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Abstract

Generalised ^-statistics associated with multi-indexed arrays of random variables satisfying a gener-
alised form of exchangeability are studied. By showing that they form multi-indexed reversed
martingales and that the associated family of o-fields possesses certain conditional independence
properties, conditions for the a.s. convergence of generalised ^-statistics are obtained. When the arrays
of random variables are sums of independent arrays of independent effects, as is the case with the
standard random effects anova models, the limits are identified as the associated generalixed
cumulants.
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nent estimation, asymptotics.

1. Introduction

In the previous paper in this series we gave generalisations of the classical
cumulants of Thiele and ^-statistics of Fisher to certain multi-indexed arrays of
random variables. Amongst other things we showed that when the arrays were
sums of independent arrays of independent effects, as is the case with the
standard random effects anova models, our generalised cumulants reduced to
cumulants and to the products of cumulants of those effects, and our generalised
/c-statistics were their best unbiased estimators within a natural class of estima-
tors. When this discussion was specialised to order two, we found that our
generalised cumulants were just the usual components of variance in anova
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80 T. P. Speed (2)

models, whilst the generalised A>statistics were their natural unbiased estimators
arising from the anova decomposition of the total sum of squares.

The main aim of the later papers in this series is the exploration of complex
analyses of variance under assumptions wider than the usual ones of normality
and additivity. As explained in the previous paper in the series, this work was
begun independently by Kempthorne (1952) and Cornfield and Tukey (1956),
and continued over a number of years by Kempthorne and Tukey and their
students. However, neither of these lines of development included any discussion
of the asymptotics of variance component estimation, and in a generalised sense
this is the main topic of the current paper. We show in Section 4 below that under
a natural moment condition, all of the usual unbiased estimators of components
of variance converge a.s. under the most general possible assumptions, namely
those which are clearly necessary for the expressions involved to make sense. Our
broad framework is similar to that adopted by Miller (1973,1977) with three vital
differences: we only make symmetry assumptions on the distributions of our
arrays, whereas he assumes normality; we have no fixed effects present, that is,
the means of our array elements are all constant whereas his discussion is really
for the general mixed model; and our estimates of components of variance are the
standard unbiased ones, whereas he uses the maximum likelihood estimates,
which are biased (although asymptotically unbiased) even in the absence of fixed
effects. In addition our results for variance components are but a special case of
similar ones for generalised ^-statistics. It would naturally be of interest to extend
the techniques used below to allow the inclusion of structured mean values, and
work towards this end is in progress.

We turn now to a brief description of the approach of this paper. In essence the
main argument is simple and well known; it is the task of setting up the
framework and filling in the details which seems rather formidable. Averages of
random variables whose joint distribution satisfies certain symmetry constraints
frequently give rise to reversed martingales, see for example Meyer (1966, page
151) or paper II in this series, and these converge a.s. without further moment
conditions. Dubins and Pitman (1979) show that similar conclusions can be
derived with multi-indexed averages only when extra moment conditions and a
permutability or conditional independence assumption hold. In our case the main
work needed to show this is not probabilistic but algebraic: defining the groups
which embody our generalised exchangeability, identifying the relevant subgroups
and describing their orbits for the averaging, defining the associated sub-a-fields,
and deriving the necessary conditional independences. Much of this has been
done elsewhere, and once it is all organised the main result follows quickly.

The paper is arranged as follows. We begin with a discussion of the two
simplest cases: doubly-indexed arrays where the two indices are crossed and
nested, respectively. With simple crossed arrays, our assumptions correspond to

https://doi.org/10.1017/S1446788700028093 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028093


13] Convergence of generalised ^-statistics 81

row-column exchangeability, Aldous (1981, 1984), and we explain the relation of

our results to those concerning the standard two-way random effects models.

