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Electromagnetically driven flow in unsupported
electrolyte layers: lubrication theory and linear
stability of annular flow
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We consider a thin horizontal layer of a non-magnetic electrolyte containing a bulk
solution of salt and carrying an electric current. The layer is bounded by two deformable
free surfaces loaded with an insoluble surfactant and is placed in a vertical magnetic
field. The arising Lorentz force drives the electrolyte in the plane of the layer. We employ
the long-wave approximation to derive general two-dimensional hydrodynamic equations
describing symmetric pinching-type deformations of the free surfaces. These equations
are used to study the azimuthal flow in an annular film spanning the gap between two
coaxial cylindrical electrodes. In weakly deformed films, the base azimuthal flow and its
linear stability with respect to azimuthally invariant perturbations are studied analytically.
For relatively thick layers and weak magnetic fields, the leading mode with the smallest
decay rate is found to correspond to a monotonic azimuthal velocity perturbation. The
Marangoni effect leads to further stabilisation of the flow while perturbations of the solute
concentration in the bulk of the fluid have no influence on the flow stability. In strongly
deformed films in the diffusion-dominated regime, the azimuthal flow becomes linearly
unstable with respect to an oscillatory mixed mode characterised by the combination of
radial and azimuthal velocity perturbations when the voltage applied between electrodes
exceeds the critical value.

Key words: thin films

1. Introduction

Electromagnetically driven flows in shallow layers and channels of electrically conducting
fluids in the presence of deformable interfaces have attracted much attention due
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to their importance in plasma physics (Fiflis et al. 2016; Lunz & Howell 2019)
and various microfluidic applications including contactless manipulation of flow in
magnetohydrodynamic (MHD) networks (Bau et al. 2003), liquid channels embedded into
carrier fluids (Dunne et al. 2020), droplet microfluidics (Shang, Cheng & Zhao 2017) and
electromagnetic stirring (Bau, Zhong & Yi 2001; Qian & Bau 2005).

The comprehensive theoretical description of MHD flows of magnetic fluid films in
arbitrary strong magnetic fields is technically challenging as the hydrodynamic equations
must be coupled with Maxwell’s equations in the presence of deformable moving
boundaries. However, in the case of non-magnetic electrically conducting fluids, the
description can be greatly simplified. For this class of fluids, which comprises electrolyte
solutions and liquid metals with weak magnetic properties, the additional stresses that
typically appear at the interfaces due to externally applied magnetic fields can be
neglected. For relatively weak magnetic fields of the order of 10−2–100 T, which can be
created using conventional permanent magnets, the magnetic Reynolds number Rem =
UL/ηm associated with the flow of fluid with the magnetic diffusivity ηm in the domain
of a characteristic size L with velocity U, is typically small, Rem � 1. In this regime the
magnetic field induced by the electric current flowing through the fluid can be neglected
compared with the external field (Müller & Bühler 2013). With this simplification, the
MHD equations have been successfully applied to study flows of electrolitic solutions and
non-magnetic liquid metals such as mercury in various geometries. These include liquid
metal layers confined between two parallel insulating walls (Sommeria & Moreau 1982)
and in thin horizontal films (Sommeria 1986) and electrolyte solutions in annular channels
(Messadek & Moreau 2002; Figueroa et al. 2009; Pérez-Barrera, Ortiz & Cuevas 2016;
Suslov, Pérez-Barrera & Cuevas 2017; McCloughan & Suslov 2020).

Geometric parameters of the system such as the depth and aspect ratio of the layer
have been shown to have a major influence on the flow characteristics. In shallow
horizontal layers of electrolyte solutions with a depth of several milimetres and a small
depth-to-width aspect ratio placed between two coaxial vertical electrodes the flow was
found to be essentially three-dimensional even for relatively weak currents (Figueroa
et al. 2009; Pérez-Barrera et al. 2016; Suslov et al. 2017; McCloughan & Suslov 2020).
The quasi-two-dimensional approximation, developed in Figueroa et al. (2009) and
Pérez-Barrera et al. (2016) by using the depth-averaging method, could capture some of the
main features of the base azimuthal flow but was shown to be inadequate when describing
toroidal flows that lead to the formation of the experimentally observable free-surface
vortices (Suslov et al. 2017).

As the depth of a horizontal layer and the aspect ratio of the system are further
decreased, the vertical component of the flow velocity is impeded by the boundaries and
the horizontal component of the flow becomes dominant. The two-dimensional nature
of the flow in very thin liquid layers was used to study two-dimensional turbulence as
pioneered around four decades ago by Couder (1981, 1984) in experiments with soap films
that were mechanically stirred by an array of rods to produce a turbulent flow. At around
the same time Sommeria (1986) studied effectively two-dimensional flows in thin mercury
films with a free upper surface and supported from below by an array of conducting
electrodes. Instead of a mechanical stirring, a contactless electromagnetic Lorentz forcing
was used to drive the flow in the presence of highly non-uniform magnetic fields. Later,
similar contactless electromagnetic forcing was used to gain a deeper understanding of
the scaling properties of the velocity correlation function in turbulent regimes (Cardoso,
Marteau & Tabeling 1994; Marteau, Cardoso & Tabeling 1995; Williams, Marteau &
Gollub 1997). A comprehensive review of two-dimensional turbulence can be found, for
example, in Kellay & Goldburg (2002).
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Lorentz-force-driven flow in unsupported electrolyte layers

Historically, electromagnetic driving was extensively used in supported liquid layers,
but not in unsupported systems such as soap films. This, perhaps, was due to the intrinsic
instability of soap-type films and the difficulty of controlling their curvature. In fact,
to the best of our knowledge, the first attempt to use Lorentz force in unsupported free
films was made almost 20 years after Couder (1981, 1984) pioneered the film turbulence
studies. It used a soap film containing chloride salt spanning a region between two
parallel conducting electrodes placed above an array of permanent magnets (Rivera & Wu
2000). The main advantage of using an unsupported film when studying two-dimensional
turbulence is the elimination of energy leakage at the no-slip bottom of the container.
In a recent experimental study, Cruz Gómez (2016) investigated the flow dynamics in an
electromagnetically forced film in the case of a localised source of electric current. A series
of experiments with soap films spanning the gap between two coaxial electrodes placed
in an external magnetic field is currently under way (S. Cuevas & A. Figueroa, personal
communication 2023).

