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Summary

The objective of this study was to investigate, both empirically and deterministically, the ability to
explain genetic variation resulting from a copy number polymorphism (CNP) by including the CNP,
either by its genotype or by a continuous derivation thereof, alone or together with a nearby single
nucleotide polymorphism (SNP) in the model. This continuous measure of a CNP genotype could be
a raw hybridization measurement, or a predicted CNP genotype. Results from simulations showed
that the linkage disequilibrium (LD) between an SNP and CNP was lower than LD between two
SNPs, due to the higher mutation rate at the CNP loci. The model R2 values from analysing the
simulated data were very similar to the R2 values predicted with the deterministic formulae. Under
the assumption that x copies at a CNP locus lead to the effect of x times the effect of 1 copy,
including a continuous measure of a CNP locus in the model together with the genotype of a nearby
SNP increased power to explain variation at the CNP locus, even when the continuous measure
explained only 15% of the variation at the CNP locus.

1. Introduction

The application of genome-wide association (GWA)
studies has become increasingly common, due to the
availability of genome-wide dense marker maps at
relatively low-cost. GWA studies typically can have
two main objectives. The first objective is to derive the
position of a gene or a genomic region that has an
influence on one or more traits of interest. Common
examples are identification of disease loci in human
(Thomson, 1995), or identification of quantitative
trait loci (QTLs) in livestock (Weller et al., 1990;
Andersson & Georges, 2004). The second objective of
GWA is to predict the genetic potential or phenotype
of an individual for a certain trait. Examples are
estimation of breeding values in livestock to enable
genomic selection (Meuwissen et al., 2001), or pre-
diction of the (genetic) susceptibility of an individual

for a disorder or disease (Wray et al., 2007).
Generally, the applied models for both types of GWA
studies may be the same, although fine-tuning for one
of both objectives may result in subtle differences in
the applied models (Calus et al., 2009).

GWA studies are typically performed using mar-
kers such as single nucleotide polymorphisms (SNPs)
that represent a sample of the variation in the gen-
ome. Another source of structural genomic variation
is in the form of differences between different indi-
viduals in numbers of copies of genomic regions, ref-
erred to as copy number variation (CNV) or copy
number polymorphisms (CNPs). Recent studies in
human genetics have revealed that CNV may underlie
an appreciable amount of variation at the trait level
(Khaja et al., 2006; Locke et al., 2006). Moreover, it
has been shown that CNVs can be associated with
disease susceptibility and that disease genes are
located in CNV regions (Sebat et al., 2004; Blasko
et al., 2007; Kehrer-Sawatzki, 2007; Zhang et al.,
2009). GWA studies typically use dense SNP maps
to associate genetic variation with genomic regions.
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Considering that CNPs may be directly associated
with phenotypic variation, an important question is
whether this phenotypic variance can also be captured
using a dense SNP map, or whether CNPs should be
genotyped and included in GWA studies. In the situ-
ation where CNPs and SNPs are located in the same
regions and therefore physically closely related, the
difference in mutation rates and number of alleles
between the two types of loci may still result in
relatively low linkage disequilibrium (LD) between
both types of loci. Genotyping of CNP loci may be
straightforward for loci with only two alleles, each
representing a different number of segregating copies,
but may be difficult for loci with more than two
segregating alleles (Locke et al., 2006). A proposed
solution to this problem is to use raw (continuous)
hybridization intensities at those CNP loci, rather
than derived (discrete) genotypes to provide an esti-
mate of the number of copies (over both gametes)
in an individual (Locke et al., 2006). In addition to
measuring the CNP genotypes for all individuals, they
may be predicted for some individuals. The predicted
number of copies (over both gametes) could also be
used as a continuous measure of the CNP locus.

The objective of this study was to investigate,
both empirically and deterministically, the ability
to explain genetic variation resulting from a CNP by
including the CNP, either by its genotype or by a
continuous derivation thereof, alone or together with
a nearby SNP in the model.