When the two indices are nested, we dub our assumption between/within ex-

changeability, and in that context illustrate our results with a third and fourth-order

generalised /c-statistic. Following these simple examples we turn in Section 3 to

organising the preliminary algebraic results mentioned above; Section 4 is then

devoted to the statement and proof of the main result and the derivation of some

of its more interesting corollaries.

2. Two simple examples

Let us suppose that X = (X^-.i e / , j e / ) is a doubly-indexed array of
random variables defined on a probability space (ft, sf, P) whose joint distribu-
tion is invariant under independent transformation of i and j by permutations of
finite support, i.e.

(2.1) (Xtj: i e / , j G J) * (Xigjh : i e / , j e / )

where g and h are finitary permutations of / and J respectively, and where ig
[respectively jh] denotes the image of / [respectively j] under g [respectively h\. In
all that follows I = J = {1,2,3,...}, and the group of finitary permutations of /
and J will be denoted by Sx, the restricted infinite symmetric group. Aldous
(1981, 1984) gives many interesting results concerning such arrays, which he calls
row-column exchangeable (RCE), but makes no explicit use of doubly-indexed
reversed martingales (RMGs) in his work. We illustrate our later results by
deriving some simple facts concerning RCE arrays using such RMGs.

Fix m > 2 and n > 2, let Sm [respectively Sn] denote the subgroups of Sx

acting on / [respectively J] which leave all indices i > m [respectively j > n]
fixed, and write Gm „ — Sm X Sn. Associated with Gmn is the sub-a-field <Sm „ of
all events determined by {XtJ) which are invariant under Gm „; for example,
DJ"E"Ar,J is

 <Sm n-measurable. Standard arguments show that if IE|-Vxli < oo, then
1 m n

O 91 r / y i« \ _ _L V V y = y("i.")
\Z-£) C l All l=Vn/ m„ i-i £-i Aij A"

1 1

Since the 9m<n decrease asm,n increase, one would hope to conclude that Xim'n)

converges a.s. and in L1 to a limit; indeed this turns out to be the case, provided
simply that E|Jfu|log+|Jf11| < oo, but for less obvious reasons. As Dubins and
Pitman (1979) show, the conclusion of a.s. convergence requires, in addition to
the moment condition, the conditional independence of (Sm x and ̂  „ given
^m „ = ^SmX n ^ „, and this is equivalent to requiring the permutability Gm 1G1 „
= Gj nGml of the subgroups Gml and Gln of Sx X Sm. It is easy to see that the
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82 T. P. Speed [4]

permutability condition is true in this case, and so the doubly-indexed RMG
(Xim'n); @m „) does converge a.s. (under the required moment condition). So also
will the other RMGs which we shortly define.

Let us now consider some generalised /^-statistics of order 2. (See III for a
general discussion.) The following are proved in the same way as (2.2) by
averaging over the orbits of Gm „ and using the property of (RCE):

' j

(2.3b) E{jrujr121<*„,,„} = m w ( w
1 _ 1 ) E E E xuxir

(2.3c) *{XnX2X\9min) = m { m \ l)n

(2.3d) liXnXMJ-^w

and it follows from results in HI (or is easily proved directly) that

(2.4) E { * u ( Xn - Xu - X21 + X22)\ 9m,H }

where X.. = XLm'"\ Xt. — ̂ E; X(j etc., and where all sums are taken over
/ = l,...,m and j = l,...,n. The expression on the right-hand side of (2.4) is
the familiar rows, columns or interaction mean-square associated with the anova
ol{Xu: i = 1 , . . . , m; j = 1 , . . . , n), and we denote it by MS,'™'"'. If E{\XnXu\
log+\XnXij\} < oo for /' = 1, 2, j = 1, 2, then it follows by what has already
been stated that MSr

(™'n) converges a.s. as m, n increase.
It is possible to prove that, provided the relevant moments exist, we have