The theoretical description and modelling of electromagnetically driven flows in
supported films with a free interface are now well developed (Morley & Abdou 1995;
Morley & Roberts 1996; Morley & Abdou 1997; Gao & Morley 2002; Gao, Morley &
Dhir 2002; Morley, Smolentsev & Gao 2002; Miloshevsky & Hassanein 2010; Giannakis,
Fischer & Rosner 2009a; Giannakis, Rosner & Fischer 2009b; Lunz & Howell 2019) and
continue to attract attention mainly due to applications in plasma flows and tokamaks.
In the absence of the Lorentz force, the pure hydrodynamic description of the flow in
unsupported liquid films was initiated in Prévost & Gallez (1986), Sharma & Ruckenstein
(1988) and later received a huge boost because of its relevance to nonlinear film rupture
and two-dimensional turbulence problems (Couder, Chomaz & Rabaud 1989; Gharib &
Derango 1989; Chomaz & Cathalau 1990; Erneux & Davis 1993; Sharma et al. 1995;
Van De Fliert, Howell & Ockenden 1995; Wu et al. 1995) as reviewed in Kellay &
Goldburg (2002) and Oron, Davis & Bankoff (1997). In unsupported thin viscous films
the hydrodynamic equations are simplified using two main assumptions. Firstly, the
long-wave approximation is applied by taking into account large-scale flow patterns and
film deformations, the wavelength of which is much larger than the average film thickness.
Secondly, deformations of the free interfaces are assumed to be mirror symmetric with
respect to the centre plane of the layer, which corresponds to a varicose-type pinching
deformation mode. Under these assumptions, the effective two-dimensional dynamic
equations were derived at the leading order of the lubrication approximation for curved
soap films in the presence of a surfactant (Ida & Miksis 1998; Miksis & Ida 1998) and
for horizontally stretched free films in the presence of solute and surfactant (Chomaz
2001). So far, the application of the lubrication approximation to describe MHD flows
in unsupported free films of electrolyte solutions in external magnetic fields has not been
reported.

Here we build upon earlier theoretical studies (Ida & Miksis 1998; Miksis & Ida 1998;
Chomaz 2001) to derive the leading-order dynamic equations for an electromagnetically
driven two-dimensional flow in a thin free horizontal layer of electrolyte solution the free
surfaces of which are loaded with an insoluble surfactant. The flow is driven by the Lorentz
force generated by the electric current flowing through the electrolyte in the presence of a
homogeneous external magnetic field normal to the layer. We show that at the leading order
of the lubrication approximation the product of the current density and the local thickness
of the layer is divergence free reflecting the condition of no accumulation of electric charge
in the bulk. The complete set of the derived dynamic equations is written in an invariant
vector form suitable for applications in arbitrary geometries. It consists of the dynamic
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Figure 1. (a) Symmetric deformation mode in a horizontal free liquid film with two deformable surfaces
located at z = ±h(x, y, t). The flow field u = (u, v, w) is mirror symmetric with respect to the centre plane
z = 0. (b–e) The top view of the system: four possible topological configurations of a free film spanning space
between two electrodes (1, 2). The surface of each electrode ∂Σ represents a no-slip equipotential boundary
impenetrable for surfactant and electrolyte solution.

equation for the two-dimensional flow field depending on the solute concentration in the
bulk, surfactant concentration, symmetric film deformations and the electric potential. As
an example, we apply the derived equations to study the azimuthal flow and its linear
stability in annular free films spanning the gap between two coaxial conducting electrodes.

The paper is organised as follows. In § 2 we present the derivation of the leading-order
equations in the lubrication approximation using the systematic expansion technique
suggested earlier in Erneux & Davis (1993) and Chomaz (2001). The derived equations
correctly reflect the conservation of the total mass of the surfactant and solute as well as
the continuity of electric current under the condition of no accumulation of the electric
charge in the fluid. In § 3 we rewrite the derived equations in polar coordinates to
study the flow in annular free films. In § 4 we study the linear stability of the annular
azimuthally invariant steady state with respect to perturbations that depend only on the
radial coordinate. We present analytical results for the linear stability of a flat film and
vanishingly small flow velocities first. Subsequently, we use the numerical continuation
method (Krauskopf, Osinga & Galan-Vioque 2014; Doedel, Wang & Fairgrieve 1994) to
study the stability of a strongly deformed layer. The obtained theoretical and computational
results are summarised in § 5.

2. Lubrication theory of electrically conducting free films in an external magnetic
field

Consider a horizontal free film of an electrolyte solution, which can be created by
supporting the weight of the film by the pressure difference between the regions below
and above the film. Following Erneux & Davis (1993) and Chomaz (2001) we exclude
film bending and only consider symmetric pinching-type surface deformation modes z =
±h(x, y, t) with each surface being a mirror image of the other at all times as schematically
shown in figure 1(a). Here, x and y are the coordinates in the horizontal plane, z is a vertical
coordinate and t is time. The local thickness of the film is 2h and the average film thickness
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Lorentz-force-driven flow in unsupported electrolyte layers

is

2〈h〉 = 2S−1
∫

S
h(x, y, t) dx dy, (2.1)

where S denotes the area of the centre plane z = 0.
Our focus on symmetric film surface deformations is prompted by the observation

that in the absence of a pressure difference across the film and in the case of
symmetrical boundary conditions for the lower and the upper interfaces, the squeezing
deformation mode is expected to be the least stable (Erneux & Davis 1993; Chomaz
2001). Note however that non-symmetric deformations may become dominant in the
transient nonlinear regimes. In the absence of the Lorentz force, the general set of the
leading-order equations in the lubrication approximation that takes into account both
symmetric and non-symmetric deformations was formulated in Ida & Miksis (1998).
However, all subsequent applications of their general theory including stability of planar
films and spherical bubbles were discussed for symmetric deformation modes (Miksis &
Ida 1998; Chomaz 2001).

Each surface of the film is loaded with an insoluble surfactant with local concentration
cs. The addition of surfactants is particularly important in soap films that contain fatty
acid carboxylates, which are typically found at the surface. The electrolyte solution is
composed of a solvent fluid (typically pure water) and dissociated salt molecules with
bulk concentration cb. In what follows we assume that salt is completely soluble and does
not form a molecular surface layer. Two electrodes are immersed in the fluid so that the
electric current can flow between them through the film when external voltage is applied.
One may consider at least four possible topological configurations of a free film spanning
space between two electrodes as shown in figures 1(b)–1(e). The surface of the electrodes
∂Σ is assumed to be chemically inert and impenetrable to the surfactant and the solute in
the film. In addition, the flow field u vanishes at ∂Σ .

