /𝐿1], (𝔳1 ⊗ 𝔳2, 𝜙) ↦→ 〈𝔳2, 𝜙〉𝔳1 (2.22)

with 𝔳𝑖 ∈ C[𝐿∨
𝑖 /𝐿𝑖] and 𝜙 ∈ S (𝐿2;C).

With respect to the perfect pairing in (2.21), the unitary dual of 𝜔 𝑓 is the representation 𝜌𝐿 on
C[𝐿∨/𝐿] given by

𝜌𝐿 (𝑛(1)) (𝔢𝜇) := e(𝑄(𝜇))𝔢𝜇,

𝜌𝐿 (𝑤) (𝔢𝜇) :=
e(−(𝑝 − 𝑞)/8)√

|𝐿∨/𝐿 |

∑
𝜇∈𝐿∨/𝐿

e(−(𝜇, 𝜇′))𝔢𝜇′ , (2.23)

where (𝑝, 𝑞) is the signature of 𝑉 (R). This is the Weil representation on finite quadratic modules used by
Borcherds in [Bor98]. If we identify S (𝐿;C) and C[𝐿∨/𝐿] with C |𝐿∨/𝐿 | via the bases {𝜙𝜇 : 𝜇 ∈ �̂�∨/�̂�}
and {𝔢𝜇 : 𝜇 ∈ 𝐿∨/𝐿}, respectively, then 𝜔 𝑓 = 𝜌𝐿 = 𝜌−1

𝐿 . For full sublattices 𝑀 ⊂ 𝐿, the following
trace map

Tr𝐿𝑀 : C[𝐿∨/𝐿] → C[𝑀∨/𝑀], 𝔢𝜇 ↦→ 1
[𝐿 : 𝑀]

∑
ℎ∈𝑀∨/𝑀, ℎ≡𝜇 mod 𝐿

𝔢ℎ (2.24)

intertwines the Weil representation and is compatible with the inclusion in (2.18) in the sense that

〈Tr𝐿𝑀 (𝔳), 𝜙〉𝑀 = 〈𝔢, 𝜙〉𝐿 (2.25)

for any 𝔳 ∈ C[𝐿∨/𝐿], 𝜙 ∈ S (𝐿;C).
The following result will be very useful for us later.

Lemma 2.2. For any prime p, the local Weil representation 𝜔𝑝 descends to S (𝑉 (Q𝑝);Q(𝜁𝑝∞)) with

Q(𝜁𝑝∞) :=
⋃
𝑛≥1
Q(𝜁𝑝𝑛 ) ⊂ Qab (2.26)

the maximal abelian extension of Q ramified only at p.

Proof. Via 𝐿 ′/𝐿 = ⊕𝑝𝐿 ′
𝑝/𝐿𝑝 with 𝐿𝑝 := 𝐿 ⊗ Z𝑝 , we can write 𝜌𝐿 = ⊗𝑝𝜌𝑝 with 𝜌𝑝 the Weil

representation associated to the finite quadratic module 𝐿 ′
𝑝/𝐿𝑝 and identify 𝜔𝑝 = 𝜌−1

𝑝 . It is well-known
that any finite quadratic module can be written in the form 𝑀 ′/𝑀 for an even integral lattice M [Nik79].
Therefore, it suffices to prove the claim with 𝜔𝑝 replaced by 𝜌𝑀 for an even integral lattice M with
quadratic form valued in Z[1/𝑝]. This follows then directly from formula (2.23) and Milgram’s formula
[Bor98, Corollary 4.2]. �

As usual, we let 𝐻𝑘,𝐿 (Γ) denote the space of harmonic Maass forms valued in C[𝐿∨/𝐿] of weight
𝑘 ∈ 1

2Z and representation 𝜌𝐿 on a congruence subgroup Γ ⊂ SL2(Z) (see [BF04, section 3]). It contains
the subspace 𝑀 !

𝑘,𝐿 (Γ) of vector-valued weakly holomorphic modular forms. Post-composing with Tr𝐿𝑀
in (2.24) induces a map 𝐻𝑘,𝐿 (Γ) → 𝐻𝑘,𝑀 (Γ), which preserves holomorphicity and rationality of
holomorphic part Fourier coefficients. If 𝐿∨/𝐿 is trivial (resp. Γ = SL2(Z)), then we drop L (resp. Γ)
from the above notations. Furthermore, we let

𝑀 !,∞
𝑘 (Γ) := { 𝑓 ∈ 𝑀 !

𝑘 (Γ) : 𝑓 is holomorphic away from the cusp ∞} (2.27)
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and denote for 𝑓 (𝜏) =
∑
𝑚∈Q, 𝜇∈𝐿∨/𝐿 𝑐(𝑚, 𝜇)𝑞𝑚𝔢𝜇 ∈ 𝑀 !

𝑘,𝐿

prin( 𝑓 ) :=
∑

𝑚∈Q<0 , 𝜇∈𝐿∨/𝐿
𝑐(𝑚, 𝜇)𝑞𝑚𝔢𝜇 (2.28)

the principal part of f.
In [McG03, Theorem 4.3], McGraw extended the representation 𝜌𝐿 to the metaplectic cover of GL2.

To simplify the notation, we recall it here for lattices with even rank, in which case this extension factors
through GL2. Using the short exact sequence

1 → SL2 → GL2
det→ G𝑚 → 1,

we can identify GL2 � SL2 �𝑇 . Then 𝜔 𝑓 extends to a Q-linear action of GL2(Q̂) = GL2 (Q)GL2(Ẑ) on
S (�̂� ;Qab) via

(𝜔 𝑓 (𝑔, 𝑡 (𝑎))𝜙) (𝑥) := (𝜔 𝑓 (𝑔)𝜎𝑎 (𝜙)) (𝑥) = 𝜎𝑎 ((𝜔 𝑓 (𝑡 (𝑎)−1𝑔𝑡 (𝑎)) (𝜙)) (𝑥)) (2.29)

for 𝑔 ∈ SL2(Q̂), 𝑎 ∈ Q̂×, 𝜙 ∈ S (�̂� ;Qab), where 𝜎𝑎 ∈ Gal(Qab/Q) satisfies 𝜎𝑎 (𝜓 𝑓 (𝑎′)) = 𝜓 𝑓 (𝑎𝑎′) for
all 𝑎, 𝑎′ ∈ Q̂× and acts on S (�̂� ;Qab) via its action on Qab. This gives us

S (�̂�) = S (�̂� ;Qab)𝑇 (Ẑ) . (2.30)

For each 𝑝 < ∞, this gives an extension of 𝜔𝑝 to a Q-linear action of GL2(Q𝑝) on S (𝑉𝑝;Q(𝜁𝑝∞)),
which satisfies

S (𝑉𝑝) = S (𝑉𝑝;Q(𝜁𝑝∞))𝑇 (Z𝑝) . (2.31)

For 𝜑 ∈ S (𝑉 (A)), we have the theta function

𝜃𝑉 (𝑔, ℎ, 𝜑) :=
∑

𝑥∈𝑉 (Q)
(𝜔(𝑔)𝜑) (ℎ−1𝑥) (2.32)

for (𝑔, ℎ) ∈ (𝐺 × 𝐻𝑉 ) (A) as usual. For a lattice 𝐿 ⊂ 𝑉 , we also denote

Θ𝐿 (𝜏, ℎ) := 𝑣−(𝑝−𝑞)/4
∑

𝜇∈𝐿∨/𝐿
𝜃𝑉 (𝑔𝜏 , ℎ, 𝜙𝜇𝜙∞)𝜙𝜇 (2.33)

the vector-valued theta function with 𝜙∞ the Gaussian.

2.4. CM points and higher Green functions

We follow [BKY12] and [BEY21] to recall CM points and higher Green functions. Let (V, 𝑄) be a
rational quadratic space of signature (𝑛, 2), and �̃� = �̃�V := GSpin(V). For an open compact subgroup
𝐾 ⊂ �̃� (Q̂), we have the associated Shimura variety 𝑋𝐾 , whose C-points are given by

𝑋𝐾 (C) = �̃� (Q)\(D × �̃� (Q̂)/𝐾).

Here, D = D+ � D− is the symmetric space associated to V(R). For 𝑚 ∈ Q and 𝜑 ∈ S (V̂;C), one can
define the special divisor 𝑍 (𝑚, 𝜑) on 𝑋𝐾 (see, for example, [BEY21, section 2]).

The CM points on 𝑋𝐾 can be described as follows. For a totally real field F of degree d with real
embeddings 𝜎𝑗 , 1 ≤ 𝑗 ≤ 𝑑, denote 𝛼 𝑗 := 𝜎𝑗 (𝛼) for 𝛼 ∈ 𝐹. Suppose 𝛼 𝑗0 < 0 for some 𝑗0 and 𝛼 𝑗 > 0
when 𝑗 ≠ 𝑗0. Then a CM quadratic extension 𝐸/𝐹 becomes an F-quadratic space 𝑊 = 𝑊𝛼 = 𝐸 with
respect to the quadratic form 𝑄𝛼 := 𝛼Nm𝐸/𝐹 . Suppose there is an isometric embedding as in (1.5).
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Then the subspace 𝑊 ⊗𝐹,𝜎 𝑗0 R ⊂ V(R) is a negative 2-plane and determines a point 𝑧±0 ∈ D± with a
choice of orientation. For convenience, we denote

𝑧0 := 𝑧+0 . (2.34)

The group Res𝐹/Q(SO(𝑊)) is contained in SO(V), whose preimage in �̃�V is a torus denoted by 𝑇𝑊 .
Note that 𝑇𝑊 (Q) = 𝐸×/𝐹1. We denote the CM cycle on 𝑋𝐾 associated to 𝑇𝑊 by

𝑍 (𝑊) := 𝑇𝑊 (Q)\({𝑧±0 } × 𝑇𝑊 (Q̂)/𝐾𝑊 ) ⊂ 𝑋𝐾 (2.35)

with 𝐾𝑊 := 𝐾 ∩ 𝑇𝑊 (Q̂). It is defined over F, and its Galois conjugates are the CM cycles 𝑍 (𝑊 ( 𝑗))
with 1 ≤ 𝑗 ≤ 𝑑, where 𝑊 ( 𝑗) is the neighborhood F-quadratic spaces at 𝜎𝑗 of admissible incoherent
A𝐹 -quadratic spaceW associated to W (see [BY11, BKY12] for details). Note that 𝑊 ( 𝑗) = 𝑊𝛼( 𝑗) for
some 𝛼( 𝑗) ∈ 𝐹× and 𝛼( 𝑗0) = 𝛼. For totally positive 𝑡 ∈ 𝐹, we define the ‘Diff’ set

Diff(𝑊, 𝑡) := {𝔭 : 𝑊𝔭 does not represent 𝑡} (2.36)

following [Kud97]. Note that this set is finite and odd (see [YY19, Proposition 2.7]).
When F is real quadratic (i.e. 𝑑 = 2), for 𝛼 ∈ 𝐹× with Nm(𝛼) < 0, we set

𝛼∨ := 𝛼(2) ∈ 𝐹×. (2.37)

Then (𝛼∨)∨ = 𝛼. Note that 𝛼∨ is not necessarily the Galois conjugate of 𝛼!
Denote

𝜎0 :=
𝑛

4
− 1

2
. (2.38)

Let 𝐿 ⊂ V be an even integral lattice such that K stabilizes �̂�. For 𝜇 ∈ 𝐿∨/𝐿 and 𝑚 ∈ Z + 𝑄(𝜇), we
write 𝑍 (𝑚, 𝜇) := 𝑍 (𝑚, 𝜙𝜇). The automorphic Green function on 𝑋𝐾 \𝑍 (𝑚, 𝜇) is defined by

Φ𝑚,𝜇 (𝑧, ℎ, 𝑠) := 2
Γ(𝑠 + 𝜎0)
Γ(2𝑠)

∑
𝜆∈ℎ (𝐿𝑚,𝜇)

(
𝑚

𝑄(𝜆𝑧⊥)

)𝑠+𝜎0

𝐹

(
𝑠 + 𝜎0, 𝑠 − 𝜎0, 2𝑠;

𝑚

𝑄(𝜆𝑧⊥)

)
, (2.39)

for Re(𝑠) > 𝜎0 + 1, where 𝐹 (𝑎, 𝑏, 𝑐; 𝑧) is the Gauss hypergeometric function [AS64, Chapter 15]. At
𝑍 (𝑚, 𝜇), the function Φ𝑚,𝜇 has logarithmic singularity.

At 𝑠 = 𝜎0 + 1 + 𝑟 with 𝑟 ∈ N, the function Φ𝑚,𝜇 (𝑧, ℎ, 𝑠) is called a higher Green function. For a
harmonic Maass form 𝑓 =

∑
𝑚,𝜇 𝑐(𝑚, 𝜇)𝑞−𝑚𝜙𝜇 + 𝑂 (1) ∈ 𝐻𝑘−2𝑟 ,𝐿 with 𝑘 := −2𝜎0, define

Φ𝑟
𝑓 (𝑧, ℎ) := 𝑟!

∑
𝑚>0, 𝜇∈𝐿′/𝐿

𝑐(𝑚, 𝜇)𝑚𝑟Φ𝑚,𝜇 (𝑧, ℎ, 𝜎0 + 1 + 𝑟) (2.40)

to be the associated higher Green function. Following from the work of Borcherds [Bor98] and gener-
alization by Bruinier [Bru02] (also see [BEY21, Proposition 4.7]), the function Φ𝑟

𝑓 has the following
integral representation:

Φ𝑟
𝑓 (𝑧, ℎ) = (4𝜋)−𝑟 lim

𝑇→∞

∫
F𝑇

〈𝑅𝑟𝜏 𝑓 (𝜏),Θ𝐿 (𝜏, 𝑧, ℎ)〉𝑑𝜇(𝜏)

= (−4𝜋)−𝑟 lim
𝑇→∞

∫
F𝑇

〈 𝑓 (𝜏), 𝑅𝑟𝜏Θ𝐿 (𝜏, 𝑧, ℎ)〉𝑑𝜇(𝜏),
(2.41)
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where F𝑇 is the truncated fundamental domain of SL2(Z)\H at height 𝑇 > 1 and 𝑑𝜇 is the invariant
measure given in (3.20). It has logarithmic singularity along the special divisor

𝑍 𝑓 :=
∑

𝑚>0, 𝜇∈𝐿∨/𝐿
𝑐(−𝑚, 𝜇)𝑍 (𝑚, 𝜇) (2.42)

on 𝑋𝐾 . Note that [𝑧0, ℎ] ∈ 𝑍 (𝑊) ∩ 𝑍 𝑓 if and only if

ℎ(𝐿𝑚,𝜇) ∩ 𝑧⊥0 ≠ ∅ (2.43)

for some 𝑚, 𝜇 with 𝑐(−𝑚, 𝜇) ≠ 0.

2.5. Product of modular curves as a Shimura variety

We follow and slightly modify [YY19, section 3] to express 𝑋0(𝑁) × 𝑋0(𝑁) as O(2, 2) orthogonal
Shimura variety. Consider (V, 𝑄) = (𝑀2 (Q), det), and the lattice

𝐿 :=
{(

𝑎 𝑏
𝑁𝑐 𝑑

)
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z

}
⊂ V

for any 𝑁 ∈ N. Then the dual lattice 𝐿∨ is given by

𝐿∨ :=
{(

𝑎 𝑏/𝑁
𝑐 𝑑

)
: 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z

}
⊂ V,

and 𝐿∨/𝐿 � (Z/𝑁Z)2 is isomorphic to that of a scaled hyperbolic plane.
For 𝑔 𝑗 ∈ SL2 (Q) and Λ ∈ V(Q), the map

Λ ↦→ 𝑔1Λ𝑔−1
2 (2.44)

gives SL2 ×SL2 � Spin(V) and identifies 𝐻V as a subgroup of GL2 × GL2 [YY19, section 3.1].
Let 𝐾 (𝑁) := 𝐾 (Γ0(𝑁)) ⊂ GL2(Ẑ) be the open compact subgroup in [YY19, section 3.1] and 𝐾 :=
(𝐾 (𝑁) × 𝐾 (𝑁)) ∩ 𝐻V(Q̂). Then the map

𝑤 : H2 → D+, (𝑧1, 𝑧2) ↦→ R�
( 𝑧1 −𝑧1𝑧2

1 −𝑧2

)
+ R�
( 𝑧1 −𝑧1𝑧2

1 −𝑧2

)
(2.45)

induces an isomorphism

𝑋0(𝑁) × 𝑋0(𝑁) � 𝑋𝐾 , (𝑧1, 𝑧2) ↦→ [𝑤(𝑧1, 𝑧2), 1] (2.46)

with 𝑋𝐾 the Shimura variety for 𝐻V.
Under the map (2.44), the inverse images of the discriminant kernel Γ𝐿 ⊂ SO(𝐿) are

ΓΔ
0 (𝑁) :=

{
(𝑔1, 𝑔2) ∈ Γ0 (𝑁)2 : 𝑔1𝑔2 ∈ Γ1(𝑁)

}
⊂ Γ0(𝑁)2,

which contains Γ1(𝑁) × Γ1(𝑁) and is a normal subgroup of Γ0(𝑁)2 satisfying

Γ0(𝑁)2/ΓΔ
0 (𝑁) � (Z/𝑁Z)×, (( 𝑎1 ∗

∗ ∗ ), ( 𝑎2 ∗
∗ ∗ )) ↦→ 𝑎1𝑎2 mod 𝑁.

The group SO(𝐿∨/𝐿) := SO(𝐿)/Γ𝐿 � Γ0(𝑁)2/ΓΔ
0 (𝑁) � (Z/𝑁Z)× acts on 𝐿∨/𝐿 � (Z/𝑁Z)2 via

𝛼 · (𝑏, 𝑐) := (𝛼𝑏, 𝛼−1𝑐),

and the induced linear map on C[𝐿∨/𝐿] intertwines the Weil representation 𝜌𝐿 .
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Now given 𝑓 ∈ 𝑀 !
𝑘 (Γ0 (𝑁)) for 𝑘 ∈ 2Z, we can lift it to a vector-valued modular form in 𝑀 !

𝑘,𝜌𝐿
via

the following map:

vv : 𝑀 !
𝑘 (Γ0(𝑁)) → 𝑀 !

𝑘,𝜌𝐿
, 𝑓 ↦→

∑
Γ0 (𝑁 )\SL2 (Z)

( 𝑓 |𝑘 𝛾)𝜌𝐿 (𝛾)−1 · 𝔢0. (2.47)

This map and its generalizations are well-studied (see, for example, [Sch09]), whose properties are
summarized in the following result.

Lemma 2.3. When 𝑘 < 0, we have

prin(vv( 𝑓 )) = prin( 𝑓 )𝔢0. (2.48)

for all 𝑓 ∈ 𝑀 !,∞
𝑘 (Γ0(𝑁)), on which space the map vv is an isomorphism with the inverse given by

𝑔 =
∑

𝜇∈𝐿∨/𝐿
𝑔𝜇𝔢𝜇 ↦→ 𝑔0. (2.49)

Furthermore, it preserves the rationality of the Fourier expansion at the cusp infinity.

Proof. See Proposition 4.2 in [Sch09] and Proposition 6.12, Corollary 6.14 in [BHK+20]. �

As a consequence, we can relate the higher Green function 𝐺Γ0 (𝑁 )
𝑟+1, 𝑓 from the introduction to one on

the Shimura variety 𝑋𝐾 .

Corollary 2.4. Under the isomorphism (2.46), we have

𝐺Γ0 (𝑁 )
𝑟+1, 𝑓 (𝑧1, 𝑧2) = −Φ𝑟

vv( 𝑓 ) ( [𝑤(𝑧1, 𝑧2), 1]) (2.50)

with 𝐺Γ0 (𝑁 )
𝑟+1, 𝑓 the higher Green function defined in (1.4) for 𝑓 ∈ 𝑀 !,∞

−2𝑟 (Γ0 (𝑁)) with 𝑟 > 0.

Proof. Under (2.46), the divisor

𝑍 (𝑚, 0) = Γ0(𝑁)2\{(𝑧1, 𝑧2) ∈ H2 : (
( 𝑧1 −𝑧1𝑧2

1 −𝑧2

)
, 𝑥) = 0 for some 𝑥 ∈ 𝐿𝑚,0} (2.51)

on 𝑋𝐾 is simply the m-th Hecke correspondence 𝑇𝑚 on 𝑋0 (𝑁) × 𝑋0 (𝑁). Therefore, the two sides of
(2.50) have logarithmic singularity along the same divisor. Using Corollary 4.2 and Theorem 4.4 of
[BEY21], we see that their difference is a smooth function in 𝐿2 (𝑋0 (𝑁)2) and an eigenfunction of the
Laplacians in 𝑧1 and 𝑧2 with eigenvalue 𝑟 (1 − 𝑟) < 0. By fixing 𝑧2, this difference is an eigenfunction
of the Laplacian on 𝑋0(𝑁) with negative eigenvalue, which vanishes identically. This holds for any
𝑧2 ∈ 𝑋0(𝑁), and we obtain (2.50). �

Remark 2.5. Following Section V.4 of [GZ86], we call a set of integers {𝜆𝑚 : 𝑚 ∈ N} a relation for
𝑆2−𝑘 (Γ0(𝑁)) if only finitely many 𝜆𝑚 are nonzero and∑

𝑚≥1
𝜆𝑚𝑎𝑚 = 0

for all
∑
𝑚≥1 𝑎𝑚𝑞𝑚 ∈ 𝑆2−𝑘 (Γ0(𝑁)). Since 𝑔0 ∈ 𝑆2−𝑘 (Γ0(𝑁)) for all 𝑔 ∈ 𝑆2−𝑘,𝐿− , we have

{ 𝑓𝑃 , 𝑔} := CT���
∑

𝜇∈𝐿∨/𝐿
𝑓𝑃,𝜇𝑔𝜇

��� = 0

for 𝑓𝑃 =
∑
𝑚≥1 𝜆𝑚𝑞−𝑚𝔢0. By Serre duality [Bor99], there exists 𝑓 ∈ 𝑀 !

𝑘,𝐿 with prin( 𝑓 ) = 𝑓𝑃 .
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Suppose 𝐸1, 𝐸2 are imaginary quadratic fields such that 𝐸 = 𝐸1𝐸2 is biquadratic containing a real
quadratic field F (i.e., 𝐸1 ≠ 𝐸2). Then for any CM points 𝑧 𝑗 ∈ 𝐸 𝑗 , the point (𝑧1, 𝑧2) ∈ H2 is sent to
𝑍 (𝑊𝛼) ∪ 𝑍 (𝑊𝛼∨) ⊂ 𝑋𝐾 under the isomorphism in (2.46) (see Section 3.2 in [YY19] for details).

2.6. Eisenstein series

We recall coherent and incoherent Eisenstein series for the group 𝐺 = SL2 following [BKY12]. Let F
be a totally real field of degree d and discriminant 𝐷𝐹 , 𝐸/𝐹 be a quadratic CM extension with absolute
discriminant 𝐷𝐸 and 𝜒 = 𝜒𝐸/𝐹 = ⊗𝑣≤∞𝜒𝑣 the associated Hecke character. For a standard section
Φ ∈ 𝐼 (𝑠, 𝜒) with

𝐼 (𝑠, 𝜒) := Ind𝐺 (A𝐹 )
𝐵 (A𝐹 ) ( | · |

𝑠𝜒) =
⊗
𝑣≤∞

𝐼𝑣 (𝑠, 𝜒𝑣 ), 𝐼𝑣 (𝑠, 𝜒𝑣 ) := Ind𝐺 (𝐹𝑣 )
𝐵 (𝐹𝑣 ) ( | · |

𝑠
𝑣 𝜒𝑣 ), (2.52)

we can form the Eisenstein series

𝐸∗(𝑔, 𝑠,Φ) := Λ(𝑠 + 1, 𝜒)𝐸 (𝑔, 𝑠,Φ), 𝐸 (𝑔, 𝑠,Φ) :=
∑

𝛾∈𝐵\ SL2 (𝐹 )
Φ(𝛾𝑔, 𝑠),

where Λ(𝑠, 𝜒) is the completed L-function for 𝜒 (see equation (4.6) in [BKY12]). When Φ = ⊗𝑣Φ𝑣 ,
the Eisenstein series 𝐸 (𝑔, 𝑠,Φ) has the Fourier expansion

𝐸∗(𝑔, 𝑠,Φ) = 𝐸∗
0 (𝑔, 𝑠,Φ) +

∑
𝑡 ∈𝐹×

𝐸∗
𝑡 (𝑔, 𝑠,Φ),

and for 𝑡 ∈ 𝐹×,

𝐸∗
𝑡 (𝑔, 𝑠,Φ) =

∏
𝑣

𝑊∗
𝑡 ,𝑣 (𝑔, 𝑠,Φ𝑣 ),

where 𝑊∗
𝑡 ,𝑣 is the normalized local Whittaker function defined by

𝑊∗
𝑡 ,𝑣 (𝑔𝑣 , 𝑠,Φ𝑣 ) := |𝐷𝐸/𝐷𝐹 |−(𝑠+1)/2

𝑣 𝐿(𝑠 + 1, 𝜒𝑣 )
∫
𝐹𝑣

Φ𝑣 (𝑤𝑛(𝑏)𝑔𝑣 , 𝑠)𝜓𝑣 (−𝑡𝑏)𝑑𝑏. (2.53)

For simplicity, we denote

𝑊∗
𝑡 ,𝑣 (Φ𝑣 ) := 𝑊∗

𝑡 ,𝑣 (1, 0,Φ𝑣 ), 𝑊∗,′
𝑡 ,𝑣 (Φ𝑣 ) := 𝜕𝑠𝑊

∗
𝑡 ,𝑣 (1, 𝑠,Φ𝑣 ) |𝑠=0 . (2.54)

We will be interested in the case when Φ is a Siegel-Weil section.
Given 𝛼 ∈ 𝐹×, we view 𝑊𝛼 = 𝐸 as an F-quadratic space with quadratic form 𝑄𝛼 (𝑧) := 𝛼𝑧𝑧. Denote

𝜔𝛼 the associated Weil representation. We have an SL2-equivariant map 𝜆𝛼 : S (𝑊𝛼 (A𝐹 )) → 𝐼 (0, 𝜒)
given by

𝜆𝛼 (𝜙) (𝑔) = (𝜔𝛼 (𝑔)𝜙) (0). (2.55)

At each place v, there are local versions of 𝜔𝛼 and 𝜆𝛼 as well, denoted by 𝜔𝛼,𝑣 and 𝜆𝛼,𝑣 . When
Φ = 𝜆𝛼 (𝜙), resp. Φ𝑣 = 𝜆𝛼,𝑣 (𝜙𝑣 ), we replace Φ, resp. Φ𝑣 , from the notations above by 𝜙, resp. 𝜙𝑣 .

Let 𝑍 (𝑊𝛼) be the CM points on 𝑋𝐾 as in Section 2.4 and 𝑊𝛼,Q ⊂ V the rational quadratic space as
in (1.5). A special case of the Siegel-Weil formula (see [BKY12, Theorem 4.5]) gives us

𝜃 (𝑔, 𝑍 (𝑊𝛼), 𝜙) = 𝐶 · 𝐸 (𝑔Δ , 0, 𝜙) (2.56)

for any 𝜙 ∈ S (𝑊𝛼,Q (A)) = S (𝑊𝛼 (A𝐹 )). Here, 𝐶 = deg(𝑍 (𝑊𝛼))/2.
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Suppose only the j-th real embedding of 𝛼 is negative. Denote 1 := (1, . . . , 1) and 1( 𝑗) :=
(1, . . . ,−1, . . . , 1) with−1 at the j-th slot. The sectionsΦ( 𝑗) = 𝜆𝛼, 𝑓 (𝜙) ⊗Φ1( 𝑗)

∞ andΦ = 𝜆𝛼, 𝑓 (𝜙) ⊗Φ1
∞

are coherent and incoherent, respectively. For all 𝜙 ∈ S (𝑊𝛼 (�̂�);C), the Eisenstein series 𝐸∗(𝑔, 𝑠,Φ( 𝑗))
is holomorphic of weight 1( 𝑗) at 𝑠 = 0 and

𝐸∗(𝜏, 𝜙,1( 𝑗)) := Nm(𝑣)−1/2𝐸∗(𝑔𝜏 , 0,Φ( 𝑗)) (2.57)

is called a coherent Eisenstein series. However, the Eisenstein series 𝐸∗(𝑔, 𝑠,Φ) vanishes at 𝑠 = 0, and
its derivative

𝐸∗,′(𝜏, 𝜙) := 𝜕𝑠Nm(𝑣)−1/2𝐸∗(𝑔𝜏 , 𝑠,Φ) |𝑠=0 (2.58)

is called an incoherent Eisenstein series, which is related to the coherent Eisenstein series via the
differential equation [BKY12, Lemma 4.3]

2𝐿𝜏 𝑗𝐸
∗,′(𝜏, 𝜙) = 𝐸∗(𝜏, 𝜙,1( 𝑗)) (2.59)

for all 1 ≤ 𝑗 ≤ 𝑑. Furthermore, it has the Fourier expansion

𝐸∗,′(𝜏, 𝜙) = E (𝜏, 𝜙) + 𝜙(0)Λ(0, 𝜒) log Nm(𝑣) + E∗(𝜏, 𝜙), (2.60)

where E∗(𝜏, 𝜙) has exponential decay near the cusp infinity and

E (𝜏, 𝜙) = 𝑎0 (𝜙) +
∑

𝑡 ∈𝐹, 𝑡	0
𝑎𝑡 (𝜙)e(Tr(𝑡𝜏)).