( ^ ) ( ^ ) m,n - oo,

where A = / (2 2 ,2 2 ) - [/(2,2)]2 is a function of the generalised cumulants
/(22,22) and /(2,2); the details will be given later. Here we simply note that if
the array (Xrj) is given by a general additive model

(2.5) XiJ = lx + ri + cj+(r.c)u,

where p, (/•,-), (Cj) and ((r.c),y) are independent sets of independent effects with
variances o*, ar

2, ac
2 and ar

2
c respectively, then

(2.6) lim MSr
(™>B) = or

2
c a.s.

m,n
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[ 5 ] Convergence of generalised ^-statistics 83

There are two ways to see that (2.6) follows from (2.5). The first is to prove that
the expression A in the formula for Var{MS|r

m
c'"

)} vanishes under (2.5), whilst the
second uses a more familiar argument to prove that H{^m „:m > 1, n ^ 1} is
trivial when the same assumption is supplemented by o* = 0. For in this case the
left-hand side of (2.6) is necessarily a.s. constant, and it is well known that
E{MSr

(™in)} = a,2c. (It is not hard to show that the assumption ô 2 = 0 can also be
dropped.)

The argument leading to (2.2) and (2.3) also gives

\ y y yyyy xx
' mn{n - 1) \ %! X'^' m{m - l)n(n - j£

and the general results of III iimply that this simplifies to

I [ ^ i ^ - A-..)' - {n _ ̂  _ l} x u",, - *,- x,+x.y
= - [ M S r

( m ' n ) - MS;™-11'],

where MSr
(m'n) is the mean-square for rows in the anova of (X^). As before, this

expression converges a.s. under the appropriate (Ji? log J?) moment conditions,
and, again as before, if (XtJ) arises as in (2.5), then

lim - [ M S r
< m ' n ) - MSr

(7-n)] = o} a.s.

A similar argument gives the a.s. convergence of the appropriate linear combina-
tion of mean squares to ac

2, and we have obtained the strong consistency of the
usual anova estimators of components of variance for the two-way random effects
model (2.5).

We turn now to a brief discussion of what we term between/within exchangea-
bility (BWE), where an array X = {Xtj) satisfies BWE if, for every finitary
permutation g of / , and for every map / from / to the set of all finitary
permutations of / which sends all but finitely many elements of / to the identity
permutation, we have

(2-7) (X,J n e l j e j ) * (X,gJ,f:i e / , j e / ) ,

where ig is the image of / under g, and where jif is the image of j under the
permutation if. Informally, the distribution of X is invariant under the permuta-
tion of finitely many first indices and, independently within each of finitely many
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84 T. P. Speed 16]

first indices, of the permutation of finitely many second indices. The group which
permutes the pairs of indices is known as the restricted permutation wreath
product of the groups Sx on / with Sx on / , and will be denoted by Sx WTSX,

the restricted nature being taken for granted.
For m > 1 and n > 1, let Sm denote the subgroup of Sx acting on / which

leaves each index / > m fixed, and let Sn
<oo) denote the subgroup of Sx wrS^

which, independently within each of finitely many first indices i, permutes only
the second indices j = 1, . . . ,«. The group Gm „ = Sm • 5n

(oc> is the permutation
wreath product of Sn acting on j = 1,.. . ,« (within finitely many /) with Sm

acting on / = 1 , . . . , m. As before let <Smn be the sub-a-field of all events
determined by (X^) which are invariant under Gm „. Because Gm „ is not
compact, we cannot make use of the results of Dubins and Pitman (1979) and
must argue directly to prove that <Sm x and 19 x n are conditionally independent
given <$mn.