The electrical conductivity σ of the electrolyte solution generally depends on cb.
The solution density ρ and dynamic viscosity μ (kinematic viscosity ν = μ/ρ) are
assumed to be constant and independent of cb. The externally applied magnetic field
B = (0, 0, B(x, y)) is assumed to be significantly stronger than that induced by the motion
of the fluid. In what follows we neglect gravity effects anticipating that hydrostatic pressure
in a submicrometre thin free film is negligible as compared with the Laplace pressure.
The motion of the incompressible fluid with three-dimensional velocity u = (u, v, w) is
described by the continuity and Navier–Stokes equations with the added Lorentz force
term (Müller & Bühler 2013)

∇ · u = 0, (2.2)

∂tu + (u · ∇)u = − 1
ρ

∇( p − Π) + μ

ρ
∇2u + 1

ρ
j × B, (2.3)

where p is the pressure in the fluid and Π = Π(h(x, y, t)) represents the disjoining
pressure due to intermolecular forces that become important when the film thickness
is approximately 100 nm or less (Overbeek 1960; Israelachvili 2011). Because of the
symmetry of the pinching mode, the horizontal flow velocity components (u, v) and the
vertical velocity component w should be an even and odd function of z, respectively.

The current density j = ( jx, jy, jz) is related to the electric potential φ via Ohm’s law

j = σ(cb)(−∇φ + u × B). (2.4)

For electrolyte solutions, we assume linear dependence between conductivity σ and cb,

σ(cb) = Kcb, (2.5)
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where K is an empirical constant specific to a particular salt and solvent. Under the
condition of no accumulation of electric charge in the bulk, the electric potential φ is
found from

∇ · j = 0, (2.6)

which must be solved instantaneously for any given velocity field u. Additionally, the
current continuity condition (2.6) must be supplemented with the boundary conditions for
φ that correspond to the equipotential surfaces ∂Σ of the conducting electrodes.

Note that for a magnetic field B = (0, 0, B) orthogonal to the layer j × B =
B( jy, −jx, 0), j = σ(cb)(−∂xφ + Bv, −∂yφ − Bu, −∂zφ) and u × B = B(v, −u, 0). The
normal component of the electric current vanishes at the film surfaces. Thus, at z = h
we require

jn = j · n = 0, (2.7)

where n = (−∂xh, −∂yh, 1)/

√
1 + (∂xh)2 + (∂yh)2 is the unit normal vector to the upper

film surface directed away from the fluid.
At z = h, the kinematic boundary condition applies, i.e.

∂th + (u · ∇‖)h = w, (2.8)

where ∇‖ = (∂x, ∂y) is the horizontal gradient. Note that (2.8) can also be written in the

equivalent form as ∂th =
√

1 + (∇‖h)2(n · u).
To describe the dynamics of surfactant and the concentration of salt in the bulk of the

fluid, we follow Jensen & Grotberg (1993). The bulk concentration cb is described by the
advection–diffusion equation

∂tcb + ∇ · (ucb − db∇cb) = 0, (2.9)

where db is the bulk diffusion coefficient, ucb is the advective flux and −db∇cb is the
diffusive flux.

The advection–diffusion equation for the surfactant concentration at the upper film
surface z = h(x, y, t) is given by

∂tcs + ∇s · (csu) = ds∇2
s cs, (2.10)

where ds is the surface diffusivity of the surfactant and ∇s = ∇ − n(n · ∇) is the surface
gradient.

At z = h the diffusive flux normal to the film surface must vanish, i.e.

n · ∇cb = 0. (2.11)

It can be shown that (2.11) supplemented with the condition that the flow velocity u and
the normal diffusive fluxes of surfactant and solute vanish at the surface of the electrodes
leads to the conservation of the total mass of the solute and the surfactant.

Next, we consider the balance of the normal and tangential forces at the upper surface
z = h(x, y, t):

( p + Γ κ)n = ∇sΓ + T · n. (2.12)

Here, T = μ[∇ ⊗ u + (∇ ⊗ u)T] is the viscous stress tensor, κ(x, y, t) is the local mean
curvature of the surface defined as κ = −∇ · n, Γ (x, y, t) is the local surface tension, ⊗ is
the tensor product and the superscript T denotes transposed quantities. In what follows we
assume that the liquid is non-magnetic and the applied magnetic field is relatively weak so
that the Maxwell component in the stress tensor can be completely neglected.
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The gradient of the surface tension along the interface ∂sΓ is induced by the distribution
of the surfactant according to the soluto-Marangoni effect

Γ (x, y, t) = γ − ΓMcs(x, y, t), (2.13)

where γ is the reference surface tension in the absence of a surfactant and ΓM =
−dΓ/dcs > 0 is assumed to be constant. The balance of forces at the lower surface
z = −h(x, y, t) is automatically achieved for symmetric deformation modes. Note that in
the case of a nonlinear dependence of the surface tension on the surfactant concentration,
the coefficient ΓM is concentration dependent. Such a nonlinear equation of state may lead
to different physical outcomes and would require a separate study.

The horizontal length scale L of the flow in submicrometre thin films is several orders
of magnitude larger than the average film thickness 2〈h〉. The long-wave approximation
theory of one-dimensional free films in the absence of a surfactant and an electric
current was developed some 30 years ago (Erneux & Davis 1993) using systematic
expansion of the Navier–Stokes equations for a small lubrication parameter ε = 〈h〉/L �
1. Subsequently, the theory was generalized to describe two-dimensional flat and curved
free films loaded with soluble and insoluble surfactant agents (Ida & Miksis 1998; Miksis
& Ida 1998; Chomaz 2001). Here we extend earlier results to derive the leading-order
equations for long-wave symmetric deformations of a free electrically conducting film
placed in an external magnetic field.

We scale horizontal coordinates (x, y) with L and the vertical coordinate z and the local
interface deflection h(x, y, t) with 〈h〉 = εL. The horizontal fluid velocity (u, v) is scaled
with some reference velocity U = O(1), the vertical velocity w with εU = O(ε), time
with L/U = O(1) and the pressure and the disjoining pressure with ρU2. The magnetic
field B(x, y) is non-dimensionalised using some reference value B̃ while the scaling for the
electric potential is UB̃L. The bulk salt and the surface surfactant concentrations are scaled
using arbitrary reference concentrations c(0)

b and c(0)
s , respectively, so that the conductivity

σ(cb) is scaled with Kc(0)
b . The dimensionless bulk equations (2.2), (2.3), (2.6) and (2.9)

then become

∂xu + ∂yv + ∂zw = 0, (2.14)

∂tu + (u∂x + v∂y + w∂z)u = −∂x[ p − Π ] + Re−1
(
∂2

x + ∂2
y + ε−2∂2

z

)
u

− Ha2 Re−1cbB(Bu + ∂yφ), (2.15)

