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Abstract

We present a family of radical convolution Banach algebras on intervals (0, a] which are of Sobolev type;
that is, they are defined in terms of derivatives. Among other properties, it is shown that all epimorphisms
and derivations of such algebras are bounded. Also, we give examples of nontrivial concrete derivations.
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1. Introduction

Fix n ∈ N. Let T (n)
+ (tn) denote the completion of C(∞)

c ([0,∞)) in the norm

‖ f ‖
T

(n)
+ (tn) =

∫ ∞

0
| f (n)(t)|tn dt, f ∈C(∞)

c ([0,∞)).

This space is a Banach algebra for the usual convolution product, which arises in
close relationship with n-times integrated semigroups and the study of ‘ill-posed’
abstract Cauchy problems (see [2] and also [1] and references therein). Fractional
derivative versions T (ν)

+ (φν) of the above algebras have been introduced in [9] with the
aim of characterizing ν-times integrated semigroups by means of a suitable notion of
distribution semigroups of order ν > 0. In this notation, φν is a nondecreasing function
such that

inf
t>0

t−νφν(t) > 0.

In particular, if φν(t) ≡ tνω(t) where ω is a nondecreasing (submultiplicative) weight
on (0,∞), then

T
(µ)
+ (tµω) ↪→T (ν)

+ (tνω) ↪→ L1(ω), µ ≥ ν > 0.
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As usual, we denote by L1(ω) the space of (classes of) measurable complex functions
f on (0,∞) such that

∫ ∞
0
| f (x)|ω(x) dx <∞. We also write L1(R+) := L1(1).

It can be shown that, if ω satisfies ρω := limt→∞ ω(t)1/t , 0, then the convolution
Banach algebra T (ν)

+ (tνω), ν > 0, is semisimple and its Gelfand transform is equal to
the Laplace transform (on the half-plane Re z ≥ −log ρω). This fact is well known in
the case ν = 0, that is, for L1(ω) [4, Theorem 4.7.27(i)]. For ν > 0 the proof will appear
elsewhere.

Moreover, for ω ≡ 1, the space T (ν)
+ (tν) has been studied as a semisimple Banach

algebra in a series of papers including the following items: the structure of its closed
ideals in [11, 13], and for a discrete version of that algebra in [12]; the properties of
its Gelfand transform in [10]; and the existence of certain semigroups contained in it,
which can be expressed in terms of special functions. An analysis of the applications of
algebras of that type to the stability theory of operator semigroups is also in progress.
In all of the above approaches the properties and applications of those algebras, and
of their associated mathematical objects, are very much like those of the Banach
algebra L1(R+), each one within its own setting. Thus an analoguous behavior is to be
expected, at least in the semisimple case, of the weighted Banach algebras T (ν)

+ (tνω)
by comparison with L1(ω).

On the other hand, it is also well known that, provided ω is radical, that is, ρω = 0,
then the Banach algebra L1(ω) is radical, which is to say that L1(ω) has no nonzero
character or, equivalently, that the set of modular maximal ideals of L1(ω) is empty;
see [4, Theorem 4.7.27 (ii)]. A standard and important example of radical weight is
ω(t) := e−t2

, t > 0.
Radical Banach algebras are known from the very beginning of the theory of

Banach algebras, but they were not studied in depth until quite recently. The modern
interest in such algebras emerges with the solution to the Kaplansky problem obtained
independently by Dales and Esterle. They proved that, given an infinite compact
space K, and assuming the continuum hypothesis, there always exists a discontinuous
injective homomorphism θ : C(K)→ R ⊕ C, for suitable commutative radical Banach
algebras R. Here, C(K) is the usual Banach algebra of complex continuous functions
on K, and one can take as R the weighted algebra L1(e−t2

) or the Volterra algebra
L1
∗(0, 1); see [5] for a joint presentation of the Dales–Esterle theorem. This result

has since been extended or complemented in several directions. For instance (always
under the continuum hypothesis), algebras L1(ω), for ω radical, are universal in the
class of complex and commutative algebras with no unit which are integral domains
and have the power of the continuum; see [6, Corollary 5.2]. In another direction,
Esterle characterizes all the radical Banach algebras R for which it is possible to
construct a discontinuous homomorphism θ : C(K)→ R ⊕ C (under the assumption of
the continuum hypothesis again); see [7, Theorem 6.4] and [8, Theorem 5.3]. Further,
these algebras form the fifth class out of a total of nine introduced in [8] as a way
to classify the set of commutative radical Banach algebras. Most of the (rich set of)
examples and counterexamples given in [8] are constructed from convolution algebras
of `1 or L1 type, or principal ideals thereof.
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In accordance with all the above considerations, it seems sensible to investigate
convolution radical Banach algebras of Sobolev type in the above setting, that is,
associated with and analogous to radical algebras like L1(ω) or L1

∗(0, 1). Thus our first
question is whether, similarly to the semisimple case, the Banach algebra T (ν)

+ (tνω),
for ν > 0, is radical whenever ω is a radical weight.

Somewhat disappointingly, it turns out that T (ν)
+ (tνω) need not be a convolution

algebra if one allows ω to be a decreasing function (see Section 2). Thus, in order to
find radical Banach algebras of Sobolev type, one must try some other way different
from that suggested by the (continuous) inclusion T (ν)

+ (tνω) ↪→ L1(ω).
Recall that the convolution Volterra algebra L1

∗(0, 1) formed by all Borel

measurable functions f : (0, 1)→ C such that ‖ f ‖1 =
∫ 1

0
| f (t)| dt <∞, endowed with

the convolution product, can be represented as the quotient L1
∗(0, 1) � L1(R+)/I1,

where I1 is the closed ideal

I1 = { f ∈ L1(R+) : f ≡ 0 a.e. on (0, 1)}.

Similarly, let us consider the quotient T (ν)
+ (tν)/I(ν)

1 , for the closed ideal I(ν)
1 :=

T
(ν)
+ (tν) ∩ I1. We show in Section 2 that it is a radical Banach algebra which is indeed

topologically generated by its nilpotent elements. Since there is the identification

f + I
(ν)
1 ←→ f |(0,1), T

(ν)
+ (tν)/I(ν)

1 ↪→ L1
∗(0, 1),

a natural question in this respect is which elements of L1
∗(0, 1) correspond to the

classes f + I
(ν)
1 ( f ∈ T (ν)

+ (tν)). A complete answer to that problem is given in
Section 3, for integer ν = n. Namely, the quotient algebra T (n)

+ (tn)/I(n)
1 coincides

with the space V(n)(0, 1) formed by all functions f : (0, 1] −→ C for which there
exist f , f ′, . . . , f (n−1) on (0, 1], f (n−1) is absolutely continuous on (0, 1], and∫ 1

0
| f (n)(x)|xn dx <∞. Moreover, the quotient norm in T (n)

+ (tn)/I(ν)
1 is equivalent to

the norm

‖ f ‖V(n)(0,1) :=
∫ 1

0
| f (n)(x)|xn dx + max

0≤i≤n−1
| f (i)(1)|, f ∈ V(n)(0, 1).