The argument goes like this. We prove that

(2.8) Em>1{El i (1{f}} = £„,,„{<} = E1) (1{Emi l{r}}

for functions t of the form tl o Xidi • • • tb° Xihib, where b ^ 1, where tu...,tb

are arbitrary bounded functions, where (/1; j \ ) , . . . , (ib, jb) are an arbitrary set of

pairs of indices 1 < ix,...,ib^ m, 1 <Ji,---,jb< n, and where Emn is an

abbreviation for E { - | ^ m n } . A standard monotone convergence argument then

implies the conditional independence result asserted. Now (2.8) is proved directly

by averaging over the relevant orbits of (i,j) = ((iu j ^ , ...,(ib, jb)) under Sm;

S^x\ and Gmn, respectively. Referring to Praeger et al.(1985) and Speed (1984)

for notat ion and further details, we note that these orbits depend on the partition

TT(1) of b = { 1 , . . . , b) induced by the equalities and inequalities of ir,..., ib, the

parti t ion 77(2) defined similarly by jv...,jb, and the pair (TT(2) ,W(1)) e

H o m ( 2 , ^(b)), respectively. The relevant facts we use are the following:

(i) the ,Sm-orbit of (i, j) has cardinality ( m ) w(1);

(ii) the S,*00'-orbit of (i', j) has cardinality (n)(W(2),*(i)) f ° r every

element (i', j) in the same 5m-orbit as (i,j), and distinct elements

of this Sm-orbit belong to disjoint 5n
<0°'-orbits;

(iii) the Gm n-orbit of (i,j) has cardinality (m)ff (1 )(n)( f f (2 ) i f f (1 ) )

and can be viewed as the disjoint union of the Sn
<0°'-orbits of elements

(i', j ) belonging to the 5n-orbit of (i, j).

Armed with these facts, (2.8) follows easily. For we see that
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[7] Convergence of generalised ^-statistics 85

the sum E(1) being taken over all (m)^m elements in the Sm-orbit of (i, j), whilst
by linearity we have

the sum L(2) being taken over all the (n)(^(2^m) elements of the 5n
(oo)-orbit of

(i',j). By the remarks (i), (ii) and (iii), this is seen to be just Em n{tY ° Xjji • • •
th° Xj)Jh}. Thus (2.8) is proved, and we can use the convergence theorem for
doubly-indexed RMGs. Note that the same argument involving the explicit
averaging over orbits could have been used equally well for SmX Sn.

Having established the conditions on our a-fields which are necessary to invoke
the convergence theorem, we pass quickly to some illustrations which mirror and
amplify the examples given for the simple crossed structure. For example,
identities in III yield

(2.9) E{XU(XU - Xn)\^n) = m{n\ 1} £ £ (* , , - X,)2.

This is the familiar within class mean square which we denote by
Similarly,

(2.10) £{Xn{Xu- X \

where

is the between class mean square from the usual anova. Two higher-order
expressions which arise in the same way are
(2.11)

m{n ^){n 2 )

which we have termed the within class skewmulance, S*,"1"' say, and

(2.12)

E{ Xn{X^ - 4X^XU - 3XUX?2 + UXnX12Xn - 6Xl2X13X14) \9m,„

which we call the within class kurtosance, K(^"") say.
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86 T. P. Speed [8]

Under the moment conditions necessary for the use of the a.s. convergence
theorems, each of (2.9), (2.10), (2.11) and (2.12) converges a.s. as m, n increase,
and it only remains to identify the limits wherever possible. The appropriate
general additive model here is

X,j = fi + b, + w,,,

where /x, (fe,.) and (w,7) are independent sets of independent effects with variances
â 2, aj and a,2, respectively. Naturally we find that under the appropriate moment
conditions:

Urn MS*"1-"* = al a.s.

lim MSlm'"> = a2 a.s.
m ,n

lira Sim'n) = K3(W) a.s.

lim K(
w

m-B) = K 4 ( W ) a.s.,
m,n

where K3(W) and K4(W) are the third and fourth cumulants of the within effects

3 . Group-theoretic preliminaries

In this section we organise the group-theoretic results which are necessary for
us to be able to give a compact proof of our main convergence result. For general
background we refer to earlier papers in this series.