2. Material and methods

Formulae are derived to predict the captured vari-
ance at CNP loci when CNP genotypes are not
measured with 100% accuracy. Predictions from
those formulae are compared to R2 values from simul-
ated data. To derive reasonable distributions of LD
between SNP and CNP loci, data were simulated
with two segregating CNP and several segregating
SNP loci. The derived distributions were used to gain
insight into the LD between SNP and CNP loci, and
to inform additional simulations to investigate the
possibility to associate genetic variance caused by a
CNP locus with allelic variation of a linked SNP.
Additionally, the benefit of including CNP pheno-
types, i.e. a continuous measure or prediction for
CNP genotypes, or CNP genotypes in the model was
investigated.

(i) Simulations to estimate associations between
segregating SNP and CNP loci

An important characteristic that we want to derive is
the association betweenCNP and SNP loci. Ameasure
of the association between a biallelic (SNP) locus and
a multiallelic locus (in this case a CNP), was presented

by Zhao et al. (2005) as

r2=
gk

i=1p(Ai)[p(QjAi)xp(Q)]2

p(Q)[1xp(Q)]
,

where Ai is one of k alleles at the multiallelic (CNP)
locus and Q is one of the two alleles at the biallelic
(SNP) locus. Considering this formula, the associ-
ation between an SNP and a CNP locus depends on
the number of alleles at the CNP locus, the allele
frequencies at the SNP and CNP loci, and the fre-
quencies of haplotypes consisting of CNP and SNP
alleles. These parameters, in turn, depend on the
population history and the mutation rates at both
loci. Therefore, simulation of a large number of
replicated datasets will give insight into the distri-
bution of r2 values between SNP and CNP loci, for the
simulated population history and mutation rates.

To derive the distribution of LD between an SNP
and a CNP, d cM apart, we simulated a population
with 500 individuals that were randomly mated for
4000 generations. Twenty CNP loci were simulated on
the same position and 70 SNP loci ; 10 SNPs at each
of seven positions located at 0.0, 0.0, 0.01, 0.1, 0.5,
1.0 and 2.0 cM distance of the CNP loci (Fig. 1). Two
sets of SNPs were simulated at a distance of 0.0 to
allow estimation of SNP–SNP LD at 0.0 cM distance.
All CNP and SNP loci had alleles 1 and 2 segre-
gating in the first generation, where both alleles were
drawn per individual and locus with equal chance.
Segregating loci in the first generation combined with
4000 generations of random mating ensure reaching a
mutation-drift balance. The applied mutation rate
for the SNP loci was 2r10x8 per haploid locus
per generation (e.g. Drake et al., 1998; Kumar &
Subramanian, 2002). Initially, SNP alleles were coded
as 1 or 2. A mutation on an SNP locus changed an
allele 1 (2) to become 2 (1). The applied mutation rate
for the CNP loci was 10x4 per haploid locus per
generation based on several reported estimates
(Tusieluna & White, 1995; Nuzhdin, 1999; Shaffer &
Lupski, 2000; van Ommen, 2005; Repping et al.,
2006). For 10 CNP loci, it was assumed that a mu-
tation event caused the number of copies to decrease
or increase by one copy with equal probability.
Whenever a mutation occurred at a locus with 0
copies, the only possible outcome was 1 copy. These

0 0·2 0·4 0·6 0·8 1·0 1·2 1·4 1·6 1·8 2·0

Marker map (cM)

SNP loci
CNPm & CNP2 loci

Fig. 1. The simulated marker map, with one CNP locus
with only 2 alleles (CNP2), one CNP locus with two or
more alleles (CNPm), and SNP loci at respectively 0.0, 0.1,
0.5, 1.0 and 2.0 cM distance with 10 SNPs at each locus.
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CNPs are from here on referred to as CNPm loci.
For the other 10 CNPs, as well as for the SNP loci, a
mutation of allele 1 always resulted in allele 2, and
a mutation of allele 2 always resulted in allele 1. This
latter type of CNP therefore represented an SNP with
the assumed mutation rate of a CNP. These CNPs are
from here on referred to as CNP2. Recombination,
based on Haldane’s mapping function, was con-
sidered among all loci.

In total, 100 000 replicates were simulated. From
those replicates, distributions for allele frequencies
at SNP and CNP loci, r2 values between SNP and
CNP loci, and the number of alleles at CNP loci, were
derived for each of the six considered distances, using
the simulated genotypes from the last generation
(i.e. using 500 individuals).