∂tv + (u∂x + v∂y + w∂z)v = −∂y[ p − Π ] + Re−1
(
∂2

x + ∂2
y + ε−2∂2

z

)
v

− Ha2 Re−1cbB(Bv − ∂xφ), (2.16)

∂tw + (u∂x + v∂y + w∂z)w = −ε−2∂zp + Re−1
(
∂2

x + ∂2
y + ε−2∂2

z

)
w, (2.17)

∂x[cb(Bv − ∂xφ)] − ∂y[cb(Bu + ∂yφ)] − ε−2∂z[cb∂zφ] = 0, (2.18)

∂tcb + u∂xcb + v∂ycb + w∂zcb = Sc−1 Re−1
(
∂2

x + ∂2
y + ε−2∂2

z

)
cb, (2.19)

where we used the same notations for the dimensionless quantities and introduced the
Reynolds (Re), Hartmann (Ha), Péclet (Pe) and Schmidt (Sc) numbers defined as

Re = ULρ

μ
, Ha2 = B̃

2
L2Kc(0)

b
μ

, Pe = LU
ds

, Sc = μ

ρdb
. (2.20a–d)
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From (2.12), the dimensionless normal and the tangential balances of stresses at z = h are
given by

p + (Ca Re)−1
(
∂2

x h + ∂2
y h
)

= 2 Re−1 (∂zw − ∂xh∂zu − ∂yh∂zv
)+ O(ε2), (2.21)

−MaPe−1∂xcs = ε−2∂zu +
[

− 2∂xh∂xu − ∂yh(∂yu + ∂xv) + ∂xw

− (∂xh)2∂zu − ∂xh∂yh∂zv + 2∂xh∂zw
]

+ O(ε2), (2.22)

−MaPe−1∂ycs = ε−2∂zv +
[

− 2∂yh∂yu − ∂xh(∂xv + ∂yu) + ∂yw

− (∂yh)2∂zv − ∂xh∂yh∂zv + 2∂yh∂zw
]

+ O(ε2), (2.23)

with the capillary (Ca) and Marangoni (Ma) numbers defined as

Ca = μUL
〈h〉γ , Ma = c(0)

s ΓML2

〈h〉μds
. (2.24a,b)

The scaled boundary condition for the electric current (2.7), the kinematic condition (2.8),

the surfactant equation (2.10) and (2.11) multiplied by
√

1 + (∂xh)2 + (∂yh)2 are given by

0 = (∂xφ − Bv)∂xh + (∂yφ − Bu)∂yh + ε−2∂zφ, (2.25)

∂th = −u∂xh − v∂yh + w, (2.26)

∂tcs = −∂x[ucs] − ∂y[vcs] + Pe−1
(
∂2

x + ∂2
y

)
cs + O

(
ε2
)
, (2.27)

0 = ∂xh∂xcb + ∂yh∂ycb − ε−2∂zcb. (2.28)

Crucial for further analysis is to determine the order of magnitude of all dimensionless
parameters appropriate for the physical regime of interest. Following Chomaz (2001)
we assume that, for free liquid films, the inertial effects play an essential role implying
that Re = O(1). The leading contribution to pressure in the fluid is anticipated to come
from the Laplace pressure, which implies that Ca = O(1). Note that, for example, for
slipper bearing flows and liquid films on a solid substrate, the capillary number scales
as Ca = (Uμ/γ )ε−3 = O(1) (Oron et al. 1997). We assume that the Marangoni effect is
weak so that at the leading order the film surfaces can be considered stress free (Chomaz
2001). This can be achieved by setting Ma = O(1). An additional assumption must be
made regarding the strength of the magnetic field and the induced electric current. Here
we consider weakly conducting electrolytes in weak magnetic fields and assume that the
Lorentz force is of the same order of magnitude as the viscous force in the absence of
vertical shear, i.e. ∇2

‖u ∼ Ha2∇‖φ. This implies that Ha = O(1).
All fields in (2.14)–(2.28) are then expanded into a series in powers of ε2, e.g. u = u0 +

ε2u1 + . . . with ui = O(1), and the leading zero-order equations are derived by following
the procedure outlined in Erneux & Davis (1993) and Chomaz (2001). At the zeroth order,
the equations for h0, u0, v0, w0, p0 and (cs)0 are identical to those derived in Chomaz
(2001) as the Lorentz force enters the equations only at the next order. Therefore, u0, v0
and p0 are independent of z and w0 = −(∂xu0 + ∂yv0)z.
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Lorentz-force-driven flow in unsupported electrolyte layers

At the leading order, from (2.18) and (2.19) we obtain for the electric potential φ0 and
the bulk concentration (cb)0,

∂z[(cb)0 ∂zφ0] = 0, ∂2
z (cb)0 = 0. (2.29a,b)

Since ∂zφ0 = ∂z(cb)0 = 0 at z = h0, from (2.25) and (2.28) we conclude that both (cb)0
and φ0 are independent of z.

The surfactant concentration (cs)0 satisfies the two-dimensional advection–diffusion
equation

∂t(cs)0 + ∇‖ · [(cs)0u0] = Pe−1∇2
‖(cs)0, (2.30)

where u0 = (u0, v0) is the leading-order horizontal velocity. The kinematic equation
(2.26) together with w0(z = h0) = −(∇‖ · u0)h0 yield the evolution equation for the local
film deformation

∂th0 + ∇‖ · [h0u0] = 0. (2.31)

At the next order, the Navier–Stokes equations for the horizontal flow contain the
Lorentz force terms

∂tu0 + (u0∂x + v0∂y)u0 = −∂x[ p0 − Π0] + Re−1
(
∂2

x + ∂2
y

)
u0

− Ha2 Re−1(cb)0B0(B0u0 + ∂yφ0 + Re−1∂2
z u2, (2.32)

∂tv0 + (u0∂x + v0∂y)v0 = −∂y[ p0 − Π0] + Re−1
(
∂2

x + ∂2
y

)
v0

− Ha2 Re−1(cb)0B0(B0v0 − ∂xφ0) + Re−1∂2
z v2, (2.33)

where the electric potential φ2 satisfies the equation

∂x[(cb)0(B0v0 − ∂xφ0)] − ∂y[(cb)0(B0u0 + ∂yφ0)] + (cb)0∂
2
z φ2 = 0. (2.34)

The boundary condition for φ2 at the film surface z = h0 obtained from (2.25) is

∂zφ2 = (B0u0 + ∂yφ0)∂yh0 − (B0v0 − ∂xφ0)∂xh0. (2.35)

Equation (2.34) shows that φ2 is a quadratic function of z,

φ2 = A(x, y)z2 + B(x, y)z + C(x, y), (2.36)

