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1. Introduction and notation

Let R be a ring with identity, let ft be an infinite set and let M be the free R -module
R(n). In [1] we investigated the problem of locating and classifying the normal
subgroups of GL(H, R), the group of units of the endomorphism ring EndR M, where
R was an arbitrary ring with identity. (This extended the work of [3] and [8] where it
was necessary for R to satisfy certain finiteness conditions.) When R is a division ring,
the complete classification of the normal subgroups of GL(fi, R) is given in [9] and the
corresponding results for a Hilbert space are given in [6] and [7]. The object of this
paper is to extend the methods of [1] to yield a classification of the subnormal
subgroups of GL(Cl, R) along the lines of that given by Wilson in [10] in the finite
dimensional case.

For any two-sided ideal p of R, we shall denote by GL(fl, p) the kernel of the natural
group homomorphism induced by the projection R —»R/p, and by GL'(il, p) the
inverse image of the centre of GL(il, R/p). Let {cx: A eft} denote the canonical basis of
M. Suppose Acfl , /xeft-A and /:A—»R. (We shall adopt the convention that f
extends to a map /: ft —» R by defining /(o>) = 0 for all w e ft-A and we shall use <= to
denote proper subset inclusion.) Define the R-automorphism of M f(A,/, /x) by

for all peft.

We shall call the t(A, f, /x) elementary matrices since the t(A, /, /x) can be thought of as
ftxft matrices differing from the identity matrix in only the fith row with A indexing
the non-zero entries of that row. We identify with each aeR the map a: A—»R with
a(A) = a, for all A € A. Define E(ft, R) to be the subgroup of GL(il, R) generated by
{f(A,/, /x): A<=ft, (xef l -A, / : A—»R}. For any right ideal p of R we define E(ft,p) to
be the normal closure of {t(A,f, fj,): Acft, jxeft — A, /: A—»p} in E(ft, R). Arguments
similar to those of [8] show that E(ft, R) and E(ft, p) are normal subgroups of
GL(fl, R). If A = {A} we shall abbreviate r(A, /, M-) to t(A, a, n), where a = /(A) and we
shall define EF(n, R) to be the subgroup of GL(D., R) generated by {t(A, a, /x): A,/xe
ft, A^ ix, a e R}. Thus, if N denotes the set of natural numbers {1, 2, 3 , . . .} , then we
see that EF{N, R) is just the subgroup E(R) of the stable linear group of Bass [4]. For
any right ideal p of R, EF(Cl, p) is defined to be the normal closure of {f(A, a, fi,): A, \L e
ft, A ^ (x, a e p} in EF(fl, R).

81

https://doi.org/10.1017/S001309150000417X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000417X


82 DAVID G. ARRELL

For any two-sided ideal p of R we can write p as a sum of finitely generated right
ideals {pa: aeA}. It was shown in [1] that the normal subgroup fl E(£l,pa) is

independent of the choice of the pa and we shall denote this group by E[ft, p]. We also
recall from [1] that a ring R is said to be d-finite if every two-sided ideal of R can be
finitely generated as a right ideal. Thus, simple rings and Noetherian rings are d-finite.

We say that a subgroup H of a group G is a subnormal subgroup of G if there exists
a normal series of subgroups

H = Hd <Hd.1 < . . . <IHO = G.

We shall write H o d G . The least integer d such that H<?G is called the defect of H in
G. We define the terms 7e(G) of the lower central series of G by yl(G) = G, ji(G) =
[G, Yj-i(G)], i = 2, 3 , . . . . A group G is called nilpotent if ym(G) = 1, for some integer
m. If c +1 is the least value of m satisfying this condition then c is called the class of G.

For any fix ft matrix X, we define the level of X to be the two-sided ideal generated
by the matrix entries X^, Xaa -Xpp, for all a, j3 eft, a ^ 0. For any subgroup H of
GL(ft, K) we define the level of H to be the two-sided ideal J(H)= £ J(X), (c.f.