(ii) Simulation of phenotypes with a CNP and
an SNP

The first set of simulations yielded a large number
of haplotypes combining alleles from an SNP locus
and a CNP locus. The obtained distributions of the
frequencies of those haplotypes, in which a CNPm
locus was included, were used to simulate six sets of
data with one segregating SNP and one segregating
CNP locus, again with different distances (0.0, 0.01,
0.1, 0.5, 1.0 and 2.0 cM) between those loci. Those
simulated datasets in turn were used to evaluate the
accuracy and bias of models including different com-
binations of SNP and CNP information (as explained
in the next section). Each simulated dataset contained
500 individuals. Each individual received haplotypes,
i.e. combinations of SNP and CNP alleles, with
probabilities equal to the haplotype frequencies
from the previous simulations. This ensured that this
simulation represented the original simulated popu-
lation. Each CNP allele received an effect on the
phenotype of the individuals such that the CNP locus
explained 10% of the total phenotypic variance. The
remaining 90% of the phenotypic variation was
explained by a residual effect, drawn for each indi-
vidual from Ny(0, 0.90). For biallelic CNP, the
allele substitution effect was calculated using scnp

2 =
2p(1xp)a2 (Falconer & Mackay, 1996), where scnp

2 is
the (simulated) variance explained by the CNP locus
(kept at 0.10 in this case to ensure consistency across
replicates), p is the allele frequency of one of both
alleles at the locus and a is the allele substitution
effect. a was calculated per replicate such that the
variance was constant across replicates. Assuming
that the effect of z copies was zx, and that on a bi-
allelic CNP locus one segregating allele consisted of
b and the other of c copies, a2 in the above formula
was replaced by (cxb)2x2.

For CNP with more than two alleles, the variance
was written in terms of the number of copies ncj that

individual j carried at the CNP locus, in a population
of n individuals, and again assuming that the effect of
z copies was zx :

s2
cnp=

gn

j=1nc
2
j x

2x gn

j=1ncjx
� �2

=n

nx1
:

Solving for x yields :

x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nx1)s2

cnp

gn

j=1nc
2
jx gn

j=1ncj

� �2

vuut :

CNP phenotypes, mimicking raw hybridization levels
or predicted CNP genotypes, were simulated using
the following model :

CNPphen=CNPgen+e,

where CNPgen is the sum of the CNP alleles, reflect-
ing the total true number of copies at this locus
and e is drawn from a distribution N(0, scnp

2 /
h2CNPp,CNPgxscnp

2 ). The heritability of the CNP
phenotype, hCNPp,CNPg

2 , was varied from 0.05 to 0.95,
and represents the squared correlation between the
simulated CNP phenotypes and CNP genotypes.
Consequently, a high (low) value of hCNPp,CNPg

2 means
that the CNP phenotype predicts the CNP genotype
with high (low) accuracy.

(iii) Analyses to predict the effect of the CNP locus

To assess the ability to predict the effect of the CNP
locus with different sources of information in the
model, we considered the following five models :

yi=m+brsnpi+ei, (1)

yi=m+drcnpgi+ei, (2)

yi=m+brsnpi+drcnpgi+ei, (3)

yi=m+crcnppi+ei, (4)

yi=m+brsnpi+crcnppi+ei, (5)

where yi is a phenotypic record of individual i, m is
an average phenotypic effect, b is the regression co-
efficient on the genotype snpi at the SNP locus
(0 for homozygotes 11, 1 for heterozygotes and 2
for homozygotes 22), d is the regression coefficient on
the number of copies cnpgi at the CNP locus, c is the
regression coefficient on CNP phenotype cnppi and
ei is a random residual. All analyses were performed
using ASReml (Gilmour et al., 2006).

(iv) Model comparison

The different proposed models were compared
for their ability to estimate the effect of the CNP
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genotype. To assess the accuracy of the predicted
genotype effects, the mean-squared correlation be-
tween the predicted genotype effect and the simulated
genotype effect was calculated for each of the five
models. To assess the bias of the predicted genotype
effects, the mean-squared error of the prediction
(MSEP) of the genotype was calculated for each of the
five models. The simulated (true) genotypic effect was
per individual calculated as the sum of the simulated
effects of its alleles at the CNP locus. Estimates per
individual were derived as the sum of estimates of its
SNP genotype (model 1), CNP genotype (model 2),
SNP and CNP genotypes (model 3), CNP phenotype
(model 4) or CNP phenotype and SNP genotype
(model 5).