Here, 𝑎0 (𝜙) is an explicit constant (see (2.24) in [YY19]) and

𝑎𝑡 (𝜙) :=

{
(−𝑖)𝑑�̃�𝑡 (𝜙) log Nm(𝔭), if Diff(𝑊𝛼, 𝑡) = {𝔭},
0, otherwise.

(2.61)

The coefficient �̃�𝑡 (𝜙) is given by (see [YY19, Proposition 2.7])

�̃�𝑡 (𝜙) = 2𝑑
𝑊∗,′
𝑡 ,𝔭 (𝜙𝔭)

log Nm(𝔭)
∏
𝑣�𝔭∞

𝑊∗
𝑡 ,𝑣 (𝜙𝑣 ) ∈ Q(𝜙) (2.62)

when Diff(𝑊𝛼, 𝑡) = {𝔭}

2.7. Hecke’s cusp form

Denote 𝜔𝑎 = 𝜔𝑉𝑎 ,𝜓 the Weil representation and 𝜃𝑎 := 𝜃𝑉𝑎 the theta function as in (2.32). For a bounded,
integrable function 𝜌 : 𝐻𝑎 (Q)\𝐻𝑎 (A)/𝐾 → C, consider the following theta lift:

𝜗𝑎 (𝑔, 𝜑, 𝜌) :=
∫
[𝐻𝑎 ]

𝜃𝑎 (𝑔, ℎ, 𝜑)𝜌(ℎ)𝑑ℎ. (2.63)

The measure 𝑑ℎ is the product measure of the local measures 𝑑ℎ𝑝 , where 𝑑ℎ𝑝 is normalized such that
the maximal compact subgroup in 𝐻𝑎 (Q𝑝) has volume 1. Such integral was first considered by Hecke
in [Hec27] when 𝜌 = 𝜚 is an odd, continuous character – that is,

𝜚(ℎ) = sgn(ℎ∞)𝜚 𝑓 (ℎ 𝑓 ) (2.64)

https://doi.org/10.1017/fms.2024.139 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.139


Forum of Mathematics, Sigma 19

with 𝜚 𝑓 a continuous character on 𝐻𝑎 (Q̂) and 𝜑 = 𝜑±
∞𝜑 𝑓 with

𝜑±
∞(𝑥1, 𝑥2) := (𝑥1 ± 𝑥2)𝑒−𝜋 (𝑥

2
1+𝑥

2
2 ) ∈ S (R2). (2.65)

Notice that 𝜑±
∞ satisfies 𝜑±

∞(−𝑥1,−𝑥2) = −𝜑±
∞(𝑥1, 𝑥2).

In this case, the m-th Fourier coefficient of 𝜗𝑎 is given by

𝑊𝑚 (𝜑, 𝜚) (𝑔) :=
∫
[𝑁 ]

𝜗𝑎 (𝑛𝑔, 𝜑, 𝜚)𝜓(−𝑚𝑛)𝑑𝑛

for 𝑚 ∈ Q. To evaluate it, we apply the usual unfolding trick

𝑊𝑚(𝜑, 𝜚) (𝑔) =
∫
[𝑁 ]

∫
[𝐻𝑎 ]

∑
𝜆∈𝑉𝑎 (Q)

(𝜔𝑎 (𝑛𝑔)𝜑) (ℎ−1𝜆)𝜚(ℎ)𝑑ℎ𝜓(−𝑚𝑛)𝑑𝑛

=
∫
[𝐻𝑎 ]

∑
𝜆∈𝑉𝑎,𝑚 (Q)

(𝜔𝑎 (𝑔)𝜑) (ℎ−1𝜆)𝜚(ℎ)𝑑ℎ

=
∑

𝜆∈𝐻𝑎 (Q)\𝑉𝑎,𝑚 (Q)

∫
𝐻𝑎,𝜆 (Q)\𝐻𝑎 (A)

(𝜔𝑎 (𝑔)𝜑) (ℎ−1𝜆)𝜚(ℎ)𝑑ℎ.

When 𝑚 = 0, we have 𝜆 = 0 since𝑉𝑎 is anisotropic and 𝜑(0) = 𝜑±
∞(0)𝜑 𝑓 (0) = 0. When 𝑄𝑎 (𝜆) = 𝑚 ≠ 0,

the group 𝐻𝑎,𝜆 is trivial. We can then write 𝑔 = 𝑔𝜏𝑔 𝑓 with 𝑔𝜏 = 𝑛(𝑢)𝑚(
√

𝑣) ∈ 𝐺 (R) and 𝑔 𝑓 ∈ 𝐺 (Q̂)
and obtain

𝑊𝑚 (𝜑, 𝜚) (𝑔) =
∑

𝜆∈𝐻𝑎 (Q)\𝑉𝑎,𝑚 (Q)

∫
R×
(𝜔𝑎 (𝑔𝜏)𝜑±

∞)(𝑡−1(𝜄𝑎 (𝜆)))
𝑑𝑡

𝑡

∫
𝐻𝑎 (Q̂)

𝜚 𝑓 (ℎ) (𝜔𝑎 (𝑔 𝑓 )𝜑 𝑓 ) (ℎ−1𝜆)𝑑ℎ.

The group 𝐻𝑎 (Q) acts on 𝑉𝑎,𝑚 (Q) transitively. The archimedean integral can be evaluated as∫
R×
(𝜔𝑎 (𝑔𝜏)𝜑±

∞)(𝑡−1(𝜄𝑎 (𝜆)))
𝑑𝑡

𝑡
= 2e(𝑚𝑢) 𝑣√

|𝑎 |

∫ ∞

0
(𝑡−1𝜆1 ± sgn(𝑎)𝑡𝜆2)𝑒−𝜋

𝑣
|𝑎 | (𝑡

−2𝜆2
1+𝑡

2𝜆2
2) 𝑑𝑡

𝑡

= 2𝑣e(𝑚𝑢)sgn(𝜆1)
√
|𝑚 |
∫ ∞

0
(𝑡−1 ± sgn(𝑚)𝑡)𝑒−𝜋𝑣 |𝑚 | (𝑡−2+𝑡2) 𝑑𝑡

𝑡
.

This is 0 if ±sgn(𝑚) < 0 by the change of variable 𝑡 ↦→ 1/𝑡 and can be otherwise evaluated using the
lemma below.

Lemma 2.6. For any 𝛽 > 0, we have∫ ∞

0
(𝑡−1 + 𝑡)𝑒−𝛽𝜋 (𝑡−2+𝑡2) 𝑑𝑡

𝑡
=

𝑒−2𝜋𝛽
√

𝛽
.

Therefore, we have

𝑊𝑚 (𝜑±, 𝜚) ((𝑔𝜏 , 𝑔 𝑓 )) = 2
√

𝑣e(𝑚𝑢)e(|𝑚 |𝑖𝑣)sgn(𝜆1)
∫
𝐻𝑎 (Q̂)

𝜚 𝑓 (ℎ) (𝜔𝑎 (𝑔 𝑓 )𝜑 𝑓 ) (ℎ−1𝜆)𝑑ℎ, (2.66)

when ±𝑚 > 0 and 𝜆 ∈ 𝑉𝑎,𝑚 (Q). Otherwise, it is 0. The integral in (2.66) can be evaluated locally.
Notice that it always converges as 𝜑 𝑓 (ℎ−1𝜆) has compact support as a function of ℎ ∈ 𝐻𝑎 (Q̂).
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2.8. The Deformed theta integral

We recall the real-analytic modular form of weight one constructed in [CL20] using the notations of
Section 2.7. Let 𝜚 be an odd, continuous character as in (2.64), and 𝐾𝜚 ⊂ 𝐻𝑎 (Ẑ) the open compact
subgroup defined in (2.14). The intersection 𝐻𝑎 (Q)+ ∩ 𝐾𝜚 , where 𝐻𝑎 (Q)+ := 𝐻𝑎 (Q) ∩ 𝐻𝑎 (R)+, is a
cyclic subgroup

Γ𝜚 = 〈𝜀 𝜚〉, 𝜀 𝜚 > 1 > 𝜀′
𝜚 > 0 (2.67)

of the totally positive units in O. Then we have

𝐻𝑎 (A) =
∐
𝜉 ∈𝐶

𝐻𝑎 (Q)𝐻𝑎 (R)+𝐾𝜚𝜉, (2.68)

where 𝐶 ⊂ 𝐻𝑎 (Q̂) is a finite subset of elements representing 𝐻𝑎 (Q)+\𝐻𝑎 (Q̂)/𝐾𝜚 . So given ℎ =
(ℎ 𝑓 , ℎ∞), we can find 𝛼 ∈ 𝐻𝑎 (Q), 𝑡 ∈ 𝐻𝑎 (R)+, 𝑘1 ∈ 𝐾𝜚 , 𝜉 ∈ 𝐶 all depending on h such that

ℎ = (𝛼𝑘1𝜉, 𝛼𝑡), (2.69)

though the choice is not unique. This gives us the identification

𝐻𝑎 (Q)\𝐻𝑎 (A)/𝐾𝜚 �
∐
𝜉 ∈𝐶

Γ𝜚\𝐻𝑎 (R)+𝜉 (2.70)

by sending ℎ = (𝛼𝑘1𝜉, 𝛼𝑡) ∈ 𝐻𝑎 (A) as in (2.69) to 𝑡 ∈ 𝐻𝑎 (R)+ in the 𝜉-component. Just like the
decomposition (2.68), this isomorphism depends on the choice of the set of representatives C. Similarly,
we have

𝐻𝑎 (Q̂)/𝐾𝜚 �
∐
𝜉 ∈𝐶

Γ𝜚\𝐻𝑎 (Q)+𝜉. (2.71)

Using the Fourier coefficient 𝑊𝑚 in (2.66) and the decomposition in (2.71), we can write

𝜗𝑎 (𝑔, 𝜑±, 𝜚) = vol(𝐾𝜚)
∑
𝜉 ∈𝐶

𝜚(𝜉)
∑

𝛽∈Γ𝜚\𝑉𝑎 (Q) , ±𝑄𝑎 (𝛽)>0
(𝜔𝑎 (𝑔)𝜑0,±))(𝜉−1𝛽) (2.72)

for 𝑔 ∈ 𝐺 (Q̂) × 𝐵(R), where 𝜑± = 𝜑 𝑓 𝜑±
∞ with 𝜑 𝑓 ∈ S (�̂�𝑎) being 𝐾𝜚-invariant and

𝜑0,± = 𝜑 𝑓 𝜑0,±
∞ , 𝜑0,±

∞ (𝑥1, 𝑥2) := sgn(𝑥1)𝑒∓2𝜋𝑥1𝑥2 . (2.73)

Although 𝜑0,±
∞ is not a Schwartz function on R2, the sum above still converges absolutely. For 𝑔 ∈ 𝐵(R),

the quantity 𝜔𝑎 (𝑔)𝜑0,±
∞ is defined with the usual formula of the Weil representation, and 𝜗𝑎 (𝑔, 𝜑±, 𝜚)

is right SO2 (R)-equivariant with weight ±1. We also have a left 𝐺 (Q)-invariant function

Θ𝑎 (𝑔, 𝜑±, 𝜚) :=
∫
𝐻𝑎 (Q)\𝐻𝑎 (Q̂)

𝜃𝑎 (𝑔, ℎ, 𝜑±)𝜚(ℎ)𝑑ℎ = vol(𝐾𝜚)
∑
𝜉 ∈𝐶

𝜚(𝜉)𝜃𝑎 (𝑔, 𝜉, 𝜑±) (2.74)

on 𝐺 (A) for 𝜑 ∈ S (𝑉𝑎 (A)), which is independent of the choice of C.
We now define a function lg𝐶 : 𝐻𝑎 (Q)\𝐻𝑎 (A)/𝐾𝜚 → [0, 1) by

lg𝐶 ((𝛼𝑘1𝜉, 𝛼𝑡)) := 2 log 𝜀 𝜚 · {log 𝑡/log 𝜀 𝜚},

{𝑎} := 𝑎 − lim
𝜖→0

1
2
(�𝑎 + 𝜖� + �𝑎 − 𝜖�).

(2.75)
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Note that {0} = 1
2 . Unlike the function considered by Hecke, lg𝐶 cannot be written as the product of

functions on 𝐻𝑎 (Q̂) and 𝐻𝑎 (R). Denote

�̃�𝐶 := lg𝐶 ·𝜚 : 𝐻𝑎 (Q)\𝐻𝑎 (A)/𝐾𝜚 → C. (2.76)

Given 𝜑 = 𝜑 𝑓 𝜑∞ ∈ S (𝑉𝑎 (A)) for some 𝐾𝜚-invariant 𝜑 𝑓 ∈ S (�̂�𝑎;C), the deformed theta integral
𝜗𝑎 (𝑔, 𝜑, �̃�𝐶 ), where 𝜗𝑎 is defined in (2.63), was studied in [CL20], To describe its Fourier expansion,
denote

𝜗∗
𝑎 (𝑔, 𝜑 𝑓 , 𝜚) :=

∫
𝐻𝑎 (Q)+\𝐻𝑎 (Q̂)

𝜚(ℎ)
∑

𝛽∈Γ𝜚\𝑉𝑎 (Q)
𝑄𝑎 (𝛽)<0

(𝜔𝑎 (𝑔)𝜑0,∗)(ℎ−1𝛽)𝑑ℎ

= −vol(𝐾𝜚)
√

𝑣
∑
𝜉 ∈𝐶

𝜚(𝜉)
∑

𝛽∈Γ𝜚\𝑉𝑎 (Q)
𝑄𝑎 (𝛽)<0

(𝜔𝑎 (𝑔 𝑓 )𝜑 𝑓 ) (𝜉−1𝛽)sgn(𝛽)e(𝑄𝑎 (𝛽)𝜏)Γ(0, 4𝜋 |𝑄𝑎 (𝛽) |𝑣).

for 𝑔 = (𝑔 𝑓 , 𝑔𝜏) ∈ 𝐺 (A) with 𝜑0,∗ = 𝜑 𝑓 𝜑0,∗
∞ and

𝜑0,∗
∞ (𝑥1, 𝑥2) := −sgn(𝑥1)𝑒−2𝜋𝑥1𝑥2Γ(0, 4𝜋 |𝑥1𝑥2 |). (2.77)

Note that 𝜗∗
𝑎 is not necessarily left-𝐺 (Q) invariant. But it is modular after applying the lowering operator

as

𝐿
(
𝜗∗
𝑎 (𝑔, 𝜑 𝑓 , 𝜚)

)
= 𝜗𝑎 (𝑔, 𝜑−, 𝜚).

Similarly for 𝜉 ∈ 𝐻𝑎 (Q̂), define

𝜃∗𝑎 (𝑔, 𝜉, 𝜑 𝑓 ) :=
∑

𝜆∈𝑉𝑎 (Q)
(𝜔𝑎 (𝑔)𝜑∗)(𝜉−1𝜆) =

∑
𝜆∈𝑉𝑎 (Q)

(𝜔𝑎 (𝑔 𝑓 )𝜑 𝑓 ) (𝜉−1𝜆) (𝜔𝑎 (𝑔𝜏)𝜑∗)(𝜆)

= −𝑣
∑

𝜆∈𝑉𝑎 (Q)
(𝜔𝑎 (𝑔 𝑓 )𝜑 𝑓 ) (𝜉−1𝜆) sgn(𝜆1 − sgn(𝑎)𝜆2)√

𝜋
e(𝑄𝑎 (𝜆)𝜏)Γ

(
1
2
,
𝜋𝑣

|𝑎 | (𝜆1 − sgn(𝑎)𝜆2)2
)
.

(2.78)

Here, we have employed the rapidly decaying function

𝜑∗(𝑥1, 𝑥2) := −𝑒−2𝜋𝑥1𝑥2 sgn(𝑥1 − 𝑥2)Γ
(

1
2
, 𝜋(𝑥1 − 𝑥2)2

)
, (2.79)

where 𝐵(R) ⊂ 𝐺 (R) acts via 𝜔𝑎 and SO2(R) acts with weight 1. Also, we denote

Θ∗
𝑎,𝐶 (𝑔, 𝜑 𝑓 , 𝜚) := vol(𝐾𝜚)

∑
𝜉 ∈𝐶

𝜚(𝜉)𝜃∗𝑎 (𝑔, 𝜉, 𝜑 𝑓 ), (2.80)

which depends on the choice of C and satisfies

𝐿Θ∗
𝑎,𝐶 (𝑔, 𝜑 𝑓 , 𝜚) = Θ𝑎 (𝑔, 𝜑−, 𝜚). (2.81)

We recall some results.
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Theorem 2.7. Let �̃�𝐶 be as in (2.76) and 𝜑 𝑓 ∈ 𝑉𝑎 (Q̂) a right-𝐾𝜚 invariant function. Then the integral
𝜗𝑎 (𝑔, 𝜑+, �̃�𝐶 ) defines a 𝐺 (Q)-invariant function in 𝑔 ∈ 𝐺 (A) of weight 1 with respect to SO2(R).
Furthermore, it has the Fourier expansion

𝜗𝑎 (𝑔, 𝜑+, �̃�𝐶 ) = 𝜗∗
𝑎 (𝑔, 𝜑 𝑓 , 𝜚) + log 𝜀 𝜚Θ

∗
𝑎,𝐶 (𝑔, 𝜑 𝑓 , 𝜚)

+ vol(𝐾𝜚)
∑
𝜉 ∈𝐶

𝛽∈Γ𝜚\𝑉𝑎 (Q)
𝑄𝑎 (𝛽)>0

�̃�𝐶 ((𝜉,
√
|𝛽/𝛽′ |)) (𝜔𝑎 (𝑔)𝜑0,+)(𝜉−1𝛽), (2.82)

where 𝜑0,+ = 𝜑 𝑓 𝜑0,+
∞ is defined in (2.73), and satisfies

𝐿𝜗𝑎 (𝑔, 𝜑+, �̃�𝐶 ) = 𝜗𝑎 (𝑔, 𝜑−, 𝜚) + log 𝜀 𝜚Θ𝑎 (𝑔, 𝜑−, 𝜚). (2.83)

Proof. This follows essentially from Proposition 5.5 in [CL20]. For completeness, we include a different
(and slightly shorter) proof here. As in the evaluation of 𝜗𝑎 (𝑔, 𝜑, 𝜚) in (2.72), we have

𝑊𝑚(𝜑, �̃�𝐶 ) (𝑔𝜏) = vol(𝐾𝜚)e(𝑚𝑢)
√

𝑣
∑
𝜉 ∈𝐶

∑
𝛽∈Γ𝜚\𝑉𝑎,𝑚 (Q)

𝜑 𝑓 (𝜉−1𝛽)𝐽 (𝛽, 𝑣),

𝐽 (𝛽, 𝑣) := 2 log 𝜀 𝜚

∫ ∞

0
𝜑+
∞(𝑡−1 · (𝜄𝑎 (𝛽)

√
𝑣))
{

log 𝑡

log 𝜀 𝜚

}
𝑑𝑡

𝑡

= 2 log 𝜀 𝜚sgn(𝑚𝛽)
∫ ∞

0
𝜑

sgn(𝑚)
∞ (

√
|𝑚 |𝑣(𝑡, 𝑡−1))

{
log 𝑡

log 𝜀 𝜚
+ 1

2
log |𝛽/𝛽′ |

log 𝜀 𝜚

}
𝑑𝑡

𝑡
.

To verify (2.83), we start with

𝐿𝜏e(𝑚𝑢)𝐽 (𝛽, 𝑣) = e(𝑚𝜏)𝑣2𝜕𝑣

(
𝑒2𝜋𝑚𝑣 𝐽 (𝛽, 𝑣)

)
= e(𝑚𝜏)2 log 𝜀 𝜚sgn(𝑚𝛽)

∫ ∞

0
𝑣2𝜕𝑣𝑒

2𝜋𝑚𝑣𝜑
sgn(𝑚)
∞ (

√
|𝑚 |𝑣(𝑡, 𝑡−1))

{
log 𝑡

log 𝜀 𝜚
+ 1

2
log |𝛽/𝛽′ |

log 𝜀 𝜚

}
𝑑𝑡

𝑡

= 𝑣e(𝑚𝑢)sgn(𝑚𝛽) log 𝜀 𝜚

∫ ∞

0
𝜕𝑡𝜑

−sgn(𝑚)
∞ (

√
|𝑚 |𝑣(𝑡, 𝑡−1))

{
log 𝑡

log 𝜀 𝜚
+ 1

2
log |𝛽/𝛽′ |

log 𝜀 𝜚

}
𝑑𝑡

= −𝑣e(𝑚𝑢)���sgn(𝑚𝛽)
∫ ∞

0
𝜑
−sgn(𝑚)
∞ (

√
|𝑚 |𝑣(𝑡, 𝑡−1)) 𝑑𝑡

𝑡
− log 𝜀 𝜚

∑
𝜀∈Γ𝜚

𝜑+
∞(𝜄𝑎 (𝛽𝜀))���

= 𝑣e(𝑚𝑢)���𝛿𝑚<0sgn(𝛽) + log 𝜀 𝜚
∑
𝜀∈Γ𝜚

𝜑+
∞(𝜄𝑎 (𝛽𝜀))���.

Substituting this into the left-hand side of (2.83) proves it.
Now to calculate the Fourier expansion, it suffices prove the claim

lim
𝑣→∞

𝑒2𝜋𝑚𝑣 𝐽 (𝛽, 𝑣) = sgn(𝛽) lg𝐶 ((1,
√
|𝛽/𝛽′ |). (2.84)

For each 𝛽 ∈ Γ𝜚\𝑉𝑎 (Q), we choose the unique representative 𝛽0 ∈ Γ𝜚𝛽 such that |𝛽0/𝛽′
0 | ∈ [1, 𝜀2

𝜚).
We can then write 𝐽 (𝛽, 𝑣) = 𝐽1(𝛽0, 𝑣) + 𝐽2 (𝛽0, 𝑣), where

𝐽1 (𝛽0, 𝑣) := 2
∫ ∞

0
𝜑+
∞(𝑡−1 · (𝜄𝑎 (𝛽0)

√
𝑣)) log 𝑡

𝑑𝑡

𝑡
,

𝐽2 (𝛽0, 𝑣) := −2 log 𝜀 𝜚

∫ ∞

0
𝜑+
∞(𝑡−1 · (𝜄𝑎 (𝛽0)

√
𝑣))
⌊

log 𝑡

log 𝜀 𝜚

⌋
𝑑𝑡

𝑡
.
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For 𝐽1, we have

lim
𝑣→∞

𝑒2𝜋𝑚𝑣 𝐽1(𝛽0, 𝑣) = log |𝛽0/𝛽′
0 |sgn(𝑚𝛽0) lim

𝑣→∞
𝑒2𝜋𝑚𝑣

∫ ∞

0
𝜑

sgn(𝑚)
∞ (

√
|𝑚 |𝑣(𝑡, 𝑡−1)) 𝑑𝑡

𝑡

= log |𝛽0/𝛽′
0 |sgn(𝛽0)𝛿𝑚>0.

For 𝐽2, the limit vanishes unless |𝛽0/𝛽′
0 | = 1, in which case

lim
𝑣→∞

𝑒2𝜋𝑚𝑣 𝐽2(𝛽0, 𝑣) = 2 log 𝜀 𝜚sgn(𝑚𝛽0) lim
𝑣→∞

𝑒2𝜋𝑚𝑣
∫ 1

𝜀−1
𝜚

𝜑
sgn(𝑚)
∞ (

√
|𝑚 |𝑣(𝑡, 𝑡−1)) 𝑑𝑡

𝑡

= log 𝜀 𝜚sgn(𝛽0)𝛿𝑚>0.

Putting these together proves claim (2.84). �

Finally, we record a result as a direct consequence of Theorem 4.5 in [CL20] (see also Section 5 in
[LS22]).

Proposition 2.8. For any 𝜑 𝑓 ∈ S (�̂�1;C), there exists a real-analytic modular form Θ̃𝑎,𝐶 (𝑔, 𝜑−, 𝜚) =
Θ̃+
𝑎,𝐶 (𝑔, 𝜑−, 𝜚) + Θ̃∗

𝑎,𝐶 (𝑔, 𝜑−, 𝜚) such that 𝐿Θ̃𝑎,𝐶 = Θ𝑎 and
√

𝑣Θ̃+
𝑎,𝐶 (𝑔𝜏 , 𝜑

−, 𝜚) is holomorphic in 𝜏
with Fourier coefficients in Q(𝜑 𝑓 ).

3. Doi-Naganuma lift of Hecke’s cusp form

In this section, we are interested in computing the O(2, 2) theta lift of Hecke’s cusp form from Section 2.7
and realize it as coherent Hilbert Eisenstein series from 2.6 over real quadratic fields. The main result of
this section is the global matching Theorem 3.3, where we show that any coherent Eisenstein series can
be realized as such a theta lift. This global statement follows from its local counterpart in Theorem 3.10,
which is improved further in Theorem 3.14 to allow matching deformed local sections. This last result
will be crucial for us in proving the factorization result in Proposition 4.7 later.

3.1. Quadratic spaces

Let 𝑉±1 be as in Section 2.2, ℓ+, ℓ− be isotropic lines such that ℓ+ ⊕ ℓ− is a hyperbolic plane and denote

𝑉 := 𝑉0 ⊕ 𝑉1, 𝑉0 := ℓ+ ⊕ ℓ− ⊕ 𝑉−1. (3.1)

We can realize

𝑉0 (Q) �
{
Λ ∈ 𝑀2 (𝐹) : Λ𝑡 = Λ′}

(𝑎, 𝑏, 𝜆) ↦→
(
𝑎 𝜆
𝜆′ 𝑏

)
with det as the quadratic form and furthermore write

𝑉0 = 𝑉00 ⊕ 𝑈𝐷 , 𝑉00 := 𝑉0 ∩ 𝑀2 (Q), 𝑈𝐷 :=
√

𝐷Q

(
0 −1
1 0

)
� (Q, 𝑄𝐷), (3.2)

where 𝑄𝐷 (𝑥) = 𝐷𝑥2. So V has Witt rank 3 and admits the isotropic decomposition

𝑉 = 𝑉+ +𝑉−, 𝑉± := ℓ± + (𝑉−1 +𝑉1)±, (𝑉−1 +𝑉1)±(Q) := {(𝜆,±𝜆) : 𝜆 ∈ 𝐹} (3.3)
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with𝑉± maximal totally isotropic subspaces. For aQ-algebra R (e.g., 𝑅 ∈ {Q,Q𝑝 ,R, Q̂,A}), we will use

(𝑎, 𝑏, 𝜆, 𝜇) ∈ 𝑉 (𝑅), 𝑎, 𝑏 ∈ 𝑅, 𝜆 ∈ 𝑅 ⊗ 𝐹 � 𝑉−1 (𝑅), 𝜇 ∈ 𝑅 ⊗ 𝐹 � 𝑉1(𝑅) (3.4)

to represent elements in 𝑉 (𝑅). Define elements 𝑓 ±𝑗 ∈ 𝑉 by

𝑓 +1 := (1, 0, 0, 0), 𝑓 −1 := (0, 1, 0, 0), 𝑓 +2 := (0, 0, 1/2, 1/2), 𝑓 −2 := (0, 0, 1/2,−1/2),

𝑓 +3 := (0, 0,
√

𝐷/2,
√

𝐷/2), 𝑓 −3 := (0, 0, 1/(2
√

𝐷),−1/(2
√

𝐷)).
(3.5)

Then { 𝑓 ±𝑗 : 𝑗 = 1, 2, 3} ⊂ 𝑉± is a Q-basis of 𝑉±. With respect to the ordered basis

( 𝑓 +1 , 𝑓 +2 , 𝑓 +3 , 𝑓 −1 , 𝑓 −2 , 𝑓 −3 ), the Gram matrix of Q is
(

0 𝐼3
𝐼3 0

)
. For 𝑖 = 1, 2, 3, the following linear transfor-

mations

𝑤𝑖 ( 𝑓 ±𝑗 ) :=

{
𝑓 ∓𝑗 , if 𝑖 = 𝑗 ,

𝑓 ±𝑗 , otherwise
(3.6)

are easily checked to be in O(𝑉). The unimodular lattice

𝑉Z := {(𝑎, 𝑏, 𝜆, 𝜇) ∈ 𝑉 (Q) ∩ (Z2 × (𝔡−1)2) : 𝜆 − 𝜇 ∈ O𝐹 } ⊂ 𝑉 (3.7)

provides V with an integral structure. Similarly for ? ∈ {00, 0, 1}, the lattice 𝑉?,Z := 𝑉Z ∩𝑉? in 𝑉? gives
it with an integral structure.