XsH

[10]). We also define the ideal K(H) to be the two-sided ideal £/(X), where the
summation is taken over all those XeHC\E(il,R) that have at least four trivial
columns. (The <pth column of X is said to be trivial if and only if X(ev) = ev.) Since
matrices in E(ft, R) differ from the ftxft identity matrix in only finitely many rows we
see that K(H) is, in fact, the two-sided ideal generated by the matrix entries Xa&, Xaa —
1, for all a, /3 e ft, a ^ (5, and all X e H n E(ft, R) that have at least four trivial columns.
Clearly K(H) ^ J(H) and it was shown in [1] that whenever H is a normal subgroup of
GL(ft, R), K{H) = J(H).

2. Statement and discussion of results

We shall prove

Theorem. Let R be a ring with identity and let ft be an infinite set. Let G be a
subgroup of GL(Cl, R) that contains E(ft, R) and let H be a subnormal subgroup of G,
say H<fG. If we put p = J(H) and q = J(HG) then

where f(d) = (5d —1)/4, for all integers d S 1 . Moreover, if d = l, if R is commutative or if
) then p = q.

We see that when H is a normal subgroup of GL(Cl, R) the theorem coincides with
Theorem A of [1]. We shall also prove

Corollary. Let Rbe a d-finite ring with identity, let ft be an infinite set and let H be a
subgroup of E(ft, R). The following assertions are equivalent.

(i) H is a subnormal subgroup of E(ft, R).
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(ii) For some unique two-sided ideal p of R and some integer m

Moreover, if (i) holds then the least integer m in (ii) satisfies d-l^m Si/(d). If (ii) holds
then the defect of H in E(ft, R) is at most m +1. (f is as defined in the statement of the
theorem.)

We shall be interested in applying these results in two ways: first to investigate the
simplicity of E(ft, R) for arbitrary rings R and secondly to look more closely at the
structure of E(ft, R) for specific rings R.

It is clear that simple rings with identity are d -finite and so the corollary shows that
whenever R is a simple ring with identity E(ft, R) is a simple group. If we now
consider rings that do not have an identity then E(il, R) need not necessarily be
simple. In fact, we shall prove

Proposition. Let R be a simple ring without identity with R2 ^0. If R is d-finite then
E(ft, R) is simple. If R is not d-finite then the derived group E(ft, R)' of E(ft, R) is a
simple proper normal subgroup of E(ft, R); indeed E{fl,R)' is the unique minimal
normal subgroup of E(ft, R).

It is clear that when R is a simple ring with identity, E(ft, R) is perfect and so we see
from the proposition that when R is a simple ring (with or without identity) E(ft, R) is
perfect if and only if R is d-finite and R2 = R. In fact, it is easy to extend the
proposition to show that for any two-sided ideal p of a ring R with identity, E(ft, p) is
perfect if and only if p2 = p and p is finitely generated as a right ideal.

The proposition shows that the structure of E(il, R)/E(Cl, R)' depends upon the way
in which R is generated as a right R-module. The following example shows just how
far from trivial this factor group can be.

Example. For any ordinal a we can choose a ring R and an infinite set ft such that
there are at least a normal subgroups between E(ft, R)' and E(ft, R).

We show first how to construct the ring R. For any ring R define d{R) to be the least
cardinal u amongst all those cardinals v such that R is generated as a right R -module
by a set of cardinality v. For example, if R is d-finite then d(i?)<X0. We assert that,
for any ordinal 0 there exists a simple ring R without identity such that d(R) = Xe. Let
(A, S) be a well-ordered set with card A = X3. Let V be the free f-module (A), where
f is a field, and let Me(f) denote the f-endomorphism ring of V. For each XeMe(f)
define the rank of X, p(X), as the f-dimension of the image space of X and let
N0 = {X: XsMe{\), p(X)<X0}. Then No is a simple ring without identity (for example,
[5, page 109]) and since p(X) is finite for each XeN0, it follows that d(N0) = Kp.

Now let ft be a set of cardinality Xa and let R be a simple ring without identity with
d(R) = Xa+1. Let XeE(fl , R) and let c be the cardinality of a minimal generating set
for the right ideal generated by Xa0, Xaa - Xee, for all a, (3 e ft, a ^ (3; let K0 be the first
infinite cardinal greater than c. We shall say that X has K3-support. Let

E(/3) = (X: XeE(ft, R), X has Ky-support, y g j3)E(nR).
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Methods similar to those used in the proof of Theorem B of [1] show that E(j3) is a
proper normal subgroup of E(O, R) whenever j3 ^ a and hence {E(/x): 0s= /x g a +1} is
a tower of normal subgroups of E(H, R) with E(0) = E(fi, R)' and E(a +1) = E(il, R).
We deduce that there are at least a distinct normal subgroups between E(fi, R) and

, R)'.