The random arrays y = (>)
i) i 6i which we consider will be labelled by the

elements i = (ip :p G P) of the set I = T\p e P lp where, for each element p of the
partially ordered set (P, <) , the set lp = {1 ,2 , . . . } . The notion of generalised
wreath product of permutation groups Gp acting on the components lp, p G P,
was defined and studied in Bailey et al. (1983) in the case 11 |̂ < oo, p G P, and
we refer to that paper for fuller details concerning what follows. The definition
and main results given there extend naturally to the case where, for all p G P, the
groups Gp consist of all finitary permutations of a countably infinite set 1^, and
the maps fp: Tl{lq :q>p}->Gp appearing in the definition send all but a finite
number of elements of T\{lq:q > p) to the identity permutation \p of Gp. The
group arising from the construction so restricted will be termed the restricted
generalised wreath product of the (restricted) symmetric groups Gp acting on lp,
p e P. It will be denoted by G = U*{Gp:p G P} and abbreviated to G = GW(I)
when no confusion will result.

Having defined the groups G permuting our underlying index set I, our next
task is to describe the orbits of the action of G on m-tuples Im. It is not hard to
see that these may be described in exactly the same way as when \p = { ! , . . . , « }
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[9j Convergence of generalised ^-statistics 87

and Gp = Sn , the full symmetric group on np < oo symbols, p G P, and so (see

III, Section 2 for further details) they are labelled by the elements <p = (<p(p):p

G P) of H o m ( P , 5">(iw)), the lattice of all order-preserving maps from the nesting

poset P to the lattice ^{m) of all partitions o f m = {\,...,m}.

In Praeger et al. (1985) a discussion may be found of those subgroups G(p),

p G P, of the generalised wreath product G of finite groups acting on finite sets

which correspond to moving only the coordinate ip of i labelled by p G P, and

that discussion applies without change to our context, where the groups Gp are

infinite but consist of finitary permutations of a countable set.

LEMMA 3.1. For any pair r, s G P we have G(r)G(s) = G ( i ) G ( r ) .

PROOF. Take / G G<r), g G G(S\ and i G I. Then the definitions of Bailey et al.
(1983) and Praeger et al. (1985) imply that (igf)r = ir(ig)irrfr and (igf)s =
is(\Trs)gs. Our aim is to define an / ' G G<r) such that f'g = gf.

Suppose that r and s are incomparable in (P, <). Then / ' = / will do, for in
this case \g-nr = iwr, and it follows that (igf)r = (\fg)r and (\gf)s = (i/g)s,
whence gf = fg.

On the other hand, suppose that r < s. Then it is also true that (if)p =
ip{iTTp)fp — ip for all p > s, and so ifirs = \ITS. Since / was an arbitrary (but
fixed) element of G(r), this is in fact true for every element of G(r). Let us define
/ ' G G<r) as follows: put f'p = lp, the identity element of Gp when p =£ r, and
define / / : Up > r lp -» Gr by iff'// = (ig)7r7r. With this definition we find that

and

i.e. f'g = gf.

COROLLARY. Let pl, P2,--.,pa be any enumeration of the a = \P\ elements of

the poset P. Then we have

G = GiPi)G(P2) ••• G(p°\

Our next lemma concerns averaging of functions on a set over the orbits of a
permutation group acting on that set. Let G be a group acting on a set I; in what
follows G will be our (restricted) generalised wreath product and I = Y\{lp:p G
P}, but for the present both can be arbitrary. The orbit of the point i G I is
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88 T. P. Speed [10]

i c = {ig'-g G G}, and the stabilizer of i is G{ = {g G G: ig = i). The points of
i c are in one-to-one correspondence with the cosets of G, and hence |ic| = |G: G,|;
we suppose in what follows that all orbits are finite. I am very grateful to Don
Taylor for providing the proofs of the lemma and corollary which follow.

LEMMA 3.2. If S and T are subgroups of G such that ST = TS, then for any i G I
and j <= is r , we have \is n j r | = |is| | j r | / | i s r | .