To gain more insight into the predictive ability of
CNP phenotypes compared to SNP genotypes, the
r2 values between SNP and CNP genotypes were
compared to r2 values between SNP genotypes and
CNP phenotypes. The r2 values between SNP geno-
types and CNP phenotypes were calculated as the
squared correlation coefficient between the recoded
SNP genotypes (0, 1 or 2) and the CNP phenotypes.

(v) Theory: deterministic derivation of model R2

To allow direct prediction of the model R2 for each
of models 1–5, deterministic formulae were derived.
Multiple coefficients of determination, i.e. R2 values,
between CNPg and each of the four (combinations of)
explanatory variables were derived as follows. For
model 1,

R2(CNPg, SNP)=r2(CNPg, SNP), (6)

where r2(CNPg, SNP) is calculated by the formula
presented by Zhao et al. (2005).
For model 2,

R2(CNPg, CNPg)=1�0: (7)

For model 4, it was assumed that a CNP pheno-
type was measured with a certain heritability
hCNPp,CNPg
2 (here denoted as h2). Since r(CNPg,

CNPph) is equal to h,

R2(CNPg, CNPph)=h2: (8)

For models 3 and 5, the following general formula
is used, which calculates the multiple coefficients of
determination for n loci that are used to predict the
variation that is associated with a locus (Bastiaansen
et al.) :

R2=ckKx1c,

where c is an nr1 vector that contains values of r
(i.e. the correlation) between each of the loci included
in the analysis and the predicted locus and K is an

nrn square matrix with values of r between each pair
of predicting loci on the off-diagonal elements and
values of 1 on the diagonal. Thus, for model 3,

ck=[r(SNPg, CNPg) 1]

and

K=
1 r(SNPg, CNPg)

r(SNPg, CNPg) 1

� �

yielding that

R2=1�0: (9)

For model 5,

ck=[r(SNPg, CNPg)

r(CNPph,CNPg)]=[r(SNPg, CNPg) h]

and

K=
1 r(SNPg, CNPph)

r(SNPg, CNPph) 1

� �

=
1 r(SNPg, CNPg)rh

r(SNPg, CNPg)rh 1

� �

yielding, after rearranging, that

R2=
(1x2h2)rr2(SNPg, CNPg)+h2

1xh2r2(SNPg, CNPg)
: (10)

3. Results

(i) Allele frequencies of SNP versus CNP

Of all segregating loci in the first set of simulations,
one CNPm, one CNP2 and one SNP locus at each of
the seven distances were randomly selected and used
in the analysis. At some of the positions none of the
SNP loci were segregating after 4000 generations,
leading to a total of 40 184 replicates with segregating
SNP (out of 100 000) that were retained for analysis.
The CNPm loci mainly had 2, 3 or 4 and only rarely
5 segregating alleles (Table 1). For all CNPm loci, the
alleles consisting of 1 and 2 copies were segregating
with the highest frequency.

Minor allele frequencies indicated that the allele
frequencies at SNP, CNP2 and CNPm loci with 2
alleles were similar (Table 2). The U-shaped distri-
bution of the allele frequencies confirmed the simi-
larity between CNP2 (Fig. 2) and SNP (not shown),
albeit that the frequency of rare alleles was lower for
SNPs. Note that grouping 0 and 1 copies and 2 and
more copies for CNPm loci with 2 alleles yields a
similar distribution as the CNP2 loci (Fig. 2). With
3 or more copies, the frequency at the CNPm loci of
the higher numbers of copies increased (Table 1). This
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Table 1. Distribution of number of segregating alleles at simulated CNPm loci

Total no. of alleles CNPm
2 3 4 5

Percentage of replicates
67.73 29.76 2.44 0.07

Frequency of numbers
of copies at CNP loci

No. of segregating
alleles at CNP locus 0 1 2 3 4 5

2 9.54 42.31 40.66 6.98 0.49 0.02
3 5.94 41.02 41.81 9.99 1.16 0.08
4 7.47 28.89 39.57 19.56 4.02 0.48
5 10.46 25.86 17.61 28.35 15.93 1.68