A consequence of the above equivalence is that the space V(n)(0, 1) is a radical
Banach algebra for the convolution and the above norm (Corollary 8). ThusV(n)(0, 1)
is a generalization of the Volterra algebra formed by (higher-order) absolutely
continuous functions on (0, 1). The representation of the elements f + I

(ν)
1 for f ∈

T
(ν)
+ (tν) and general fractional ν is rather more difficult than in the integer case ν ∈ N,

and in fact it remains unsolved. We briefly discuss the reason for that at the end of
Section 3.

In Section 4, on the basis of results obtained in [13], we show that all closed ideals
of V(n)(0, 1) are standard, and then it follows from the main theorem of [15] that
all epimorphisms onto V(n)(0, 1) and all derivations from V(n)(0, 1) into itself are
bounded. However, we have not been able to find a complete characterization of the
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set of all such derivations. The paper ends with a result, Corollary 16, in which a fairly
large class of concrete derivations ofV(n)(0, 1) is given.

As the reader will have already noticed, by a Banach algebra we understand a
Banach space endowed with a (jointly) continuous multiplication (so the algebra norm
need not be submultiplicative with constant one).

Throughout the paper, we use the variable constant convention, in which C denotes
a constant which may not be the same from line to line. The constant is frequently
written with subindexes to emphasize that it depends on some parameters or functions.

2. Quotient radical Sobolev algebras

Let ω be a submultiplicative continuous weight on (0,∞). For ν > 0, the Banach
space T (ν)

+ (tνω) is defined as the completion of C(∞)
c [0,∞) in the norm∫ ∞

0
|Wν f (x)|xνω(x) dx, f ∈C(∞)

c [0,∞),

where Wν f denotes the (fractional) Weyl derivative of f of order ν, defined as

Wν f (x) =
(−1)m

Γ(m − ν)
dm

dxm

∫ ∞

x
(t − x)m−ν−1 f (t) dt,

where m := [ν] + 1 with [ν] the integer part of ν. When ν itself is integer, say ν = n,
then Wn f = (−1)n(d/dx)n f .

As pointed out in the introductory section to this paper, if ω is nondecreasing then
the space T (ν)

+ (tνω) is in fact a Banach algebra for the usual convolution on (0,∞), and
a subalgebra of L1(ω); moreover, it is semisimple if limt→∞ ω(t)1/t , 0. More details
and properties of the Weyl fractional derivative and algebras T (ν)

+ (tνω) can be found
in [9, 17].

Here, and in analogy to the L1(ω) case, we would like T (ν)
+ (tνω) to be a radical

Banach algebra when limt→∞ ω(t)1/t = 0. Unfortunately, it happens that spaces
T

(ν)
+ (tνω) are not in general convolution algebras for decreasing weights ω. To see

this, take any weight ω such that

0 < Kω :=
∫ ∞

0
t ω(t) dt <∞. (1)

For λ > 0, the function eλ(t) := e−λt, t > 0, belongs to T (1)
+ (tω); indeed,

‖eλ‖T (1)
+ (tω) = λ

∫ ∞

0
te−λtω(t) dt ≤ λ

∫ ∞

0
t ω(t) dt = λKω.

Also, a simple calculation gives us that (eλ ∗ eλ)(t) = te−λt for all t > 0. Hence,

‖eλ ∗ eλ‖T (1)
+ (tω) =

∫ ∞

0
|1 − λt| te−λtω(t) dt.
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If T (1)
+ (tω) were a Banach algebra for the convolution, we would have, for some

constant C > 0,
‖eλ ∗ eλ‖T (1)

+ (tω) ≤C‖eλ‖
2
T

(1)
+ (tω)

;

that is to say, ∫ ∞

0
|1 − λt|te−λtω(t) dt ≤Cλ2K2

ω, λ > 0.

But this cannot be true, since as λ tends to 0 we get Kω ≤ 0, a contradiction. Then it
follows that T (1)

+ (tω) is not a convolution algebra.
Note that the radical weight function ω(t) = e−t2

satisfies the preceding condition
(1). Therefore T (1)

+ (te−t2
) is not even an algebra for the convolution product. So

we need to look for other candidates to get convolution radical algebras involving
derivatives. Let us follow the model suggested by the Volterra algebra L1

∗(0, 1).
Here we work with any a > 0 rather than merely with a = 1. Thus let define the

subset

I(ν)
a := { f ∈ T (ν)

+ (tν) : f ≡ 0 a.e. on (0, a)} = { f ∈ T (ν)
+ (tν) : γ( f ) ≥ a},

where, within the second pair of braces, γ( f ) := inf(supp f ).

L 1. The subset I(ν)
a is a closed ideal of T (ν)

+ (tν).

P. Put Ja := { f ∈ L1(R+) : f ≡ 0 a.e. on (0, a)}. It is well known that Ja is a closed
ideal of L1(R+). Thus the result is a consequence of the continuity of the inclusion
mapping ι : T (ν)

+ (tν) ↪→ L1(R+) (see [9, p. 16]) since Ia = ι−1(Ja). �

We call I(ν)
a a standard ideal of T (ν)

+ (tν) at a.

L 2. The space C(∞)
c (0,∞) of C(∞) functions with compact support in (0,∞) is

dense in T (ν)
+ (tν) for all ν ≥ 0.

P. Let ϕ ∈C(∞)
c (0,∞) be positive and such that

∫ ∞
0
ϕ(t) dt = 1. For ε > 0, put

ϕε(x) = ε−1ϕ(ε−1x), x ∈ R+. Then (ϕε)0<ε<1 is a bounded approximate identity in
T

(ν)
+ (tν) for every ν ≥ 0, that is, limε→0+ f ∗ ϕε = f inT (ν)

+ (tν); see [11, Proposition 2.3].
Clearly, h ∗ ϕε ∈C(∞)

c (0,∞) for every h ∈C(∞)
c ([0,∞)), and then the lemma follows by

density. �

Now let us consider the quotient Banach algebra T (ν)
+ (tν)/I(ν)

a . Since density is
preserved by passing to the quotient, we get the following theorem.

T 3. The ideal of its nilpotent elements is dense in T (ν)
+ (tν)/I(ν)

a . Hence, the
Banach algebra T (ν)

+ (tν)/I(ν)
a is radical.

P. For every f ∈C(∞)
c (0,∞) there exists an integer N such that γ( f ∗N) > a. Then

the result follows from Lemma 2 and the commutativity of the algebras. �
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R 4. An alternative way to show that the quotient algebra T (ν)
+ (tν)/I(ν)

a is radical
is to check that the hull h(I(ν)

a ) := {z ∈ C : Re z > 0, L(g)(z) = 0 (g ∈ I(ν)
a )}, where L is

the Laplace transform on Re z ≥ 0, of the ideal I(ν)
a is empty. This is accomplished by

a standard argument.