For ? ∈ {00, 0, 1,−1, ∅}, we write

�̃�? := GSpin(𝑉?), 𝐻? := SO(𝑉?), (3.8)

which are subgroups of �̃� and H, respectively, by acting trivially on 𝑉⊥
? and have the following exact

sequence:

1 → G𝑚 → �̃�? → 𝐻? → 1. (3.9)

For any commutative ring R, we have explicitly

𝜄 : GSpin(𝑉0,Z) (𝑅) � {𝛾 ∈ GL2 (O ⊗Z 𝑅) : det(𝛾) ∈ 𝑅×}, (3.10)

via the action of 𝛾 ∈ GL2 (O ⊗Z 𝑅) on 𝑉Z,0 (𝑅)

Λ ↦→ det(𝛾)−1𝛾Λ(𝛾′)𝑡 . (3.11)

For any Q-algebra R, we also have �̃�? (𝑅) = GSpin(𝑉?,Z) (𝑅) for ? ∈ {00, 0, 1, ∅}. Therefore, through 𝜄,
we have

𝐺0 := Spin(𝑉0) � 𝐺𝐹 := Res𝐹/Q(𝐺), 𝐺00 := Spin(𝑉00) � 𝐺, 𝐻00 � PGL2 (3.12)
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and will represent elements in 𝐻0 by their preimages in 𝐺𝐹 . Denote 𝑇0 := 𝜄−1 (𝑇) ⊂ �̃�0 Then the
relations among these groups can be visualized in the following diagram:

𝐺00 𝐺0 �̃�0 𝑇0

SL2 𝐺𝐹 GL2/𝐹 𝑇

𝐻00 𝐻0 𝐻0

� � �

(3.13)

Here, the horizontal and vertical arrows are natural inclusions and surjections of algebraic groups,
respectively, and the diagonal arrows are induced by 𝜄. Let 𝐵𝐹 ⊂ 𝐺𝐹 be the standard parabolic subgroup,
and 𝐵0 := 𝜄−1 (𝐵𝐹 ) ⊂ 𝐺0. They can be visualized as

𝐵0 𝐺0

𝐵𝐹 𝐺𝐹

� � (3.14)

which gives us

𝐵0 (Q)\𝐺0(Q) � 𝐵𝐹 (Q)\𝐺𝐹 (Q) = 𝐵(𝐹)\𝐺 (𝐹) (3.15)

via 𝜄. We also denote

𝑇Δ ⊂ 𝑇 × 𝑇0 ⊂ GL2 × �̃�0 (3.16)

the diagonal, which will play a crucial role in the local matching result in Section 3.5.
Now let 𝑃 ⊂ 𝐻 be the Siegel parabolic stabilizing 𝑉+, whose Levi factor is isomorphic to GL(𝑉+).

Then 𝑃0 := 𝑃 ∩ 𝐻0 ⊂ 𝐻 is the subgroup stabilizing the line ℓ+ and acting trivially on 𝑉1. The preimage
of 𝑃0𝐻−1 ⊂ 𝐻0 in �̃�0 is given by 𝐵0𝑇0. Combining with (3.15), we obtain

(𝑃0𝐻−1) (Q)\𝐻0(Q) = (𝐵0𝑇0) (Q)\�̃�0(Q) = 𝐵0 (Q)\𝐺0(Q) � 𝐵(𝐹)\𝐺 (𝐹). (3.17)

For 𝛼 ∈ 𝐹×, 𝛽 ∈ 𝐹, we then have 𝑚(𝛼), 𝑛(𝛽) ∈ 𝐺0 (Q) ⊂ �̃� (Q). It is easy to check that

(𝜔(𝑚(𝛼))𝜑) (𝑎, 𝑏, 𝜈, 𝜆) = 𝜑(𝑎/𝛼𝛼′, 𝛼𝛼′𝑏, 𝛼′𝜈/𝛼, 𝜆),
(𝜔(𝑛(𝛽))𝜑) (𝑎, 𝑏, 𝜈, 𝜆) = 𝜑(𝑎 − 𝛽𝜈 − 𝛽′𝜈′ + 𝛽𝛽′𝑏, 𝛽, 𝜈 − 𝛽𝑏, 𝜆)

for a Schwartz function 𝜑 ∈ S (𝑉 (A)).

3.2. Theta integral

Let 𝜃0 (𝑔, 𝑔1, 𝜑0) denote the theta function on [𝐺 × 𝐻0] associated to 𝜑0 ∈ S (𝑉0(A)). Suppose 𝜑0,∞ is
in the polynomial Fock space S(𝑉0 (R)) (see Section 4.1). Using S(𝑉0 (R)) = S(𝑉00 (R)) ⊗ S(𝑈𝐷 (R)),
we can then restrict 𝜃0 to the subgroup [𝐺 × 𝐻00], view it as a function on [𝐺 × 𝐺00], and write

𝜃0(𝑔, 𝑔00, 𝜑0) =
∑
𝑗∈𝐽

𝜃00(𝑔, 𝑔00, 𝜑00, 𝑗 )𝜃𝐷 (𝑔, 𝜑𝐷, 𝑗 ), (3.18)

where 𝜑0 =
∑
𝑗∈𝐽 𝜑00, 𝑗𝜑𝐷, 𝑗 with 𝜑00, 𝑗 ∈ S (𝑉00 (A)) and 𝜑𝐷, 𝑗 ∈ S (𝑈𝐷 (A)).
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We now define

𝐼0(ℎ0, 𝜑0, 𝑓 ) :=
∫
[𝐺 ]

𝜃0(𝑔, ℎ0, 𝜑0) 𝑓 (𝑔)𝑑𝑔 (3.19)

for f a bounded, integrable function on [𝐺]. Note that the measure 𝑑𝑔 is normalized so that [𝐺] has
volume 1. In particular, for a right 𝐺 (Ẑ)-invariant function 𝜙 on [𝐺], we have∫

[𝐺 ]
𝜙(𝑔)𝑑𝑔 =

3
𝜋

∫
SL2 (Z)\H

𝜙(𝑔𝜏)𝑑𝜇(𝜏), 𝑑𝜇(𝜏) :=
𝑑𝑢𝑑𝑣

𝑣2 . (3.20)

When 𝑓 (𝑔) = 𝜗1 (𝑔, 𝜑1, 𝜌) for a bounded, integrable function 𝜌 on 𝐻1(Q)\𝐻1(A), the integral 𝐼0 above
becomes

I (ℎ0, 𝜑, 𝜌) :=
∫
[𝐻1 ]

𝐼 ((ℎ0, ℎ1), 𝜑)𝜌(ℎ1)𝑑ℎ1 = 𝐼0(ℎ0, 𝜑0, 𝜗1 (·, 𝜑1, 𝜌)),

𝐼 (ℎ, 𝜑) :=
∫
[𝐺 ]

𝜃 (𝑔, ℎ, 𝜑)𝑑𝑔

(3.21)

with 𝜑 = 𝜑0 ⊗ 𝜑1.
For our purpose, 𝜌 = 𝜚 will be an odd, continuous character as in (2.64), and 𝜑 = 𝜑 𝑓 𝜑 (𝜖 ,−𝜖 )

∞ for
𝜖 = ±1 with

𝜑 (𝜖 ,−𝜖 )
∞ := 𝜑 (𝜖 ,−𝜖 )

0,∞ ⊗ 𝜑−
∞,

𝜑 (𝜖 ,−𝜖 )
0,∞ (𝑎, 𝑏, 𝜈1, 𝜈2) := (𝜖𝑖(𝑎 + 𝑏) + (𝜈1 − 𝜈2))𝑒−𝜋 (𝑎

2+𝑏2+𝜈2
1+𝜈

2
2 ) ,

(3.22)

and 𝜑±
∞ defined in (2.65). Here, we have identified 𝑉 (R) = R2 ⊕ 𝑉1 (R) ⊕ 𝑉−1(R) � (R2)⊕3 via (2.11).

For any 𝜃 ∈ R, 𝜖 = ±1, we have

𝜔(𝜅(𝜃))𝜑 (𝜖 ,−𝜖 )
∞ = 𝜑 (𝜖 ,−𝜖 )

∞ , 𝜅(𝜃) :=
( cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)
∈ SO2(R) ⊂ 𝐺 (R),

where 𝜔 is the Weil representation of 𝐺 (R) on 𝑉 (R). However, for ℎ(𝜃) = (𝜅(𝜃), 1), ℎ′(𝜃) = (1, 𝜅(𝜃)) ∈
𝐻0 (R) with any 𝜃 ∈ R, it is easy to check that

𝜔(ℎ(𝜃))𝜑 (𝜖 ,−𝜖 )
∞ = 𝑒𝜖 𝑖 𝜃𝜑 (𝜖 ,−𝜖 )

∞ , 𝜔(ℎ′(𝜃))𝜑 (𝜖 ,−𝜖 )
∞ = 𝑒−𝜖 𝑖 𝜃𝜑 (𝜖 ,−𝜖 )

∞ .

So 𝜑 (𝜖 ,−𝜖 )
∞ is equivariant of weight (𝜖,−𝜖) with respect to the connected component SO2(R) × SO2(R)

of the maximal compact of 𝐻0(R). Later, we will also consider the following integral

I 𝑓 (ℎ0, 𝜑, 𝜚) :=
∫
𝐻1 (Q)\𝐻1 (Q̂)

𝜚(ℎ1)
∫
[𝐺 ]

𝜃 (𝑔, (ℎ0, ℎ1), 𝜑)𝑑𝑔𝑑ℎ1, (3.23)

which is similar to I (ℎ0, 𝜑, 𝜚) and well-defined as

𝜚(−ℎ1)𝜃 (𝑔, (ℎ0,−ℎ1), 𝜑) = 𝜚(ℎ1)𝜃 (𝑔, (ℎ0, ℎ1), 𝜑)

for all 𝑔, ℎ0, ℎ1 and 𝜑 𝑓 ∈ S (�̂�). When 𝜑 = 𝜑0 ⊗ 𝜑1, we have

I 𝑓 (ℎ0, 𝜑, 𝜚) = 𝐼0(ℎ0, 𝜑0,Θ1(·, 𝜑1, 𝜚)), (3.24)

where Θ𝑎 (with 𝑎 = 1) is defined in (2.74).
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3.3. Fourier transform and Siegel-Weil formula

We follow [GQT14] to recall the Siegel-Weil formula needed for our purpose, which goes from the split
orthogonal group to the symplectic group. The range we need is in the 1st term range, and was originally
proved in [KR94]. Let 𝜑 = 𝜑∞𝜑 𝑓 ∈ S (𝑉 (A)) with 𝜑∞ as in (3.22) above. For (𝑔, ℎ) ∈ 𝐺 (A) × 𝐻 (A),
we have the theta function 𝜃 (𝑔, ℎ, 𝜑) and are interested in the value of the convergent integral 𝐼 (ℎ, 𝜑)
defined in (3.21).

For a rational quadratic space (𝑉, (, )𝑉 ), suppose 𝑉 = 𝑈+ + 𝑈− + 𝑉◦ with 𝑈+,𝑈− complementary
totally isotropic subspaces and 𝑉◦ = (𝑈+ +𝑈−)⊥. Let 𝑊 = 𝑋 + 𝑌 denote the symplectic space of rank
2 over Q with the symplectic pairing 〈, 〉𝑊 . The rational vector spaceW := 𝑉 ⊗ 𝑊 is then a symplectic
space with respect to the pairing

〈𝑣1 ⊗ 𝑤1, 𝑣2 ⊗ 𝑤2〉W := (𝑣1, 𝑣2)𝑉 〈𝑤1, 𝑤2〉𝑊 . (3.25)

From this, we have the Fourier transform ℱ𝑈+ : S (𝑉 (A)) → S (((𝑈− ⊗ 𝑊) +𝑉◦)(A)) defined by

ℱ𝑈+ (𝜑) (𝜂, 𝑣◦) :=
∫
𝑈+ (A)

𝜑(𝑢+, 𝜂1, 𝑣◦)𝜓((𝑢+, 𝜂2)𝑉 )𝑑𝑢+ (3.26)

with 𝜂 = (𝜂1, 𝜂2) ∈ (𝑈−)2(A) � (𝑈− ⊗ 𝑊) (A) and 𝜂𝑖 ∈ 𝑈−(A). Here, 𝑑𝑢+ is the Usual Haar measure
on 𝑈+(A) = A. Note that we have (𝑢+, 𝜂1, 𝑣◦) ∈ (𝑈+ ⊗ 𝑋 + 𝑈− ⊗ 𝑋 + 𝑉◦)(A) = 𝑉 (A). Note that on
S ((𝑈− ⊗ 𝑊 +𝑉◦)(A)), the Weil representation 𝜔 acts as

(𝜔(𝑔, 1)𝜙) (𝜂, 𝑣◦) = 𝜔𝑉◦ (𝑔)𝜙(𝜂𝑔, 𝑣◦), 𝑔 ∈ 𝐺 (A),
(𝜔(1, 𝑎)𝜙) (𝜂, 𝑣◦) = | det(𝑎) |𝜙(𝑎−1𝜂, 𝑣◦), 𝑎 ∈ GL(𝑈+)(A),
(𝜔(1, 𝑢)𝜙) (𝜂, 𝑣◦) = 𝜓(〈𝑢(𝜂), 𝜂〉/2)𝜙(𝜂, 𝑣◦), 𝑢 ∈ 𝑁 (𝑈+)(A) ⊂ HomQ(𝑈−,𝑈+)(A),

(3.27)

which makes ℱ𝑈+ an intertwining map.
For V in (3.1), we can take 𝑈± = 𝑉± and 𝑉◦ trivial with 𝑉± defined in (3.3). Another possibility is to

take 𝑈± = ℓ± and 𝑉◦ = 𝑉1 ⊕ 𝑉−1, which will be used in calculating the Fourier expansion of the theta
integral 𝐼0 in (3.19). To simplify notations, we write

ℱ := ℱ𝑉 + , ℱ1 := ℱℓ+ (3.28)

and use them to represent the Fourier transform at the finite and infinite places as well. For example, ℱ1
is given by

ℱ1 (𝜑) ((𝜂1, 𝜂2), 𝜈, 𝜆) =
∫
A

𝜑(𝑏, 𝜂1, 𝜈, 𝜆)𝜓(𝑏𝜂2)𝑑𝑏 (3.29)

for 𝜑 ∈ S (𝑉 (A)). As ℱ1 acts as ℱ′
1 ⊗ id on S (𝑉 (A)) = S (𝑉0 (A)) ⊗ S (𝑉1 (A)), we will abuse notation

and write ℱ1 = ℱ′
1 , which acts on S (𝑉0 (A)).

For a place 𝑣 ≤ ∞ of Q and corresponding local field 𝑘 = Q𝑣 , recall we have the Siegel-Weil section

Φ𝑣 : S ((𝑉− ⊗ 𝑊) (𝑘)) → 𝐼𝐻𝑣 (0)
𝜙𝑣 ↦→ (ℎ ↦→ (𝜔𝑣 (ℎ)𝜙𝑣 ) (0)),

where 𝐼𝐻𝑣 (𝑠) = Ind𝐻 (𝑘)
𝑃 (𝑘) ( | · |

𝑠) is the degenerate principal series. The image of Φ𝑣 is a submodule of
𝐼𝐻𝑣 (0) denoted by 𝑅𝑣 (𝑊). When 𝑣 < ∞, it is known that (see [GQT14, Proposition 5.2(ii)])

𝐼𝐻𝑣 (0) = 𝑅𝑣 (𝑊) ⊕ (𝑅𝑣 (𝑊) ⊗ det𝐻 ).
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It is clear that

Φ𝑣 (𝜔(𝑔)𝜙𝑣 ) = Φ𝑣 (𝜙𝑣 ) (3.30)

for any 𝑔 ∈ 𝐺 (𝑘).
Given any 𝜙 = ⊗𝑣𝜙𝑣 ∈ S ((𝑉− ⊗ 𝑊) (A)), we denote Φ𝑠 (𝜙) ∈ 𝐼𝐻 (𝑠) the standard section satisfying

Φ0(𝜙) = ⊗𝑣Φ𝑣 (𝜙𝑣 ). We can then form the Eisenstein series

𝐸𝐻
𝑃 (𝑠, 𝜙) (ℎ) :=

∑
𝛾∈𝑃 (Q)\𝐻 (Q)

Φ𝑠 (𝜙) (𝛾ℎ),

which has meromorphic continuation to 𝑠 ∈ C and is holomorphic at 𝑠 = 0. The regularized Siegel-Weil
formula by Kudla-Rallis gives then the following equality (see [GQT14, Theorem 7.3(ii)]):

2𝐼 (ℎ, 𝜑) = 𝐸𝐻
𝑃 (0,ℱ(𝜑)) (ℎ). (3.31)

As a special case of the proposition in Section 2 of [Mœg97], following an argument in [GPSR87], we
have the following lemma.

Lemma 3.1. For any ℎ ∈ 𝐻 (A), we have

𝐸𝐻
𝑃 (𝑠, 𝜙) (ℎ) =

∑
𝛾0∈𝐵 (𝐹 )\𝐺 (𝐹 ) , 𝛾1∈𝐻1 (Q)

Φ𝑠 (𝜙) ((𝛾0, 𝛾1)ℎ). (3.32)

Proof. We will show that 𝑃(Q)\𝐻 (Q) � (𝐵(𝐹)\𝐺 (𝐹)) × 𝐻1(Q) with the map induced by (3.11).
First, we have 𝑃(Q)\𝐻 (Q) = (𝑃 ∩ (𝐻0 × 𝐻1)) (Q)\(𝐻0 × 𝐻1) (Q). Let 𝐻−1 ⊂ 𝐻0 denote the image of
SO(𝑉−1), which is isomorphic to 𝐻1, and 𝑃0 := 𝑃 ∩ 𝐻0. Then 𝑃 ∩ (𝐻0 × 𝐻1) = 𝑃0𝑃Δ

1 with 𝑃Δ
1 � 𝐻1

the image of the diagonal embedding of 𝐻1 into 𝐻−1 × 𝐻1. From this, we obtain

(𝑃 ∩ (𝐻0 × 𝐻1)) (Q)\(𝐻0 × 𝐻1) (Q) = (𝑃0𝑃Δ
1 ) (Q)\(𝐻0 × 𝐻1) (Q) = (((𝑃0𝐻−1)\𝐻0) × 𝐻1) (Q).

Equation (3.17) then finishes the proof. �

Suppose 𝜚 = ⊗𝑝≤∞𝜚𝑝 is an odd character of 𝐻1 (A)/𝐻1(Q) and

𝜒 := 𝜚 ◦ Nm− = ⊗𝑣≤∞𝜒𝑣 (3.33)

a totally odd character of A×
𝐹/𝐹

×, which can be viewed as a character on 𝐵0 (A). Denote

𝐼𝐺0 (𝜒) := Ind𝐺0 (A)
𝐵0 (A) 𝜒, 𝐼𝐺0

𝑝 (𝜒𝑝) := Ind𝐺0 (Q𝑝)
𝐵0 (Q𝑝) 𝜒𝑝 , 𝜒𝑝 :=

⊗
𝑣 |𝑝

𝜒𝑣 . (3.34)

From (3.14), we see that

𝐼𝐺0 (𝜒) = 𝐼 (0, 𝜒), 𝐼𝐺0
𝑝 (𝜒𝑝) =

⊗
𝑣 |𝑝

𝐼𝑣 (0, 𝜒𝑣 ) (3.35)

with 𝐼 (𝑠, 𝜒) and 𝐼𝑣 (𝑠, 𝜒𝑣 ) defined in (2.52). Using the formula (3.31) and Lemma 3.1, we can rewrite
the function I (𝑔0, 𝜑, 𝜚) in (3.21) as

2I (𝑔0, 𝜑, 𝜚) = CT𝑠=0

∫
[𝐻1 ]

𝜚(ℎ1)𝐸𝐻
𝑃 (𝑠,ℱ(𝜑)) (𝑔0, ℎ1)𝑑ℎ1 = 𝐸𝐺0

𝐵0
(0, 𝐹𝜑, 𝜚) (𝑔0),
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for 𝑔0 ∈ 𝐺0(A), where 𝐸𝐺0
𝐵0

(𝑠′, 𝐹𝜑, 𝜚) is the Eisenstein series for the standard section associated to

𝐹𝜑, 𝜚 (𝑔0) := 𝐹𝜑, 𝜚,0 (𝑔0) ∈ Ind𝐺0
𝐵0

𝜒,

𝐹𝜑, 𝜚,𝑠 (𝑔0) :=
∫
𝐻1 (A)

Φ𝑠 (ℱ(𝜑)) (𝑔0, ℎ1)𝜚(ℎ1)𝑑ℎ1.
(3.36)

Note that 𝐹𝜑, 𝜚,𝑠 is not a standard section (i.e., it depends on s when restricted to any open compact
subgroup of 𝐺0 (Q̂)).

If 𝜚 = ⊗𝑝≤∞𝜚𝑝 and 𝜑 = ⊗𝑝≤∞𝜑𝑝 , then 𝐹𝜑, 𝜚,𝑠 is a product of local integrals.

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑠 (𝑔0, 𝑝) :=
∫
𝐻1 (Q𝑝)

Φ𝑠 (ℱ(𝜑𝑝)) (𝑔0, 𝑝, ℎ1)𝜚(ℎ1)𝑑ℎ1, 𝐹𝜑𝑝 , 𝜚𝑝 := 𝐹𝜑𝑝 , 𝜚𝑝 ,0 ∈ 𝐼0, 𝑝 (𝜒𝑝). (3.37)

Recall that 𝑑ℎ1 is normalized so that the maximal compact subgroup of 𝐻1(Q𝑝) has volume 1. We have
explicitly

𝐹𝜑𝑝 , 𝜚𝑝 (𝑔) =
∫
𝐻1 (Q𝑝)×𝐹𝑝×Q𝑝

𝜑𝑝 ((𝑔, ℎ1)−1(𝑥, 0, 𝜆, 𝜆))𝜚𝑝 (ℎ1)𝑑𝑥 𝑑𝜆 𝑑ℎ1 (3.38)

with 𝑑𝜆 the self-dual measure on 𝐹𝑝 such that
∫
O𝐹𝑝

𝑑𝜆 = |𝐷 |1/2
𝑝 . From this, we see that

𝜎𝑎 (|𝐷 |1/2
𝑝 𝐹𝜑𝑝 , 𝜚𝑝 (𝑔)) = |𝐷 |1/2

𝑝 𝐹𝜎𝑎 (𝜑𝑝) , 𝜚𝑝 (𝑔), 𝐹𝜑𝑝 , 𝜚𝑝 (𝑡0𝑔) = 𝐹𝜑𝑝 , 𝜚𝑝 (𝑔) (3.39)

for all 𝑎 ∈ Z×𝑝 and 𝑡0 ∈ 𝑇0 (Z𝑝). At all but finitely many cases, the function 𝐹𝜑𝑝 , 𝜚𝑝 ,𝑠 is given explicitly
as follows.

Lemma 3.2. Suppose p is unramified in E and 𝜑𝑝 is the characteristic function of the maximal lattice
𝑉Z ⊗ Z𝑝 ⊂ 𝑉𝑝 . Then

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑠 (𝑔𝑝) = (1 − 𝑝−2−2𝑠)
∏
𝑣 |𝑝

𝐿(1 + 𝑠, 𝜒𝑣 ) (3.40)

for all 𝑔𝑝 ∈ 𝐺0(Z𝑝).

Proof. Since 𝜑𝑝 is 𝐺0 (Z𝑝)-invariant, we can suppose 𝑔𝑝 = 1.
If p is inert in F, then

Φ𝑠 (ℱ(𝜑𝑝)) (1, ℎ1) = Φ0(ℱ(𝜑𝑝)) (1, ℎ1) = 1 = 𝜚(ℎ1)

for all ℎ1 ∈ 𝐻1(Q𝑝) = 𝐻1 (Z𝑝) = O1
𝐹𝑝

⊂ O×
𝐹𝑝

, and 𝐹𝜑𝑝 , 𝜚𝑝 ,𝑠 (𝑔𝑝) =
∫
𝐻1 (Z𝑝)

𝑑ℎ1 = 1.
If p is split in F, we have 𝐹𝑝 � Q2

𝑝 , 𝐻1(Q𝑝) = {(𝛼, 𝛼−1) ∈ 𝐹𝑝 : 𝛼 ∈ Q×
𝑝} � Q×

𝑝 and 𝜒𝑣 = 𝜒𝑣′ is a
character of Q×

𝑝 . Straightforward (though involved) calculations show that

Φ𝑠 (ℱ(𝜑𝑝)) (1, ℎ1) = Φ0(ℱ(𝜑𝑝)) (1, ℎ1) min{|ℎ1 |𝑣 , |ℎ1 |𝑣′ }𝑠 .

For ℎ1 = (𝛼, 𝛼−1) with 𝑜(𝛼) = 𝑚, we have

Φ0(ℱ(𝜑𝑝)) (1, ℎ1) =
∫
Q3
𝑝

Char(Z6
𝑝) (𝑎, 0, 𝜆1, 𝜆2, 𝛼

−1𝜆1, 𝛼𝜆2)𝑑𝑎𝑑𝜆1𝑑𝜆2

=
∫
𝑝max{0,𝑚}Z𝑝

𝑑𝜆1

∫
𝑝max{0,−𝑚}Z𝑝

𝑑𝜆2 = 𝑝−|𝑚 | .

(3.41)
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Since p is unramified in E, we have 𝜚𝑝 ((𝛼, 𝛼−1)) = 𝜖𝑜 (𝛼) with 𝜖 := 𝜚𝑝 ((𝑝, 𝑝−1)) = 𝜒𝑣 (𝑝) = 𝜒𝑣′ (𝑝).
Putting these together then gives us

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 (1) =
∫
Q×
𝑝

min{|𝛼 |𝑝 , |𝛼−1 |𝑝}1+𝑠𝜖𝑜 (𝛼) |𝛼 |𝑠𝑝𝑑×𝛼

=
∑
𝑚∈Z

𝜖𝑚𝑝−|𝑚 | (1+𝑠) = 𝐿(1 + 𝑠, 𝜒𝑣 )𝐿(1 + 𝑠, 𝜒𝑣′ ) (1 − 𝑝−2−2𝑠).
(3.42)

This finishes the proof. �

3.4. Matching global sections

The function I (𝑔0, 𝜑
(𝑘,𝑘′) , 𝜚) is a Hilbert modular form of weight (𝑘, 𝑘 ′). We want to suitably choose

𝜚 and 𝜑 𝑓 and compare this function to a coherent Eisenstein series.
Let 𝜒 = 𝜒𝐸/𝐹 be a Hecke character associated to a quadratic extension 𝐸/𝐹 with 𝐸/Q biquadratic,

and 𝜚 : A×
𝐹/𝐹

× → C× the character satisfying (2.13), whose kernel in 𝐻1(Ẑ) is denoted by 𝐾𝜚 . Let
𝛼 ∈ 𝐹×,𝑊𝛼 be the same as in Section 2.6. For our purpose, we will choose 𝜙 (𝑘,𝑘′)

∞ ∈ S (𝑊𝛼 (𝐹 ⊗ R)) to
be eigenfunctions of 𝐾∞ = SL2 (R)2 with weight (𝑘, 𝑘 ′) and normalized to have

𝜙 (𝑘,𝑘′)
∞ (0) = 1.

The matching result we will prove is the following.

Theorem 3.3. For 𝛼 ∈ 𝐹× with Nm(𝛼) < 0, given any 𝜙 𝑓 ∈ S (�̂�𝛼), there exists 𝜑 𝑓 ∈ S (�̂� ;Qab)
such that 𝜔 𝑓 (−1)𝜑 𝑓 = −𝜑 𝑓 for −1 ∈ 𝐻1 (Q̂), it is invariant with respect to the compact subgroup
𝐺 (Ẑ)𝑇Δ (Ẑ)𝐾𝜚 ⊂ 𝐺 (A) × 𝐻 (A) and satisfies

𝜋

3
𝐹𝜑, 𝜚 = 2Λ(1, 𝜒)𝜆𝛼 (𝜙) ∈ 𝐼 (0, 𝜒). (3.43)

Here, 𝜑 = 𝜑 𝑓 𝜑 (𝜖 ,−𝜖 )
∞ with 𝜖 := sgn(𝛼1) = −sgn(𝛼2) and 𝜑 (±1,∓1)

∞ defined in (3.22), and 𝜙 = 𝜙 𝑓 𝜙 (𝜖 ,−𝜖 )
∞ .

In particular, we have the equality

𝜋

3
I (𝑔, 𝜑, 𝜚) = 𝐸∗(𝑔, 𝜙). (3.44)

Remark 3.4. The constants Λ(0, 𝜒) = Λ(1, 𝜒) =
√
𝐷𝐸/𝐷
𝜋2 𝐿(1, 𝜒) and

√
𝐷𝐸 are in Q×.

Remark 3.5. For 𝐿 ⊂ 𝑊𝛼 (Q̂) a lattice and 𝜇 ∈ 𝐿∨/𝐿, suppose 𝜑𝜇 ∈ S (�̂� ;Qab) satisfies (3.43) with
𝜙 𝑓 = 𝜙𝐿+𝜇. Then it is easy to see that∑

𝜇∈𝐿∨/𝐿
I (𝑔Δ𝜏 , 𝜑𝜇, 𝜚)𝔢𝜇 : H→ C[𝐿∨/𝐿]

is a (non-holomorphic) vector-valued modular form of weight 0 on SL2(Z) with representation 𝜌𝐿 .