Table 2. Average minor allele frequencies (MAFs) across segregating loci, in ascending order

Locus type MAF(1) MAF(2) MAF(3) MAF(4) MAF(5)

SNP 0.245 0.755
CNP2 0.132 0.868
CNPm, 2 alleles 0.111 0.889
CNPm, 3 alleles 0.026 0.161 0.813
CNPm, 4 alleles 0.011 0.064 0.251 0.675
CNPm, 5 alleles 0.004 0.023 0.090 0.259 0.623
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Fig. 2. Average frequencies of alleles across all CNP2 loci and CNPm loci with 2 alleles in generation 4000.
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resulted in a distribution of allele frequencies that
further deviated from the distribution of allele fre-
quencies at an SNP locus (results not shown).

(ii) Average LD between SNP and CNP loci

The first set of simulations was also used to calculate
LD between different loci at different distances. The
average LD between two SNP loci, an SNP and a
CNP2 locus and an SNP and a CNPm locus was cal-
culated at all six distances, as well as the expected LD
between two SNP loci based on the formula by Sved
(1971) (Table 3). The LD between two SNPs was
generally close to the expectation. Increased mutation
rates, that is CNP2 and CNPm(2) compared to SNP
loci, led to lower LD with the nearby SNP and larger
deviation of the LD from its expected value. An in-
crease in the number of alleles at the CNPm locus
resulted in higher LD with the nearby SNP at all
distances.

(iii) Deterministic R2 values and estimated MSEP
of different models

The second set of simulations, based on the haplotype
frequencies of the first set, was used to compare
deterministically predicted versus obtained model R2

values. Model R2 values obtained from analysing
the simulated data using models 1, 2, 3, 4 and 5 were
similar to those calculated using, respectively, for-
mulae (6), (7), (8), (9) and (10) (Table 4). The small
differences are such that generally the R2 values based
on the analysis are smaller than the predicted R2

values. Only at a distance of 0.0 cM, the model in-
cluding the SNP and CNP phenotypes always yielded
higher R2 values than the predicted values (Table 4).
The R2 values show that including an SNP in the
model, in addition to a CNP phenotype, increases
model R2, when the heritability of the CNP phenotype
<0.5, and the distance between the CNP and SNP

is short (y<0.5 cM). The predicted R2 values for
models including only CNP phenotypes (using for-
mula (8)) or CNP phenotypes and SNP genotypes
(using formula (10)), were plotted as a function of
h2 of the CNP phenotypes for different levels of LD
between CNP and SNP loci (Fig. 3). This figure also
shows that the gain in R2 due to including the SNP
locus was substantial, depending on the r2 between the
SNP and CNP loci.

The MSEP across models 1–5 was clearly largest
(i.e. the bias was greatest) when only the SNP geno-
type or the CNP phenotype with very low h2 (with or
without the SNP genotype) was included in the model
(Table 5). Lowest MSEP was found when only the
CNP genotype or the CNP phenotype with very high
h2 was included in the model. Including the SNP
genotype in addition to the CNP genotype or pheno-
type in the model hardly changed the MSEP.

4. Discussion

The objective of this study was to investigate,
both empirically and deterministically, the ability to
explain genetic variation resulting from a CNP by
including the CNP, either by its genotype or by a
continuous derivation thereof, alone or together with
a nearby SNP in the model. The model R2 values from
analysing the simulated data were very similar to
the values predicted with the deterministic formulae.
The results indicated that using CNP phenotypes in
the model next to a nearby SNP can increase the
power of the model substantially, when CNP geno-
types cannot easily be derived. It should be noted that
the heritability of the CNP phenotype can be inter-
preted as the reliability of measuring or predicting
the CNP genotype. This means that the presented
formulae also apply for situations where CNP geno-
types are predicted for groups of individuals with a
given reliability, conditional on known CNP geno-
types in other related individuals.