Since for symmetric deformations the potential φ must be an even function of z, we set
B(x, y) = 0 and determine A(x, y) from the boundary condition (2.35) to obtain

φ2 = − [(B0v0 − ∂xφ0)∂xh0 − (B0u0 + ∂yφ0)∂yh0]z2

2h0
+ C(x, y). (2.37)

Finally, substituting (2.37) into (2.34) we obtain

∂x[(cb)0(B0v0 − ∂xφ0)] − ∂y[(cb)0(B0u0 + ∂yφ0)]

+ (cb)0[(B0v0 − ∂xφ0)∂xh0 − (B0u0 + ∂yφ0)∂yh0]
h0

= 0. (2.38)

Multiplying (2.38) by h0 and introducing the current j0 = (cb)0(u0 × B0 − ∇‖φ0) we
rewrite (2.38) in an invariant vector form,

∇‖ · (h0 j0) = 0. (2.39)

Equation (2.39) represents the continuity equation for the electric current per unit length
of the cross-section of the film.
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A. Pototsky and S.A. Suslov

Next, we eliminate u2 and v2 from (2.33) by taking into account the boundary conditions
for the tangential and normal components of the stress tensor at z = h0. Because the
electromagnetic component of the viscous stress tensor is neglected here, the result of
the elimination procedure is identical to that of Chomaz (2001). Consequently, we arrive
at the leading-order dynamic equation for u0 including the Lorentz force

∂tu0 + (u0 · ∇‖)u0 = dΠ0

dh0
∇‖h0 + (Ca Re)−1∇‖∇2

‖h0 + 3 Re−1∇‖(∇‖ · u0)

+ Re−1∇2
‖u − (Re Pe)−1 Ma

h0
∇‖(cs)0 + Re−1

h0
V

+ Ha2 Re−1j0 × B0, (2.40)

where we replaced the vector (cb)0B0[(−∂yφ0, ∂xφ0) − B0u0] with j0 × B0 and introduced
an additional flow field

V = 2(∇‖h0 · ∇‖)u0 + ∇‖h0 × (∇‖×u0) + 2∇‖h0(∇‖ · u0) (2.41)

that can be associated with the so-called extensional Trouton viscosity.
To close the system of leading-order dynamic equations, we derive the equation for

the bulk concentration (cb)0. At the leading order, from (2.29a,b) we see that (cb)0 is
independent of z. At the next order, from (2.19) we obtain

∂t(cb)0 + u0∂x(cb)0 + v0∂y(cb)0 = Sc−1 Re−1(∂2
x + ∂2

y )(cb)0 + Sc−1 Re−1∂2
z (cb)2.

(2.42)

The boundary condition at z = h0 following from (2.28) reads

∂z(cb)2 = ∂xh0∂x(cb)0 + ∂yh0∂y(cb)0. (2.43)

For a symmetric mode and according to (2.42), the field (cb)2 is a quadratic function of z:
(cb)2 = a(x, y, t)z2 + c(x, y, t). Applying (2.43) we write

(cb)2 = ∂xh0∂x(cb)0 + ∂yh0∂y(cb)0

2h0
z2 + c(x, y, t). (2.44)

Substituting (2.44) into (2.42) we obtain

∂t(cb)0 + u0∂x(cb)0 + v0∂y(cb)0 = Sc−1 Re−1(∂2
x + ∂2

y )(cb)0

+ Sc−1 Re−1 ∂xh0∂x(cb)0 + ∂yh0∂y(cb)0

h0
. (2.45)

Multiplying (2.45) by h0 and using the kinematic condition (2.31) we arrive at

∂t[h0(cb)0] + ∇‖ · [h0u0(cb)0] = Sc−1 Re−1∇‖ · [h0∇‖(cb)0]. (2.46)

Equation (2.46) is identical to the transport equation for the solute concentration
obtained at the leading order of the lubrication approximation after averaging over the
film cross-section that was derived in Jensen & Grotberg (1993). It generalizes the
leading-order equation for the bulk concentration derived in Chomaz (2001) to the case
of large film deformations.
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Lorentz-force-driven flow in unsupported electrolyte layers

We summarise our results by writing the complete set of dimensional governing
equations using physical variables and parameters:

ρ(∂tu + (u · ∇‖)u) = g(h)∇‖h + γ∇‖∇2
‖h + μ∇2

‖u + 3μ∇‖(∇‖ · u)

−ΓM

h
∇‖cs + μV

h
+ j × B,

V = 2(∇‖h · ∇‖)u + ∇‖h × (∇‖×u) + 2∇‖h(∇‖ · u),

∇‖ · (hj) = 0,

j = Kcb[u × B − ∇‖φ],

∂th = −∇‖ · (hu),

∂t(hcb) = −∇‖ · (hcbu) + db∇‖ · (h∇‖cb),

∂tcs = −∇‖ · (csu) + ds∇2
‖cs.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.47)

Here we introduced function g(h) = dΠ(h)/dh and dropped subscript 0. In the case of
soluble surfactants, an additional bulk concentration field must be introduced the dynamics
of which is described by the reaction–diffusion equation including the sorption–desorption
fluxes (Chomaz 2001). Note that (2.47) are written in a compact vector form, which is
invariant with respect to the choice of a coordinate system. This is especially important in
applications with non-rectangular geometry as exemplified in the next section.

3. Azimuthal flow in an annular free film between two coaxial cylinders

Electromagnetically driven flows of electrolytes in an annulus bounded by cylindrical
vertical electrodes and a solid bottom have been extensively studied experimentally and
theoretically (e.g. Pérez-Barrera et al. 2016; Suslov et al. 2017; McCloughan & Suslov
2020). It was found that the steady azimuthal flow may become unstable giving rise to
free-surface vortices developing close to the outer cylindrical wall. The steady flow field
has a three-dimensional toroidal structure while the deformation of the upper free surface
is negligible.

However, in thin liquid layers the film deformation can no longer be neglected as
demonstrated in Wu et al. (1995) using a mechanically driven flow in an unsupported
soap film spanning the gap between two thin coaxial discs. If the outer disc is fixed and
the inner one is rotated, the fluid is set in motion in an azimuthal direction similar to a
Couette cell flow. Centrifugal forces push the liquid towards the outer disc making the
film thinner near the inner disc. Rather unexpectedly, the flow was found to be laminar and
the onset of turbulence was not observed even at the linear rotation speed of up to 3 ms−1.

Inspired by these experiments, we consider an electromagnetically driven flow in an
unsupported free film between two conducting coaxial cylindrical electrodes with radii R1
and R2 > R1 and placed in a vertical uniform magnetic field B = (0, 0, B) as schematically
shown in figure 2. The potential difference between the inner and outer electrodes is V .