Remark 3.6. If we decompose 𝑉0 = 𝑈 ⊕ 𝑈⊥ with 𝑈 = ℓ+ + ℓ− the hyperbolic plane, then it is easy to
see that 𝑇0 ⊂ SO(𝑈) ⊂ 𝐻0. Therefore, for any 𝜑 ∈ S (�̂� ;Qab)𝑇 Δ (Ẑ) , we can write it as

𝜑 =
∑
𝑗∈𝐽

𝜑𝑈, 𝑗 ⊗ 𝜑𝑈⊥ , 𝑗

such that 𝜑𝑈, 𝑗 ∈ S (�̂�;Qab)𝑇 Δ (Ẑ) and 𝜑𝑈⊥ , 𝑗 ∈ S (�̂�⊥;Qab)𝑇 Δ (Ẑ) for all 𝑗 ∈ 𝐽. This in particular implies
that 𝜑𝑈⊥ , 𝑗 is 𝑇 (Ẑ)-invariant (i.e., it is Q-valued by (2.30)).
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Proof of Theorem 3.3. Suppose 𝜙 = ⊗𝑣≤∞𝜙𝑣 . By Theorem 3.10, there exists 𝜑𝑝 ∈ S (𝑉𝑝;Q(𝜁𝑝∞))
invariant with respect to 𝐺 (Z𝑝)𝑇Δ (Z𝑝) and satisfying (3.52). Furthermore, 𝜑𝑝 is the characteristic
function of the maximal lattice in 𝑉𝑝 for all but finitely many p. Therefore, 𝜑 𝑓 :=

⊗
𝑝<∞ 𝜑𝑝 is in

S (�̂� ;Qab) (𝐺 ·𝑇 Δ ) (Ẑ) and satisfies

𝐹𝜑 𝑓 , 𝜚 𝑓 = 𝜁 (2)−1𝐿(1, 𝜒)
√

𝐷𝐸/𝐷𝜆𝛼 (𝜙 𝑓 ) = 6Λ(1, 𝜒)𝜆𝛼 (𝜙 𝑓 ).

Since 𝜚 𝑓 (−1) = sgn(−1) = −1, the function 𝜔 𝑓 (−1)𝜑 𝑓 with −1 ∈ 𝐻1 (Q̂) also satisfies these con-
ditions, and we can replace 𝜑 𝑓 by (𝜑 𝑓 − 𝜔 𝑓 (−1)𝜑 𝑓 )/2 so that 𝜔 𝑓 (−1)𝜑 𝑓 = −𝜑 𝑓 . Furthermore, we
have 𝐹𝜔 𝑓 (ℎ)𝜑 𝑓 , 𝜚 𝑓 = 𝐹𝜑 𝑓 , 𝜚 𝑓 for all ℎ ∈ 𝐾𝜚 , and can therefore average over 𝐾𝜚 to ensure that 𝜑 𝑓 is
𝐾𝜚-invariant.

To prove (3.44), it suffices to check that 𝐹
𝜑
(𝜖 ,−𝜖 )
∞ , 𝜚∞

(𝑔) = 𝜋−1𝜆𝛼 (𝜙 (𝜖 ,−𝜖 )
∞ )(𝑔) for 𝑔 = (𝑔𝜏1 , 𝑔𝜏2).

Using

Φ∞(ℱ(𝜑 (𝜖 ,−𝜖 )
∞ ))(𝑔, 𝑡)

= ℱ(𝜔(𝑔, 𝑡)𝜑 (𝜖 ,−𝜖 )
∞ )(0) =

∫
R3
(𝜔(𝑔, 𝑡)𝜑 (𝜖 ,−𝜖 )

∞ )(𝑎, 0, 𝜆1, 𝜆2, 𝜆1, 𝜆2)𝑑𝑎𝑑𝜆1𝑑𝜆2

=
∫
R3

𝜑 (𝜖 ,−𝜖 )
∞

(
𝑎 − 𝜆1𝑢1 − 𝜆2𝑢2√

𝑣1𝑣2
, 0, 𝑣1𝜆1/

√
𝑣1𝑣2, 𝑣2𝜆2/

√
𝑣1𝑣2, 𝑡

−1𝜆1, 𝑡𝜆2

)
𝑑𝑎𝑑𝜆1𝑑𝜆2

=
∫
R2
(𝑣1𝜆1 − 𝑣2𝜆2) (𝑡−1𝜆1 − 𝑡𝜆2)𝑒−

𝜋
𝑣1𝑣2

( (𝑣1𝜆1−𝑣2𝜆2)2+𝑣1𝑣2 ( (𝑡−1𝜆1+𝑡𝜆2)2))
𝑑𝜆1𝑑𝜆2

=
∫
R2

𝑥
2𝑥 + (𝑡−1𝑣2 − 𝑡𝑣1)𝑦

𝑣1𝑡 + 𝑣2𝑡−1 𝑒
− 𝜋
𝑣1𝑣2

(𝑥2+𝑣1𝑣2𝑦
2)) 𝑑𝑥𝑑𝑦

𝑣1𝑡 + 𝑣2𝑡−1

= 𝜋−12(𝑣1𝑣2)3/2 𝑡2

(𝑣1𝑡2 + 𝑣2)2 ,

where we have used the change of variable 𝑥 = 𝑣1𝜆1 − 𝑣2𝜆2, 𝑦 = 𝑡−1𝜆1 + 𝑡𝜆2, we obtain

𝐹
𝜑 (𝜖 ,−𝜖 )
∞ , 𝜚∞

(𝑔) =
∫ ∞

0
Φ∞(ℱ(𝜑∞))(𝑔, 𝑡) 𝑑𝑡

𝑡
= 𝜋−12(𝑣1𝑣2)3/2

∫ ∞

0

𝑡𝑑𝑡

(𝑣1𝑡2 + 𝑣2)2 = 𝜋−1√𝑣1𝑣2.

However, we have

𝜆𝛼 (𝜙 (𝜖 ,−𝜖 )
∞ )(𝑔) =

√
𝑣1𝑣2.

This finishes the proof. �

The requirement that 𝜑 𝑓 in Theorem 3.3 is invariant with respect to 𝑇Δ (Ẑ) will be important to
deduce important rationality results in Section 4.3. We give a taste of such results in the following
lemma.

Lemma 3.7. If 𝜑0 ∈ S (𝑉0;Qab) is invariant with respect to 𝑇Δ (Ẑ) ⊂ (GL2 × 𝐻0) (Ẑ), then ℱ1 (𝜑0) ∈
S (((ℓ− ⊗ 𝑊) +𝑉−1) (Q̂);Qab) satisfies

𝜎𝑎 (ℱ1 (𝜑0) ((𝜂1, 𝜂2), 𝜈)) = ℱ1 (𝜑0) ((𝑎−1𝜂1, 𝜂2), 𝜈) (3.45)

for any 𝜎𝑎 ∈ Gal(Qab/Q) associated to 𝑎 ∈ Ẑ× as in section 2.3. In particular, we have

ℱ1 (𝜑0) ((0, 𝑟), 𝜈) ∈ Q (3.46)

for all 𝑟 ∈ Q̂, 𝜈 ∈ �̂�.
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Proof. Using the expression for ℱ1 in (3.29), we can write

𝜎𝑎 (ℱ1 (𝜑0) ((𝜂1, 𝜂2), 𝜈)) = 𝜎𝑎

(∫
Q̂

𝜑0 (𝑏, 𝜂1, 𝜈)𝜓 𝑓 (𝑏𝜂2)𝑑𝑏

)
=
∫
Q̂

𝜎𝑎 (𝜑0(𝑏, 𝜂1, 𝜈))𝜓 𝑓 (𝑎𝑏𝜂2)𝑑𝑏

=
∫
Q̂

𝜔((𝑡 (𝑎), 1)) (𝜑0) (𝑏, 𝜂1, 𝜈)𝜓 𝑓 (𝑎𝑏𝜂2)𝑑𝑏 =
∫
Q̂

𝜔((1, 𝜄(𝑡 (𝑎−1)))) (𝜑0) (𝑏, 𝜂1, 𝜈)𝜓 𝑓 (𝑎𝑏𝜂2)𝑑𝑏

=
∫
Q̂

𝜑0 (𝑎𝑏, 𝑎−1𝜂1, 𝜈)𝜓 𝑓 (𝑎𝑏𝜂2)𝑑𝑏 = ℱ1 (𝜑0) ((𝑎−1𝜂1, 𝜂2), 𝜈).

For the second step, we moved 𝜎𝑎 inside the integral as 𝜑0 is a Schwartz function and the integral is
a finite sum. The third and fourth steps used (2.29) and the invariance of 𝜑0 under (𝑡, 𝜄(𝑡)) ∈ 𝑇Δ (Ẑ),
respectively. Equation (3.46) now follows from (3.45) via (2.29). �

3.5. Matching local sections I

The goal of this section is to prove Theorem 3.10, the non-archimedean local counterpart of the
matching result 3.3. For this purpose, we fix a prime 𝑝 < ∞ throughout this section. The main input to
Theorem 3.10 is the following surjectivity result.

Proposition 3.8. Let 𝜚𝑝 and 𝜒𝑝 be as in (3.33). Then the following map

𝛽 : S (𝑉𝑝;C)𝐺 (Z𝑝) ⊂ S (𝑉𝑝;C) → 𝐼𝐺0
𝑝 (𝜒𝑝)

𝜑 ↦→ 𝐹𝜑, 𝜚𝑝
(3.47)

is surjective. Furthermore, if Φ ∈ 𝐼𝐺0
𝑝 (𝜒𝑝) is valued in Q(𝜁𝑝∞), then there exists 𝜑 ∈

S (𝑉𝑝;Q(𝜁𝑝∞))𝐺 (Z𝑝) satisfying 𝛽(𝜑) = Φ. Here, Q(𝜁𝑝∞) ⊂ Qab is the subfield defined in (2.26).

Proof. Using (3.35), we can suppose Φ = ⊗𝑣 |𝑝Φ𝑣 with Φ𝑣 ∈ 𝐼𝑣 (0, 𝜒𝑣 ). Since 𝐹𝜔 (𝑔)𝜑, 𝜚𝑝 = 𝐹𝜑, 𝜚𝑝 for
all 𝑔 ∈ 𝐺 (Z𝑝) and 𝜑 ∈ S (𝑉𝑝;C), it suffices to prove the surjectivity of 𝛽 on S (𝑉𝑝;C). To do this, we
will use the m-th Fourier coefficient of Φ𝑣 ∈ 𝐼𝑣 (0, 𝜒𝑣 ) for 𝑚 ∈ 𝐹𝑣 , which is defined by

𝑊𝑚(Φ𝑣 ) :=
∫
𝐹𝑣

Φ𝑣 (𝑤𝑛(𝑏))𝜓𝑣 (−𝑚𝑏)𝑑𝑏 (3.48)

with 𝜓𝑣 an additive character of 𝐹𝑣 . For 𝑚 = (𝑚𝑣 )𝑣 |𝑝 ∈ 𝐹𝑝 and 𝜑 ∈ S (𝑉𝑝;C), we denote

𝑊𝑚(𝜑) :=
∏
𝑣 |𝑝

𝑊𝑚𝑣 ((𝐹𝜑, 𝜚𝑝 )𝑣 )

=
∫
𝐹𝑝×𝐻1 (Q𝑝)

(𝜔𝑝 (𝑤𝑛(𝑏), ℎ1)ℱ(𝜑)) (0)𝜓𝑝 (−𝑚𝑏)𝜚𝑝 (ℎ1)𝑑ℎ1 𝑑𝑏

(3.49)

with 𝜓𝑝 :=
∏
𝑣 |𝑝 𝜓𝑣 . Now, the 𝐺 (𝐹𝑣 )-module 𝐼𝑣 (0, 𝜒𝑣 ) can be written as

𝐼𝑣 (0, 𝜒𝑣 ) = ⊕𝛼∈𝐹×
𝑣 /Nm(𝐸×

𝑣 )𝑅(𝑊𝛼)

with 𝑅(𝑊𝛼) the image of 𝜆𝛼,𝑣 and irreducible. So 𝐼𝑣 (0, 𝜒𝑣 ) is irreducible if and only if 𝜒𝑣 is trivial.
Otherwise, it is the direct sum of two irreducible submodules. Furthermore, for Φ ∈ 𝑅(𝑊𝛼), the
coefficient 𝑊𝑚(Φ) is zero unless 𝑚/𝛼 ∈ N𝐸𝑣/𝐹𝑣 𝐸×

𝑣 . We then have two cases to consider, depending on
whether 𝜒𝑣 = 𝜒𝑣′ is trivial or not.

When 𝜒𝑣 = 𝜒𝑣′ is trivial, Lemma 3.12 gives us 𝜑 such that 𝑊𝑚 (𝜑) ≠ 0 for some 𝑚 ∈ 𝐹×
𝑝 .

So for 𝑣 | 𝑝, the restriction of im(𝛽) ⊂ 𝐼𝐺0
𝑝 (𝜒𝑝) to 𝐺 (𝐹𝑣 ) gives a nonzero section in 𝐼𝑣 (0, 𝜒𝑣 )

and generates a nontrivial, irreducible sub 𝐺 (𝐹𝑣 )-module. As 𝐼𝑣 (0, 𝜒𝑣 ) is irreducible, the map 𝛽 is
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surjective. When 𝜒𝑣 = 𝜒𝑣′ is nontrivial, we again apply Lemma 3.12 to obtain a submodule 𝑅 ⊂
𝐼𝑣 (0, 𝜒𝑣 ) = 𝑅(𝑊𝛼0) ⊕ 𝑅(𝑊𝛼1) from im(𝛽) such that 𝜋𝑖 (𝑅) is nontrivial with 𝜋𝑖 : 𝐼𝑣 (0, 𝜒𝑣 ) → 𝑅(𝑊𝛼𝑖 )
the projection. As 𝑅(𝑊𝛼𝑖 ) is irreducible, we have 𝜋𝑖 (𝑅) = 𝜋𝑖 (𝐼𝑣 (0, 𝜒𝑣 )). Consider 𝑅𝑖 := ker 𝜋𝑖 ∩ 𝑅
as a submodule of the irreducible module ker 𝜋𝑖 . As 𝑅(𝑊𝛼0) and 𝑅(𝑊𝛼1) are not isomorphic [KR92,
Proposition 3.4], 𝑅𝑖 cannot be trivial for both 𝑖 = 0, 1, otherwise, 𝑅 � 𝜋𝑖 (𝑅) = 𝑅(𝑊𝛼𝑖 ). Thus,
𝑅𝑖 = ker 𝜋𝑖 ⊂ 𝑅 for an i, which implies 𝑅 = 𝐼𝑣 (0, 𝜒𝑣 ) and proves surjectivity.

When Φ = ⊗𝑣 |𝑝Φ𝑣 has value in Q(𝜁𝑝∞), we apply the surjectivity of 𝛽 and the discussion in
Section 2.3 to choose 𝜑 𝑗 ∈ S (𝑉𝑝;Q(𝜁𝑝∞))𝐺 (Z𝑝) and 𝑐 𝑗 ∈ C such that

𝜑 :=
𝐽∑
𝑗=1

𝑐 𝑗𝜑 𝑗 ∈ S (𝑉𝑝;C)

satisfies 𝛽(𝜑) = Φ and J is minimal. Therefore, 𝐹𝜑, 𝜚𝑝 =
∑𝐽
𝑗=1 𝑐 𝑗𝐹𝜑 𝑗 , 𝜚𝑝 is valued in Q(𝜁𝑝∞). By the

minimality of J, the section 𝐹𝜑 𝑗 , 𝜚𝑝 is not identically zero for all j. Therefore, the set {1, 𝑐1, · · · , 𝑐𝐽 } ⊂ C
is linearly dependent over Q(𝜁𝑝∞). The minimality of J then implies that 𝐽 = 1 and 𝑐1 ∈ Q(𝜁𝑝∞), and
hence, 𝜑 ∈ S (𝑉𝑝;Q(𝜁𝑝∞))𝐺 (Z𝑝) . �

Using this proposition, we can match any continuous function on 𝐺0 (Z𝑝) via the map 𝛽. Furthermore,
we can incorporate Galois action to obtain the following result.

Proposition 3.9. In the setting of Proposition 3.8, given any continuous function Φ : 𝐺0(Z𝑝) → C

satisfying

Φ(𝑚(𝑎)𝑛(𝑏)𝑘) = 𝜒(𝑎)Φ(𝑘), (3.50)

for all 𝑚(𝑎), 𝑛(𝑏) ∈ 𝐵0 (Z𝑝), 𝑘 ∈ 𝐺0 (Z𝑝), there exists 𝜑 ∈ S (𝑉𝑝;C)𝐺 (Z𝑝) such that 𝐹𝜑, 𝜚𝑝 (𝑔) = Φ(𝑔)
for all 𝑔 ∈ 𝐺0(Z𝑝). Furthermore, if Φ takes values in Q(𝜁𝑝∞) and satisfies

𝜎𝑎 (|𝐷 |−1/2
𝑝 Φ(𝑡−1

0 𝑔𝑡0)) = |𝐷 |−1/2
𝑝 Φ(𝑔), (3.51)

with 𝑡0 = 𝜄(𝑡 (𝑎)) ∈ �̃�0(Z𝑝), 𝑡 (𝑎) = ( 𝑎 1 ) ∈ 𝑇 ⊂ GL2 (Z𝑝) for all 𝑎 ∈ Z×𝑝 and 𝑔 ∈ 𝐺0(Z𝑝), then
𝜑 ∈ S (𝑉 ;Q(𝜁𝑝∞))𝐺 (Z𝑝) can be chosen to be 𝑇Δ (Z𝑝)-invariant.

Proof. A continuous function Φ on 𝐺0(Z𝑝) satisfying (3.50) can be uniquely extended to a section
Φ̃ ∈ 𝐼𝐺0

𝑝 (𝜒𝑝) by setting

Φ̃(𝑔) := 𝜒𝑝 (𝑎)Φ(𝑘)

with 𝑔 = 𝑚(𝑎)𝑛(𝑏)𝑘 the Iwasawa decomposition of g. Therefore, the first claim is a direct consequence
of Proposition 3.8.

For the second claim, we take any 𝜑 ∈ S (𝑉𝑝;Q(𝜁𝑝∞))𝐺 (Z𝑝) and observe that

𝐹𝜔𝑝 (𝑡 ,𝑡0)𝜑𝑝 , 𝜚𝑝 (𝑔)

|𝐷 |1/2
𝑝

=
𝐹𝜔𝑝 (𝑡)𝜑𝑝 , 𝜚𝑝 (𝑔𝑡0)

|𝐷 |1/2
𝑝

=
𝐹𝜎𝑎 (𝜑𝑝) , 𝜚𝑝 (𝑡−1𝑔𝑡0)

|𝐷 |1/2
𝑝

= 𝜎𝑎

(
𝐹𝜑𝑝 , 𝜚𝑝 (𝑡−1𝑔𝑡)

|𝐷 |1/2
𝑝

)
= 𝜎𝑎 (|𝐷 |−1/2

𝑝 Φ(𝑡−1
0 𝑔𝑡0)) = |𝐷 |−1/2

𝑝 Φ(𝑔)

for any (𝑡, 𝑡0) ∈ 𝑇Δ (Z𝑝) with 𝑡 = 𝑡 (𝑎), 𝑡0 = 𝜄(𝑡 (𝑎)) and 𝑔 ∈ 𝐺0 (Z𝑝). Here, we used (3.39) for the
first line. By averaging 𝜑 over 𝑇Δ (Z𝑝), we can suppose that it is 𝑇Δ (Z𝑝)-invariant. This finishes the
proof. �

We are now ready to state and prove the local matching result. This is just the Kudla matching
principle [Kud03] in some sense.
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Theorem 3.10. For any 𝜙𝑣 ∈ S (𝑊𝛼 (𝐹𝑣 )) with 𝑣 | 𝑝, there exists 𝜑𝑝 ∈ S (𝑉𝑝;Q(𝜁𝑝∞)) (𝐺 ·𝑇 Δ ) (Z𝑝) such
that

𝐹𝜑𝑝 , 𝜚𝑝 = (1 − 𝑝−2) |𝐷/𝐷𝐸 |1/2
𝑝

∏
𝑣 |𝑝

𝐿(1, 𝜒𝑣 )𝜆𝛼,𝑣 (𝜙𝑣 ). (3.52)

In addition, if p is unramified in E and co-prime to 𝛼, and 𝜙𝑣 is the characteristic function of the maximal
lattice in 𝑊𝛼 (𝐹𝑣 ), then we can choose 𝜑𝑝 to be the characteristic function of the maximal lattice in 𝑉𝑝 .

Proof. Suppose p and 𝛼 are co-prime, 𝐸𝑝/Q𝑝 is unramified and 𝜙𝑣 = Char(O𝐸𝑣 ), 𝜑𝑝 = Char(O𝐹𝑝 ×
Z2
𝑝 ×O𝐹𝑝 ). Then it is easy to check that 𝐹𝜑𝑝 , 𝜚𝑝 and

∏
𝑣 |𝑝 𝜆𝛼,𝑣 (𝜙𝑣 ) are both right 𝐺 (O𝐹𝑝 )-invariant.

Since they are both in
∏
𝑣 |𝑝 𝐼 (0, 𝜒𝑣 ), we only need to check that

𝐹𝜑𝑝 , 𝜚𝑝 (1) = (1 − 𝑝−2)
∏
𝑣 |𝑝

𝐿(1, 𝜒𝑣 )𝜆𝛼,𝑣 (𝜙𝑣 ) (1)

by the Iwasawa decomposition of 𝐺 (𝐹𝑝). This is given precisely by Lemma 3.2 and proves (3.52) for
all but finitely many places.

When 𝜙𝑣 is Q-valued, we can use (2.29) to check that

𝜎𝑎
���
∏
𝑣 |𝑝

𝜆𝛼,𝑣 (𝜙𝑣 ) (𝑡−1𝑔𝑡)��� =
∏
𝑣 |𝑝

𝜎𝑎

(
𝜔𝛼,𝑣 (𝑡−1𝑔𝑡) (𝜙𝑣 ) (0)

)
=
∏
𝑣 |𝑝

(
𝜔𝛼,𝑣 (𝑔) (𝜎𝑎 (𝜙𝑣 )) (0)

)
=
∏
𝑣 |𝑝

(
𝜔𝛼,𝑣 (𝑔) (𝜙𝑣 ) (0)

)
=
∏
𝑣 |𝑝

𝜆𝛼,𝑣 (𝜙𝑣 ) (𝑔)

for any (𝑡, 𝑡0) ∈ 𝑇Δ (Z𝑝) with 𝑡 = 𝑡 (𝑎), 𝑡0 = 𝜄(𝑡 (𝑎)) and 𝑔 ∈ 𝐺0(Z𝑝). Proposition 3.9 combined with
Remark 3.4 then completes the proof. �

Finally, we record the two local calculation lemmas used in proving Proposition 3.8.

Lemma 3.11. Suppose 𝐹𝑝/Q𝑝 is non-split with valuation ring O𝑝 , uniformizer 𝜛, residue field size q,
and a nontrivial additive character 𝜓. For a character 𝜚 of 𝐻1(Q𝑝) = 𝐹1

𝑝 ⊂ O×
𝑝 , let

𝑛(𝜓) := min{𝑛 : 𝜓(𝜛𝑛O𝑝) = 1}, 𝑛(𝜚) := min{𝑛 ≥ 0 : 𝜚(𝐾𝑛) = 1}

be the conductors of 𝜓 and 𝜚, respectively, where 𝐾𝑛 := 𝐹1
𝑝 ∩ (1 + 𝜛𝑛O𝑝). Then∫

𝐹1
𝑝

𝜚(𝑥)𝜓(𝑚𝑥)𝑑𝑥 ≠ 0

for some 𝑚 ∈ O×
𝑝 if and only if 𝑛(𝜚) ≤ 𝑛(𝜓).

Proof. Let

𝑓 (𝑚) =
{∫

𝐹1
𝑝

𝜚(𝑥)𝜓(𝑚𝑥)𝑑𝑥 if 𝑚 ∈ O×
𝑝

0 otherwise.

Then 𝑓 ∈ S (𝐹𝑝) and its Fourier transformation with respect to 𝜓 is

𝑓 (𝑚) =
∫
𝐹𝑝

𝑓 (𝑛)𝜓(−𝑛𝑚)𝑑𝑛 =
∫
𝐹1
𝑝

𝜚(𝑥)
∫
O×
𝑝

𝜓(𝑛(𝑥 − 𝑚)𝑑𝑛𝑑𝑥

=
∫
𝐹1
𝑝

𝜚(𝑥) (Char(𝑚 + 𝜛𝑛(𝜓)O𝑝) (𝑥) − 𝑞−1 Char(𝑚 + 𝜛𝑛(𝜓)−1O𝑝) (𝑥))𝑑𝑥.
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First, assume that there is some ℎ0 ∈ 𝐹1
𝑝 such that ℎ0 − 𝑚 ∈ 𝜛𝑛(𝜓)O𝑝 . Then

𝑓 (𝑚) = 𝜚(ℎ0)
(∫
𝐾𝑛(𝜓)

𝜚(𝑥)𝑑𝑥 − 𝑞−1
∫
𝐾𝑛(𝜓)−1

𝜚(𝑥)𝑑𝑥

)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑛(𝜚) > 𝑛(𝜓),
𝜚(ℎ0)vol(𝐾𝑛(𝜓) ) if 𝑛(𝜚) = 𝑛(𝜓),
𝜚(ℎ0) (vol(𝐾𝑛(𝜓) ) − 𝑞−1𝐾𝑛(𝜓)−1) if 𝑛(𝜚) < 𝑛(𝜓).

Next, we assume that there no ℎ0 ∈ 𝐹1
𝑝 such that ℎ0 − 𝑚 ∈ 𝜛𝑛(𝜓)O𝑝 but some ℎ0 ∈ 𝐹1

𝑝 with
ℎ0 − 𝑚 ∈ 𝜛𝑛(𝜓)−1O𝑝 . Then

𝑓 (𝑚) =
{

0 if 𝑛(𝜚) ≥ 𝑛(𝜓),
−𝑞−1 𝜚(ℎ0)vol(𝐾𝑛(𝜓)−1) if 𝑛(𝜚) < 𝑛(𝜓).

Finally, if there is no ℎ0 ∈ 𝐹1
𝑝 with ℎ0 − 𝑚 ∈ 𝜛𝑛(𝜓)−1O𝑝 , then 𝑓 (𝑚) = 0. Now the lemma is clear. �

Lemma 3.12. When 𝜒𝑣 is trivial, there exists 𝜙 ∈ S (𝑉𝑝) such that 𝐹𝜙, 𝜚𝑝 is nontrivial. When 𝜒𝑣 is
nontrivial, then for any 𝜖 = (𝜖𝑣 )𝑣 |𝑝 with 𝜖𝑣 = ±1, there exists 𝜙𝜖 ∈ S (𝑉𝑝) and 𝑚 𝜖 ∈ 𝐹×

𝑝 such that
𝑊𝑚𝜖 (𝜙𝜖 ) ≠ 0 and 𝑚 𝜖 = (𝑚 𝜖𝑣

𝑣 )𝑣 |𝑝 with 𝜒𝑣 (𝑚 𝜖𝑣
𝑣 ) = 𝜖𝑣 .

Proof. When 𝜒𝑣 is trivial, the character 𝜚𝑝 of 𝐻1(Q𝑝) is also trivial. Suppose 𝜙 is the characteristic
function of the maximal lattice in 𝑉𝑝; then the integral in (3.38) is positive at 𝑔 = 1, which means 𝐹𝜙, 𝜚𝑝
is nontrivial.

Suppose now that 𝜒𝑣 , hence 𝜚𝑝 , is nontrivial. We can suppose that 𝑛(𝜓) = 0. When 𝜙 = 𝜙0 ⊗ 𝜙1
with 𝜙𝑖 ∈ S (𝑉𝑖, 𝑝), we can apply (3.38) to write

𝑊𝑚(𝜙) =
∫
𝐹𝑝×𝐻1 (Q𝑝)×𝐹𝑝×Q𝑝

𝜙0((𝑤𝑛(𝑏))−1 · ( 𝑥𝜆 )𝜆′0)𝜙1(ℎ−1
1 𝜆)𝜓𝑝 (−𝑚𝑏)𝜚𝑝 (ℎ1)𝑑𝑥 𝑑𝜆 𝑑ℎ1 𝑑𝑏.

We first assume that p is non-split and use the notation in Lemma 3.11. In this case, there is a unique place
v of F above p, and 𝜖 = ±1. For 𝑛 ≥ max{𝑛(𝜚) +1, 1} and 𝛽 ∈ O×

𝑝 , let 𝜙1 = 𝜙1,𝛽 = Char(𝛽+ 𝑝𝑛O𝑝) and

𝜙0 = Char
(
Z𝑝 𝜛𝑛O𝑝

𝜛𝑛O𝑝 1+𝑝𝑛Z𝑝

)
.