(i) r2 (LD) between different loci

In this study, we chose to evaluate LD between a
CNP and an SNP locus, because SNPs are nowadays
widely used as genetic markers in many species.
In our analyses, we limited ourselves to including
only one SNP in the model, while for instance in
cattle nowadays y50 000 SNPs are used and in hu-
mans y1 000 000 SNPs are used. At a genome of
30 Morgan in length, this implies an average marker
spacing of 1 SNP per 0.06 cM. On the cattle 50 k SNP
chip, for Holstein the r2 between adjacent loci is
between 0.15 and 0.20, for an average distance of
y0.06 cM (De Roos et al., 2008; Khatkar et al.,
2008). In our simulation, after interpolation, we here
find an r2 value of y0.44 between two SNP loci,

Table 3. Estimated r2 values between an SNP and an
SNP, CNP2 or CNPm loci, and the predicted r2

between two bi-allelic loci according to Sved (1971),
located at different distances

r2
Distance to SNP (cM)

Method 0 0.01 0.1 0.5 1.0 2.0
Sved 1.000 0.833 0.333 0.091 0.048 0.024
SNP 1.000 0.885 0.336 0.060 0.026 0.011
CNP2 0.451 0.374 0.129 0.039 0.019 0.010
CNPm(2) 0.504 0.394 0.131 0.035 0.018 0.010
CNPm(3) 0.703 0.582 0.202 0.068 0.033 0.019
CNPm(4) 0.912 0.810 0.327 0.095 0.050 0.022
CNPm(5) 0.981 0.878 0.335 0.054 0.079 0.031
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indicating that our achieved LD within the ranges
of considered distances is much higher than LD
in the 50 k cattle SNP chip. Applications for cattle
data may, however, consider multiple SNPs simu-
ltaneously. This would lead to explaining higher pro-
portions of variation at the CNP locus then the
expected value of 0.20 based on average LD between
the adjacent SNPs, since the SNP with the highest LD
with the CNP locus (not necessarily the closest SNP)
would predict most phenotypic variance and therefore
be favoured in an association study. Note that the
presented formulae can easily be extended to in-
clude multiple SNPs by including more than one SNP
in the vector c and matrix K.

In our simulated data an average r2 of 0.20, that
is the average expected value for the 50 k cattle
SNP chip, is expected at a distance of 0.23 cM after
interpolation. At this distance, after interpolation the
r2 between an SNP and a CNP locus was at least
y0.2. Using formula (10) indicates that by including
the CNP phenotype in this scenario, the model R2

could be increased from 0.2 to over 0.55, when the
heritability of the CNP phenotype is at least 0.5.

Based on the 1 000 000 SNPs currently available on
commercial human genotyping products, the expected
distance to an unobserved CNP is expected to be on
average a maximum of 1.5r10x3 Mb, here assumed
to be equal to 1.5r10x3 cM. At such a distance, the

Table 4. Realized and predicted model R2 values for different models averaged across 1000 replicates

Model Frma h2 CNPph

Distance CNP–SNP (cM)

0 0.01 0.1 0.5 1 2 xSNPb

ana frma an frm an frm an frm an frm an frm an frm

SNP 6 0.74 057 0.45 0.46 0.15 0.16 0.04 0.05 0.03 0.02 0.01 0.01
CNP+SNP 9 (7)c 0.98 1 0.93 1 0.92 1 0.93 1 0.92 1 0.94 1 0.95 1
CNPph
+SNP

10 (8) 0.95 0.95 0.95 0.89 0.95 0.87 0.95 0.89 0.95 0.87 0.95 0.89 0.95 0.90 0.95
0.85 0.91 0.88 0.83 0.87 0.79 0.85 0.79 0.85 0.78 0.85 0.80 0.85 0.81 0.85
0.75 0.88 0.81 0.78 0.79 0.70 0.76 0.70 0.75 0.69 0.75 0.70 0.75 0.71 0.75
0.65 0.86 0.76 0.73 0.73 0.62 0.67 0.61 0.66 0.60 0.65 0.61 0.65 0.62 0.65
0.55 0.83 0.72 0.68 0.67 0.54 0.58 0.52 0.56 0.50 0.55 0.51 0.55 0.52 0.55
0.45 0.81 0.68 0.63 0.63 0.46 0.50 0.43 0.46 0.41 0.46 0.42 0.45 0.43 0.45
0.35 0.79 0.65 0.59 0.58 0.39 0.42 0.34 0.37 0.32 0.36 0.32 0.36 0.33 0.35
0.25 0.77 0.63 0.54 0.54 0.32 0.34 0.25 0.28 0.23 0.26 0.23 0.26 0.24 0.25
0.15 0.75 0.60 0.50 0.51 0.24 0.27 0.16 0.18 0.14 0.17 0.14 0.16 0.14 0.15
0.05 0.73 0.58 0.45 0.48 0.17 0.19 0.08 0.09 0.06 0.07 0.05 0.06 0.05 0.05