In what follows we scale the radial coordinate r with R2 − R1, the film thickness
h with its average value 〈h〉 and choose the flow velocity scale in such a way
that Ca Re = 1 in (2.20a–d), that is, U =

√
γ 〈h〉/(ρ(R2 − R1)2). With B used as the

magnetic field scaling, the Hartmann number becomes Ha2 = B2(R2 − R1)
2Kc(0)

b /μ,
where c(0)

b is the average solute concentration in the bulk. We scale the electric potential
with voltage V applied between the electrodes and introduce a new dimensionless
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R2

R2

R1

R1

2h

B

Magnet

(a) (b)

Figure 2. The top (a) and side (b) views of the radial cross-section of an annular free film of electrically
conducting fluid spanning the gap between two coaxial cylindrical electrodes with radii R1 and R2 > R1. The
film is placed in a vertical uniform magnetic field B = (0, 0, B). Electric current flowing through the film
between the two electrodes generates a Lorentz force that drives the flow azimuthally.

parameter W = Kc(0)
b BV/(ρU2) that characterises the strength of the electric component

Kc(0)
b BV/(R2 − R1) of the Lorentz force acting on a unit volume of fluid relative to the

radial pressure gradient ρU2/(R2 − R1). Parameter W is similar to the Lorentz force
parameter Q = ulor/uvisc introduced in Piedra et al. (2018), where ulor = Kc(0)

b BV(R2 −
R1)/μ is the characteristic velocity determined from the balance between the Lorentz force
and viscous dissipation and uvisc = μ/(ρ(R2 − R1)) is the viscous velocity scale. Thus,
in the scaling used here the effective Lorentz force parameter is given by Q = Re W =
Kc(0)

b BV(R2 − R1)/(μU). It quantifies the ratio of ulor and the characteristic flow velocity
scale U. Note that since Re Ca = 1, the Lorentz force parameter can also be expressed as
Q = W/Ca. Scaling back to the physical variables we obtain

Q = Kc(0)
b BV(R2 − R1)

2

μ

√
ρ

γ 〈h〉 . (3.1)

All other dimensionless parameters Ma, Ha, Ca, Pe and Sc are obtained from (2.20a–d)
by setting L = R2 − R1. The dimensionless inner and outer radii are given by α and 1 + α,
respectively, where α = R1/(R2 − R1). The concentration of a surfactant is scaled using
the average value c(0)

s . Using the same symbols for non-dimensionless fields, we convert
the invariant form of (2.47) to polar coordinates (r, θ) and obtain

∂tur + ur∂rur + uθ

r
∂θur − u2

θ

r

= g(h)∂rh + ∂r

(
∂rh
r

+ ∂2
r h + ∂2

θ h
r2

)
+ Ca

(
∂rur

r
+ ∂2

r ur + ∂2
θ ur

r2 − ur

r2 − 2∂θuθ

r2

)

− Ca Ha2ur − Ca Q
∂θφ

r
+ Ca

h
Vr + 3 Ca ∂r

(
ur

r
+ ∂rur + ∂θuθ

r

)
− Ca Ma

Pe
∂rcs

h
,

(3.2)
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Lorentz-force-driven flow in unsupported electrolyte layers

∂tuθ + ur∂ruθ + uθ

r
∂θuθ + uθur

r

= 1
r

g(h)∂θh + 1
r
∂θ

(
∂rh
r

+ ∂2
r h + ∂2

θ h
r2

)
+ Ca

(
∂ruθ

r
+ ∂2

r uθ + ∂2
θ uθ

r2 − uθ

r2 + 2∂θur

r2

)

+ Ca Q∂rφ + Ca
h

Vθ − Ca Ha2uθ + 3 Ca
r

∂θ

(
ur

r
+ ∂rur + ∂θuθ

r

)
− Ca Ma

Pe
∂θcs

hr
,

(3.3)

with

Vr = 2
(

∂rh∂rur + 1
r2 ∂θh∂θur − 1

r2 uθ ∂θh
)

+ 1
r2 (∂r[ruθ ] − ∂θur)∂θh

+ 2
r
(∂r[rur] + ∂θuθ )∂rh, (3.4)

Vθ = 2
(

∂rh∂ruθ + 1
r2 ∂θh∂θuθ + 1

r2 ur∂θh
)

− 1
r
(∂r[ruθ ] − ∂θur)∂rh

+ 2
r2 (∂r[rur] + ∂θuθ )∂θh. (3.5)

The dynamic equations for the salt and surfactant concentrations and the kinematic
condition are given by

∂t[hcb] + 1
r
(∂r[rhcbur] + ∂θ [hcbuθ ]) = Sc−1 Re−1

r2 [r∂r[rh∂rcb] + ∂θ [h∂θcb]], (3.6)

∂tcs + 1
r
(∂r[rcsur] + ∂θ [csuθ ]) = Pe−1

r2 [r∂r[r∂rcb] + ∂2
θ cs], (3.7)

∂th + 1
r
(∂r[rhur] + ∂θ [huθ ]) = 0. (3.8)

The system is completed by the continuity equation for the electric current

∂r[cbrh(Ca Ha2uθ − Ca Q∂rφ)] − ∂θ

[
cbh
r

(Ca Ha2rur + Ca Q∂θφ)

]
= 0. (3.9)

The system of equations (3.3)–(3.9) admits a steady solution that corresponds to the
azimuthal flow field ur = 0, uθ = f (r) induced by axisymmetric electric potential φ(r)
in a film with axisymmetric profile h(r) containing uniformly dissolved salt with constant
bulk concentration cb = 1 and covered by a uniformly distributed surfactant with a surface
concentration cs = 1. In what follows we study the properties and linear stability of the
base azimuthal flow field, the instability of which determines the onset of the secondary
possibly non-axisymmetric finite-amplitude flows.

The functions f (r), h(r) and φ(r) are found from(
(rh′)′

r

)′
+ g(h)h′ + f 2

r
= 0, (3.10)

f ′′ + f ′

r
− f

r2 − Ha2 f + Qφ′ + h′

h

(
f ′ − f

r

)
= 0, (3.11)

(rh(Qφ′ − Ha2 f ))′ = 0, (3.12)

where primes denote the radial derivative d/dr.
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Equation (3.12) is integrated once to yield

φ′ = Ha2

Q
f − e

rh
, (3.13)

where constant e is linked to the potential difference φ(1 + α) − φ(α) = 1 between the
electrodes via

1 = Ha2

Q

∫ 1+α

α

f (r) dr − e
∫ 1+α

α

dr
rh

. (3.14)

The term e/(rh) in (3.13) is related to the radial current density

jr = Ca Ha2f − Ca Qφ′ = Ca Qe
rh

. (3.15)

The total steady current through the vertical cylindrical section of the film at any radial
location α ≤ r ≤ 1 + α is independent of the radius of a cross-section and is given by
4πrhjr = 4π Ca Qe.