Then

𝑊𝑚 (𝜙0 ⊗ 𝜙1) =
∫
𝐹𝑝×𝐹1

𝑝×𝐹𝑝×Q𝑝
𝜙0
(
𝑏𝜆+𝑏′𝜆′+𝑏𝑏′𝑥 −𝜆′−𝑏𝑥

−𝜆−𝑏′𝑥 𝑥

)
𝜙1(ℎ−1𝜆)𝜚(ℎ)𝜓(−𝑚𝑏)𝑑𝑥 𝑑𝜆 𝑑ℎ 𝑑𝑏

=
∫
𝐹1
𝑝

𝑐(ℎ)𝜚(ℎ)𝑑ℎ,

where

𝑐(ℎ) :=
∫
𝛽ℎ+𝜛𝑛O𝑝

∫
−𝜆′+𝜛𝑛O𝔭

∫
1+𝑝𝑛Z𝑝

𝜓(−𝑚𝑏)𝑑𝑥 𝑑𝑏 𝑑𝜆

= 𝑝−𝑛(1+ 𝑓 ) Char(𝜛−𝑛O𝑝) (𝑚)
∫
𝛽ℎ+𝜛𝑛O𝑝

𝜓(𝑚𝜆′)𝑑𝜆 = 𝐶 Char(𝜛−𝑛O𝑝) (𝑚)𝜓(𝑚𝛽′ℎ−1)
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for some nonzero constant C. Here, 𝑓 = 1 or 2 depending on whether 𝐹/Q is ramified or inert at p.
Using 𝜚(ℎ) = 𝜚(ℎ−1), we have

𝑊𝑚(𝜙0 ⊗ 𝜙1) = 𝐶 Char(𝜛−𝑛O𝑝) (𝑚)
∫
𝐹1
𝑝

𝜚(ℎ)𝜓(𝑚𝛽′ℎ)𝑑ℎ. (3.53)

If 𝐹𝑝/Q𝑝 is inert, then 𝜒𝑝 is ramified and nontrivial when restricted to O×
𝑝 . By Lemma 3.11, we can

find 𝑚0 ∈ 𝜛−𝑛O×
𝑝 such that

𝑊𝑚0/𝛽′ (𝜙0 ⊗ 𝜙1,𝛽) = 𝐶

∫
𝐹1
𝑝

𝜚(ℎ)𝜓(𝑚0ℎ)𝑑ℎ ≠ 0

as 𝑛(𝜓(𝜛−𝑛·)) = 𝑛 ≥ 𝑛(𝜚). We can choose 𝛽 = 𝛽± such that 𝜒(𝑚0/(𝛽±)′) = ±1. Then taking 𝜙± =
𝜙0 ⊗ 𝜙1,𝛽± proves the Lemma. If 𝐹𝑝/𝑄𝑝 is ramified, then 𝐸𝑣/𝐹𝑣 is inert and 𝜒𝑣 (𝜛) = −1, 𝜒𝑣 |O×

𝑝
= 1.

Again by Lemma 3.11, we can find 𝑚 𝑗 ∈ 𝜛−𝑛+ 𝑗O×
𝑝 for 𝑗 = 0, 1 such that

𝑊𝑚 𝑗 (𝜙0 ⊗ 𝜙1,1) = 𝐶

∫
𝐹1
𝑝

𝜚(ℎ)𝜓(𝑚 𝑗ℎ)𝑑ℎ ≠ 0

as 𝑛(𝜓(𝑚 𝑗 ·)) = 𝑛 − 𝑗 ≥ 𝑛(𝜚). Therefore, 𝜙± = 𝜙0 ⊗ 𝜙1,1 satisfies the Lemma.
Finally, we come to the case when 𝑝 = 𝑣1𝑣2 splits and 𝜂 := 𝜒𝑣1 = 𝜒𝑣2 is nontrivial. In this case,

𝐹𝑝 = 𝐹𝑣1 × 𝐹𝑣2 = Q
2
𝑝 and 𝜂 = 𝜚𝑝 is a character of Q×

𝑝 � 𝐻1 (Q𝑝). For 𝑚 ∈ 𝐹𝑝 , we write 𝑚 = (𝑚1, 𝑚2)
with 𝑚 𝑗 ∈ Q𝑝 and

𝑉0, 𝑝 � 𝑀2 (Q𝑝)(
𝑎 𝜆
𝜆′ 𝑏

)
↦→
(
𝑎 𝜆1
𝜆2 𝑏

)
.

So we take 𝜙1 = 𝜙1,1 ⊗ 𝜙1,2 with 𝜙1, 𝑗 ∈ S (Q𝑝) and 𝜙0 ∈ S (𝑀2 (Q𝑝)). Simple calculation gives us

𝑊𝑚 (𝜙0 ⊗ 𝜙1) =
∫
Q2
𝑝×Q×

𝑝×Q2
𝑝×Q𝑝

𝜙1,1 (ℎ−1𝜆1)𝜙1,2(ℎ𝜆2)𝜙0

(
𝑏1𝜆1+𝑏2𝜆2+𝑏1𝑏2𝑥 −𝜆2−𝑏1𝑥

−𝜆1−𝑏2𝑥 𝑥

)
· 𝜂(ℎ)𝜓(−𝑚1𝑏1 − 𝑚2𝑏2)𝑑𝑥 𝑑𝜆1 𝑑𝜆2 𝑑×ℎ 𝑑𝑏1 𝑑𝑏2.

Taking 𝜙1, 𝑗 = Char(1 + 𝑝𝑛Z𝑝), 𝑛 ≥ max{1, 𝑛(𝜂)}, and

𝜙0 = Char(
(
Z𝑝 𝑝𝑛Z𝑝
𝑝𝑛Z𝑝 1+𝑝𝑛Z𝑝

)
),

the same calculation as above gives

𝑊𝑚 (𝜙1 ⊗ 𝜙0) = 𝐶

∫
Q×
𝑝

𝜂(𝑥)𝜓(𝑚2𝑥 + 𝑚1𝑥
−1) Char(𝑝−𝑛Z2

𝑝) (𝑚1, 𝑚2) Char(𝑝−𝑛Z2
𝑝) (𝑚1𝑥

−1, 𝑚2𝑥)
𝑑𝑥

|𝑥 |

for some nonzero constant C.
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When 𝜂 is ramified, we take 𝑛 = 𝑛(𝜌), 𝑚1 = 𝑝𝑙 with 𝑙 ≥ 𝑛 and 𝑚2 = 𝑚0𝑝−𝑛 ∈ 𝑝−𝑛Z×𝑝 and obtain
(write 𝑜(𝑥) = ord𝑝𝑥)

𝑊𝑚(𝜙1 ⊗ 𝜙0) = 𝐶

∫
0≤𝑜 (𝑥) ≤𝑛+𝑙

𝜂(𝑥)𝜓(𝑚2𝑥)𝜓(𝑚1𝑥
−1) 𝑑𝑥

|𝑥 |

= 𝐶
∑

0≤𝑖≤𝑛

∫
𝑝𝑖Z×𝑝

𝜂(𝑥)𝜓(𝑚2𝑥)
𝑑𝑥

|𝑥 | + 𝐶
∑

1≤𝑖≤𝑙

∫
𝑝−𝑛−𝑖Z×𝑝

𝜂(𝑥)−1𝜓(𝑚1𝑥)
𝑑𝑥

|𝑥 |

= 𝐶

[
𝜂(𝑚0)−1

∫
Z×𝑝

𝜂(𝑥)𝜓(𝑝−𝑛𝑥)𝑑𝑥 + 𝜂(𝑝)𝑛+𝑙
∫
Z×𝑝

𝜂−1(𝑥)𝜓(𝑝−𝑛𝑥)𝑑𝑥

]
≠ 0,

for some 𝑚2.
When 𝜂 is unramified, we have 𝑛(𝜂) = 0 and take 𝑛 = 1. For 𝑚 𝑗 ∈ 𝑝−1Z×𝑝 , 𝑗 = 1, 2, we have

𝑊(𝑚1 ,𝑚2) (𝜙0 ⊗ 𝜙1) = 𝐶

∫
Z×𝑝

𝜓(𝑚2𝑥 + 𝑚1𝑥
−1)𝑑𝑥.

If we sum this over 𝑚 𝑗 ∈ 𝑝−1Z×𝑝 , then the result is nonzero. So there exists 𝑚 𝑗 ∈ 𝑝−1Z×𝑝 such that
𝑊(𝑚1 ,𝑚2) (𝜙0 ⊗ 𝜙1) ≠ 0. For 𝑚 𝑗 ∈ Z×𝑝 , 𝑗 = 1, 2, we have

𝑊(𝑚1 ,𝑚2) (𝜙0 ⊗ 𝜙1) = 𝐶

[∫
Z×𝑝

𝑑𝑥 + 𝜂(𝑝)
∫
𝑝Z×𝑃

𝜓(𝑚1𝑥
−1) 𝑑𝑥

|𝑥 | + 𝜂(𝑝)−1
∫
𝑝−1Z×𝑝

𝜓(𝑚2𝑥)
𝑑𝑥

|𝑥 |

]
= 𝐶 (1 − 𝑝−1 + 𝑝−1 + 𝑝−1) ≠ 0,

as 𝜂(𝑝) = −1. Replacing 𝜙1 by 𝜙′
1 = Char(1 + 𝑝𝑛Z𝑝 , 𝑝 + 𝑝𝑛Z𝑝), the same calculation gives

𝑊(𝑚1 ,𝑚2) (𝜙0 ⊗ 𝜙′
1) ≠ 0

when 𝑚 𝑗 ∈ Z×𝑝 and 𝑚3− 𝑗 ∈ 𝑝−1Z×𝑝 . This completes the proof. �

3.6. Matching local sections II

In order to give the factorization result, we also need a matching result involving the following local
sections with the s parameter. When 𝑝 = 𝑣𝑣′ splits in F, we define a slightly modified section

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 (𝑔𝑝) :=
∫
𝐻1 (Q𝑝)

Φ0(ℱ(𝜑𝑝)) (𝑔𝑝, ℎ1)𝜚(ℎ1) |ℎ1 |𝑠𝑣𝑑ℎ1. (3.54)

This function on 𝐺0 (Q𝑝) depends on the choice of 𝑣 | 𝑝 and has the following property.

Lemma 3.13. When |𝑠 | < 1, the integral in (3.54) converges absolutely and defines a rational function
in 𝑝𝑠 defined over Q(𝜁𝑝∞)(𝜑𝑝). Furthermore, when restricted to the first (resp. second) components of
𝐺0 (Q𝑝) � 𝐺 (𝐹𝑝) � 𝐺 (𝐹𝑣 ) × 𝐺 (𝐹𝑣′ ), it defines a section in 𝐼 (𝑠, 𝜒𝑣 ) (resp. 𝐼 (−𝑠, 𝜒𝑣′ )).

Proof. For the first claim, one can suppose 𝜔(𝑔𝑝)ℱ1(𝜑𝑝) is the characteristic function of

𝐶1 × (𝑝𝑎1Z𝑝 + 𝑟1) × (𝑝𝑎2Z𝑝 + 𝑟2) × (𝑝𝑏1Z𝑝 + 𝑡1) × (𝑝𝑏2Z𝑝 + 𝑡2),
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with 𝐶1 ⊂ Q2
𝑝 a compact subset and 𝑎 𝑗 , 𝑏 𝑗 ∈ Z, 𝑟 𝑗 , 𝑡 𝑗 ∈ Q𝑝 . As in Lemma 3.2, the integral defining

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 (𝑔𝑝) is given by

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 (𝑔𝑝) =
∫
Q×
𝑝

∫
Q4
𝑝

(𝜔(𝑔𝑝)ℱ1(𝜑𝑝)) (0, 0, 𝜆1, 𝜆2, 𝛼𝜆1, 𝛼
−1𝜆2)𝑑𝜆1𝑑𝜆2 𝜚((𝛼, 𝛼−1)) |𝛼 |𝑠𝑝𝑑×𝛼.

Suppose (0, 0) ∈ 𝐶1; otherwise, the integral vanishes identically. When |𝛼 |𝑝 ≥ 𝑝𝑁 for N sufficiently
large, we have |𝛼−1𝜆2 |𝑝 very small for all 𝜆2 ∈ 𝑝𝑎2Z𝑝 + 𝑟2. Therefore, when 𝑡2 ∉ 𝑝𝑏2Z𝑝 or 𝑟1 ∉ 𝑝𝑎1Z𝑝 ,
the integral over those 𝛼 with |𝛼 |𝑝 ≥ 𝑝𝑁 is zero. When 𝑡2 ∈ 𝑝𝑏2Z𝑝 and 𝑟1 ∈ 𝑝𝑎1Z𝑝 , we have∫

|𝛼 |𝑝≥𝑝𝑁

∫
Q4
𝑝

(𝜔(𝑔𝑝)ℱ1 (𝜑𝑝)) (0, 0, 𝜆1, 𝜆2, 𝛼𝜆1, 𝛼
−1𝜆2)𝑑𝜆1𝑑𝜆2 𝜚((𝛼, 𝛼−1)) |𝛼 |𝑠𝑝𝑑×𝛼

= vol(𝐶1)
∑
𝑛≥𝑁

𝜚((𝑝, 𝑝−1))−𝑛𝑝𝑛𝑠
∫
Z×𝑝

𝜚((𝑎, 𝑎−1))

× vol(𝑝𝑎1Z𝑝 ∩ 𝑝𝑛 (𝑝𝑏1 + 𝑎−1𝑡1))vol((𝑝𝑎2Z𝑝 + 𝑟2) ∩ 𝑝−𝑛+𝑏2Z𝑝)𝑑×𝑎

= vol(𝐶1)vol(𝑝𝑎2Z𝑝 + 𝑟2)vol(𝑝𝑏1 + 𝑎−1𝑡1)
∫
Z×𝑝

𝜚((𝑎, 𝑎−1))𝑑×𝑎
∑
𝑛≥𝑁

(𝜚((𝑝, 𝑝−1)) 𝑝−1+𝑠)𝑛,

which converges when |𝑠 | < 1 and defines a rational function in 𝑝𝑠 . The same argument takes care of
the case when |𝛼 |𝑝 is sufficiently small. This proves the first claim.

For the second claim, it is clear from the definition that 𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 is locally constant as 𝜑𝑝 is a
Schwartz function. For the transformation property, we have

(𝜔(𝑚(𝛼)𝑔, ℎ)ℱ(𝜑𝑝)) (0) = |𝛼𝛼′ |𝑣 (𝜔(𝑔, ℎ(𝛼′/𝛼))ℱ(𝜑)) (0) (3.55)

for 𝛼 = (𝛼1, 𝛼2) ∈ 𝐹×
𝑝 = (Q×

𝑝)2. A change of variable plus 𝜚(𝛼/𝛼′) = 𝜒𝑣 (𝛼)𝜒𝑣′ (𝛼) and |𝛼 |𝑣 =
|𝛼1 |𝑝 , |𝛼′ |𝑣 = |𝛼2 |𝑝 then finishes the proof. �

Now, we will extend the matching result in Theorem 3.10 to standard sections.

Theorem 3.14. In the setting of Theorem 3.10, suppose 𝑝 = 𝑣𝑣′ splits and let 𝜆𝛼,𝑣,𝑠 (𝜙𝑣 ) ∈ 𝐼𝑣 (𝑠, 𝜒𝑣 )
denote the standard section associated to 𝜆𝛼,𝑣 (𝜙𝑣 ) ∈ 𝐼𝑣 (0, 𝜒𝑣 ) for 𝜙𝑣 ∈ S (𝑊𝛼 (𝐹𝑣 )). For any 𝑟 ∈ N,
there exists 𝜑𝑝 ∈ S (𝑉𝑝;Q(𝜁𝑝∞)) (𝐺 ·𝑇 Δ ) (Z𝑝) such that

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 (𝑔) = L(𝑠)𝜆𝛼,𝑣,𝑠 (𝜙𝑣 ) (𝑔𝑣 )𝜆𝛼,𝑣,−𝑠 (𝜙𝑣′ ) (𝑔𝑣′ ) + 𝑂 (𝑠𝑟 ). (3.56)

for all 𝑔 = (𝑔𝑣 , 𝑔𝑣′ ) ∈ 𝐺0 (Q𝑝), where L(𝑠) := (1 − 𝑝−2) |𝐷𝐸 |−1
𝑝 𝐿(1 + 𝑠, 𝜒𝑣 )𝐿(1 − 𝑠, 𝜒𝑣′ )

Remark 3.15. If 𝜚𝑝 is unramified and 𝜑𝑝 is the characteristic function of the maximal lattice in𝑉𝑝 , then

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 (1) = 𝐿(1 + 𝑠, 𝜒𝑣 )𝐿(1 − 𝑠, 𝜒𝑣′ ) (1 − 𝑝−2) (3.57)

by a similar calculation as in Lemma 3.2, and 𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠/(𝐿(1+ 𝑠, 𝜒𝑣 )𝐿(1− 𝑠, 𝜒𝑣′ ) (1− 𝑝−2)) is already
the standard section 𝜆𝛼,𝑣,𝑠 (𝜙𝑣 ) (𝑔𝑣 )𝜆𝛼,𝑣,−𝑠 (𝜙𝑣′ ) (𝑔𝑣′ ).

Proof. For 𝜑 ∈ S (𝑉𝑝;C) and 𝑔 ∈ 𝐺0 (Q𝑝), we write

𝐹𝜑, 𝜚𝑝 ,𝑣 ,𝑠 (𝑔) =
∑
𝑛≥0

𝑎𝑛 (𝜑, 𝑔)
𝑛!

(− log 𝑝 · 𝑠)𝑛,

𝑎𝑛 (𝜑, 𝑔) := (− log 𝑝)−𝑛𝜕𝑛𝑠
(
𝐹𝜑, 𝜚𝑝 ,𝑣 ,𝑠 (𝑔)

)
|𝑠=0=
∫
𝐻1 (Q𝑝)

Φ0(ℱ(𝜑𝑝)) (𝑔𝑝, ℎ1)𝜚(ℎ1) ord𝑣 (ℎ1)𝑛𝑑ℎ1.
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It is easy to check from definition that 𝐹𝜑, 𝜚𝑝 ,𝑣 ,𝑠 : 𝐺0(Z𝑝) → C satisfies (3.50), and hence, so does the
function 𝑎𝑛 (𝜑, 𝑔) for all 𝑛 ≥ 0. Now we define

𝜑 (𝑛) :=
1

(−2)𝑛𝑛!
(𝜔((𝑝, 𝑝−1)2) − 1)𝑛𝜑 ∈ S (𝑉𝑝;C)

with (𝑝, 𝑝−1) ∈ 𝐻1(Q𝑝). An easy induction shows that 𝐹𝜑 (𝑛) , 𝜚𝑝 ,𝑣 ,𝑠 = 1
𝑛! (

1−𝑝2𝑠

2 )𝑛𝐹𝜑, 𝜚𝑝 ,𝑣 ,𝑠 , which
implies

𝑎𝑛′ (𝜑 (𝑛) , 𝑔) =
{

0 if 𝑛′ < 𝑛,

𝐹𝜑, 𝜚𝑝 if 𝑛′ = 𝑛.
(3.58)

When 𝜑 ∈ S (𝑉𝑝;Q(𝜁𝑝∞)) is (𝐺 · 𝑇Δ ) (Z𝑝)-invariant, so is the function 𝜑 (𝑛) ∈ S (𝑉𝑝;Q(𝜁𝑝∞)). Fur-
thermore, the function 𝑎𝑛 (𝜑, ·) : 𝐺0 (Z𝑝) → Q(𝜁𝑝∞) satisfies conditions (3.50) and (3.51). By Propo-
sition 3.9, there exists 𝜑𝑛 ∈ S (𝑉𝑝;Q(𝜁𝑝∞)) (𝐺 ·𝑇 Δ ) (Z𝑝) such that

𝐹𝜑𝑛 , 𝜚𝑝 (𝑘) = 𝑎𝑛 (𝜑, 𝑘) (3.59)

for all 𝑘 ∈ 𝐺0 (Z𝑝).
Now we prove the theorem by induction on r. The case 𝑟 = 1 is just the content of Theorem 3.10.

Note that |𝐷 |𝑝 = 1 when p splits in F. Now suppose we have 𝜑 satisfying (3.56) for some 𝑟 ≥ 1. As

Φ𝑠 := 𝜆𝛼,𝑣,𝑠 (𝜙𝑣 ) (𝑔𝑣 )𝜆𝛼,𝑣,−𝑠 (𝜙𝑣′ ) (𝑔𝑣′ ) ∈ 𝐼 (𝑠, 𝜒𝑣 )𝐼 (−𝑠, 𝜒𝑣′ )

is a standard section, it satisfies Φ𝑠 (𝑘) = Φ0(𝑘) when 𝑘 ∈ 𝐺0(Z𝑝). So in that case, we have

𝐹𝜑, 𝜚𝑝 ,𝑣 ,𝑠 (𝑘) − L(𝑠)Φ𝑠 (𝑘) = (𝑎𝑟 (𝜑, 𝑘) − 𝑐𝑟Φ0(𝑘))
(− log 𝑝 · 𝑠)𝑟

𝑟!
+ 𝑂 (𝑠𝑟+1),

with 𝑐𝑟 := (− log 𝑝)−𝑟𝜕𝑟𝑠L(𝑠) |𝑠=0 rational. If we set

�̃� := 𝜑 − 𝜑 (𝑟 )
𝑟 − 𝑐𝑟𝜑

(𝑟 ) ∈ S (𝑉𝑝 ,Q(𝜁𝑝∞)) (𝐺 ·𝑇 Δ ) (Z𝑝) ,

then equations (3.58) and (3.59) give us

𝐹�̃� , 𝜚𝑝 ,𝑣 ,𝑠 (𝑘) − L(𝑠)Φ𝑠 (𝑘)

=
(
𝑎𝑟 (𝜑, 𝑘) − 𝐹𝜑𝑟 , 𝜚𝑝 (𝑘) + 𝑐𝑟𝐹𝜑, 𝜚𝑝 (𝑘) − 𝑐𝑟Φ0(𝑘)

) (− log 𝑝 · 𝑠)𝑟
𝑟!

+ 𝑂 (𝑠𝑟+1) = 𝑂 (𝑠𝑟+1).

So �̃� satisfies the claim for 𝑟 + 1. This completes the proof. �

Now, we can state a consequence of the matching result in Theorem 3.14.

Proposition 3.16. For matching sections 𝜑𝑝 ∈ S (𝑉𝑝;Q(𝜁𝑝∞))𝐺 (Z𝑝) and {𝜙𝑣 ∈ S (𝑊𝛼 (𝐹𝑣 )) : 𝑣 | 𝑝}
as in Theorem 3.14 with 𝑟 = 2, we have∏

𝑣 |𝑝
𝑊∗
𝑡 ,𝑣 (𝜙𝑣 ) =

∑
𝑛∈Z

∫
𝐻1 (Q𝑝)

𝜚𝑝 (ℎ)ℱ1 (𝜑𝑝) ((0, 𝑝𝑛), 𝑡 ′/𝑝𝑛,−ℎ−1𝑡/𝑝𝑛)𝑑ℎ (3.60)

for all 𝑡 ∈ 𝐹×
𝑝 . Furthermore, when 𝑝 = 𝑣𝑣′ is a split prime and 𝑊∗

𝑡 ,𝑣 (𝜙𝑣 ) = 0, then we have

𝑊∗,′
𝑡 ,𝑣 (𝜙𝑣 )𝑊∗

𝑡 ,𝑣′ (𝜙𝑣′ )
log 𝑝

=
∑
𝑛∈Z

∫
𝐻1 (Q𝑝)

𝜚𝑝 (ℎ)ℱ1 (𝜑𝑝) ((0, 𝑝𝑛), 𝑡 ′/𝑝𝑛,−ℎ−1𝑡/𝑝𝑛)𝑜𝑣 (ℎ)𝑑ℎ. (3.61)
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Remark 3.17. Since 𝑜𝑣′ (ℎ) = −𝑜𝑣 (ℎ) for all ℎ ∈ 𝐻1(Q𝑝), the left-hand side of (3.61) gets a minus
sign if 𝑜𝑣 (ℎ) is replaced by 𝑜𝑣′ (ℎ) on the right-hand side.

Proof. To prove (3.60). we apply the definition of 𝑊∗
𝑡 ,𝑣 in (2.54) and Theorem 3.10 to obtain∏

𝑣 |𝑝
𝑊∗
𝑡 ,𝑣 (𝜙𝑣 ) = |𝐷/𝐷𝐸 |1/2

𝑝

∏
𝑣 |𝑝

𝐿(1, 𝜒𝑣 )
∫
𝐹𝑣

𝜆𝛼,𝑣 (𝜙𝑣 ) (𝑤𝑛(𝑏𝑣 ))𝜓𝑣 (−𝑡𝑏𝑣 )𝑑𝑏𝑣

= (1 − 𝑝−2)−1
∫
𝐹𝑝

𝐹𝜑𝑝 , 𝜚𝑝 (𝑤𝑛(𝑏))𝜓𝑝 (−Tr(𝑡𝑏))𝑑𝑏

= (1 − 𝑝−2)−1
∫
𝐻1 (Q𝑝)

𝜚(ℎ1)
∫
𝐹𝑝

ℱ(𝜔𝑝 ((𝑤𝑛(𝑏), ℎ1))𝜑𝑝) (0)𝜓𝑝 (−Tr(𝑡𝑏))𝑑𝑏𝑑ℎ1.

Now the right-hand side of (3.60) can be rewritten as

Right-hand side of (3.60) =
∫
𝐻1 (Q𝑝)

𝜚𝑝 (ℎ1)
∑
𝑛∈Z

ℱ1 (𝜔𝑝 (ℎ1)𝜑𝑝) ((0, 𝑝𝑛), 𝑡 ′/𝑝𝑛,−𝑡/𝑝𝑛)𝑑ℎ1

=
∫
𝐻1 (Q𝑝)

𝜚𝑝 (ℎ1)
∑
𝑛∈Z

(1 − 𝑝−1)−1
∫
𝑝𝑛Z×𝑝

ℱ1 (𝜔𝑝 (ℎ1)𝜑𝑝) ((0, 𝑢), 𝑡 ′/𝑢,−𝑡/𝑢)𝑑×𝑢𝑑ℎ1

= (1 − 𝑝−1)−1
∫
𝐻1 (Q𝑝)

𝜚𝑝 (ℎ1)
∫
Q×
𝑝

ℱ1 (𝜔𝑝 (ℎ1)𝜑𝑝) ((0, 𝑢), 𝑡 ′/𝑢,−𝑡/𝑢)𝑑×𝑢𝑑ℎ1.

For the second line, we have used 𝜔(𝑚(𝑎))𝜑𝑝 = 𝜑𝑝 for all 𝑎 ∈ Z×𝑝 since 𝜑𝑝 is 𝐺 (Z𝑝)-invariant.
Equation (3.60) now follows from applying Proposition 3.18 to 𝜑 = 𝜔𝑝 (ℎ1)𝜑𝑝.

We now prove (3.61). Let Φ𝑠 ∈ 𝐼 (𝑠, 𝜒𝑣 )𝐼 (−𝑠, 𝜒𝑣′ ) be the standard sections extending
𝜆𝛼,𝑣 (𝜙𝑣 )𝜆𝛼,𝑣′ (𝜙𝑣′ ). By Theorem 3.14 with 𝑟 = 2, we have

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 = (1 − 𝑝−2) |𝐷𝐸 |−1
𝑝 𝐿(1, 𝜒𝑣 )𝐿(1, 𝜒𝑣′ )𝜆𝛼,𝑣,𝑠 (𝜙𝑣 )𝜆𝛼,𝑣′,−𝑠 (𝜙𝑣′ ) + 𝑂 (𝑠2).

Therefore, using 𝑊∗
𝑡 ,𝑣 (𝜙𝑣 ) = 0, we have

𝑊∗,′
𝑡 ,𝑣 (𝜙𝑣 )𝑊∗

𝑡 ,𝑣′ (𝜙𝑣′ ) = 𝜕𝑠

(
𝑊∗
𝑡 ,𝑣 (1, 𝑠, 𝜙𝑣 )𝑊∗

𝑡 ,𝑣′ (1,−𝑠, 𝜙𝑣′ )
)
|𝑠=0

= |𝐷𝐸 |−1
𝑝 𝐿(1, 𝜒𝑣 )𝐿(1, 𝜒𝑣′ )𝜕𝑠

(∫
𝐹𝑝

Φ𝑠 ((𝑤𝑛(𝑏𝑣 ), 𝑤𝑛(𝑏𝑣′ )))𝜓𝑣 (−𝑡𝑏𝑣 )𝜓𝑣′ (−𝑡𝑏𝑣′ )𝑑𝑏𝑣𝑑𝑏𝑣′

)
|𝑠=0

= (1 − 𝑝−2)−1𝜕𝑠

(∫
𝐹𝑝

𝐹𝜑𝑝 , 𝜚𝑝 ,𝑣 ,𝑠 (𝑤𝑛(𝑏))𝜓𝑝 (−Tr(𝑡𝑏))𝑑𝑏

)
|𝑠=0

= (1 − 𝑝−2)−1𝜕𝑠

(∫
𝐻1 (Q𝑝)

𝜚(ℎ1) |ℎ1 |𝑠𝑣
∫
𝐹𝑝

ℱ(𝜔𝑝 ((𝑤𝑛(𝑏), ℎ1))𝜑𝑝) (0)𝜓𝑝 (−Tr(𝑡𝑏))𝑑𝑏𝑑ℎ1

)
|𝑠=0

= log 𝑝(1 − 𝑝−2)−1
∫
𝐻1 (Q𝑝)

𝜚(ℎ1) ord𝑣 (ℎ1)
∫
𝐹𝑝

ℱ(𝜔𝑝 ((𝑤𝑛(𝑏), ℎ1))𝜑𝑝) (0)𝜓𝑝 (−Tr(𝑡𝑏))𝑑𝑏𝑑ℎ1.

Applying Proposition 3.18 and continuing as in the second half of the proof of (3.60) then proves
(3.61). �

We end this section with the following technical result used in the proof of the previous proposition.
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Proposition 3.18. For any 𝜑 ∈ S (𝑉𝑝;C)𝐺 (Z𝑝) and 𝑡 ∈ 𝐹×
𝑝 , we have

(1 + 1/𝑝)−1
∫
𝐹𝑝

(𝜔𝑝 ((𝑤𝑛(𝛽))ℱ(𝜑)) (0)𝜓𝑝 (−Tr(𝑡𝛽))𝑑𝛽 =
∫
Q×
𝑝

ℱ1 (𝜑) ((0, 𝑢), 𝑡 ′/𝑢,−𝑡/𝑢)𝑑×𝑢.