PROOF. In proving this result we may assume that ST is faithful and transitive
on /. Then each orbit of T has non-empty intersection with each orbit of 5, and
we may assume that j = i. Choose representative sx, ..., sh for the cosets s(S D T)
of S n T in S. These elements are also coset representatives for T in ST, and
therefore \ST\/\T\ = \S\/\S n T\.

Let X = {(s, t) <= 5 X T\\s = it). If s G S n T, t e T and sat G (ST)t, then
(sas,t~1s) e X. We shall show that every element of Xcan be written in this form
in exactly one way. Indeed, if (slt tx) e X, let x = sxt{

1 and write x = sat, where
t e T. Then x <E (ST){, s~1sl = ttx e 5 n T, and we have JX = 5fl(j;

1s1) and
?! = t'1(s~1s1), as required. It is clear that sa, t and s^sx are uniquely de-
termined by (sj, ^j). This shows that there is a one-to-one correspondence
between X and (57); X (S n T) and hence that |X| = |(ST)j| \S n T|.

If j G i s n iT, then j = î  = it for some J G S and t e T, and we have
(5, r) G X. If we also have (sv tx) e X and j = i^, then 5j e 5^ and ?! G T{t. It
follows that |^ | / |5i | 17,1 = |is n ir|, and consequently

\isn i r |

As a corollary we have the following discrete version of a result of Dubins and
Pitman (1979).

COROLLARY. / / / is any function defined on I, and if S and T are subgroups of G
such that ST = TS, then

IIs!"1 E liT1 E /(k)=|isrr1 E /(k).

PROOF. If Ox, O2,...,Od are the orbits of T that meet i5, then

£isl 1 E / ( i )= | i s f 1 E | i 5 n0 a | |0 j" 1 E /(k).
k<=jr « - l
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[11] Convergence of generalised ^-statistics 89

By the lemma, li5!"1!!5 n Oa\ \Oa\~
x = p5 7]"1 a n d so the above expression reduces

to | iS 7V1Ek 6 | S7/(k) .

A generalised form of the corollary is clearly valid when S, T,..., U are an
arbitrary number of permutable sub-groups of G, and it is in this form that we
use the result in Lemma 4.1 below.

4. The main result

In this section the integer m > 1 is fixed, and X = (Xi)iel is an array of
random m-vectors labelled by the index set I = FH^. Where necessary we will
denote the components of X, by (X{(l):l e m). Our random array will satisfy
the following generalised exchangeability assumption (GE): the joint distribution
of X is invariant under the action of the (restricted) generalised wreath product
group G = GW(I) of the (restricted) symmetric groups on the lp, p e P, i.e.

(4.1) (* , : i e l ) = ( * , , : ! e l ) , g^G.

To enable us to formulate our limit theorem we must focus on the finite
subarrays Xin) = (X^.i e I(n)) of X obtained by truncating I to I(n) =
FI eP{l,...,n } , 1 < np < oo, p e P. In terms of ^ ( n ) we define the random
variables

and

Here A^ and F}n) are the association and generalised /c-statistic tensors defined
in III, G-symmetric functions of X which will turn out to be RMGs multi-
indexed by n = (np:p e P).

For a given p e P and integer np > 1, we define G^p) to be the subgroup of
G{p) consisting of all permutations of I which move only the coordinate ip of
i = (ip:p e P), and which leave all values ip > np fixed. Similarly we define <^l

(
t
p)

to be the sub-a-field of our basic probability space consisting of all events
generated by X = (Xt) which are invariant under G^p). Finally, for n = (np:p e
P) write &n for r\p^P^p), the o-field of all events defined by X which are
invariant under G(n>, the permutable product of all the

LEMMA 4.1. The sub-o-fields {^p^'.p e P) are mutually conditionally indepen-
dent given &n.