R 5. Note that the continuous inclusions

T
(µ)
+ (tµ) ↪→T (ν)

+ (tν), µ ≥ ν ≥ 0,

are inherited by the above quotient radical Banach algebras; that is, for µ ≥ ν ≥ 0,

T
(µ)
+ (tµ)/I(µ)

a ↪→T (ν)
+ (tν)/I(ν)

a .

In fact,

‖ f + I(ν)
a ‖T (ν)

+ (tν)/I(ν)
a

= inf{‖ f + h‖
T

(ν)
+ (tν) : h ∈ Ia ∩ T

(ν)
+ (tν)}

≤ inf{‖ f + h‖
T

(ν)
+ (tν) : h ∈ Ia ∩ T

(µ)
+ (tµ)}

≤Cν,µ inf{‖ f + h‖
T

(µ)
+ (tµ) : h ∈ Ia ∩ T

(µ)
+ (tµ)}

= Cν,µ‖ f + I
(µ)
a ‖T (µ)

+ (tµ)/I(µ)
a
.

The first part of the following result is not strictly necessary in the realm of this
paper, but we include it here for the sake of completeness.

P 6. For z such that Re z > 0, let σz be the element of T (ν)
+ (tν)/I(ν)

a defined
by the function x 7→ Γ(z)−1xz−1, x > 0. Then (σz)Re z>0 is an analytic semigroup in
T

(ν)
+ (tν)/I(ν)

a for every ν > 0, such that:

(i) sup
t∈(0,1)

‖σt‖
T

(ν)
+ (tν)/I(ν)

a
<∞;

(ii) span{σk : k ∈ N} is dense in T (ν)
+ (tν)/I(ν)

a .

P. The assertions are readily seen from the fact that for Re z > 0 the function x 7→
Γ(z)−1xz−1e−x, x ∈ (0,∞), satisfies in the Banach algebra T (ν)

+ (tν) analogous properties
to those of the statement; see [10, Proposition 1.1]. �

Thus the proposition tells us in particular that the subspace of polynomials is dense
in T (ν)

+ (tν)/I(ν)
a , and that (σt)0<t<1 is a bounded approximate identity for T (ν)

+ (tν)/I(ν)
a

(there are many more bounded approximate identities in T (ν)
+ (tν)/I(ν)

a according to the
proof of Lemma 2).

The mapping f + I
(ν)
a 7→ f |(0,a), T

(ν)
+ (tν)/I(ν)

a ↪→ L1
∗(0, a) is obviously well defined.

The image of that mapping is studied in the next section.
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3. Representation of T (n)
+

(tn)/I (n)
a on (0, a]

The task of representing the elements f + I
(ν)
a , for f ∈ T (ν)

+ (tν), as functions almost
everywhere defined on the interval (0, a) looks complicated for general fractional ν
(see the short discussion in Remark 9 at the end of this section). Here we settle the
question for integer order of derivation.

So take ν = n ∈ N. Let us collect some properties of the elements of T (n)
+ (tn). For

f ∈ T (n)
+ (tn), the function x 7→ f (k)(x)xk is integrable on (0,∞) for all k = 0, 1, . . . , n so

that

f (k)(x) = −

∫ ∞

x
f (k+1)(y) dy, x > 0, for k = 0, . . . , n − 1. (2)

In particular, f ∈C(n−1)(0,∞) and f (n−1) is absolutely continuous with a.e. derivative
f (n) on (0,∞). Integrating by parts n − j − 1 times in (2) with k = n − 1 we get, for
j = 0, . . . , n − 1,

f ( j)(x) =
(−1)n+ j

(n − j − 1)!

∫ ∞

x
(y − x)n− j−1 f (n)(y) dy,

whence, for x > 0 and 0 ≤ k ≤ n − 1:

|xk+1 f (k)(x)| ≤
1

(n − k − 1)!

∫ ∞

x
yk+1(y − x)n−(k+1)| f (n)(y)| dy

=
1

(n − k − 1)!

∫ ∞

x
yk+1yn−(k+1)

(
1 −

x
y

)n−(k+1)

| f (n)(y)| dy

≤
1

(n − k − 1)!

∫ ∞

x
yn| f (n)(y)| dy

(3)

and therefore ‖xk+1 f (k)‖∞ ≤Cn‖ f ‖T (n)
+ (tn).

For f ∈ T (n)
+ (tn), let ‖ f + I

(n)
a ‖T (n)

+ (tn)/I(n)
a

be the quotient norm of f + I
(n)
a in

T
(n)
+ (tn)/I(n)

a , and put

||| f + I(n)
a ||| :=

∫ a

0
| f (n)(x)|xn dx + max

0≤i≤n−1
{| f (i)(a)|},

[[ f + I(n)
a ]] :=

∫ a

0
| f (n)(x)|xn dx +

n−1∑
i=0

‖xi+1 f (i)(x)‖(0,a],

where ‖xi+1 f (i)(x)‖(0,a] := sup0<x≤a |x
i+1 f (i)(x)|.

T 7. The (nonlinear) functionals ||| · ||| and [[·]] are both well defined on the
quotient algebra T (n)

+ (tn)/I(n)
a . Moreover, ‖ · ‖

T
(n)
+ (tn)/I(n)

a
, ||| · ||| and [[·]] are equivalent

norms on T (n)
+ (tn)/I(n)

a .
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P. It is clearly sufficient to show that the functionals of the statement are
equivalent. We first start with ‖ · ‖

T
(n)
+ (tn)/I(n)

a
and ||| · |||. For f ∈ T (n)

+ (tn) and h ∈ I(n)
a ,

‖ f − h‖
T

(n)
+ (tn) =

∫ ∞

0
|( f − h)(n)(x)|xn dx

=

∫ a

0
| f (n)(x)|xn dx +

∫ ∞

a
|( f − h)(n)(x)|xn dx

≥

∫ a

0
| f (n)(x)|xn dx + Cn,a max

0≤k≤n−1
| f (k)(a)|

by (3). Hence,

‖ f + I(n)
a ‖T (n)

+ (tn)/I(n)
a

:= inf
h∈I(n)

a

{‖ f − h‖
T

(n)
+ (tn)} ≥Cn,a||| f + I(n)

a |||.

This shows in particular that ||| f + I
(n)
a ||| is well defined on T (n)

+ (tn)/I(n)
a .

For the converse inequality, take

g(x) :=


f (x), x ∈ (0, a],
p(x), x ∈ [a, a + 1],
0, x ∈ [a + 1,∞),

where

p(x) = c2n−1(a + 1 − x)2n−1 + c2n−2(a + 1 − x)2n−2 + · · · + cn(a + 1 − x)n

and p(i)(a) = f (i)(a) for i = 0, . . . , n − 1. The polynomial p exists and is unique since
its coefficients are the solutions of the Hermite problem of n × n linear equations

c2n−1 + c2n−2 + · · · + cn = f (a)
−c2n−1(2n − 1) − c2n−2(2n − 2) − · · · − cnn = f ′(a)

· · · = · · ·

(−1)n+1c2n−1(2n − 1)(2n − 2) · · · (n + 1) + · · · + (−1)n+1cnn! = f (n−1)(a)


for which the matrix

An :=


1 1 · · · 1

−(2n − 1) −(2n − 2) · · · −n
...