(3.62)

Proof. Since the left-hand side is essentially the Fourier transform of (𝜔(𝑤𝑛(𝛽))ℱ(𝜑𝑝)) (0) as a
function of 𝛽 ∈ 𝐹𝑝 , it suffices to calculate the inverse Fourier transform of the right-hand side, though
we need to be careful about the singularity of right-hand side when 𝑡 ∉ 𝐹×

𝑝 . To take care of this, we define

𝐺 𝜖 (𝑡, 𝜑) :=

{∫
Q×
𝑝
ℱ1 (𝜑) ((0, 𝑢), 𝑡 ′/𝑢,−𝑡/𝑢)𝑑×𝑢, if |𝑡 | > 𝜖,

0, otherwise.
(3.63)

for 𝜖 > 0 and 𝑡 ∈ 𝐹𝑝 . Note that |𝑡 | := min{|𝑡1 |, |𝑡2 |} when 𝑡 = (𝑡1, 𝑡2) ∈ 𝐹𝑝 = Q2
𝑝 , Given any fixed

𝑡 ∈ 𝐹×
𝑝 , the limit lim𝜖→0 𝐺 𝜖 (𝑡, 𝜑) exists and is the right-hand side of (3.62). Also for any fixed 𝜖 > 0,

the function 𝐺 𝜖 (𝑡, 𝜑) is a Schwartz function on 𝐹𝑝 . Its inverse Fourier transform is given by

�̂� 𝜖 (𝛽, 𝜑) :=
∫
𝐹𝑝

𝐺 𝜖 (𝑡, 𝜑)𝜓𝑝 (Tr(𝑡 ′𝛽′))𝑑𝑡

=
∫
𝐹𝑝\𝐷𝜖

∫
Q×
𝑝

ℱ1 (𝜑) ((0, 𝑢), 𝑡 ′/𝑢,−𝑡/𝑢)𝑑×𝑢𝜓𝑝 (Tr(𝑡 ′𝛽′))𝑑𝑡

=
∫
Q×
𝑝

∫
𝐹𝑝\𝐷𝜖 /|𝑢 |

ℱ1 (𝜑) ((0, 𝑢), 𝑡 ′,−𝑡)𝜓𝑝 (Tr(𝑡 ′𝑢𝛽′)) |𝑢 |2𝑑𝑡𝑑×𝑢,

where 𝐷 𝜖 ⊂ 𝐹𝑝 is the 𝜖-neighborhood of 0. Note that

ℱ1 (𝜑) ((0, 𝑢), 𝑡 ′,−𝑡)𝜓𝑝 (Tr(𝑡 ′𝑢𝛽′)) = ℱ1 (𝜑𝛽) ((0, 𝑢),−𝑡,−𝑡),

where 𝜑𝛽 := 𝜔(𝑤2𝑛(𝛽))𝜑 and 𝑤𝑖 ∈ 𝐻 (Q) is defined in (3.6). Therefore, �̂� 𝜖 (𝛽, 𝜑) is given by

�̂� 𝜖 (𝛽, 𝜑) =
∫
Q×
𝑝

∫
𝐹𝑝\𝐷𝜖 /|𝑢 |

ℱ1 (𝜑𝛽) ((0, 𝑢),−𝑡,−𝑡) |𝑢 |2𝑑𝑡𝑑×𝑢

=
∫
Q×
𝑝

(
ℱ(𝜑𝛽) ((0, 𝑢), 0) −

∫
𝐷𝜖 /|𝑢 |

𝜙𝛽 ((0, 𝑢), 𝑠, 𝑠)𝑑𝑠

)
|𝑢 |2𝑑×𝑢

with 𝑠 = −𝑡 and 𝑑𝑠 = 𝑑𝑡. Using the 𝐺 (Z𝑝)-invariance of 𝜑, we have

ℱ(𝜑𝛽) ((0, 𝑝𝑛𝑢), 0) = ℱ(𝜑𝛽) ((0, 𝑝𝑛), 0) = ℱ(𝜑𝛽) (𝑎, 0)

for all 𝑢 ∈ Z×𝑝 , 𝑛 ∈ Z and 𝑎 ∈ (𝑝𝑛Z𝑝)2 − (𝑝𝑛+1Z𝑝)2. Applying this, we can evaluate the first part as∫
Q×
𝑝

ℱ(𝜑𝛽) ((0, 𝑢), 0) |𝑢 |2𝑑×𝑢 =
∑
𝑛∈Z

∫
Z×𝑝

ℱ(𝜑𝛽) ((0, 𝑝𝑛𝑢), 0) |𝑝𝑛𝑢 |2𝑑×𝑢

=
∑
𝑛∈Z

ℱ(𝜑𝛽) ((0, 𝑝𝑛), 0)𝑝−2𝑛 (1 − 1/𝑝) = (1 + 1/𝑝)−1
∑
𝑛∈Z

ℱ(𝜑𝛽) ((0, 𝑝𝑛), 0)
∫
(𝑝𝑛Z𝑝)2−(𝑝𝑛+1Z𝑝)2

𝑑𝑎

= (1 + 1/𝑝)−1
∑
𝑛∈Z

∫
(𝑝𝑛Z𝑝)2−(𝑝𝑛+1Z𝑝)2

ℱ(𝜑𝛽) (𝑎, 0)𝑑𝑎 = (1 + 1/𝑝)−1
∫
Q2
𝑝

ℱ(𝜑𝛽) (𝑎, 0)𝑑𝑎

= (1 + 1/𝑝)−1ℱ(𝜔(𝑤1)𝜑𝛽) (0) = (1 + 1/𝑝)−1(𝜔(𝑤𝑛(𝛽))ℱ(𝜑)) (0).
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Then for any fixed 𝑡 ∈ 𝐹×
𝑝 , we have

𝐺 𝜖 (𝑡, 𝜑) =
∫
𝐹𝑝

𝐺 𝜖 (𝛽, 𝜑)𝜓𝑝 (−Tr(𝛽𝑡))𝑑𝛽

= (1 + 1/𝑝)−1
∫
𝐹𝑝

((𝜔(𝑤𝑛(𝛽))ℱ) (𝜑)) (0)𝜓𝑝 (−Tr(𝛽𝑡))𝑑𝛽 − 𝐸𝜖 (𝜑),

𝐸𝜖 (𝜑) :=
∫
𝐹𝑝

𝜓𝑝 (−Tr(𝛽𝑡))
∫
Q×
𝑝

|𝑢 |2
∫
𝐷𝜖 /|𝑢 |

ℱ1 (𝜑) ((0, 𝑢),−𝑠′, 𝑠)𝜓𝑝 (−Tr(𝑠𝑢𝛽))𝑑𝑠𝑑×𝑢𝑑𝛽.

Since ℱ1 (𝜑) is a Schwartz function, we can replace the domainQ×
𝑝 ×𝐷 𝜖 / |𝑢 | with a compact open subset

independent of 𝛽 and interchange the order of integration to compute the integral over 𝛽 first, which
yields

𝐸𝜖 (𝜑) =
∫
Q×
𝑝

|𝑢 |2
∫
𝐷𝜖 /|𝑢 |

∫
𝐹𝑝

𝜓𝑝 (−Tr(𝛽(𝑡 + 𝑠𝑢)))𝑑𝛽ℱ1(𝜑) ((0, 𝑢),−𝑠′, 𝑠)𝑑𝑠𝑑×𝑢.

When 𝜖 is sufficiently small, we have 𝑡 ∉ 𝐷 𝜖 and 𝑡 + 𝑠𝑢 ≠ 0, in which case 𝐸𝜖 = 0. This finishes the
proof. �

4. Doi-Naganuma lift of the deformed theta integral

In this section, we will define and study the properties of the function Ĩ discussed in the introduction. In
particular, we will calculate its Fourier coefficients and images under lowering differential operators. The
actions of differential operators follow from those on the theta kernel, which are given in Section 4.1. The
Fourier expansion computations are carried out in Section 4.2, with the main result being Proposition 4.7.
Section 4.3 contains rationality results about theta lifts that will be needed to handle the error term
mentioned in Section 1.3.

Choose 𝜑 (1,1) := 𝜑 𝑓 𝜑 (1,1)
∞ ∈ S (𝑉 (A))𝐾𝜚 with 𝜑 (1,1)

∞ := 𝜑 (1,1)
0,∞ ⊗ 𝜑+

∞ ∈ S (𝑉0(R)) ⊗ S (𝑉1 (R)) and

𝜑 (1,1)
0,∞ (𝑎, 𝑏, 𝜈, 𝜈′) := −𝑖(𝑎 − 𝑏 + 𝑖(𝜈 + 𝜈′))𝑒−𝜋 (𝑎2+𝑏2+𝜈2+(𝜈′)2) ∈ S (𝑉0 (R)). (4.1)

For �̃�𝐶 as in (2.76), we can define

Ĩ (𝑔0) := I (𝑔0, 𝜑
(1,1) , �̃�𝐶 ) =

∫
[𝐻1 ]

∫
[𝐺 ]

𝜃 (𝑔, (𝑔0, ℎ1), 𝜑 (1,1) )𝑑𝑔 �̃�𝐶 (ℎ1)𝑑ℎ1. (4.2)

We will now analyze various properties of this integral.

4.1. Lowering operator action

To calculate the action of differential operators on Ĩ, it suffices to understand the effect on 𝜑0 via the
Weil representation, which can be done in the Fock model. For this, we follow the appendices in [FM06]
and [Li22] (see also [KM90]).

We identify (𝑉0(R), 𝑄) = (𝑀2 (R), det) � R2,2 with the basis

𝑣1 :=
1
√

2

(
1 0
0 1

)
, 𝑣2 :=

1
√

2

(
0 −1
1 0

)
, 𝑣3 :=

1
√

2

(
−1 0
0 1

)
, 𝑣4 :=

1
√

2

(
0 1
1 0

)
, (4.3)
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which identifies S (R2,2) � S (𝑉0 (R)) and gives us(
𝑎 𝜈1
𝜈2 𝑏

)
=

𝑎 + 𝑏
√

2
𝑣1 +

−𝑎 + 𝑏
√

2
𝑣3 +

−𝜈1 + 𝜈2√
2

𝑣2 +
𝜈1 + 𝜈2√

2
𝑣4. (4.4)

The polynomial Fock space is the subspace S(R2,2) ⊂ S (R2,2) spanned by functions of the form∏
1≤ 𝑗≤4 𝐷

𝑟 𝑗
𝑗 𝜑◦ for 𝑟 𝑗 ∈ N0, where 𝜑◦ ∈ S (R2,2) is the Gaussian

𝜑◦(𝑥1, 𝑥2, 𝑥3, 𝑥4) := 𝑒−𝜋 (𝑥
2
1+𝑥

2
2+𝑥

2
3+𝑥

2
4 )

and 𝐷𝑟 are operators on S (R2,2) defined by

𝐷𝑟 := 𝜕𝑥𝑟 − 2𝜋𝑥𝑟 , 1 ≤ 𝑟 ≤ 4. (4.5)

There is an isomorphism 𝜄 : S(R2,2) → 𝒫(C4) = C[𝔷1, 𝔷2, 𝔷3, 𝔷4] such that 𝜄(𝜑◦) = 1, 𝐷𝑟 acts as
(−1) �(𝑟−1)/2�𝑖𝔷𝑟 . We now set

𝔳 := 𝔷1 + 𝑖𝔷2, 𝔴 := 𝔷3 − 𝑖𝔷4. (4.6)

Then using (4.4), the Schwartz functions 𝜑 (𝜖 , 𝜖 ′)
0,∞ ∈ S (𝑉0 (R)) in (3.22) and (4.1) become

𝜄(𝜑 (1,−1)
0,∞ ) = 𝑖

√
2𝜄((𝑥1 + 𝑖𝑥2)𝜑◦) = − 𝑖

√
2

4𝜋
𝜄((𝐷1 + 𝑖𝐷2)𝜑◦) =

√
2

4𝜋
𝔳,

𝜄(𝜑 (−1,1)
0,∞ ) = −

√
2

4𝜋
𝔳, 𝜄(𝜑 (1,1)

0,∞ ) = −
√

2
4𝜋

𝔴.

(4.7)

Let (𝑊, 〈, 〉) be the R-symplectic space of dimension 2, and W := 𝑉0 (R) ⊗ 𝑊 the symplectic
space with the skew-symmetric form (, ) ⊗ 〈, 〉. The Lie algebra 𝔰𝔭(W ⊗ C) acts on S (𝑉0) through the
infinitesimal action induced by 𝜔, which we also denote by 𝜔. In 𝔰𝔭(W ⊗ C), we have the subalgebra
𝔰𝔭(𝑊 ⊗ C) × 𝔬(𝑉0 ⊗ C). Through 𝜄, the elements 𝐿, 𝑅 ∈ 𝔰𝔩2(C) � 𝔰𝔭(𝑊 ⊗ C) defined in (4.11) act on
C[𝔷1, 𝔷2, 𝔷3, 𝔷4] as (see [FM06, Lemma A.2])

𝜔(𝐿) = −8𝜋𝜕𝔳𝜕𝔳 +
1

8𝜋
𝔴𝔴, 𝜔(𝑅) = −8𝜋𝜕𝔴𝜕𝔴 + 1

8𝜋
𝔳𝔳. (4.8)

Using the isomorphism

𝔰𝔩2 (C)2 → 𝔬(𝑉0 ⊗ C)
(𝐴, 𝐵) ↦→ (𝑣 ↦→ 𝐴𝑣 + 𝑣𝐵𝑡 ),

we see that the elements 𝐿1 = (𝐿, 0), 𝐿2 = (0, 𝐿2), 𝑅1 = (𝑅, 0), 𝑅2 = (0, 𝑅) in 𝔰𝔩2(C)2 act on
C[𝔷1, 𝔷2, 𝔷3, 𝔷4] through 𝜄 as (see [FM06, Lemma A.1])

𝜔(𝐿1) = 8𝜋𝜕𝔳𝜕𝔴 − 1
8𝜋

𝔳𝔴, 𝜔(𝑅1) = 8𝜋𝜕𝔳𝜕𝔴 − 1
8𝜋

𝔳𝔴,

𝜔(𝐿2) = 8𝜋𝜕𝔳𝜕𝔴 − 1
8𝜋

𝔳𝔴, 𝜔(𝑅2) = 8𝜋𝜕𝔳𝜕𝔴 − 1
8𝜋

𝔳𝔴.

(4.9)

For convenience, we slightly abuse notation and write 𝐿, 𝑅, 𝐿 𝑗 , 𝑅 𝑗 for their corresponding actions on
𝒫(C4).

https://doi.org/10.1017/fms.2024.139 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.139


44 Jan H. Bruinier et al.

When we consider the decomposition𝑉0 = 𝑉00⊕𝑈𝐷 in (3.2), the map 𝜄 inducesS(𝑉00 (R)) � 𝒫(C3) =
C[𝔷1, 𝔷3, 𝔷4] and S(𝑈𝐷 (R)) � 𝒫(C) = C[𝔷2]. For 𝑎, 𝑏, 𝑐 ∈ N0, we also define 𝜑 (𝑎,𝑏)

00,∞ ∈ S(𝑉00 (R)) and
𝜑𝑐𝐷,∞ ∈ S(R) by

𝜑 (𝑎,𝑏)
00,∞ :=

(
−
√

2
4𝜋

)𝑎+𝑏
𝜄−1 (𝔷𝑎1𝔴

𝑏), 𝜑 (𝑐)
𝐷,∞ :=

(
−
√

2𝑖

4𝜋

)𝑐
𝜄−1(𝔷𝑐2 ). (4.10)

For 𝑟 ∈ N0, we have the operators RC𝑟 , R̃C𝑟 defined in (2.8) that also act on 𝒫(C4). They are related
by the following lemma.

Lemma 4.1. In the notations above, we have

(𝐿1 + 𝐿2)RC𝑟 (𝔴) = −𝐿(R̃C𝑟 (𝔳 + (−1)𝑟𝔳)),
(R̃C𝑟 − (𝑅1 + 𝑅2)𝑟 ) (𝔳) = (−8𝜋)1−2𝑟2𝑟𝑅(𝔴𝑟 𝑝𝑟 (𝔳, 𝔳)),
(R̃C𝑟 − (𝑅1 + 𝑅2)𝑟 ) (𝔳) = (−8𝜋)1−2𝑟2𝑟𝑅(𝔴𝑟 𝑝𝑟 (𝔳, 𝔳)),

(4.11)

where 𝑝𝑟 (𝑋,𝑌 ) := −(�̃�𝑟 (𝑋,𝑌 ) − (𝑋 + 𝑌 )𝑟 )/𝑌 ∈ Q[𝑋,𝑌 ] for all 𝑟 ∈ N0.

Proof. It is easy to check that

RC𝑟 (𝔴) = (−8𝜋)−2𝑟2𝑟𝔴𝑟+1𝑄𝑟 (𝔳, 𝔳),
R̃C𝑟 (𝔳) = (−8𝜋)−2𝑟2𝑟𝔴𝑟 �̃�𝑟 (𝔳, 𝔳)𝔳,
R̃C𝑟 (𝔳) = (−8𝜋)−2𝑟2𝑟𝔴𝑟 �̃�𝑟 (𝔳, 𝔳)𝔳.

(4.12)

This leads directly to the second equation in (4.11) from the definition. To prove the first equation, it is
enough to verify

(𝐿1 + 𝐿2)𝔴𝑟+1𝑄𝑟 (𝔳, 𝔳) = −𝐿(𝑄𝑟 (𝔳, 𝔳) (𝔳 + 𝔳)𝔴𝑟 ),

which follows from (2.6). �

Proposition 4.2. Let 𝜙 𝑓 ∈ S (𝑊𝛼 (�̂�)) and 𝜑 𝑓 ∈ S (�̂� ;Qab) be matching sections as in Theorem 3.3
and denote 𝜖 := sgn(𝛼1) = −sgn(𝛼2). Then for Ĩ defined in (4.2), we have

𝜋

3
(𝐿1 + 𝐿2)RC𝑟 Ĩ (𝑔) = −(−4𝜋)−𝑟 (𝑅1 + 𝑅2)𝑟 (𝐸∗(𝑔, 𝜙 (1,−1) ) − (−1)𝑟𝐸∗(𝑔, 𝜙 (−1,1) ))

− 2 log 𝜀 𝜚
𝜋

3
R̃C𝑟I 𝑓 (𝑔, 𝜑 (1,−1) − (−1)𝑟𝜑 (−1,1) , 𝜚),

(4.13)

where I 𝑓 is defined in (3.23) and 𝜑 (±1,∓1) = 𝜑 𝑓 ⊗ 𝜑 (±1,∓1)
∞ ∈ S (𝑉 (A)) is defined in (3.22).

Proof. Suppose 𝜑 𝑓 = 𝜑0, 𝑓 ⊗ 𝜑1, 𝑓 and denote 𝜑±
1 = 𝜑1, 𝑓 𝜑±

∞, 𝜑 (𝑘,𝑘′)
0 = 𝜑0, 𝑓 𝜑 (𝑘,𝑘′)

0,∞ . Then

(𝐿1 + 𝐿2)RC𝑟 (Ĩ (𝑔)) =
∫
[𝐺 ]

(𝐿1 + 𝐿2)RC𝑟 (𝜃0 (𝑔′, 𝑔, 𝜑 (1,1)
0 ))𝜗1(𝑔′, 𝜑+

1 , �̃�𝐶 )𝑑𝑔′

=
∫
[𝐺 ]

𝐿(R̃C𝑟 (𝜃0 (𝑔′, 𝑔, 𝜑 (1,−1)
0 ) − (−1)𝑟 𝜃0 (𝑔′, 𝑔, 𝜑 (−1,1)

0 )))𝜗1(𝑔′, 𝜑+
1 , �̃�𝐶 )𝑑𝑔′
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by Lemma 4.1 and (4.7). Now applying Stokes’ theorem and Theorem 2.7 gives us∫
[𝐺 ]

𝐿(R̃C𝑟 (𝜃0(𝑔′, 𝑔, 𝜑𝜖 ,−𝜖0 )))𝜗1(𝑔′, 𝜑+
1 , �̃�𝐶 )𝑑𝑔′

= −
∫
[𝐺 ]

R̃C𝑟 (𝜃0 (𝑔′, 𝑔, 𝜑𝜖 ,−𝜖0 ))𝐿𝜗1(𝑔′, 𝜑+
1 , �̃�𝐶 )𝑑𝑔′

= −
∫
[𝐺 ]

R̃C𝑟 (𝜃0 (𝑔′, 𝑔, 𝜑𝜖 ,−𝜖0 ))
(
𝜗1(𝑔′, 𝜑−

1 , 𝜚) + 2 log 𝜀 𝜚Θ1(𝑔′, 𝜑−
1 , 𝜚)
)
𝑑𝑔′

with 𝜖 = ±1. Since 𝑅𝜗1(𝑔′, 𝜑−
1 , 𝜚) = 0, we can apply Stokes’ theorem, Lemma 4.1 and Theorem 3.3 to

obtain ∫
[𝐺 ]

R̃C𝑟 (𝜃0(𝑔′, 𝑔, 𝜑𝜖 ,−𝜖0 ))𝜗1(𝑔′, 𝜑−
1 , 𝜚)𝑑𝑔′

= (−4𝜋)−𝑟 (𝑅1 + 𝑅2)𝑟
∫
[𝐺 ]

(𝜃0 (𝑔′, 𝑔, 𝜑𝜖 ,−𝜖0 ))𝜗1(𝑔′, 𝜑−
1 , 𝜚)𝑑𝑔′

= (−4𝜋)−𝑟 (𝑅1 + 𝑅2)𝑟I (𝑔, 𝜑 (𝜖 ,−𝜖 ) , 𝜚) = 3
𝜋
(−4𝜋)−𝑟 (𝑅1 + 𝑅2)𝑟𝐸∗(𝑔, 𝜙 (𝜖 ,−𝜖 ) ).

Putting these together finishes the proof. �

To understand the first term on the right-hand side of (4.13), recall the decomposition for
𝜃0 (𝑔′, 𝑔Δ , 𝜑0) in (3.18) when 𝜑0,∞ ∈ S(𝑉0). This allows us to define

(RC
′,Δ
𝑟 ′, (𝑘1 ,𝑘2)𝜃0) (𝑔′, 𝑔Δ00, 𝜑0) := (−4𝜋)−𝑟 ′𝑄𝑟 ′, (𝑘1 ,𝑘2) (𝑅′

1, 𝑅
′
2)
(
𝜃00 (𝑔′

1, 𝑔00, 𝜑00)𝜃𝐷 (𝑔′
2, 𝜑𝐷)

)
|𝑔′1=𝑔′2=𝑔′

(4.14)

for 𝜑0 = 𝜑00 ⊗ 𝜑𝐷 with 𝜑00 ∈ S (𝑉00 (A)), 𝜑𝐷 ∈ S (𝑈𝐷 (A)), and 𝑅′
𝑗 the raising operator on 𝑔′

𝑗 . In the
Fock model, 𝑅′

1, resp. 𝑅′
2, acts on C[𝔷1, 𝔷3, 𝔷4], resp. C[𝔷2], as

𝜔(𝑅′
1) = −8𝜋𝜕𝔴𝜕𝔴 + 1

8𝜋
𝔷2

1 , 𝜔(𝑅′
2) =

1
8𝜋

𝔷2
2 . (4.15)

This definition also extends by linearity to all 𝜑0 ∈ S (𝑉0(A)) satisfying 𝜑0,∞ ∈ S(𝑉0 (R)). We now
record the following lemma.

Lemma 4.3. For 𝑟 ∈ N0, denote 𝑟0 := �𝑟/2�. Then

(R̃C𝑟 𝜃0)(𝑔′, 𝑔Δ00, 𝜑
(1,−1)
0 + (−1)𝑟𝜑 (−1,1)

0 )

= −22𝑟0−𝑟+1(RC
′,Δ
𝑟0 , (−𝑟+1/2,𝑟−2𝑟0+1/2)𝜃0) (𝑔′, 𝑔Δ00, 𝜑0, 𝑓 (𝜑 (1,𝑟 )

00,∞ ⊗ 𝜑𝑟−2𝑟0
𝐷,∞ ))

(4.16)

Proof. Suppose 𝜑0, 𝑓 = 𝜑00, 𝑓 ⊗ 𝜑𝐷, 𝑓 . Then equations in (4.7) imply

(R̃C𝑟 𝜃0) (𝑔′, 𝑔Δ00, 𝜑
(1,−1)
0 − (−1)𝑟𝜑 (−1,1)

0 ) =
√

2
4𝜋

𝜃0(𝑔′, 𝑔Δ00, 𝜑0, 𝑓 𝜄−1R̃C𝑟 (𝔳 + (−1)𝑟𝔳)).
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From (4.12) and the definition of 𝑃𝑟 in (2.5), we have

R̃C𝑟 (𝔳 + (−1)𝑟𝔳)) = (−4𝜋)−2𝑟2−𝑟𝔴𝑟 �̃�𝑟 (𝔳, 𝔳) (𝔳 + (−1)𝑟𝔳) = (−4𝜋)−2𝑟2−𝑟𝔴𝑟𝑄𝑟 (𝔳, 𝔳) (𝔳 + 𝔳)
= (−4𝜋)−2𝑟2𝔴𝑟 𝔷𝑟+1

1 𝑃𝑟 (𝑖𝔷2/𝔷1)

= (−4𝜋)−2𝑟2𝔴𝑟 𝔷1 (−1)𝑟0

𝑟0∑
𝑠=0

(
𝑟0 − 𝑟 − 1/2

𝑟0 − 𝑠

) (
𝑟 − 𝑟0 − 1/2

𝑠

)
𝔷2𝑠

1 (𝑖𝔷2)𝑟−2𝑠

= (−4𝜋)𝑟0−2𝑟2𝑖𝑟 (−2)𝑟0𝑄𝑟0 , (−𝑟+1/2,𝑟−2𝑟0+1/2) (𝑅′
1, 𝑅

′
2)𝔷1𝔴

𝑟 𝔷𝑟−2𝑟0
2 .

Substituting the definition (4.10) finishes the proof. �

The following technical lemma concerns a change of regularized integrals and follows from the proof
of Lemma 5.4.3 in [Li22].

Lemma 4.4. Given 𝜑𝑖, 𝑓 ∈ S (�̂�𝑖) with 𝑖 = 0, 1, let Γ ⊂ PSL2(Z) ⊂ 𝐺00 (Q) be a congruence subgroup
that acts trivially on 𝜑0, 𝑓 . For any 𝑎 ≥ 1, 𝑏 ≥ 0 and 𝑓 ∈ 𝑀 !

−2𝑏 (Γ), we have∫ reg

Γ\H
𝑦𝑏 𝑓 (𝑧)

∫
[SL2 ]

𝜃1(𝑔, 𝜉, 𝜑−
1 )𝜃0(𝑔, 𝑔Δ𝑧 , 𝜑0, 𝑓 (𝜑 (𝑎,𝑏)

00,∞ ⊗ 𝜑𝑏−𝑎+1
𝐷,∞ ))𝑑𝑔𝑑𝜇(𝑧)

=
∫ reg

[SL2 ]
𝜃1(𝑔, 𝜉, 𝜑−

1 )
∫ reg

Γ\H
𝑦𝑏 𝑓 (𝑧)𝜃0(𝑔, 𝑔Δ𝑧 , 𝜑0, 𝑓 (𝜑 (𝑎,𝑏)

00,∞ ⊗ 𝜑𝑏−𝑎+1
𝐷,∞ ))𝑑𝜇(𝑧)𝑑𝑔.

4.2. Fourier expansion of Ĩ
To evaluate the Fourier expansion of Ĩ in (4.2), we change to a mixed model of the Weil representation
using the partial Fourier transform ℱ1 defined in (3.28).

Throughout the section, we write

𝑔0 = (𝑔𝑧1 , 𝑔𝑧2) ∈ 𝐺0 (R) (4.17)

for (𝑧1, 𝑧2) ∈ H2 with 𝑧𝑖 = 𝑥𝑖 + 𝑖𝑦𝑖 and 𝑔𝝉 ∈ 𝐺 (R) with 𝝉 = 𝒖 + 𝑖𝒗 ∈ H. Then (3.27) implies

𝜔0,∞(𝑔0)ℱ1 (𝜑0,∞)((0, 𝑟), 𝜈) = √
𝑦1𝑦2e(𝑟 (𝑥2𝜈 + 𝑥1𝜈

′))ℱ1(𝜑0,∞)((0, 𝑟
√

𝑦1𝑦2), 𝜈
√

𝑦2/𝑦1),
𝜔0,∞(𝑔𝝉)ℱ1 (𝜑0,∞)((0, 𝑟), 𝜈) =

√
𝒗e(−𝒖𝜈𝜈′)ℱ1(𝜑0,∞)((0, 𝑟/

√
𝒗),

√
𝒗𝜈).