3. Basic lemmas

We first remark that the familiar commutator relations for elementary matrices,
namely

hold for the generators of E(ft, R). Next notice that the proof of Lemma B of [1]
essentially yields

Lemma 1. Let H be a subgroup of GL(il, R) that is normalised by EF(Cl, p), for
some two-sided ideal p of R; then J(H)p^K(H).

Also notice that the methods of Lemma C and Corollary A of [1] may be extended to
give

Lemma 2. Let H be a subgroup of E(Cl, R) that is normalised by EF(Cl, p), for some
two-sided ideal p of R; then H contains EF((l,p2K(H)p2).

We complete this section by quoting from [1]

Lemma 3. / / H is a subgroup of GL(il, R) that is normalised by E(H, R) and if H
contains EF(£l, q), for some two-sided ideal q of R, then H contains E(ft, p), for any
finitely generated right ideal p of R contained in q.

4. The main proofs

We begin with the proof of the theorem. Let H, G, d, f{d), p and q be as in the
statement of the theorem; we shall argue by induction on d. If d = 1 then H is
normalised by E(Cl, R) and Theorem A of [1] shows that £ [ f i , / (H)]gf fg
GL'(il, J(H)). This establishes an inductive basis. Now take as inductive hypothesis
that the inclusions hold for all subnormal subgroups with normal chains of length less
than d. If we write H = Hd<iHd_l<id~l G then Hd_1 contains E[H, /„], where Jo =
/(Hd_1)Kd~1). It follows that H is normalised by EF(D,, Jo) so that Lemma 2 shows that
H contains EF(il, J%K(H)Jl). However, for any YeE(fl, R), K(HY) = K(H) and
H Y o d G so that

EF(il, J2
0K{H)Jl) g fl HY^H.

VsE(fl,R)

It follows from Lemma 3 that H contains E[H, J%K(H)Jl]. But Jify^JiHa-j) and this
shows that J(H)sf(d-1)+i g JlK{H)J%, since J(H)J0^K(H) from Lemma 1. We deduce
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that H contains E[Cl, J(H)nd)]. We next remark that H S H G < l G a n d by the inductive
basis H^GL'{H, J(HG)). We complete the proof by observing that if R is commuta-
tive or if H^E{a, R) then J(HG) = J(H).

We continue this section with the proof of the corollary. If (i) holds then (ii) follows
from the theorem since, for d-finite rings R, E[fl, p] = E(Cl, p), for any two-sided ideal
p of R. Now suppose that (ii) holds. Since (E(il, R) n GL'(fl, p))/E(fi, pm) is nilpotent

H<ymH<...yiH<E(a,R)

is a normal series from H to E(fi, R) where -ft = ^ (£ (0 , R) D GL'{fl, p)), i = 1 , . . . , m;
it is clear that the defect of H in E(fi, i?) is at most m + 1. Moreover, if (i) holds then
from the theorem we can always take m = f(d), although a lesser value may suffice.

We complete this section with the proof of the proposition. The first assertion of the
proposition follows immediately from the corollary if we embed R in R* = Zx.R in the
usual way, for then normal subgroups of E(ft, R) become subnormal subgroups of
E(to,R*) and the simplicity of R shows that J(H) = R. Suppose now that R is not
d-finite but is simple and let H be a non-trivial normal subgroup of E(ft, R). Lemma 2
shows that H contains EF(Cl, R) and from the commutator relations we deduce that H
contains E(Sl, R)'. It follows that E(fl, R)' is the unique minimal normal subgroup of
E(fl,R) and, in particular, E(ft, J?)' = E[ft, R]. If we now let H be a non-trivial
normal subgroup of E(fl, R)' then the theorem shows that E[fl, R]^H since J(H) = R
and we deduce that E(H, R)' is simple. The proof of Theorem B of [1] shows that every
XeE(Cl,R)' has Xo-support and since there exist XeE(H, R) that do not have
N0-support (R is not d-finite) we see that E(H, R)' is a proper subgroup of E(fl, R).
This completes the proof of the proposition.
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