...
. . .

...
(−1)n+1(2n − 1) · · · (n + 1) (−1)n+1(2n − 2) · · · n · · · (−1)n+1n!


is invertible. In fact, it is readily seen by induction that

|An| =

n∏
k=1

(k − 1)! , 0.
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It is straightforward to check that g ∈ T (n)
+ (tn). Now, since f |(0,a) ≡ g|(0,a),

‖ f + I(n)
a ‖T (n)

+ (tn)/I(n)
a

= ‖g + Ia‖T (n)
+ (tn)/I(n)

a
≤ ‖g‖

T
(n)
+ (tn) =

∫ ∞

0
|g(n)(x)|xn dx

=

∫ a

0
| f (n)(x)|xn dx +

∫ a+1

a
|p(n)(x)|xn dx.

To estimate the second integral we use the fact that the expression for the nth
derivative of p is

p(n)(x) = (−1)nc2n−1(2n − 1)(2n − 2) · · · (n + 1)n(a + 1 − x)n−1

+ (−1)nc2n−2(2n − 2)(2n − 3) · · · n(n − 1)(a + 1 − x)n−2

+ · · · + (−1)ncnn!,

so if x ∈ (a, a + 1) then

|p(n)(x)| ≤ max
n≤i≤2n−1

{|ci|}(2n − 1)(2n − 2) · · · (n + 1)n

· [(a + 1 − x)n−1 + (a + 1 − x)n−2 + · · · + 1]

≤ 2nnnn max
n≤i≤2n−1

{|ci|} = Cn max
n≤i≤2n−1

{|ci|}.

On the other hand, the coefficients ci are linear combinations of the images f ( j)(a),
because of Cramer’s rule,

c2n−i = |An|
−1

∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · f (a) · · · 1

−(2n − 1) · · · f ′(a) · · · −n
...

...
...

(−1)n+1(2n − 1) · · · (n + 1) · · · f (n−1)(a) · · · (−1)n+1n!

∣∣∣∣∣∣∣∣∣∣∣∣
= |An|

−1(Cof1,i · f (a) + Cof2,i · f ′(a) + · · · + Cofn,i · f (n−1)(a))

= bi,0 f (a) + bi,1 f ′(a) + · · · + bi,n−1 f (n−1)(a),

where the column of the f ( j)(a) is the ith, Cofk,i is the (k, i) cofactor and bi, j :=
|An|

−1Cof j+1,i. Note that the bi, j only depend on n. Hence,

max
n≤i≤2n−1

{|ci|} ≤Cn max
0≤i≤n−1

{| f (i)(a)|},

and then ∫ a+1

a
|p(n)(x)|xn dx ≤Cn max

0≤i≤n−1
{| f (i)(a)|}

∫ a+1

a
xn dx

= Cn,a max
0≤i≤n−1

{| f (i)(a)|}.
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In this way, we have obtained that

‖ f + Ia‖T (n)
+ (tn)/I(n)

a
≤

∫ a

0
| f (n)(x)|xn dx + Cn,a max

0≤i≤n−1
{| f (i)(a)|}

≤C||| f + I(n)
a |||,

as required.
Finally, notice that the inequality ‖xk+1 f (k)‖∞ ≤Cn‖ f ‖T (n)

+ (tn), k = 0, 1, . . . , n − 1,
and Remark 5 imply that

Cn,a||| f + I(n)
a ||| ≤ [[ f + I(n)

a ]] ≤Cn,a||| f + I(n)
a |||.

This concludes the proof. �

Let V(n)(0, a) denote the space of functions f : (0, a]→ C such that there exist
f ′, . . . , f (n−1) on (0, a], the function f (n−1) is absolutely continuous on (0, a], and∫ a

0
| f (n)(x)|xn dx <∞.

C 8. The spaceV(n)(0, a), endowed with the convolution product

( f ∗ g)(x) =

∫ x

0
f (x − y)g(y) dy, x ∈ (0, a], f , g ∈ V(n)(0, a),

and the norm

‖| f ‖| =
∫ a

0
| f (n)(x)|xn dx + max

0≤i≤n−1
| f (i)(a)|, f ∈ V(n)(0, a),

is a radical Banach algebra isomorphic to T (n)
+ (tn)/I(n)

a .

P. By Theorem 7 we have the isomorphism

T
(n)
+ (tn)/I(n)

a �V(n)(0, a)

as Banach spaces and algebras. Then the result follows by Theorem 3. �

We call the radical Banach algebra V(n)(0, a) the Volterra algebra of absolutely
continuous functions of order n on (0, a], or the Sobolev–Volterra algebra for short.
From now on, we denote by ‖ · ‖V(n)(0,a) the previous norm ‖| · ‖| onV(n)(0, a).

Note that, for n = 0, we have thatV(n)(0, a) := L1(0, a), and the norm is, in this case,
just the integral part. For n > 0 and f ∈ V(n)(0, a), the norm

‖ f ‖V(n)(0,a) =

∫ a

0
| f (n)(x)|xn dx + sup

0≤k≤n−1
| f (k)(a)|

∼

∫ a

0
| f (n)(x)|xn dx +

n−1∑
k=0

‖xk+1 f (k)(x)‖(0,a],
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is a mixture of L1 norm and sup-norm. Indeed, the projection

p : f 7→ ( f (a), . . . , f (n−1)(a))

yields a direct sum decomposition V(n)(0, a) = ker p ⊕ Cn, through which the norm
‖ · ‖V(n)(0,a) becomes the standard coordinatewise topology on Cn and just the L1 norm
type

∫ a

0
| f (n)(x)|xn dx on ker p.

Next, we state some automatic properties of Sobolev–Volterra algebras as regarding
discontinuous homomorphisms and Esterle’s classification of radical Banach algebras.

(i) SinceV(n)(0, a) is radical with bounded approximate identities it belongs to class
8 defined in [8], and not in class 9; that is, there is no analytic semigroup in
V(n)(0, a) that is bounded on {|z| < 1, Re z > 0}. (Otherwise L1

∗(0, a) would also
be in class 9 becauseV(n)(0, a) ↪→ L1

∗(0, a), but L1
∗(0, a) cannot belong to class 9

by [3, Corollary 1].)

In the following three points we assume the continuum hypothesis.

(ii) Once again notice thatV(n)(0, a) is radical with bounded approximate identities.
Then it contains a copy of L1(e−t2

); see [6, Theorem 5.1].
(iii) SinceV(n)(0, a) is separable as well, there exists a discontinuous homomorphism

V(n)(0, a)→ L1
∗(0, a); see [6, Corollary 6.6].