a Predicted using the formulae (frm) or analysis of simulated data (an).
b The same model, but without the SNP. Values are averaged across all 6000 replicates (1000 per distance) for the
values based on analysis of simulated data.
c The formula in brackets indicates the formula used for the last column (xSNP).
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Fig. 3. Deterministic R2 values obtained for models including CNP phenotypes and SNP genotypes assuming different
r2 values between CNP and SNP loci, as a function of h2 of the CNP phenotypes.
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r2 between SNPs in the human genome is y0.25
(P. Navarro, personal communication). In our simu-
lated data, this level of LD between two SNP loci was
found at a distance of y0.17 cM after interpolation.
Using formula (10) indicates that by including the
CNP phenotype in this scenario, the model R2 could
be increased from 0.17 to over 0.53, when the heri-
tability of the CNP phenotype is at least 0.5.

The differences between the loci considered here
are that CNPm and CNP2 loci have a much higher
mutation rate than an SNP locus, while a CNPm
locus may have more than two alleles segregating. The
results showed that the average LD of a CNPm locus
with a nearby SNP always increased with increasing
number of segregating alleles at the CNPm locus. The
results also showed that loci with a higher mutation
rate have lower LD with a linked SNP locus. Some
studies have reported that microsatellites and short
tandem repeats explain more variation at a nearby
locus than SNPs do (Ohashi & Tokunaga, 2003;
Varilo et al., 2003; Mueller, 2004; Payseur & Cutter,
2006). Both microsatellites and short tandem repeats
are comparable to CNP, in the sense that their
number of segregating alleles may be larger than two,
and that their mutation rate is similar to that of CNP
loci. Hinds et al. (2006) reported similar LD between
deletion loci and SNPs compared to pairwise SNP
LD. Payseur et al. (2008) reported that LD between
short-tandem-repeat polymorphisms and SNP loci
was lower than pairwise SNP LD, in agreement with
our results. Summarized, an increased mutation rate
leads to lower LD, when the number of segregating
alleles is left unchanged. An increased mutation rate
can, however, indirectly lead to increased LD, if it
increases the number of segregating alleles. A mu-
tation at a segregating locus may lead to breakdown
of LD in the short run. When the mutation stays
in the population for a longer time, genetic drift will

re-establish LD. When the mutation leads to a new
allele that was not segregating yet, our results show
that the LD with a nearby SNP eventually ends up
being on average higher than with fewer alleles seg-
regating at the locus.

(ii) Using CNP phenotypes instead of CNP genotypes

In the simulated datasets, a range of heritabilities of
the CNP phenotypes was considered. This applies to
CNP loci whose clusters representing the different
genotypes are not sufficiently distinct to allow deri-
vation of discrete genotypes. Locke et al. (2006)
calculated the heritability of CNP loci in two human
subpopulations, for 17 loci per subpopulation, and
reported an average heritability of 0.86, while the
lowest value was only 0.15. This indicates that the
whole range of considered heritabilities in our study
may actually be present in real data, albeit that most
CNP phenotypes are likely to have a heritability
relatively close to 1.0.

The maximum average model R2 value from a
model including only an SNP was 0.74. Based on our
results, this means that adding CNP phenotypes
increases the model R2 across all distances when the
heritability of the CNP phenotypes is >0.05 (Table
4). To illustrate the relation between CNP genotypes
and phenotypes when the heritability of CNP pheno-
types is low (0.25 in this example), we simulated 500
individuals with one CNP locus with allele frequencies
for 0, 1, 2, 3 and 4 copies as in Table 1 for CNPm(3)
loci. Visual inspection of the results indicates that
in this case a distinction in discrete CNP genotypes
is not possible (Fig. 4). Therefore, in such situations
including the raw hybridization or predicted CNP
genotype in the model provides an opportunity to
investigate whether the CNP locus is associated with a
trait or disease of interest.