Eliminating φ from (3.11), we obtain two coupled equations for f and h,(
(rh′)′

r

)′
+ g(h)h′ + f 2

r
= 0, (3.16)

f ′′ + f ′

r
− f

r2 − Q
e
rh

+ h′

h

(
f ′ − f

r

)
= 0. (3.17)

Fluid velocity vanishes at the surface of the electrodes leading to f (α) = f (1 + α) = 0.
The boundary condition for the film deformation must be compatible with the long-wave
approximation used here, which only takes into account relatively small film slopes h′ �
1. In what follows we assume that h′(α) = h′(1 + α) = 0.

We are looking for a solution of the boundary value problems (3.16) and (3.17) that
corresponds to a given average film half-thickness

2
1 + 2α

∫ 1+α

α

h(r)r dr = 1 (3.18)

and satisfies the additional integral condition (3.14) for any given value of the applied
voltage V that only appears in the definition of parameter Q.

For reference, we derive the approximate analytic solution that corresponds to the flow
in a flat undeformed film. By setting h = 1 and neglecting the centrifugal acceleration
f 2/r, we find from (3.17) and (3.14) that

f = αeQ
[
C
(α

r
− r

α

)
+ r

2α
ln

r
α

]
, (3.19)

where

C = (1 + α)2 ln (1 + α−1)

2(1 + 2α)
, e = 1

α2 Ha2D − ln(1 + α−1)
,

D = C ln
(

1 + α−1
)

− 1 + 2α

8α2 .

⎫⎪⎪⎬
⎪⎪⎭ (3.20)

To find non-trivial solutions of the boundary value problem (3.16), (3.17) with the integral
condition (3.18), we use a numerical continuation package AUTO (Doedel et al. 1994;
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Figure 3. (a) Maximum fluid velocity in a free annular film as a function of the Lorentz force parameter Q
for Ha2 = 1.3 × 10−3 and α = 1. The dashed and solid lines correspond to the flat-film approximation (3.19)
and the numerical solution, respectively. (b) Minimum film thickness hmin at the inner cylinder as a function of
the applied voltage. The dashed line depicts the power law function ∼(Q)−2.4. (c) Film thickness h(r) for the
values of �φ at points 1 and 2 labelled in panel (a). (d) Velocity f (r) for solutions at points 1 and 2 in panel
(a) (solid lines) and corresponding to the flow in the flat-film approximation (3.19) (dashed lines).

Krauskopf et al. 2014). The trivial solution f = 0 and h = 1 that exists for Q = 0 is used
as a starting point for numerical continuation with Q being gradually increased.

In the absence of the disjoining pressure, that is, for g(h) = 0, the boundary value
problem (3.16), (3.17), (3.14), (3.18) has an important scaling property. Namely, it contains
three dimensionless parameters, Ha, α and the Lorentz force parameter Q, but only Q
depends explicitly on the dimensional layer thickness 2〈h〉. This implies that, for any fixed
Ha and α, there exists a universal branch of solutions parameterised by (3.1). A solution
that corresponds to an arbitrary value of the average film half-thickness 〈h〉 and an arbitrary
applied voltage V is found on the universal branch for the corresponding value of Q.

Taking into account the above scaling property we consider a free film with an arbitrary
average half-thickness 〈h〉 spanning the gap between cylindrical electrodes with radii
R1 = 1 cm and R2 = 2 cm (α = 1). As an example, we chose fluid properties and a
magnetic field strength similar to those used in Pérez-Barrera et al. (2016) and Suslov et al.
(2017): Kc(0)

b = σ = 5 (Ohm m)−1, μ = 0.001 kg m s−1, ρ = 1000 kg m−3, B = 0.05 T.
Additionally, we use γ = 0.03 N m−1 for the surface tension coefficient. These correspond
to Ha2 ≈ 1.3 × 10−3. As the solution measure, we take the maximum flow velocity
fmax and the minimum film thickness hmin attained at the inner cylinder (r = α). The
numerically obtained maximum velocity fmax is shown in figure 3(a) by the solid line
while the value found from the flat-film approximation (3.19) is depicted by the dashed
line. The minimum film thickness is shown in the log-log scale in figure 3(b) indicating
that hmin asymptotically approaches zero as a power law function ∼Q−2.4. This implies
that the solution exists for any fixed value of Q no matter how large it is. However, the film
thickness becomes vanishingly small at the inner electrode indicating that the film is likely
to rapture there.
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We also emphasise that all results presented in this paper are obtained by neglecting
the disjoining pressure. This introduces a natural limitation on their applicability for films
that are thinner than approximately 100 nm. For example, if 〈h〉 = 10 μm as in figures 5
and 6 in § 4, the smallest dimensionless film thickness hmin = 10−7 m/〈h〉 for which the
presented results are expected to remain valid is hmin ≈ 10−2, that is, about 1 % of the
average film thickness.

The film profile and the flow velocity at points 1 and 2 are shown in figures 3(c) and
3(d), respectively. The dashed line in figure 3(d) corresponds to the approximate solution
(3.19).

4. Linear stability of the azimuthal flow

In this section we study the linear stability of the base azimuthal flow (ur, uθ ) =
(0, f (r)) in a free film with the half-thickness h0(r) in the absence of the disjoining
pressure (Π(h) = 0). It is anticipated that the least stable perturbations are azimuthally
invariant due to the stabilising effect of the surface tension. Indeed, any perturbation
that varies azimuthally must be periodic in θ and, consequently, be proportional to einθ ,
n = 0, 1, 2, . . . . Therefore, the magnitude of the stabilising surface tension terms in (3.3)
increases as n3 and is the smallest for n = 0.