(iv) Let C[[X]] denote the algebra of complex formal series in one variable X. Since
V(n)(0, a) is in class 8 it is also in class 5 (see [8]), so that there exists a one-to-
one homomorphism C[[X]]→V(n)

1 (0, a) :=V(n)(0, a) ⊕ C. Equivalently, there
exists a discontinuous homomorphism C(K)→V(n)

1 (0, a). Furthermore, there
is a discontinuous homomorphism A→V(n)

1 (0, a) for every unital commutative
separable Banach algebra A. In particular, we can take A = C(m)[0, a] for all
m ∈ N. See [7, Theorems 6.4 and 6.5] and [8, pp. 59, 60] as a basis for the above
results.

R 9. Similarly to the integer case, we would like to have a representation of
the quotient radical Banach algebra T (ν)

+ (tν)/I(ν)
a which only took into account the

behavior of the functions on the interval (0, a]; that is, to have a Volterra-type algebra
on (0, a] formed by absolutely continuous functions of fractional order ν on (0, a].
To obtain such an algebra it seems sensible to search for an equivalent norm in
T

(ν)
+ (tν)/I(ν)

a given in terms of the restriction of Wν f on (0, a], for example,

‖ f + I(ν)
a ‖(ν),a :=

∫ a

0
|Wν f (x)|xν dx + sup

0≤β≤ν−1
{|Wβ f (a)|}.

However, this does not work. In fact this question must face a serious obstacle;
namely, whereas I(ν)

a is invariant under the usual derivation, that is, Wn(I(n)
a ) ⊆ I(n)

a ,
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1.5

1

0.5

0

–0.5

–1
1.51 2.52 3.53 40.50

F 1. The case ν = 1/2 and a = 1.

this does not hold for fractional ν. For example, let

f (x) :=


0, x ∈ (0, a],
x − a, x ∈ [a, a + 1],
−x + a + 2, x ∈ [a + 1, a + 2],
0, x ∈ [a + 2,∞).

We have that f ∈ T (1)
+ (t), and then f ∈ T (ν)

+ (tν) for all 0 < ν < 1. Moreover, for 0 < ν < 1
and 0 < x < a,

Wν f (x) =
−1

Γ(1 − ν)

∫ ∞

x
(y − x)−ν f ′(y) dy

=
−1

Γ(1 − ν)

∫ a+1

a
(y − x)−ν dy +

1
Γ(1 − ν)

∫ a+2

a+1
(y − x)−ν dy

=
1

Γ(2 − ν)
((a − x)1−ν − 2(a + 1 − x)1−ν + (a + 2 − x)1−ν),

which means that, while f |(0,a] ≡ 0, the derivative Wν f is such that Wν f |(0,a] . 0 a.e. In
other words, Wν(I(ν)

a ) * I(ν)
a . See the Figure 1 for the case ν = 1/2 and a = 1.

Q. Is it possible to characterize the elements of the algebra T (ν)
+ (tν)/I(ν)

a

intrinsically as functions on (0, a]?

4. Closed ideals and derivations of the Sobolev algebra

We will show that the standard ideals I(n)
x , 0 ≤ x ≤ a, are the only closed ideals

of V(n)(0, a). Then, because of this and a result of [15], it follows that all
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derivations D : V(n)(0, a)→V(n)(0, a) are automatically continuous. Recall that such
a derivation is by definition a linear map such that D( f ∗ g) = f ∗ D(g) + D( f ) ∗ g, for
f , g ∈ V(n)(0, a).

P 10. Each closed ideal ofV(n)(0, a) is standard.

P. Let I be a closed ideal of V(n)(0, a). Then J := q−1(I) is a closed ideal of
T

(1)
+ (t), where q : T (1)

+ (t)→V(n)(0, a) is the canonical quotient mapping. Let h(J) be
the hull, or zero set, of the ideal J in the Gelfand spectrum of T (1)

+ (t). Any ξ ∈ h(J)
is a character of T (1)

+ (t) such that ξ(J) = 0. Since q(I(n)
a ) = (0) ⊆ I, we have that

I
(n)
a ⊆ J. Hence there is a character ξ̃ : V(n)(0, a) ≡ T (1)

+ (t)/I(n)
a → C with ξ = ξ̃ ◦ q.

As V(n)(0, a) is radical it must be the case that ξ̃ = 0, and thus ξ = 0. In conclusion,
h(J) = ∅. This implies by [13, Theorem 3.2] that J is standard in T (1)

+ (t)/I(n)
a ; that is,

J = Ix for some x ∈ [0,∞). If x ≥ a then I = q(J) = (0); if 0 ≤ x < a then I = q(J) = I
(n)
x

as required. �

C 11. Epimorphisms from Banach algebras onto V(n)(0, a) and derivations
V(n)(0, a)→V(n)(0, a) are continuous.

P. Since every closed ideal of V(n)(0, a) is standard, it is enough to apply [15,
Theorem 2] with an argument similar to that of [15, Corollary 4], just using test
functions ϕ ∈C(n)

c (0, a) instead characteristic (indicator) functions. �

We would like to find a characterization of all derivations fromV(n)(0, a) into itself,
as has been done for the Volterra algebra L1

∗(0, a) in [16]. Unfortunately, it is not clear
to us how to deal with that question completely. We give some partial results.

Let D :V(n)(0, a)→V(n)(0, a) be a (bounded) derivation. Let 1 denote the
constant function 1(x) = 1, x ∈ (0, a]. Then, as 1∗m = xm−1/(m − 1)! we have Dxm =

m!D(1∗(m+1)) = (m + 1)!1∗m ∗ D1 = (m + 1)mxm−1 ∗ D1. Hence, Dp = (xp)′′ ∗ g for
every polynomial p, with the convention x′′ = δ0 (the Dirac delta at 0), where g :=
D1 ∈ V(n)(0, a). At this point, one can look at getting an expression for the derivation
D acting on the (holomorphic) semigroup σz defined in Proposition 6. As before,

D(σz) = (xz/Γ(z))′′ ∗ g = z(σz−1 ∗ g),

so that σ2 ∗ D(σz) = zσz+1 ∗ g = (xσz) ∗ g whenever Re z > 0. Now the question is to
identify the quotient g/σ2.

By reasoning along the same lines as in [16] one can try an approximation argument.
It is not difficult to see that the above equality for polynomials also holds for test
functions f : D f = (x f )′′ ∗ g, f ∈C(n+2)

c (0, a].
Take (ϕm)∞m=1 ⊆C(∞)

c ((0, a)) as a bounded approximate identity for V(n)(0, a) and
put gm := g ∗ ϕm. Then gm ∈C∞((0, a)) and g′′m = g ∗ ϕ′′m. Moreover, integration by
parts gives us that (x f )′′ ∗ gm = x f ∗ g′′m for all m. Since one may assume that gm→ g
a.e., it is to be expected that g′′m should converge in some suitable way to a certain
measure or distribution µ on (0, a) analogously to the case n = 0; see [16]. (Then we
would have g = µ ∗ σ2.) However, by following an argument similar to that of [16],
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one gets a gap caused by the fact that the algebraV(n)(0, a) is not invariant under right
translations.