(4.18)

Also when 𝜑0,∞ = 𝜑 (𝑘,𝑘′)
0,∞ with 𝑘, 𝑘 ′ = ±1 as given in (3.22) and (4.1), we have

ℱ1 (𝜑 (𝑘,𝑘′)
0,∞ )((0, 𝑟), 𝜈) = 𝜑 (𝑘,𝑘′)

0,∞ (𝑖𝑟, 0, 𝜈)𝑒−2𝜋𝑟2
(4.19)

with 𝑟 ∈ R, 𝜈 = (𝜈1, 𝜈2) ∈ R2. After applying Poisson summation and unfolding, we can rewrite the
theta kernel 𝜃0 (𝑔, 𝑔0, 𝜑0) as

𝜃0 (𝑔, 𝑔0, 𝜑0) =
∑

𝜆∈𝑉0 (Q)
𝜔0(𝑔, 𝑔0)𝜑0(𝜆) =

∑
𝜈∈𝑉−1 (Q)
𝜂∈Q2

𝜔−1(𝑔)𝜔0(𝑔0)ℱ1(𝜑0) (𝜂𝑔, 𝜈)

=
∑

𝜈∈𝑉−1 (Q)
𝜔−1(𝑔)𝜔0(𝑔0)

�����ℱ1 (𝜑0) ((0, 0), 𝜈) +
∑
𝑟 ∈Q×

𝛾∈Γ∞\ SL2 (Z)

ℱ1 (𝜑0) ((0, 𝑟)𝛾𝑔, 𝜈)
�����.
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For a bounded, integrable function f on [𝐺] such that 𝜃0 (𝑔, 𝑔0, 𝜑0) 𝑓 (𝑔) is right SL2(Ẑ)SO2 (R)-
invariant, we have

𝐼0(𝑔0, 𝜑0, 𝑓 ) =
∫
[𝐺 ]

𝜃0 (𝑔, 𝑔0, 𝜑0) 𝑓 (𝑔)𝑑𝑔 =
3
𝜋

∫
SL2 (Z)\H

𝜃0 (𝑔𝝉 , 𝑔0, 𝜑0) 𝑓 (𝑔𝝉)𝑑𝜇(𝝉),

which can be written as 𝐼0(𝑔0, 𝜑0, 𝑓 ) = 𝐼0
0 (𝑔0, 𝜑0, 𝑓 ) + 𝐼+0 (𝑔0, 𝜑0, 𝑓 ) with (see, for example, equation

(4.2) in [Kud16])

𝐼0
0 (𝑔0, 𝜑0, 𝑓 ) :=

3
𝜋

∑
𝜈∈𝑉−1 (Q)

∫
SL2 (Z)\H

𝜔−1(𝑔𝝉)𝜔0(𝑔0)ℱ1(𝜑0) ((0, 0), 𝜈) 𝑓 (𝑔𝝉)𝑑𝜇(𝝉),

𝐼+0 (𝑔0, 𝜑0, 𝑓 ) = 3
𝜋

∑
𝜈∈𝑉−1 (Q) , 𝑟 ∈Q×

𝛾∈Γ∞\ SL2 (Z)

∫
SL2 (Z)\H

𝑓 (𝑔𝛾𝝉)𝜔−1(𝑔𝛾𝝉)𝜔0(𝑔0)ℱ1(𝜑0) ((0, 𝑟)𝑔𝛾𝝉 , 𝜈)𝑑𝜇(𝝉)

=
∑

𝜈∈𝑉−1 (Q) , 𝑟 ∈Q×

ℱ1 (𝜑0, 𝑓 ) ((0, 𝑟), 𝜈)𝔉𝑟 ,𝜈 (𝜑0,∞)(𝑧1, 𝑧2, 𝑓 )

𝔉𝑟 ,𝜈 (𝜑) (𝑧1, 𝑧2, 𝑓 ) :=
3
𝜋

∫
Γ∞\H

(𝜔0(𝑔𝝉 , 𝑔0)ℱ1(𝜑)) ((0, 𝑟), 𝜈) 𝑓 (𝑔𝝉)𝑑𝜇(𝝉).

(4.20)

Using the SL2(Ẑ)-invariance of 𝜃0(𝑔, 𝑔0, 𝜑0) 𝑓 (𝑔), we can rewrite for any 𝑁 ∈ N

𝔉𝑟 ,𝜈 (𝜑) (𝑧1, 𝑧2, 𝑓 ) := 𝑁−1 3
𝜋

∫
Γ𝑁∞ \H

(𝜔0 (𝑔𝝉 , 𝑔0)ℱ1(𝜑)) ((0, 𝑟), 𝜈) 𝑓 (𝑔𝝉)𝑑𝜇(𝝉) (4.21)

with Γ𝑁∞ := {𝑛(𝑁𝑏) : 𝑏 ∈ Z} ⊂ Γ∞.
For our purpose, we are interested in the case when 𝑓 (𝑔) = 𝜗1(𝑔, 𝜑1, 𝜌) with 𝜌 ∈ {𝜚, �̃�𝐶 }, 𝜑1 = 𝜑±

1
and 𝜑0 = 𝜑 (𝑘,𝑘′)

0 for 𝑘, 𝑘 ′ = ±1. In that case, we have 𝐼0(𝑔0, 𝜑0, 𝑓 ) = I (𝑔0, 𝜑, 𝜌) with 𝜑 = 𝜑0 ⊗ 𝜑1, and
denote

I+(𝑔0, 𝜑, 𝜌) := 𝐼+0 (𝑔0, 𝜑0, 𝜗(·, 𝜑1, 𝜌)), I0(𝑔0, 𝜑, 𝜌) := 𝐼0
0 (𝑔0, 𝜑0, 𝜗(·, 𝜑1, 𝜌)). (4.22)

This can be extended by Q-linearity to all 𝜑 = 𝜑 𝑓 𝜑∞ ∈ S (𝑉 (A)) with 𝜑 𝑓 ∈ S (�̂�) and 𝜑∞ ∈ S(𝑉 (R)).
The constant term 𝐼0

0 in the Fourier expansion of 𝐼0(𝑔0, 𝜑0, 𝑓 ) is independent of 𝑥1, 𝑥2 and can be
evaluated by the change of model in section 3.3. For our purpose, we will state a decay result needed to
prove Theorem 5.1

Lemma 4.5. Suppose there is 𝑠 ∈ R such that | 𝑓 (𝑔𝜏) | � 𝑣𝑠 for all 𝜏 in the usual fundamental domain
of SL2 (Z)\H. Then

lim
𝑦→∞

𝑦−𝑐

(
𝜕𝑎𝑦1 𝜕

𝑏
𝑦2

𝐼0
0 (𝑔0, 𝜑0, 𝑓 )
√

𝑦1𝑦2

)
|𝑦1=𝑦2=𝑦= 0

for any 𝑎, 𝑏, 𝑐 ∈ N0 satisfying 𝑎 + 𝑏 + 𝑐 ≥ 1. When 𝑎 = 𝑏 = 𝑐 = 0, the limit exists.

Remark 4.6. It is easy to check that 𝑓 (𝑔) = 𝜗(𝑔, 𝜑1, �̃�𝐶 ) fulfills the condition in the lemma.
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Proof. Let F denote the fundamental domain. Then we can use (4.18) to obtain

𝐼0
0 (𝑔0, 𝜑0, 𝑓 )
√

𝑦1𝑦2
=

3
𝜋

∑
𝜈∈𝐹

ℱ1 (𝜑0, 𝑓 ) ((0, 0), 𝜈)
(
𝜈
√

𝑦2/𝑦1 + 𝜈′
√

𝑦1/𝑦2

)
×
∫
F

e(−𝒖𝜈𝜈′)𝑒−𝜋𝒗 (𝜈2𝑦2
2+(𝜈

′)2𝑦2
1 )/(𝑦1𝑦2) 𝑓 (𝑔𝝉)

𝑑𝒖𝑑𝒗

𝒗
.

Since ℱ1 (𝜑0, 𝑓 ) is a Schwartz function, we can suppose the sum over 𝜆 ∈ 𝐹 is replaced by a sum over
the translate of a lattice. For the integral on the second line, we can trivially estimate it by∫ ∞

√
3/2

𝑒−𝜋𝒗 (𝜈
2𝑦2

2+(𝜈
′)2𝑦2

1 )/(𝑦1𝑦2)𝒗𝑠
𝑑𝒗

𝒗
.

From this, we see that |𝑦−1𝐼0
0 ((𝑔𝑧 , 𝑔𝑧), 𝜑0, 𝑓 ) | is bounded independent of y, and the second claim holds.

This also gives the first claim for 𝑎 = 𝑏 = 0 and 𝑐 ≥ 1. The other cases follow from first applying 𝜕𝑎𝑦1 𝜕
𝑏
𝑦2

to 𝐼 0
0 (𝑔0 ,𝜑0 , 𝑓 )√

𝑦1𝑦2
and then conducting the same estimate. �

We will now evaluate the non-constant term I+. Let 𝜚 and �̃�𝐶 be as in (2.76), and 𝐾𝜚 ⊂ 𝐻1 (Ẑ), Γ𝜚 ⊂
𝐻+

1 (Q) be as in (2.14) and (2.67), respectively. For 𝑓 (𝑔) = 𝜗1(𝑔, 𝜑−
1 , 𝜚) and 𝜑0,∞ = 𝜑 (±1,∓1)

0,∞ defined in
(3.22), we can apply (4.18), (4.19) and (4.21) to obtain

𝔉𝑟 ,𝜈 (𝜑 (±1,∓1)
0,∞ )(𝑧1, 𝑧2, 𝑓 ) = sgn(𝜈)2√𝑦1𝑦2e(𝑟 ((𝑥2 ∓ 𝑖𝑦2)𝜈 + (𝑥1 ± 𝑖𝑦1)𝜈′))

× vol(𝐾𝜚)
∑
𝜉 ∈𝐶

𝜚(𝜉)
∑

𝛽∈Γ𝜚\𝐹×

𝛽𝛽′=𝜈𝜈′<0

sgn(𝛽)𝜑1, 𝑓 (𝜉−1𝛽)

if ∓𝑟𝜈 > 0, and zero otherwise. After the change of variable 𝑡 = 𝑟𝜈′, we have

I+(𝑔0, 𝜑
(1,−1) , 𝜚) = 3

𝜋

√
𝑦1𝑦2

∑
𝑡 ∈𝐹× , 𝑡1>0>𝑡2

𝑐𝑡 (𝜑 𝑓 , 𝜚)e(𝑡1𝑧1 + 𝑡2𝑧2),

I+(𝑔0, 𝜑
(−1,1) , 𝜚) = 3

𝜋

√
𝑦1𝑦2

∑
𝑡 ∈𝐹× , 𝑡2>0>𝑡1

𝑐𝑡 (𝜑 𝑓 , 𝜚)e(𝑡1𝑧1 + 𝑡2𝑧2),

𝑐𝑡 (𝜑 𝑓 , 𝜚) := 2vol(𝐾𝜚)
∑
𝜉 ∈𝐶

𝜚(𝜉)
∑
𝑟 ∈Q×

∑
𝛽∈Γ𝜚\𝐹×

Nm(𝛽)=Nm(𝑡)/𝑟2<0

sgn(𝛽1𝑡2/𝑟)ℱ1(𝜑 𝑓 ) ((0, 𝑟), 𝑡/𝑟, 𝜉−1𝛽).

In the case of I+(𝑔0, 𝜑, �̃�𝐶 ), we have the following result.

Proposition 4.7. Given 𝜙 𝑓 ∈ S (�̂�𝛼), let 𝜑 𝑓 ∈ S (�̂�)𝐺 (Ẑ)𝑇 Δ (Ẑ)𝐾𝜚 be a matching section as in Theo-
rem 3.3. For �̃�𝐶 as in (2.76), we have

I+(𝑔0, 𝜑 𝑓 𝜑 (1,1)
∞ , �̃�𝐶 )√

𝑦1𝑦2
=

3
𝜋

∑
𝑡 ∈𝐹× , 𝑡	0

𝑐𝑡 (𝜑 𝑓 , 𝜚)e(𝑡1𝑧1 + 𝑡2𝑧2) +
∑
𝑡 ∈𝐹×

𝑒𝑡 (𝜑 𝑓 ; 𝑦1, 𝑦2)e(𝑡1𝑧1 + 𝑡2𝑧2),

(4.23)

where 𝑐𝑡 (𝜑 𝑓 , 𝜚) ∈ C and 𝑒𝑡 (𝜑 𝑓 ; ·) : R2
>0 → C are given in (4.27) and (4.28) below. There is a constant

𝑀 ∈ N such that 𝑐𝑡 (𝜑 𝑓 , 𝜚) = 0 when 𝑡 ∉ 𝑀−1O.
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Let

𝑆𝐶 := {𝑣 prime in 𝐹 : ord𝑣 (𝜉) ≠ 0 for some 𝜉 ∈ 𝐶} (4.24)

be a finite set of primes, and then there exists 𝜅 ∈ N and 𝛽(𝑡, 𝜙 𝑓 ) ∈ 𝐹× such that 𝑐𝑡 (𝜑 𝑓 , 𝜚) =
− 2
𝜅 log |𝛽(𝑡, 𝜙 𝑓 )/𝛽(𝑡, 𝜙 𝑓 )′| and

𝜅−1 ord𝔭 (𝛽(𝑡, 𝜙 𝑓 )/𝛽(𝑡, 𝜙 𝑓 )′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̃�𝑡 (𝜙 𝑓 ), if Diff(𝑊𝛼, 𝑡) = {𝔭},
−�̃�𝑡 (𝜙 𝑓 ), if Diff(𝑊𝛼, 𝑡) = {𝔭′},
0, otherwise,

(4.25)

when Diff(𝑊𝛼, 𝑡) ⊂ 𝑆𝑐𝐶 with �̃�𝑡 defined in (2.62). Furthermore, the function 𝑒𝑡 satisfies

lim
𝑦→∞

𝑦−𝑐
(
𝜕𝑎𝑦1 𝜕

𝑏
𝑦2 𝑒𝑡 (𝑦1, 𝑦2)

)
|𝑦1=𝑦2=𝑦= 0 (4.26)

for all 𝑎, 𝑏, 𝑐 ∈ N0.

Remark 4.8. Note that we have

Ĩ (𝑔0) = I (𝑔0, 𝜑
(1,1) , �̃�𝐶 ) = I0(𝑔0, 𝜑

(1,1) , �̃�𝐶 ) + I+(𝑔0, 𝜑
(1,1) , �̃�𝐶 )

from (4.2) and (4.22).

Proof. Suppose 𝜑 𝑓 = 𝜑0, 𝑓 ⊗ 𝜑1, 𝑓 , as the general case follows by linearity. We first prove (4.23). Using
(4.20), it is enough to evaluate 𝔉𝑟 ,𝜈 (𝜑 (1,1)

0,∞ )(𝑧1, 𝑧2, 𝜗1(·, 𝜑+
1 , �̃�𝐶 )). If we set 𝑡 := 𝑟𝜈′, then we have by

(4.18), (4.19), and Theorem 2.7

𝔉𝑟 ,𝜈′ (𝜑 (1,1)
0,∞ )(𝑧1, 𝑧2, 𝜗1 (·, 𝜑+

1 , �̃�𝐶 )) =
(
𝑒𝑟 ,𝜈′ (𝜑1, 𝑓 ; 𝑦1, 𝑦2) + 𝑐𝑟 ,𝜈′ (𝜑1, 𝑓 , 𝜚)

)√
𝑦1𝑦2e(𝑡1𝑧1 + 𝑡2𝑧2))

with 𝑐𝑟 ,𝜈′ (𝜑, 𝜚) and 𝑒𝑟 ,𝜈 (𝜑; 𝑦, 𝑦′) given by

𝑐𝑟 ,𝜈′ (𝜑, 𝜚) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4vol(𝐾𝜚)

∑
𝛽∈Γ𝜚\𝐹×

𝛽𝛽′=𝜈𝜈′>0
𝜉 ∈𝐶

𝜚(𝜉)sgn(𝑟𝛽)𝜑 (𝜉−1𝛽) log(𝜀 𝜚)
{
log𝜀𝜚
√
|𝛽/𝛽′ |
}
, 𝑡 	 0

0, otherwise.

𝑒𝑟 ,𝜈 (𝜑; 𝑦1, 𝑦2) := −
vol(𝐾𝜚)√

𝑦1𝑦2

∑
𝛽∈Γ𝜚\𝐹×

𝛽𝛽′=𝜈𝜈′

𝜉 ∈𝐶

𝜚(𝜉)𝜑 (𝜉−1𝛽)
(
𝛿𝜈𝜈′<0sgn(𝛽)𝑒∗𝑟 ,𝜈 (𝑦1, 𝑦2) +

log 𝜀 𝜚√
𝜋

𝑒†𝑟 ,𝜈,𝛽 (𝑦1, 𝑦2)
)
.

Here, we have set

𝑒∗𝑟 ,𝜈 (𝑦1, 𝑦2) :=
∫ ∞

0
Γ(0, 4𝜋 |𝜈𝜈′ |𝒗)𝐾𝑟 ,𝜈 (𝒗, 𝑦1, 𝑦2)

𝑑𝒗

𝒗
,

𝑒†𝑟 ,𝜈,𝛽 (𝑦1, 𝑦2) :=
∫ ∞

0

∑
𝜖 ∈Γ1

sgn(𝛽𝜖 − 𝛽′𝜖 ′)Γ(1/2, 𝜋(𝛽𝜖 − 𝛽′𝜖 ′)2𝒗)
√
𝒗𝐾𝑟 ,𝜈 (𝒗, 𝑦1, 𝑦2)

𝑑𝒗

𝒗
,

𝐾𝑟 ,𝜈 (𝒗, 𝑦1, 𝑦2) := 𝑒
−𝜋
(
𝐴√
𝒗
−𝐵

√
𝒗
)2 (

𝐴
√
𝒗
+ 𝐵

√
𝒗

)
, 𝐴 := 𝑟

√
𝑦1𝑦2, 𝐵 :=

𝜈𝑦1 + 𝜈′𝑦2√
𝑦1𝑦2

.
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So if we set

𝑐𝑡 (𝜑 𝑓 , 𝜚) :=
∑
𝑟 ∈Q×

ℱ1 (𝜑0, 𝑓 ) ((0, 𝑟), 𝑡 ′/𝑟)𝑐𝑟 ,𝑡′/𝑟 (𝜑1, 𝑓 , 𝜚), (4.27)

𝑒𝑡 (𝜑 𝑓 ; 𝑦1, 𝑦2) :=
∑
𝑟 ∈Q×

ℱ1 (𝜑0, 𝑓 ) ((0, 𝑟), 𝑡 ′/𝑟)𝑒𝑟 ,𝑡′/𝑟 (𝜑1, 𝑓 ; 𝑦1, 𝑦2), (4.28)

then equation (4.23) holds by (4.20). Since 𝜑 𝑓 is a Schwartz function, the sum defining 𝑐𝑡 is finite and
equals to 0 when 𝑡 ∉ 𝑀−1O for some 𝑀 ∈ N depending only on 𝜑 𝑓 .

To prove (4.25), notice that

𝑐𝑡 (𝜑 𝑓 , 𝜚) = 4vol(𝐾𝜚)
∑
𝑟 ∈Q×

∑
𝛽∈Γ𝜚\𝐹×

1≤ |𝛽/𝛽′ | ≤𝜀2
𝜚

𝛽𝛽′=𝑡𝑡′/𝑟2>0
𝜉 ∈𝐶

𝜚(𝜉)ℱ1(𝜑 𝑓 ) ((0, 𝑟), 𝑡 ′/𝑟, 𝜉−1𝛽)sgn(𝑟𝛽) log
√
|𝛽/𝛽′ |.

By Theorem 3.10 and Lemma 3.7, there exists 𝑐 ∈ N such that 2𝑐ℱ1 (𝜑 𝑓 ) ((0, 𝑟), 𝜈, 𝜆) ∈ Z for all 𝑟 ∈ Q̂
and 𝜈, 𝜆 ∈ �̂�. Then we can write

𝑐𝑡 (𝜑 𝑓 , 𝜚) = −2
𝜅

log
,,,, 𝛽(𝑡, 𝜑 𝑓 )
𝛽(𝑡, 𝜑 𝑓 )′

,,,,,
𝛽(𝑡, 𝜑 𝑓 ) :=

∏
𝑟 ∈Q×

∏
𝛽∈Γ𝜚\𝐹×

1≤ |𝛽/𝛽′ | ≤𝜀2
𝜚

𝛽𝛽′=𝑡𝑡′/𝑟2>0
𝜉 ∈𝐶

(𝑟𝛽)−vol(𝐾𝜚) 𝜚 ( 𝜉 )𝜅ℱ1 (𝜑 𝑓 ) ( (0,𝑟 ) ,𝑡′/𝑟 , 𝜉−1𝛽)sgn(𝑟𝛽) .

For any split rational prime 𝑝 = 𝔭𝔭′ with any 𝔭 ∉ 𝑆𝐶 , we have

𝜅−1 ord𝔭 𝛽(𝑡, 𝜑 𝑓 )

= −vol(𝐾𝜚)
∑
𝑟 ∈Q×

∑
𝛽∈Γ𝜚\𝐹×

𝛽𝛽′=𝑡𝑡′/𝑟2>0
𝜉 ∈𝐶

𝜚(𝜉)ℱ1(𝜑 𝑓 ) ((0, 𝑟), 𝑡 ′/𝑟, 𝜉−1𝛽)sgn(𝑟𝛽) ord𝔭 (𝜉−1𝑟𝛽)

= −vol(𝐾𝜚)
∑
𝑟 ∈Q×

∑
ℎ∈Γ𝜚\𝐻1 (Q)+

𝜉 ∈𝐶

𝜚(𝜉)ℱ1 (𝜑 𝑓 − 𝜔 𝑓 (−1)𝜑 𝑓 )

× ((0, 𝑟), 𝑡 ′/𝑟, 𝜉−1ℎ−1𝑡/𝑟)sgn(ℎ−1𝑡) ord𝔭 (𝜉−1ℎ−1𝑡)

= 2
∑
𝑟 ∈Q×

∫
𝐻1 (Q̂)

𝜚(ℎ1)ℱ1(𝜑 𝑓 ) ((0, 𝑟), 𝑡 ′/𝑟,−ℎ−1
1 𝑡/𝑟) ord𝔭 (ℎ−1

1 𝑡 ′)𝑑ℎ1

since 𝑡 	 0, ord𝔭 (𝛽) = ord𝔭 (𝜉−1𝛽) and 𝜚 𝑓 (ℎ) = sgn(ℎ), where ℎ1 = −𝜉ℎ ∈ 𝐻1 (Q̂) and 𝜚(ℎ1) = −𝜚(𝜉).
The last step follows from (2.71).
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Notice that the quantity above factors as the following product of sums of local integrals

𝜅−1 ord𝔭 𝛽(𝑡, 𝜑 𝑓 )

= 2
∏

ℓ<∞, ℓ≠𝑝

(∑
𝑛∈Z

∫
𝐻1 (Qℓ )

𝜚ℓ (ℎ1,ℓ)ℱ1(𝜑 𝑓 ,ℓ) ((0, ℓ𝑛), 𝑡 ′/ℓ𝑛,−ℎ−1
1,ℓ 𝑡/ℓ

𝑛)𝑑ℎ1,ℓ

)
×
(∑
𝑛∈Z

∫
𝐻1 (Q𝑝)

𝜚𝑝 (ℎ1, 𝑝)ℱ1(𝜑 𝑓 , 𝑝) ((0, 𝑝𝑛), 𝑡 ′/𝑝𝑛,−ℎ−1
1, 𝑝𝑡/𝑝𝑛) ord𝔭 (ℎ−1

1, 𝑝𝑡
′)𝑑ℎ1, 𝑝

)
.

Applying (3.60) turns the first line on the right-hand side into 2
∏
𝑣<∞, 𝑣�𝑝 𝑊∗

𝑡 ,𝑣 (𝜙𝑣 ). If this is nonzero,
then Diff(𝑊𝛼, 𝑡) is either {𝔭} or {𝔭′} as it has odd size. If Diff(𝑊𝛼, 𝑡) = {𝔭}, then 𝑊∗

𝑡 ,𝔭 (𝜙𝔭) = 0 and
Proposition 3.16 tell us that the second line on the right-hand side becomes

𝑊∗,′
𝑡 ,𝔭 (𝜙𝔭)𝑊∗

𝑡 ,𝔭′ (𝜙𝔭′′ )
log 𝑝

+𝑊∗
𝑡 ,𝔭 (𝜙𝔭)𝑊∗

𝑡 ,𝔭′ (𝜙𝔭′ ) ord𝔭 (𝑡 ′) =
𝑊∗,′
𝑡 ,𝔭 (𝜙𝔭)𝑊∗

𝑡 ,𝔭′ (𝜙𝔭′ )
log 𝑝

as ord𝔭 (ℎ−1
1, 𝑝𝑡

′) = ord𝔭 (ℎ−1
1, 𝑝) + ord𝔭 (𝑡 ′). This gives us

𝜅−1 ord𝔭 𝛽(𝑡, 𝜑 𝑓 ) = �̃�𝑡 (𝜙 𝑓 )/2.

Repeating the above argument together with Remark 3.17, we obtain 𝜅−1 ord𝔭′ 𝛽(𝑡, 𝜑 𝑓 ) = −�̃�𝑡 (𝜙 𝑓 )/2.
Putting this together gives us (4.25), where the case with Diff(𝑊𝛼, 𝑡) = {𝔭′} is obtained similarly.

Now we will prove (4.26). Since 𝜑 has compact support, the summation over 𝜉 and 𝛽 in 𝑒𝑟 ,𝜈 and the
summation over r in (4.28) are finite sums, it suffices to establish (4.26) with 𝑒𝑡 replaced by 𝑒∗𝑟 ,𝜈 and
𝑒†𝑟 ,𝜈,𝛽 with 𝑟 > 0. For any fixed 𝐶, 𝜖 > 0, 𝑠 ∈ R and 𝑎, 𝑏, 𝑐 ∈ N0, we have,,,,,𝑦𝑐𝜕𝑎𝑦 𝜕𝑏𝑦′

∫ 𝐴1−𝜖

0
𝑒−𝐶𝒗𝒗𝑠𝐾𝑟 ,𝜈 (𝒗, 𝑦, 𝑦′) 𝑑𝒗

𝒗

,,,,, � ∫ 𝐴1−𝜖

0
𝐾𝑟 ,𝜈 (𝒗, 𝑦, 𝑦′) 𝑑𝒗

𝒗
� 𝑒−𝐴

𝜖 /2
,,,,,𝑦𝑐𝜕𝑎𝑦 𝜕𝑏𝑦′

∫ ∞

𝐴1−𝜖
𝑒−𝐶𝒗𝒗𝑠𝐾𝑟 ,𝜈 (𝒗, 𝑦, 𝑦′) 𝑑𝒗

𝒗

,,,, � ∫ ∞

𝐴1−𝜖
𝑒−𝐶𝒗/2𝑑𝒗 � 𝑒−𝐴

1/2−𝜖 /2

when B is in a compact subset of R and 𝐴 > 0 is sufficiently large. Furthermore, it is easy to see that
there exists 𝐶 > 0 such that

|Γ(0, 4𝜋 |𝜈𝜈′ |𝒗) | � 𝒗−1𝑒−𝐶𝒗 ,

,,,,,∑
𝜀∈Γ1

sgn(𝛽𝜀 − 𝛽′𝜀′)Γ(1/2, 𝜋(𝛽𝜀 − 𝛽′𝜀′)2𝒗)

,,,,, � 𝒗−1/2𝑒−𝐶𝒗

for all 𝒗 > 0. Combining these then proves (4.26). �

4.3. Rationality of theta lifts

Recall that the rational quadratic space 𝑉𝛼 is the restriction of scalars of the F-quadratic space 𝑊𝛼. The
following result shows that the Millson theta lift preserves rationality.

Proposition 4.9. Let 𝑓 =
∑
𝜇∈𝐿∨/𝐿 𝑓𝜇𝔢𝜇 ∈ 𝑀 !

−2𝑟 ,𝜌𝐿 be weakly holomorphic for some 𝑟 ∈ N and lattice

𝐿 ⊂ 𝑉𝛼. For 𝜑 (1,𝑟 ) = 𝜑 (1,𝑟 )
00,∞𝜑 𝑓 with 𝜑 𝑓 ∈ S (�̂�00;Qab)𝑇 Δ (Ẑ) , let Γ(𝑁) ⊂ SL2(Z) be a congruence
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subgroup contained in ker(𝜌𝐿) that fixes 𝜑 𝑓 . The following regularized integral4

𝐼𝑀 (𝜏, 𝑓𝜇, 𝜑 𝑓 ) :=
1

[SL2 (Z) : Γ(𝑁)]

∫ reg

Γ(𝑁 )\H
𝑦𝑟 𝑓𝜇 (𝑧)𝜃00(𝑔𝜏 , ℎ𝑧 , 𝜑 (1,𝑟 ) )𝑑𝜇(𝑧) (4.29)

defines a weakly holomorphic modular form of weight −𝑟 + 1/2 < 0. Suppose f has rational Fourier
coefficients at the cusp ∞, so does 𝐼𝑀 (𝜏, 𝑓𝜇, 𝜑 𝑓 ) for all 𝜇 ∈ 𝐿∨/𝐿 .

Remark 4.10. When 𝑟 = 0 and f has vanishing constant term, the same proof shows that the weakly
holomorphic modular form 𝐼𝑀 (𝜏, 𝑓𝜇, 𝜑 𝑓 ) has rational Fourier coefficients up to algebraic multiples of
weight 1/2 unary theta series.

Proof. We will use the Fourier expansion of Millson theta lift calculated in Theorem 5.1 of [ANS18],
which we now recall. Fix an orientation on 𝑉00(R). For an isotropic line ℓ ⊂ 𝑉00, let 𝐺00,ℓ ⊂ 𝐺00 be
its stabilizer and 𝛾ℓ ∈ SL2(Z) such that 𝛾−1

ℓ 𝐺00,ℓ𝛾ℓ = 𝐺00,ℓ∞ with ℓ∞ = Q𝑣∞ and 𝑣∞ :=
( 1 0

0 0
)
. Denote

𝑐ℓ (𝑚, 𝜇) the m-th Fourier coefficient of 𝑓𝜇 |−2𝑟 𝛾ℓ . If 𝑥 ∈ 𝑉00(Q) satisfies
√
−𝑄(𝑥) = 𝑑 ∈ Q>0, then 𝑥⊥

is a hyperbolic plane spanned by two isotropic lines ℓ𝑥 and ℓ−𝑥 such that 𝑥, 𝛾ℓ𝑥 𝑣∞, 𝛾ℓ−𝑥 𝑣∞ is positively
oriented. We can then define 𝑟𝑥 ∈ Q by

𝛾−1
ℓ𝑥

· 𝑥 = −𝑑

(
2𝑟𝑥 1
1 0

)
.