https://doi.org/10.1017/S1446788700028093 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700028093


90 T. P. Speed [12I

PROOF. The proof has three steps which we now outline. Firstly, we note that
for p G P, Ep{t) = E{t\^p)] is obtained by averaging t over the appropriate
orbit when t has the fdrm

(4.2) (h°Xi)(t2oXl)---(tboXk),

where i, j , . . . , k e l , and where tu t2,...,tb are bounded real-valued functions.
Secondly, we use the generalised form of the corollary to Lemma 3.2 above to
deduce that the conditional expectation operators {Ep:p e P) all commute in
their action on the set # of all t of the form (4.2), i.e.

(4.3) EpEq---Er{t} = E{t\3?n)

for every enumeration p, q,..., r of P. And thirdly, we observe that the set JtP of
all bounded measurable functions t of X which satisfy (4.3) for every enumera-
tion p, q,..., r of P satisfies the conditions of Meyer (1966, I T20), whilst the set
<& is contained in Jtif and is closed under multiplication.

Turning now to the details, we begin by noting that if t has the form (4.2), the
average giving Ept will be over the G^'-orbit labelled by the partition of
b = {1, 2, . . . , b) defined by the equalities and inequalities amongst
{ip, j ,. ..,k } . Denoting this partition by a(p), we have, cf. Ill and Speed
(1984),

E Wi • * r ) ( * 2 ° Xy) • • • (tb o Xk.)
\np)(a(p),A{o(q):q>p})

the sum being taken over all k-tuples i', j ' , . . . , k' from I<n) in the Gn
(/>)-orbit which

contains i, j , . . . , k.
The final two steps really need little elaboration, and it follows from Meyer

(1966,1 T20) that 3f contains all measurable function of X.

COROLLARY. For t of the form (4.2) and for 1 < ip, j p , . . . , kp < np, p e P, we
have

Ei

where TT(P) = A{a(q):q > p), p e /*, where the sum is taken over all ( i ' , j \ . . . ,k')
/« //;e jarne G-orbit as (i,'},..., k), #«J vv/iere

(11) .= n ( « , ) ( . ( ) A { »(,)•,>/» >•

PROOF. This is immediate from the proof of the lemma and from the formula
for (n)w given in Speed (1984).
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Now let us return to the random variables an(X
(n)) and k,,(X(n)) which for

convenience we write as aB{ir) and kj^ir) respectively. From the definition of
an(ir)we have

(n);
laa(v) = (n);lT.Xhm(l)--- Xh(m)(m)

the sum being taken over all maps h: m -» UpeP{l,. ..,np) = I(n) with cph = IT,
(see Praeger et al. (1985)), i.e. over all h in the orbit of the (permutable) product
G(n) of all the groups Gj,p), p e P. Thus we have

LEMMA 4.2. For any h:m -* I ( n ) with (ph = m we have

(n);
1an(v) = E{Xhm(l)--- XHm){m)\&n) a.s.

COROLLARY, (i) {(n)-lan(ir); J^} is a RMG.

(ii){A:n(W);^n} is a RMG.

PROOF. It is clear that the sub-a-fields J^, decrease as n increases, i.e. as
n t oo, p e P, and so (i) is true. The generalised ^-statistics kn(-n) are just linear
combinations of the random variables (n)^an(a) for a < m, and so (ii) follows.

As explained in Section 2 above, we get a.s. convergence of multi-indexed
RMGs provided that they satisfy a moment condition and their defining sub-a-
fields satisfy the appropriate conditional independence property. In our case the
following moment condition is adequate: for a e Hom(P, @(m)), and for h :m
-» I(n) with (ph = a, we have

(4.4) o Xh(l)(l)--- Xh(m)(m) <=<?(log J?)°\

where a = \P\.

THEOREM 4.3. Suppose that the random array X satisfies (4.1). If X also satisfies
(4.4)O, then (n)^1an(a) converges a.s. as n increases. Further, if X satisfies (4.4)O

for all a < 7T, with IT e Hom(/), ^{m)), then kn(ir) converges a.s. as n increases.