In the opposite direction, we have the following results.

L 12. The application

d :V(n)(0, a)→V(n)(0, a)
f (x) 7→ x f (x)

is a (bounded) derivation onV(n)(0, a).

P. Obviously, if f ∈ V(n)(0, a) then d( f ) is absolutely continuous of order n, and
d( f ) ∈ V(n)(0, a) as well. Thus the mapping d is well defined.

Finally, d satisfies the derivation rule. Given x ∈ (0, a),

d( f ∗ g)(x) = x( f ∗ g)(x) =

∫ x

0
(x − t + t) f (x − t)g(t) dt

=

∫ x

0
(x − t) f (x − t)g(t) dt +

∫ x

0
f (x − t) tg(t) dt

= (d f ∗ g + f ∗ dg)(x).

This concludes the proof. �

From now on, (t f )(k)(u) is used to denote the value at u of the function

t 7→
dk(t f (t))

dtk
(t), t > 0.

The next lemma is needed in order to prove the main result of this section.

L 13.

(i) Let k ≥ 1 and 0 < u < a. Then

(t f )(k)(u) = k f (k−1)(u) + u f (k)(u), ∀ f ∈ V(k)(0, a).

(ii) Let k ≥ 1, l ∈ {0, . . . , k − 1} and 0 < b < a. Then∫ b

0
yl(t f )(k)(y) dy =

l∑
j=0

(−1) j l!
(l − j)!

bl− j(t f )(k−1− j)(b)

for all f ∈ V(k)(0, a) null near 0.
(iii) Let m ≥ 0, n ∈ {0, . . . , m} and 0 < u < a. Then

un(t f )(m)(u) =

(
t

n∑
j=0

c j,n,mt j f ( j)
)(m−n)

(u), ∀ f ∈ V(k)(0, a),

for certain coefficients c j,n,m ∈ R.
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P. We proceed by induction.
(i) The case k = 1 and the inductive step (k)⇒ (k + 1) are straightforward.
(ii) The case l = 0 is trivial for all k ≥ 1. The inductive step (k − 1, l)⇒ (k, l + 1),

for k ≥ 2, is as follows:∫ b

0
yl+1(t f )k(y) dy = bl+1(t f )(k−1)(b) − (l + 1)

∫ b

0
yl(t f )(k−1)(y) dy

= bl+1(t f )(k−1)(b) − (l + 1)
l∑

j=0

(−1) j l!
(l − j)!

bl− j(t f )(k−2− j)(b)

=

l+1∑
m=0

(−1)m (l + 1)!
(l + 1 − m)!

bl+1−m(t f )(k−1−m)(b),

where we have integrated by parts and applied the induction hypothesis at level
(k − 1, l).

(iii) The case n = 0 is trivial for all m ≥ 0, with c0,0,m = 1. Also the case n = m,
with m ≥ 1, is straightforward, by using part (i), with c j,m,m = 0 for j ∈ {0, . . . , n − 2}
(if m ≥ 2), cm−1,m,m = m and cm,m,m = 1. Now the inductive step is

(m, n − 1)
(m, n)

}
⇒ (m + 1, n)

for m ≥ n ≥ 1. Then

un(t f )(m+1)(u) = (tn(t f )(m))′(u) − nun−1(t f )(m)(u)

=

((
t

n∑
j=0

c j,n,mt j f ( j)
)(m−n))′

(u) − n
(
t

n−1∑
j=0

c j,n−1,mt j f ( j)
)(m−(n−1))

(u)

=

(
t

n∑
j=0

c j,n,m+1t j f ( j)
)(m+1−n)

(u)

with cn,n,m+1 = cn,n,m (and therefore cn,n,m+1 = cn,n,m = · · · = cn,n,n = 1), and

c j,n,m+1 = c j,n,m − nc j,n−1,m for j = 0, . . . , n − 1.

This concludes the proof. �

R 14. As a matter of fact, the coefficients c j,n,m are as follows. If m = n = 0,

c0,0,0 = 1.

If m = n ≥ 1,

cn,n,n = 1, cn−1,n,n = n and c j,n,n = 0 for j = 0, . . . , n − 2, if n ≥ 2.

https://doi.org/10.1017/S1446788712000298 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000298
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If m = n + 1 ≥ 2,

cn,n,n+1 = 1 and c j,n,n+1 = 0 for j = 0, . . . , n − 1.

Finally, if m − n ≥ 2,

c j,n,m = (−1)n− j

(
n
j

)
(m − 2 − j)!
(m − 2 − n)!

for j = 0, . . . , n.

We have not included the value of the coefficients in the formulation of the lemma in
order not to make the statement (and its proof) too long. Note that the exact expression
for the coefficients is not important to establish the estimates.

Through the proof of the following theorem we will assume that f ∈C(n)(0, a),
vanishing near the origin. Then for a continuous function µ on [0, a), there exists
the function defined on [0, a) given by the convolution x f ∗ µ and it is derivable up to
order n on [0, a), with

(x f ∗ µ)( j) = (x f )( j) ∗ µ for each j = 0, . . . , n.

As usual we will identify dµ j(t) and µ j(t) dt when necessary.

T 15. Fix n ≥ 1. Let µ0, . . . , µn−1 be n derivable functions on [0, a), and let µn

be a Borel measure on [0, a) satisfying:

(i)

sup
0<s<a

s
∫ a−s

0
|dµ j|(t) <∞, j = 0, . . . , n;

(ii) ∫ s

0
dµ j+1(t) = sµ j(s) − ( j + 1)

∫ s

0
µ j(t) dt, s ∈ [0, a); 0 ≤ j ≤ n − 1.

Then:

(1) for each k = 0, . . . , n and j ∈ {0, . . . , n − k},∫ a

0
|(x f ∗ µ j)(k)(x)|xk dx ≤C‖ f ‖V(k)(0,a), ∀ f ∈ V(k)(0, a);

(2) for each k = 1, . . . , n and j ∈ {0, . . . , n − k},

‖xk(x f ∗ µ j)(k−1)(x)‖(0,a] ≤C‖ f ‖V(k)(0,a), ∀ f ∈ V(k)(0, a).

In consequence, the operators f 7→ x f ∗ µ j, j = 0, . . . , n − k, are bounded from
V(k)(0, a) toV(k)(0, a) for each k = 0, . . . , n.
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P. We proceed by induction on k. By density, it will be enough to prove the
inequalities for functions f ∈C(k)(0, a) null near the origin.