Table 5. MSEP for different models, averaged across 1000 replicates

Model h2 CNPph

Distance CNP–SNP (cM)

0 0.01 0.1 0.5 1 2 xSNPa

SNP 0.029 0.053 0.082 0.094 0.094 0.098
CNP+SNP 0.005 0.005 0.005 0.005 0.005 0.005 0.003
CNPph
+SNP

0.95 0.008 0.008 0.010 0.010 0.010 0.010 0.009
0.85 0.011 0.014 0.018 0.019 0.019 0.020 0.017
0.75 0.014 0.020 0.027 0.028 0.028 0.029 0.024
0.65 0.017 0.025 0.034 0.038 0.038 0.039 0.032
0.55 0.019 0.030 0.043 0.046 0.047 0.048 0.039
0.45 0.022 0.035 0.050 0.056 0.056 0.057 0.046
0.35 0.024 0.039 0.058 0.064 0.065 0.067 0.053
0.25 0.026 0.044 0.065 0.073 0.074 0.076 0.060
0.15 0.027 0.048 0.073 0.082 0.083 0.085 0.066
0.05 0.030 0.053 0.080 0.091 0.092 0.095 0.073

a The result of this model, with the SNP excluded, averaged across all 6000 replicates.
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(iii) The effect of a CNP locus on the phenotype

In the simulations, it was assumed that the effect of
a CNP locus on the phenotype was linearly related
with the number of copies at the locus. For practical
situations where CNP genotypes cannot be derived,
this assumption of linearity allows one to define a
general model to test for associations between a CNP
locus and a phenotype. Whenever an association is
found, the nature of the association can be further
investigated by comparing the fit of additional models
with non-linear regressions on the CNP phenotype.

Although several studies associate CNP loci with
appreciable genetic variation and the expression of
genes (e.g. Orozco et al., 2009; Zhang et al., 2009),
still too little is known to make an estimate of the
distribution of effects of CNP loci on the phenotype.
The results in Tables 3 and 4 apply to a situation
where the CNP genotype explains 10% of the
phenotypic variance. Causal effects of most CNP loci
are likely to be (much) lower. Consider that the R2

of predicting an effect of a causal locus, by a linked
SNP marker, is equal to the product of the r2 (LD)
between the marker and the causal locus (here:
r2(SNPg,CNPg)) and the squared accuracy of the
predicted marker effect (Goddard, 2009). In the de-
rived prediction formulae for the model R2 values it
is assumed that the accuracy of the predicted marker
effect is 1.0. For a model including only one locus, the
squared accuracy of its estimated effect can be calcu-
lated as follows (Daetwyler et al., 2008; Goddard,
2009) :

r2locus=
lh2

lh2+1
,

where l=np/nG, np is the number of phenotypes
(500), ng is the number of effective loci (considering
that 1 locus is included in the model) and h2 is the
heritability, in this case the variance explained by the

CNP locus divided by the phenotypic variance (which
reduces to scnp

2 ). Following this equation, rlocus
2 is 0.98

for our simulations. Note that the value of 0.98 is
somewhat higher still than the obtained model R2

value for the model including only the CNP genotype
(0.95; Table 4). rlocus

2 would reduce to 0.96 and 0.83,
when scnp

2 explains, respectively, 5 or 1% of the total
phenotypic variance. This means that when changing
scnp
2 to 1% of the phenotypic variance, the obtained

model R2 values for the model only including the CNP
or SNP genotype or the CNP phenotype, are expected
to be 0.83/0.98=0.85 times the obtained values re-
ported in Table 4. The above formula for rlocus

2 can
also be used to derive the impact of using different
numbers of phenotypes in the predictions. Thus, the
presented formulae can easily be extended to predict
the model R2 values for different scenarios.

5. Conclusion

The simulations showed that an increased mutation
rate leads to lower LD, whereas an increased number
of segregating alleles at a locus leads to increased LD.

Under the assumption that x copies at a CNP locus
lead to the effect of x times the effect of 1 copy, in-
cluding the raw hybridizations or predictions of CNP
genotypes in the model together with the genotype of
a nearby SNP increased power to explain variation at
the CNP locus, even when the continuous measure for
the CNP explained only 15% of the variation at the
CNP locus.
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