PROOF. By virtue of Lemma 4.1 this is essentially the main result of Gut (1976).
See also Dubins and Pitman (1979, page 306).

It follows from the theorem that

;1an(o) = E{Xhm(l)--- Xh(m)(m)\&x} a.s.

for any h:m-> I<m) = {\,...,m}a with yh = a, and a similar result holds for
limnA;n(7r). This naturally leads to the question: under what conditions is it true
that J ^ = C\nS^n is trivial? Let us suppose that the array X arises as a
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generalised additive model, i.e. that for each i e l w e have

(4.5) *,= I *M,

where F(P) is the distributive lattice of all filters of the nesting poset P, where,
for a G F(P), the random variables et(a) a r e mutually independent and identi-
cally distributed and depend only on (/ , p G a), and where the sets of e
corresponding to distinct a G P are mutually independent.

PROPOSITION 4.4. / / the array X arises as a generalised additive model, and if
e(0) isa.s. constant, then f l , , ^ is trivial.

PROOF. Let ^ n , S?n and ^ denote the o-fields generated by the r.v.s e,(a) for
all 0 * a e F(P), and for all i e I subject to ip ^ np (p e P), np < ip < 2np

(p G P), and ip> np(p G P), respectively. We prove the proposition in three
steps (cf. Meyer (1966, VIII §1)), showing in turn that (i) ^ = C\n^n c J^ ; (ii)
^ c f M a.s. and (iii) Tx is trivial.

Firstly, note that 5~n is generated by events invariant under G(n), and so, by
Meyer I T19, all sets in fn have this property. Now take A & J^ and g e C .
By the construction of the restricted generaUsed wreath product group G, there
exists n such that g e G(n), and so, since A G ̂  c 5^, we have g"^4 = ^ ; it
follows that yl e J ^ , and (i) is proved.

Next let t = lAbe the indicator function of an event A e J ^ , and take e > 0.
By the convergence theorem for multi-indexed RMGs of Gut (1976) cited above,
there exists Nj sufficiently large that for n > N1?

(4-6) l | E { / | ^ } - E { / | ^ 0 } | | 1 < e .

It is also possible to choose N2 sufficiently large that for n ^ N2,

(4.7) l l r -Efr ia.JH^e.
Now it is easy to see that G contains the permutation g of I which interchanges 1
and np + 1, 2 and np + 2 , . . . , np and 2np and which leaves all other integers
ip > 2np fixed, p G P. Such a permutation leaves the joint distribution of X
fixed, sends ^ n into £*„, and leaves t unchanged, whence

(4.8) \\t-E{t\<?n) \\.Ke.

Now £fn c 3~n, and E {• 13~n} is a contraction, so that

(4-9) | | E { ? | ^ n } - E { / | ^ ; } H ^ e .

But (4.6), (4.8) and (4.9) imply that for n > Nx V N2,

l l ' - E f / l ^ j L O e
and this, since e was arbitrary, implies that t G J ^ a.s.
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Finally, we remark that a familiar argument giving the Kolmogorov 0-1 law, see
e.g. Renyi (1970, page 280), implies that the a-field ^=V[n3Tn is trivial; ^ is
clearly a " ta i l" o-field, and the fact that the r.v.s e^a) are multi-indexed is
irrelevant, their independence being the key property.

The following corollary is an immediate consequence of the preceding result
and the main theorem. Together with the corollary to Proposition 5.1 of HI it can
be seen to imply the a.s. convergence of all the standard unbiased estimates of
components of variance to their expectations under a quite general additive
(random effects) model. The notation / (TT) is defined in III.

COROLLARY. / / X arises as a generalised additive model, then for all m e
Hom(i), ^(iw)), we have limo kn(m) = f(ir) a.s.
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