(1) The case k = 0 is given in [16], but we include it here for the convenience of the
reader. Let j ∈ {0, . . . , n}. Then

‖x f ∗ µ j‖1 ≤

∫ a

0

∫ x

0
(x − t)| f (x − t)||dµ j|(t) dx =

∫ a

0

∫ a−t

0
s| f (s)|ds|dµ j|(t)

=

∫ a

0
| f (s)|

(
s
∫ a−s

0
|dµ j|(t)

)
ds ≤ C‖ f ‖1

where we have applied condition (i). Now let k ∈ {1, . . . , n} and suppose that the
statement is true for 0, 1, . . . , k − 1. Let f ∈ V(k)(0, a) be null near 0, and j ∈
{0, . . . , n − k}. Then ∫ a

0
|(x f ∗ µ j)(k)(x)|xk dx ≤ Ik,1 + Ik,2,

where

Ik,1 :=
∫ a

0

∣∣∣∣∣∫ x

0
(t f )(k)(y)(xk − yk)µ j(x − y) dy

∣∣∣∣∣ dx,

Ik,2 :=
∫ a

0

∣∣∣∣∣∫ x

0
(t f )(k)(y)µ j(x − y)yk dy

∣∣∣∣∣ dx.

Now, to estimate the first integral Ik,1, notice that applying the cyclotomic identity

xk − yk = (x − y)
k−1∑
l=0

xk−1−lyl,

condition (ii), and Fubini’s theorem, give us

Ik,1 =

∫ a

0

∣∣∣∣∣∫ x

0

( k−1∑
l=0

xk−1−lyl
)
(t f )(k)(y)

(∫ x−y

0
dµ j+1(s) + ( j + 1)

∫ x−y

0
dµ j(s)

)
dy

∣∣∣∣∣ dx

=

∫ a

0

∣∣∣∣∣∫ x

0

(∫ x−s

0

( k−1∑
l=0

xk−1−lyl
)
(t f )(k)(y) dy

)
(dµ j+1(s) + ( j + 1) dµ j(s))

∣∣∣∣∣ dx.

From now on, to simplify our notation, denote

µ• := µ j+1 + ( j + 1)µ j, so that dµ•(s) := dµ j+1(s) + ( j + 1) dµ j(s).
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We can use Lemma 13(ii) and (iii) to get

Ik,1 =

∫ a

0

∣∣∣∣∣ k−1∑
l=0

xk−1−l
∫ x

0

l∑
j=0

(−1) j l!
(l − j)!

(x − s)l− j(t f )(k−1− j)(x − s) dµ•(s)
∣∣∣∣∣ dx

=

∫ a

0

∣∣∣∣∣ k−1∑
l=0

l∑
j=0

(−1) j l!
(l − j)!

xk−1−l(tl− j(t f )(k−1− j) ∗ µ•)(x)
∣∣∣∣∣ dx

=

∫ a

0

∣∣∣∣∣ k−1∑
l=0

l∑
j=0

(−1) j l!
(l − j)!

xk−1−l
((

t
l− j∑

m=0

Cm,l, j,ktm f (m)
)(k−1−l)

∗ µ•

)
(x)

∣∣∣∣∣ dx.

By the comment prior to the statement of the theorem, the (k − 1 − l)th derivative
affects the whole convolution product, therefore

Ik,1 ≤Ck

k−1∑
l=0

l∑
j=0

∥∥∥∥∥(t l− j∑
m=0

Cm,l, j,ktm f (m)
)
∗ µ•

∥∥∥∥∥
V(k−1−l)(0,a)

≤Ck

k−1∑
l=0

l∑
j=0

∥∥∥∥∥ l− j∑
m=0

Cm,l, j,ktm f (m)
∥∥∥∥∥
V(k−1−l)(0,a)

≤Ck

k−1∑
l=0

l∑
j=0

l− j∑
m=0

‖tm f (m)‖V(k−1−l)(0,a)

≤Ck

k−1∑
l=0

l∑
m=0

‖tm f (m)‖V(k−1−l)(0,a).

Here we have applied the induction hypothesis over µ j and µ j+1 at levels 0, 1, . . . , k −
1. By Remark 5, we have the continuous inclusions

V(k)(0, a) ↪→V(k−1)(0, a) ↪→ · · · ↪→V(0)(0, a) = L1(0, a),

so to get the bound for Ik,1 it suffices to prove that

‖t j f ( j)‖V(k−1− j) ≤Ck‖ f ‖V(k−1) for all j = 0, . . . , k − 1.

This is just a direct calculation:

‖t j f ( j)‖V(k−1− j) =

∫ a

0

∣∣∣∣∣(t j f ( j)
)(k−1− j)

(u)
∣∣∣∣∣uk−1− jdu

=

∫ a

0

∣∣∣∣∣k−1− j∑
m=0

(
k − 1 − j

m

)
(t j)(m)(u)( f ( j))(k−1− j−m)(u)

∣∣∣∣∣uk−1− jdu

=

∫ a

0

∣∣∣∣∣min{ j,k−1− j}∑
m=0

(
k − 1 − j

m

)
j!

( j − m)!
u j−m f (k−1−m)(u)

∣∣∣∣∣uk−1− jdu

≤Ck

min{ j,k−1− j}∑
m=0

‖ f ‖V(k−1−m)(0,a) ≤Ck‖ f ‖V(k−1)(0,a).
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As regards the second integral, Ik,2, one has

Ik,2 ≤

∫ a

0

∫ x

0
(yk| f (k)(y)| + kyk−1| f (k−1)(y)|)y|µ j(x − y)| dy dx

=

∫ a

0
(yk| f (k)(y)| + kyk−1| f (k−1)(y)|)y

∫ a−y

0
|µ j(s)| ds dy

≤C(‖ f ‖V(k)(0,a) + k‖ f ‖V(k−1)(0,a)) ≤Cn,a‖ f ‖V(k)(0,a).

Here we have applied Lemma 13(i), Fubini’s theorem, condition (i) and Remark 5.
(2) In the base case k = 1, for j ∈ {0, . . . , n − 1},

‖x(x f ∗ µ j)(x)‖(0,a] ≤ J1,1 + J1,2,

with

J1,1 := sup
0<x<a

∣∣∣∣∣∫ x

0
(x − y)µ j(x − y)y f (y) dy

∣∣∣∣∣,
and

J1,2 := sup
0<x<a

∣∣∣∣∣∫ x

0
y2µ j(x − y) f (y) dy

∣∣∣∣∣.
For the first supremum,

J1,1 ≤ sup
0<x<a

(∫ x

0
| f (y)|

(
y
∫ x−y

0
|dµ j+1|(s) + ( j + 1)y

∫ x−y

0
|dµ j|(s)

)
dy

)
≤C‖ f ‖1 ≤C‖ f ‖V(1)(0,a),

where we have applied conditions (ii) and (i) and Remark 5.
For the second supremum,

J1,2 = sup
0<x<a

∣∣∣∣∣−∫ x

0

(∫ x−y

0
dµ j(s)

)
[t2 f (t)]′(y) dy

∣∣∣∣∣
≤ sup

0<x<a

(∫ x

0

(
y
∫ x−y

0
|dµ j|(s)

)
(2| f (y)| + y| f ′(y)|) dy

)
≤C(2‖ f ‖1 + ‖ f ‖V(1)(0,a)) ≤ C‖ f ‖V(1)(0,a).

