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Many theoretical studies have revealed the exceptional physical properties of 2D materials for device 
applications ranging from spin diodes [1] to qubits [2-5], quantum emitters [6], and sensors [7, 8]. The 
unique properties of these potential devices arise from the specific atomic structure theorized – where 
even slight deviations from the idealized structure can lead to a significant alteration of the desired 
property. Thus, exquisite control over the positioning of each atom within the device is, in many cases, 
not only desirable but imperative for device performance. 
 
Studies using aberration-corrected scanning transmission electron microscopes (STEMs) as atomic 
manipulation platforms have demonstrated atomically-precise positioning of dopant atoms in a host matrix 
and highlight some of the near term challenges for advancing this field[9-14]. The atomic manipulation 
process involves an electron beam that can be localized on or adjacent to a single atom. Imaging in the 
STEM of intentional modifications requires additional beam exposure of the sample, which can produce 
unintended alterations or damage. In addition, some sample transformations can be driven at one beam 
energy (e.g., 100 keV in graphene) whereas mitigating excess sample damage may require operating at a 
lower beam energy (e.g., 60 keV). Here we discuss new strategies employed to address these challenges 
and enable routine atom-by-atom manipulation.  
 
One strategy that can be used to reduce unintended sample alterations is sparse scanning. In this case, we 
employ an inpainting technique [15] that operates in real time to reduce the electron dose via sparse 
sampling while maintaining the information content in the image. A second strategy is to operate the 
objective lens in a constant power mode to enable rapid changing of the accelerating voltage, which allows 
access to multiple beam energies in a single session. Figure 1 illustrates the use of this strategy to form a 
10-atom-wide arm-chair graphene nanoribbon, in which a ~1 eV band gap is purported to emerge [16]. A 
third strategy is to leverage deep learning tools for defect detection, categorization, and evolution under 
various sample conditions (e.g. beam energy, temperature etc.) [17, 18]. Finally, a specialized microscope 
interface is desired, which can quickly switch between imaging and manipulation modes, offers custom 
scan paths, real-time filtering, and allows the operator greater control and monitoring of the sample state 
during manipulation. 
 
These advances are enabling a significant improvement in the number and types of defects that can be 
produced as well as producing statistical-level data on beam-sample and beam-defect interactions. 
Together these rich streams of data form the knowledge-base from which controllable manipulation events 
can be extracted [19]. 
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Figure 1. Rapid beam energy change enables fabrication of 1 nm wide arm-chair graphene nanoribbon 
during a single, one-day session. a) Milling performed at 100 keV beam energy. b) Nanoribbon further 
thinned by scanning over central region. c) Final state at 100 keV beam energy. d) After switching to 60 
keV beam energy; gentler beam allows defects to heal and pristine arm-chair terminated section to form.  
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