Suppose 𝑟 ≥ 1. From [ANS18, Theorem 5.1], we know that [SL2(Z) : Γ(𝑁)] · 𝐼𝑀 is weakly
holomorphic of weight −𝑟 + 1/2 < 0 with principal part given by5∑

𝑑>0

e(−𝑑2𝜏)
2𝑑1+𝑟

∑
𝑥∈Γ𝐿\𝑉00,−𝑑2 (Q)

𝑤 ∈Q<0

𝑤𝑘𝜑 𝑓 (𝑥) (𝑐ℓ𝑥 (𝑤, 𝜇)e(𝑟𝑥𝑤) + (−1)𝑟+1𝑐ℓ−𝑥 (𝑤, 𝜇)e(𝑟−𝑥𝑤)) ∈ Qab.

Note that the inner sum above vanishes for d sufficiently large by Proposition 4.7 in [BF04], and 𝐼𝑀 is
uniquely determined by its principal part because its weight is negative. Now we can enlarge N such that
𝑁𝑟±𝑥𝑤 ∈ Z whenever 𝑐ℓ±𝑥 (𝑤, 𝜇) ≠ 0. Then given a prime 𝑝 � 𝑁 , for an element 𝑥 ∈ Γ𝐿\𝑉00,−𝑑2 (Q) to
have a representative 𝑥 ∈ 𝑉00 such that both 𝑡 (𝑝) · 𝑥 and 𝑥 are both p-integral is equivalent to finding a
p-integral representative

(
𝐴 𝐵
𝐵 𝐶

)
with 𝑝 � 𝐴. Note that the set

𝑆𝑑 (𝜑) := {𝑥 ∈ Γ𝐿\𝑉00,−𝑑2 (Q) : 𝜑 (𝑥) ≠ 0}

is a finite set for any 𝜑 ∈ S (�̂�00).
For any 𝜎𝑎 ∈ Gal(Qab/Q) with 𝑎 ∈ Ẑ×, we have 𝑡 (𝑎) ∈ 𝑇 (Ẑ) ⊂ GL2(Ẑ). Choose an odd prime

𝑝 � 𝑁 such that 𝑎 ≡ 𝑝 mod 𝑁 and every 𝑥 ∈ 𝑆𝑑 (𝜑 𝑓 ) has a p-integral representative 𝑥 ∈ 𝑉00(Q) such
that 𝑡 (𝑝) · 𝑥 is p-integral. Let 𝑆𝑑 (𝜑 𝑓 ) be such a set of representatives.

Denote 𝑥 ′ := 𝑡 (𝑝) · 𝑥 for 𝑥 ∈ 𝑆𝑑 (𝜑 𝑓 ), which is p-integral and satisfies ℓ±�̃�′ = 𝑡 (𝑝) · ℓ±�̃� and

𝛾ℓ±�̃�′ ≡ 𝑡 (𝑝)𝛾ℓ±�̃� 𝑡 (𝑝)−1 ≡ 𝑡 (𝑎)𝛾ℓ±�̃� 𝑡 (𝑎)−1 mod 𝑁, 𝑟±�̃�′𝑤 − 𝑝𝑟±�̃�𝑤 ∈ Z

when 𝑐ℓ�̃� (𝑤) or 𝑐ℓ−�̃� (𝑤) is nonzero. By equation (2.29), Γ(𝑁) ⊂ ker(𝜌𝐿) and the fact that f has rational
Fourier coefficients, we then have

𝜎𝑎 ( 𝑓 |−2𝑟 𝛾ℓ±�̃� ) = 𝜌𝐿 (𝑡 (𝑎)𝛾ℓ±�̃� ) 𝑓 = 𝜌𝐿 (𝑡 (𝑎)𝛾ℓ±�̃� 𝑡 (𝑎)−1) 𝑓 = 𝜌𝐿 (𝛾ℓ±�̃�′ ) 𝑓 = 𝑓 |−2𝑟 𝛾ℓ±�̃�′ .

4The regularization is the same as in [BF04] or [ANS18].
5Up to a sign (−1)𝑟+1 depending on the orientation of 𝑉00 (R) .
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These imply that

𝜎𝑎 (𝑐ℓ±�̃� (𝑤, 𝜇)) = 𝑐ℓ±�̃�′ (𝑤, 𝜇), 𝜎𝑎 (e(𝑟 �̃�𝑤)) = e(𝑝𝑟 �̃�𝑤) = e(𝑟 �̃�′𝑤) (4.30)

for all 𝑑 > 0, 𝑥 ∈ 𝑆𝑑 (𝜑 𝑓 ) and 𝑤 ∈ Q<0. Finally, we have 𝜑 𝑓 (𝑥) = 𝜑 𝑓 (𝑡 (𝑝)−1𝑥 ′), which implies

𝜑 𝑓 (𝑥)) = 𝜑 𝑓 (𝑡 (𝑎)−1𝑥 ′) = 𝜔(𝜄(𝑡 (𝑎)))𝜑 𝑓 ) (𝑥 ′) (4.31)

since 𝜑 𝑓 ∈ S (𝐿) and p is co-prime to the level of 𝐿 . Here, 𝜄 is the map defined in (3.10). The map
𝑥 ↦→ 𝑥 ′ then gives a bijection between 𝑆𝑑 (𝜑 𝑓 ) and 𝑆𝑑 (𝜔(𝜄(𝑡 (𝑎)))𝜑 𝑓 ). From this, we then obtain

𝜎𝑎 (𝐼𝑀 (𝜏, 𝑓𝜇, 𝜑 𝑓 )) = 𝐼𝑀 (𝜏, 𝑓𝜇, 𝜔(𝜄(𝑡 (𝑎)))𝜎𝑎 (𝜑 𝑓 )) = 𝐼𝑀 (𝜏, 𝑓𝜇, 𝜔(𝑡 (𝑎), 𝜄(𝑡 (𝑎)))𝜑 𝑓 ). (4.32)

As (𝑡 (𝑎), 𝜄(𝑡 (𝑎))) ∈ 𝑇Δ (Ẑ), and 𝜑 𝑓 is 𝑇Δ (Ẑ)-invariant, the modular form 𝐼𝑀 (𝜏, 𝑓𝜇, 𝜑 𝑓 ) has rational
Fourier coefficients. �

From Propositions 2.8 and 4.9, we can deduce the following result.

Proposition 4.11. Let 𝑟 ∈ N0 and 𝑓 ∈ 𝑀 !
−2𝑟 ,𝜌𝐿 as in Proposition 4.9. For all 𝜇 ∈ 𝐿∨/𝐿 and congruence

subgroup Γ(𝑁) ⊂ ker(𝜌𝐿) fixing 𝜑𝜇 ∈ S (�̂� ;Qab) (𝐺 ·𝑇 Δ ) (Ẑ) , which is a matching section of 𝜙𝜇 as in
Theorem 3.3, the regularized integral

𝑐𝜇 ( 𝑓 ) :=
√

𝐷
−𝑟 𝜋

3
1

[SL2(Z) : Γ(𝑁)]

∫ reg

Γ(𝑁 )\H
𝑣𝑟 𝑓𝜇 (𝜏)R̃C𝑟I 𝑓 (𝑔Δ𝜏 , 𝜚, 𝜑 (1,−1)

𝜇 − (−1)𝑟𝜑 (−1,1)
𝜇 )𝑑𝜇(𝜏)

(4.33)

is a rational number.

Proof. Since 𝜑𝜇 is 𝐺 (Ẑ)-invariant, we can rewrite the constant 𝑐𝜇 := 𝑐𝜇 ( 𝑓 ) as

√
𝐷
𝑟
𝑐𝜇 =
∫ reg

Γ𝐿\H
𝑣𝑟 𝑓𝜇 (𝜏) lim

𝑇 ′→∞

∫
ℱ𝑇 ′

∫
𝐻1 (Q)\𝐻1 (Q̂)

𝜃 (𝑔𝜏′ , (𝑔Δ , ℎ1), 𝜑𝑟𝜇)𝜚(ℎ1)𝑑ℎ1𝑑𝜇(𝜏′)𝑑𝜇(𝜏)

with 𝜑𝑟𝜇 := R̃C𝑟 (𝜑 (1,−1)
𝜇 − (−1)𝑟𝜑 (−1,1)

𝜇 ) ∈ S (𝑉 (A)). Using Lemma 4.4, we can switch the regularized
integral in g with the limit in 𝑇 ′. Then by the rational decomposition 𝑉 = 𝑉00 ⊕ 𝑈𝐷 ⊕ 𝑉1, we can write

𝜑𝜇 =
∑
𝑗∈𝐽

𝜑00,𝜇, 𝑗 ⊗ 𝜑𝐷,𝜇, 𝑗 ⊗ 𝜑1,𝜇, 𝑗 ,

with 𝜑00,𝜇, 𝑗 ∈ S (�̂�00;Qab)𝑇 Δ (Ẑ) , 𝜑1,𝜇, 𝑗 ∈ S (�̂�1) and 𝜑𝐷,𝜇, 𝑗 ∈ S (�̂�𝐷). The constant 𝑐𝜇 can then be
rewritten as

𝑐𝜇 =
∑
𝑗∈𝐽

𝑐𝜇, 𝑗 ,

where 𝑐𝜇, 𝑗 is defined by

𝑐𝜇, 𝑗 :=
√

𝐷
−𝑟

vol(𝐾𝜚) lim
𝑇 ′→∞

∫
ℱ𝑇 ′

Θ1(𝑔𝜏′ , 𝜑−
1,𝜇, 𝑗 , 𝜚)

×
∫ reg

Γ(𝐿)\H
𝑣𝑟 𝑓𝜇 (𝜏)𝜃0(𝑔𝜏′ , 𝑔Δ , R̃C𝑟 (𝜑 (1,−1)

0,𝜇, 𝑗 − (−1)𝑟𝜑 (−1,1)
0,𝜇, 𝑗 ))𝑑𝜇(𝜏)𝑑𝜇(𝜏′).
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Now with Lemma 4.3, we obtain

𝑐𝜇, 𝑗

22𝑟0−𝑟+1 = vol(𝐾𝜚) lim
𝑇 ′→∞

∫
ℱ𝑇 ′

(𝑣′)−1/2Θ1 (𝑔𝜏′ , 𝜑−
1,𝜇, 𝑗 , 𝜚)𝐺𝜇, 𝑗 (𝜏′)𝑑𝜇(𝜏′),

where 𝐺𝜇, 𝑗 is a weakly holomorphic modular form of weight −1 defined by

𝐺𝜇, 𝑗 (𝜏′) :=
√

𝑣′
√

𝐷
−3𝑟

RC′,Δ
𝑟0 , (−𝑟+1/2,𝑟−2𝑟0+1/2)

(
𝜃𝐷 (𝑔𝜏′2 , 𝜑

𝑟−2𝑟0
𝐷,𝜇, 𝑗 )𝐼

𝑀 (𝜏′
1, 𝑓𝜇, 𝜑00,𝜇, 𝑗 )

)
|𝜏′1=𝜏′2=𝜏′

and has rational Fourier coefficient at the cusp ∞ by Proposition 4.11. As 𝜑𝜇 is SL2(Ẑ)-invariant, the
function (𝑣′)−1/2∑

𝑗∈𝐽 Θ1 (𝑔𝜏′ , 𝜑−
1,𝜇, 𝑗 , 𝜚)𝐺𝜇, 𝑗 (𝜏′) is SL2(Z)-invariant in 𝜏′. Applying Proposition 2.8

and Stokes’ Theorem, we then have

𝑐𝜇

22𝑟0−𝑟+1 = vol(𝐾𝜚) lim
𝑇 ′→∞

∫
ℱ𝑇 ′

∑
𝑗∈𝐽

𝐿𝜏′
(√

𝑣′Θ̃1,𝐶 (𝑔𝜏′ , 𝜑−
1,𝜇, 𝑗 , 𝜚)

)
𝐺𝜇, 𝑗 (𝜏′, 𝑗)𝑑𝜇(𝜏′)

= −vol(𝐾𝜚)
∑
𝑗∈𝐽

CT
(√

𝑣′Θ̃+
1,𝐶 (𝑔𝜏′ , 𝜑

−
1,𝜇, 𝑗 , 𝜚)𝐺𝜇, 𝑗 (𝜏′, 𝑗)

)
∈ Q.

This finishes the proof. �

5. Proofs of theorems

In this section, we will prove Theorem 1.2. First, we state and prove the case for O(2, 2).

Theorem 5.1. Let E be a biquadratic CM number field with real quadratic subfield F. Let 𝑊 = 𝑊𝛼 be an
F-quadratic space and 𝑊𝛼∨ its neighborhood quadratic space as in Section 2.4. Suppose 𝛼1 < 0 < 𝛼2.
For 𝑟 ∈ N0 and a lattice 𝐿 ⊂ 𝑊Q, suppose

𝑓 =
∑

𝑚∈Q, 𝜇∈𝐿∨/𝐿
𝑐(𝑚, 𝜇)𝑞𝑚𝔢𝜇 ∈ 𝑀 !

−2𝑟 ,𝜌𝐿

is a weakly holomorphic modular form with rational Fourier coefficients. Furthermore, suppose it has
vanishing constant term when 𝑟 = 0. Then there exists 𝜅, 𝑀 ∈ N depending on f such that

𝜅
(
Φ𝑟
𝑓 (𝑍 (𝑊𝛼)) − (−1)𝑟Φ𝑟

𝑓 (𝑍 (𝑊𝛼∨))
)

= −deg(𝑍 (𝑊))
Λ(0, 𝜒)

∑
𝑚>0, 𝜇∈𝐿∨/𝐿

𝑐(−𝑚, 𝜇)𝑚𝑟
∑

𝜆∈𝐹×∩𝑀−1O
𝜆	0

Tr(𝜆)=𝑚

𝑃𝑟

(
𝜆 − 𝜆′

𝑚

)
log
,,,, 𝛽(𝜆, 𝜙𝜇)
𝛽(𝜆, 𝜙𝜇)′

,,,,, (5.1)

where 𝛽(𝑡, 𝜙 𝑓 ) ∈ 𝐹× is nonzero which has the property

𝜅−1 ord𝔭 (𝛽(𝑡, 𝜙 𝑓 )/𝛽(𝑡, 𝜙 𝑓 )′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̃�𝑡 (𝜙 𝑓 ), if Diff (𝑊, 𝑡) = {𝔭},
−�̃�𝑡 (𝜙 𝑓 ), if Diff (𝑊, 𝑡) = {𝔭′},
0, otherwise.

(5.2)

Proof. By the Siegel-Weil formula in (2.56), we have

Φ𝑟
𝑓 (𝑍 (𝑊)) = 𝐶 ′

(−4𝜋)𝑟 ·
∫ reg

SL2 (Z)\H
𝑣𝑟
∑

𝜇∈𝐿∨/𝐿
𝑓𝜇 (𝜏)𝑅𝑟𝜏𝐸∗(𝑔Δ𝜏 , 𝜙

(sgn(𝛼) ,−sgn(𝛼))
𝜇 )𝑑𝜇(𝜏)
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with 𝐶 ′ := deg(𝑍 (𝑊))/(2Λ(0, 𝜒)) ∈ Q×. For each 𝜇 ∈ 𝐿∨/𝐿, let 𝜑𝜇 ∈ S (�̂�) (𝐺 ·𝑇 Δ ) (Ẑ) be a matching
section of 𝜙𝜇 as in Theorem 3.3. Then we can apply Proposition 4.2 to obtain

Φ𝑟
𝑓 (𝑍 (𝑊𝛼∨)) − (−1)𝑟Φ𝑟

𝑓 (𝑍 (𝑊𝛼))

=
𝐶 ′

(−4𝜋)𝑟 ·
∫ reg

SL2 (Z)\H

∑
𝜇∈𝐿∨/𝐿

𝑓𝜇 (𝜏)𝑅𝑟𝜏
(
𝐸∗(𝑔Δ𝜏 , 𝜙 (1,−1)

𝜇 ) − (−1)𝑟𝐸∗(𝑔Δ𝜏 , 𝜙 (−1,1)
𝜇 )
)
𝑑𝜇(𝜏)

= −𝐶 ′ · 𝜋

3

∫ reg

SL2 (Z)\H

∑
𝜇∈𝐿∨/𝐿

𝑓𝜇 (𝜏)𝐿𝜏 (RC𝑟 Ĩ) (𝑔Δ𝜏 , �̃�𝐶 , 𝜑 (1,1)
𝜇 )𝑑𝜇(𝜏)

+
𝐶 ′2 log 𝜀 𝜚

[SL2(Z) : Γ(𝑁)]
∑

𝜇∈𝐿∨/𝐿

𝜋

3

∫ reg

Γ(𝑁 )\H
𝑓𝜇 (𝜏)R̃C𝑟I 𝑓 (𝑔Δ𝜏 , 𝜚, 𝜑 (1,−1)

𝜇 − (−1)𝑟𝜑 (−1,1)
𝜇 )𝑑𝜇(𝜏)

= −𝐶 ′ · 𝜋

3

∫ reg

SL2 (Z)\H

∑
𝜇∈𝐿∨/𝐿

𝑓𝜇 (𝜏)𝐿𝜏 (RC𝑟 Ĩ) (𝑔Δ𝜏 , �̃�𝐶 , 𝜑 (1,1)
𝜇 )𝑑𝜇(𝜏) + 2𝐶 ′√𝐷

𝑟
log 𝜀 𝜚

∑
𝜇∈𝐿∨/𝐿

𝑐𝜇 ( 𝑓 ).

By Proposition 4.11, we know that 𝑐𝜇 ( 𝑓 ) ∈ Q for all 𝜇 ∈ 𝐿∨/𝐿. For the other term, we can apply
Stokes’ theorem to obtain

𝐶 ′ · 𝜋

3
lim
𝑇→∞

∫
ℱ𝑇

∑
𝜇∈𝐿∨/𝐿

𝑓𝜇 (𝜏)𝐿𝜏 (RC𝑟 Ĩ) (𝑔Δ𝜏 , �̃�𝐶 , 𝜑 (1,1)
𝜇 )𝑑𝜇(𝜏)

= 𝐶 ′ · 𝜋

3
lim
𝑣→∞

∫ 1

0

∑
𝜇∈𝐿∨/𝐿

𝑓𝜇 (𝜏) (RC𝑟 Ĩ) (𝑔Δ𝜏 , �̃�𝐶 , 𝜑 (1,1)
𝜇 )𝑑𝑢

= 𝐶 ′
∑

𝑚>0, 𝜇∈𝐿∨/𝐿
𝑐(−𝑚, 𝜇)

∑
𝜆∈𝐹× , 𝜆	0, Tr(𝜆)=𝑚

𝑚𝑟𝑃𝑟

(
𝜆 − 𝜆′

𝑚

)
𝑐𝜆 (𝜑𝜇, 𝜚).

For the last step, we have applied Remark 4.8 to replace Ĩ with I0 + I+, used Lemma 4.5 to see that I0

contribute nothing, and substitute in the Fourier coefficients of RC𝑟I+ in terms of 𝑐𝜆 (𝜑𝜇, 𝜚), the 𝜆-th
Fourier coefficient of Ĩ (𝑔Δ𝜏 , 𝜑 (1,1)

𝜇 , �̃�𝐶 ). Note that 𝑚𝑟𝑃𝑟 ((𝜆 − 𝜆′)/𝑚) appears by (2.9) and is a rational
multiple of

√
𝐷
𝑟 . As the sum above is finite, we can choose C such that 𝑆𝑐𝐶 contains Diff(𝑊, 𝑡) for all

the t that appears in this sum. Finally, the knowledge about the factorization of these coefficients in
Proposition 4.7 finishes the proof. �

Corollary 5.2. In the setting of Theorem 5.1, suppose that 𝑍 𝑓 does not intersect with 𝑍 (𝑊) when 𝑟 = 0.
Then there exists 𝜅 ∈ N and 𝛾(𝜆, 𝜙𝜇) ∈ 𝐹× such that

𝜅Φ𝑟
𝑓 (𝑍 (𝑊)) = −2

deg(𝑍 (𝑊))
Λ(0, 𝜒)

∑
𝑚>0, 𝜇∈𝐿∨/𝐿

𝑐(−𝑚, 𝜇)𝑚𝑟
∑

𝜆∈𝐹×∩𝑀−1O
𝜆	0

Tr(𝜆)=𝑚

𝑃𝑟

(
𝜆 − 𝜆′

𝑚

)
log |𝛾(𝜆, 𝜙𝜇) |

(5.3)

and

𝜅−1 ord𝔭 (𝛾(𝑡, 𝜙 𝑓 )) =
{
�̃�𝑡 (𝜙 𝑓 ), if Diff(𝑊, 𝑡) = {𝔭},
0, otherwise.

(5.4)

Remark 5.3. The constant deg(𝑍 (𝑊 ))
Λ(0,𝜒) can be explicitly given when 𝑋𝐾 = 𝑋0(1)2 (see [Li21, Remark

3.6]).
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Proof. By Theorem 5.10 in [BEY21], we have

(Φ𝑟
𝑓 (𝑍 (𝑊𝛼)) + (−1)𝑟Φ𝑟

𝑓 (𝑍 (𝑊𝛼∨)))

=
deg(𝑍 (𝑊))
Λ(0, 𝜒)

∑
𝑚>0, 𝜇∈𝐿∨/𝐿

𝑐(−𝑚, 𝜇)𝑚𝑟
∑
𝜆∈𝐹×
𝜆	0

Tr(𝜆)=𝑚

𝑃𝑟

(
𝜆 − 𝜆′

𝑚

)
𝑎𝜆 (𝜙𝜇),

where 𝑎𝑡 (𝜙𝜇) is t-th the Fourier coefficient of the holomorphic part of the incoherent Eisenstein series,
and given in (2.61). Adding this to (5.1) and applying (5.2) finishes the proof. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. Write V = V◦ ⊕ 𝑊Q and 𝐿𝑊 := 𝐿 ∩𝑊Q, 𝐿◦ := 𝐿 ∩ V◦. Then 𝐿◦ ⊕ 𝐿𝑊 ⊂ 𝐿 is
a full sublattice, and we can write

〈 𝑓 (𝜏),Θ𝐿 (𝜏, 𝑍 (𝑊))〉𝐿 = 〈 𝑓 (𝜏, 𝜏),Θ𝐿𝑊 (𝜏, 𝑍 (𝑊))〉𝐿𝑊

with 𝑓 (𝜏1, 𝜏2) := 〈Tr𝐿𝐿◦ ⊕𝐿𝑊 ( 𝑓 (𝜏1)),Θ𝐿◦ (𝜏2)〉𝐿◦ . Using (2.10), we have

(4𝜋)−𝑟 〈𝑅𝑟𝜏 𝑓 (𝜏),Θ𝐿 (𝜏, 𝑍 (𝑊))〉𝐿 = (4𝜋)−𝑟 (𝑅𝑟𝜏1 〈 𝑓 (𝜏1),Θ𝐿 (𝜏, 𝑍 (𝑊))〉𝐿 |𝜏1=𝜏

= 〈(4𝜋)−𝑟 (𝑅𝑟𝜏1 ( 𝑓 )Δ ,Θ𝐿𝑊 (𝜏, 𝑍 (𝑊))〉𝐿𝑊

=
𝑟∑
ℓ=0

𝑐 (𝑟 ;𝑘1 ,𝑘2)
ℓ (4𝜋)−𝑟+ℓ 〈𝑅𝑟−ℓ𝜏 𝑓ℓ ,Θ𝐿𝑊 (𝜏, 𝑍 (𝑊))〉𝐿𝑊 ,

where 𝑘1 = −2𝑟 + 1 − 𝑛
2 , 𝑘2 = 𝑛

2 − 1 and

𝑓ℓ := RCℓ, (𝑘1 ,𝑘2) ( 𝑓 )Δ ∈ 𝑀 !
−2𝑟+2ℓ,𝐿𝑊

has rational Fourier coefficients. Therefore, we have

Φ𝑟
𝑓 (𝑍 (𝑊)) =

𝑟∑
ℓ=0

𝑐 (𝑟 ;𝑘1 ,𝑘2)
ℓ Φ𝑟−ℓ

𝑓ℓ
(𝑍 (𝑊)). (5.5)

If f has the Fourier expansion

𝑓 (𝜏) =
∑

𝜈∈𝐿∨/𝐿, 𝑛∈Z+𝑄 (𝜈)
𝑐(𝑛, 𝜈)𝑞𝑛𝔢𝜈 ,

then the (𝑚, 𝜇)-th Fourier coefficient of 𝑓ℓ , denoted by 𝑐ℓ (𝑚, 𝜇), can be expressed as

𝑐ℓ (𝑚, 𝜇) =
∑
𝜆◦ ∈𝐿∨

◦

𝑄ℓ, (𝑘1 ,𝑘2) (𝑚 − 𝑄(𝜆◦), 𝑄(𝜆◦))𝑐(𝑚 − 𝑄(𝜆◦), (𝜆◦, 𝜇)),

with 𝑄ℓ, (𝑘1 ,𝑘2) (𝑋,𝑌 ) ∈ Q[𝑋,𝑌 ] defined in (2.4). In particular, when 𝑍 (𝑊) ∩ 𝑍 𝑓 = ∅, we have
𝑐𝑟 (0, 𝜇) = 0 for all 0 ≤ ℓ ≤ 𝑟 and 𝜇 ∈ 𝐿∨/𝐿 as 𝑐(−𝑄(𝜆◦), (𝜆◦, 𝜇)) = 0 for all 𝜆◦ ∈ 𝐿∨

◦ and 𝜇 ∈ 𝐿∨
𝑊 /𝐿𝑊

by (2.43).
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By Corollary 5.2, we can write

𝜅Φ𝑟
𝑓 (𝑍 (𝑊)) = −2

deg(𝑍 (𝑊))
Λ(0, 𝜒)

𝑟∑
ℓ=0

𝑐 (𝑟 ;𝑘1 ,𝑘2)
ℓ

∑
𝑚>0, 𝜇∈𝐿∨

𝑊 /𝐿𝑊

𝑐ℓ (−𝑚, 𝜇)𝑚𝑟−ℓ

×
∑

𝜆∈𝐹×∩𝑀−1O
𝜆	0

Tr(𝜆)=𝑚

𝑃𝑟−ℓ

(
𝜆 − 𝜆′

𝑚

)
log |𝛾ℓ (𝜆, 𝜙𝜇) |

with 𝛾ℓ (𝜆, 𝜙𝜇) ∈ 𝐹× having factorization as in (5.4) independent of ℓ, and express Φ𝑟
𝑓 (𝑍 (𝑊)) as in

(1.6) such that

𝜅−1 ord𝔭 (𝑎 𝑗 ) = −2
deg(𝑍 (𝑊))
Λ(1, 𝜒)

∑
𝑚>0

𝜇∈𝐿∨
𝑊 /𝐿𝑊

𝜆◦ ∈𝐿∨
◦

𝑐(−𝑚 − 𝑄(𝜆◦), (𝜆◦, 𝜇))

×
∑

0≤ℓ≤𝑟
𝑟−ℓ≡ 𝑗 mod 2

𝑐 (𝑟 ;𝑘1 ,𝑘2)
ℓ 𝑄ℓ, (𝑘1 ,𝑘2) (−𝑚 − 𝑄(𝜆◦), 𝑄(𝜆◦))

×
∑

𝜆∈𝐹×∩𝑀−1O
𝜆	0

Tr(𝜆)=𝑚
Diff (𝑊 ,𝜆)={𝔭}

1
√

𝐷
𝑗 mod 2 𝑃𝑟−ℓ

(
𝜆 − 𝜆′

𝑚

)
�̃�𝜆 (𝜙𝜇)

(5.6)

for all prime 𝔭 of F. �

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. By the main result in [Li23], we have 𝜅 ∈ N and Galois equivariant maps
�̃� 𝑗 : 𝑇𝑊 (Q̂) → 𝐸ab satisfying

Φ𝑟
𝑓 ([𝑧0, ℎ]) −Φ𝑟

𝑓 ([𝑧0, ℎ
′]) = 1

𝜅

(
log
,,,, �̃�1 (ℎ)
�̃�1 (ℎ′)

,,,, + √
𝐷 log
,,,, �̃�2(ℎ)
�̃�2(ℎ′)

,,,,) (5.7)

for all ℎ, ℎ′ ∈ 𝑇𝑊 (Q̂). Furthermore, when 𝑛 = 2, we have �̃� 𝑗 = 1 for 𝑗 ≡ 𝑟 mod 2. Setting 𝛼 𝑗 (ℎ) :=
𝑎 𝑗
∏

[𝑧0 ,ℎ′ ] ∈𝑍 (𝑊 )\[𝑧0 ,ℎ]
�̃�𝑗 (ℎ)
�̃�𝑗 (ℎ′) and 𝜅 := 𝜅 |𝑍 (𝑊) | and applying equations (5.7) and (1.6) proves the first

two claims. Combining with Corollary 2.4, we see that Conjecture 1.1 holds. �
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