Now take k ∈ {2, . . . , n} and suppose that the statement is true for 0, 1, . . . , k − 1.
For j ∈ {0, . . . , n − k},

‖xk(x f ∗ µ j)(k−1)(x)‖(0,a] ≤ Jk,1 + Jk,2,

where

Jk,1 := sup
0<x<a

∣∣∣∣∣∫ x

0
(xk − yk)µ j(x − y)(t f )(k−1)(y) dy

∣∣∣∣∣,
and

Jk,2 := sup
0<x<a

∣∣∣∣∣∫ x

0
ykµ j(x − y)(t f )(k−1)(y) dy

∣∣∣∣∣.
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With a similar argument to that used to estimate Ik,1, we get

Jk,1 = sup
0<x<a

∣∣∣∣∣∫ x

0

k−1∑
l=0

xk−1−l
(∫ x−s

0
yl(t f )(k−1)(y) dy

)
dµ•(s)

∣∣∣∣∣
≤ Ak,1 + Bk,1,

where

Ak,1 := sup
0<x<a

∣∣∣∣∣∫ x

0

k−2∑
l=0

xk−1−l
(∫ x−s

0
yl(t f )(k−1)(y) dy

)
dµ•(s)

∣∣∣∣∣
and

Bk,1 := sup
0<x<a

∣∣∣∣∣∫ x

0

(∫ x−s

0
yk−1(t f )(k−1)(y) dy

)
dµ•(s)

∣∣∣∣∣.
For Ak,1, we proceed as we did for Ik,1:

Ak,1 = sup
0<x<a

∣∣∣∣∣∫ x

0

k−2∑
l=0

xk−1−l
l∑

j=0

(−1) j l!
(l − j)!

(x − s)l− j(t f )k−2− j(x − s) dµ•(s)
∣∣∣∣∣

= Ck

k−2∑
l=0

l∑
j=0

∥∥∥∥∥xk−1−l
((

t
l− j∑
i=0

Ci, j,l,kti f (i)
)
∗ µ•

)(k−2−l)

(x)
∥∥∥∥∥

(0,a]

≤Ck

k−2∑
l=0

l∑
j=0

∥∥∥∥∥ l− j∑
i=0

Ci, j,l,kti f (i)
∥∥∥∥∥
V(k−1−l)(0,a)

≤Ck‖ f ‖V(k−1)(0,a).

For Bk,1, we apply Fubini’s theorem and get

Bk,1 = sup
0<x<a

∣∣∣∣∣∫ x

0

(∫ x−y

0
dµ•(s)

)
yk−1(t f )(k−1)(y) dy

∣∣∣∣∣
≤ sup

0<x<a

∫ x

0

(∫ x−y

0
|dµ•|(s)

)
yk−1|(t f )(k−1)(y)| dy

≤ sup
0<x<a

∫ x

0

(
sup

0<y<x
y
∫ x−y

0
|dµ•|(s)

)
yk−2|(t f )(k−1)(y)| dy

≤C((k − 1)‖ f ‖V(k−2)(0,a) + ‖ f ‖V(k−1)(0,a)) ≤Ck‖ f ‖V(k−1)(0,a)

where we have used condition (i), Lemma 13(i) and Remark 5.
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Finally, for the second supremum,

Jk,2 = sup
0<x<a

∣∣∣∣∣∫ x

0

∫ y

0
dµ j(s)(k(x − y)k−1(t f )(k−1)(x − y)

+ (x − y)k(t f )(k)(x − y)) dy
∣∣∣∣∣

≤ sup
0<x<a

(∫ x

0
r
∫ x−r

0
|dµ j|(s)(k(k − 1)rk−2| f (k−2)(r)|

+ 2krk−1| f (k−1)(r)| + rk| f (k)(r)|) dr
)

≤ C(k(k − 1)‖ f ‖V(k−2)(0,a) + 2k‖ f ‖V(k−1)(0,a) + ‖ f ‖V(k)(0,a))

≤ Cn,a‖ f ‖V(k)(0,a),

where we have again applied condition (i) and Remark 5.
With all the above estimates, the proof is done. �

From Theorem 15 one immediately gets the following result.

C 16. Take n ≥ 1. Let µ0, . . . , µn−1 be n derivable functions on [0, a), and let
µn be a Borel measure on [0, a) satisfying

(i)

sup
0<s<a

s
∫ a−s

0
|dµ j|(t) <∞, j = 0, . . . , n,

(ii) ∫ s

0
dµ j+1(t) = s µ j(s) − ( j + 1)

∫ s

0
µ j(t) dt, s ∈ [0, a); 0 ≤ j ≤ n − 1.

Then the linear mapping f 7→ x f ∗ µ0 is a (bounded) derivation from V(n)(0, a) to
V(n)(0, a).

Q. Is every derivation D : V(n)(0, a)→V(n)(0, a) of the form given in
Corollary 16?

If we knew how to describe all the derivations on V(n)(0, a) then we could pose
naturally in this setting the problem of finding the automorphisms of the algebra
V(n)(0, a), and whether or not the group of such automorphisms is connected in the
operator norm topology onV(n)(0, a) (see [14] for n = 0).
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[12] J. E. Galé and A. Wawrzyńczyk, ‘Standard ideals in weighted algebras of Korenblyum and Wiener
types’, Math. Scand. 108 (2011), 291–319.

[13] J. E. Galé and A. Wawrzyńczyk, ‘Standard ideals in convolution Sobolev algebras on the half-line’,
Colloq. Math. 124 (2011), 23–34.

[14] F. Ghahramani, ‘The group of automorphisms of L1(0, 1) is connected’, Trans. Amer. Math. Soc.
314 (1989), 851–859.

[15] N. P. Jewell and A. M. Sinclair, ‘Epimorphisms and derivations on L1(0, 1) are continuous’, Bull.
Lond. Math. Soc. 8 (1976), 135–139.

[16] H. Kamowitz and S. Scheinberg, ‘Derivations and automorphisms of L1(0, 1)’, Trans. Amer. Math.
Soc. 135 (1969), 415–427.

[17] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and
Applications (Gordon and Breach, Yverdon, Switzerland, 1993).

JOSÉ E. GALÉ, Departamento de Matemáticas & IUMA,
Universidad de Zaragoza, 50009 Zaragoza, Spain
e-mail: gale@unizar.es

LUIS SÁNCHEZ-LAJUSTICIA, Departamento de Matemáticas & IUMA,
Universidad de Zaragoza, 50009 Zaragoza, Spain
e-mail: luiss@unizar.es

https://doi.org/10.1017/S1446788712000298 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000298