Equations (3.3)–(3.9) are linearised about the base flow by writing

ur = eλtũr(r), uθ = f (r) + eλtũθ (r), h = h0 + eλth̃,

cb = 1 + eλtc̃b, cs = 1 + eλtc̃s, φ′ = Ha2

Q
f − e

rh0
+ eλtφ̃

′
(r),

⎫⎪⎬
⎪⎭ (4.1)

where λ is the perturbation growth rate, h0 = h0(r) is the steady film profile and the tilded
variables represent small-amplitude perturbations, substituting these in the equations and
neglecting the products of perturbations. After dropping the tildes we obtain

λur = −2fuθ

r
+
(

(rh′)′

r

)′
+ 4 Ca

(
(rur)

′

r

)′
− Ca Ha2ur

+2 Ca h′
0

h0

(ur

r
+ 2u′

r

)
− Ca Ma

Peh0
c′

s, (4.2)

λuθ = −urf ′ − fur

r
+ Ca

(
(ruθ )

′

r

)′
− Ca Ha2uθ + Ca Qφ′

+Ca h′
0

h0

(
u′
θ − uθ

r

)
+ Ca

(
h
h0

)′ (
f ′ − f

r

)
, (4.3)

λh = −1
r

(rh0ur)
′ , (4.4)

λcbh0 + λh = −1
r
(rh0ur)

′ + Sc−1 Re−1 (rh0(cb)
′)′

r
, (4.5)

λcs = −1
r

(rur)
′ + Pe−1 (r(cs)

′)′

r
, (4.6)

0 =
(

rh0

(
Ha2

Q
uθ − φ′

))′
+
(

e (h + cbh0)

h0

)′
. (4.7)
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Lorentz-force-driven flow in unsupported electrolyte layers

The flow velocity vanishes at r = α and r = 1 + α so that ur = uθ = 0 there. This leads
to the automatic conservation of the total volume of the fluid∫ 1+α

α

2πhr dr = −1
λ

∫ 1+α

α

2π

r
(rh0ur)

′ r dr = 0. (4.8)

To describe moving contact lines at the surface of the electrodes, we assume that the
dynamic contact angle is equal to its static value at all times, that is, we require that h′(α) =
h′(1 + α) = h′

0(α) = h′
0(1 + α) = 0. The case of the dynamically changing contact angle

and non-zero wetting line friction will be considered in future studies. Differentiating (4.4)
and applying the conditions and ur(α) = uθ (α) = ur(1 + α) = uθ (1 + α) = 0 we obtain
two additional boundary conditions for the radial velocity ur,

u′
r(α) + u′′

r (α) = u′
r(1 + α)

1 + α
+ u′′

r (1 + α) = 0. (4.9)

Integrating the equation for the perturbation of the electric potential (4.7) once we obtain

Ha2

Q
uθ − φ′ = c

rh0
− eh

rh2
0

− ecb

rh0
, (4.10)

where c is some constant. Integrating (4.10) and imposing the condition φ(α) = φ(1 +
α) = 0 we find that

Ha2

Q

∫ 1+α

α

uθ dr = c
∫ 1+α

α

dr
rh0

− e
∫ 1+α

α

h

rh2
0

dr − e
∫ 1+α

α

cb

rh0
dr. (4.11)

Multiplying (4.2) and (4.3) by λ, using (4.4) and (4.10) to eliminate h and φ′ and,
subsequently, differentiating (4.5) and (4.6) with respect to the radius r we arrive at a
nonlinear eigenvalue problem,

λ2ur − 2λfuθ

r
= −

(
(r(r−1 (rh0ur)

′)′)′

r

)′
+ 4λCa

(
(rur)

′

r

)′
− λCa Ha2ur

+ 2 Ca λh′
0

h0

(ur

r
+ 2u′

r

)
− Ca Ma

Pe
λc′

s

h0
, (4.12)

λ2uθ + λurf ′ = −λfur

r
+ λCa

(
(ruθ )

′

r

)′
− Ca Q

(
e(rh0ur)

′

r2h2
0

− λecb

rh0
+ λc

rh0

)

+ λCa h′
0

h0

(
u′
θ − uθ

r

)
− Ca

(
(rh0ur)

′

rh0

)′ (
f ′ − f

r

)
, (4.13)

λc′
b = Sc−1 Re−1

(
(rh0c′

b)
′

rh0

)′
, (4.14)

λc′
s = Pe−1

(
(rc′

s)
′

r

)′
−
(

(rur)
′

r

)′
(4.15)

that must be solved in conjunction with the integral condition (4.11). The set of boundary
conditions (4.9) and ur(α) = uθ (α) = ur(1 + α) = uθ (1 + α) = 0 must be extended with

c′
s(α) = c′

b(α) = c′
s(1 + α) = c′

b(1 + α) = 0, (4.16)
which accounts for the chemically passive impenetrable boundaries of the two electrodes.
Note that unlike (3.16) and (3.17) the eigenvalue problem (4.15) contains the average film
thickness 〈h〉 as a part of the capillary number Ca.
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A. Pototsky and S.A. Suslov

4.1. Linear stability of a flat film with no applied voltage
In this section we consider the stability of a flat film in the absence of an electric current.
With h0 = 1, f = 0 and e = 0 the eigenvalue problem (4.12)–(4.15) and the integral
condition (4.11) reduce to three decoupled eigenvalue problems: one for the azimuthal
velocity perturbations uθ , one for the radial velocity ur and surfactant cs perturbations and
one for the perturbation of the solute concentration cb:

λuθ = CaL{uθ } − Ca Ha2

r ln
(
1 + α−1

) ∫ 1+α

α

uθ dr, (4.17)

λ2ur = −L{L{ur}} + 4λCaL{ur} − λCa Ha2ur − Ca Ma Pe−1λc′
s, (4.18)

λc′
s = Pe−1 L{c′

s} − L{ur}, (4.19)

λc′
b = Sc−1 Re−1L{c′

b}. (4.20)

Here L{u} ≡ (r−1(ru)′)′.
The eigenvalue problem (4.17)–(4.20) can be solved analytically in terms of the auxiliary

eigenvalue problem for the operator L,

L{u} = −Λu, (4.21)

which coincides with Bessel’s differential equation. The solution of (4.21) that satisfies
the Dirichlet boundary conditions u(α) = u(1 + α) = 0 exists only for real positive Λ and
is given by

u(r) = C1J1

(
r
√

Λ
)

+ C2Y1

(
r
√

Λ
)
, (4.22)

where C1 and C2 are arbitrary constants and J1 and Y1 are the Bessel functions of order
one of the first and second kind, respectively. Applying the boundary conditions we obtain
the solvability condition for constants C1 and C2 that determines the entire spectrum of
discrete eigenvalues Λ,

J1

(
α
√

Λ
)

Y1

(
(1 + α)

√
Λ
)

− J1

(
(1 + α)

√
Λ
)

Y1

(
α
√

Λ
)

= 0. (4.23)

It follows from (4.21)–(4.23) that the spectrum of eigenvalues λcb of the bulk solute
concentration perturbations (4.20) is real and negative, i.e.

λcb = −(Sc Re)−1Λ, (4.24)

and the corresponding eigenfunction is given by

c′
b(r) = C

[
J1

(
r
√

Λ
)

Y1

(
α
√

Λ
)

− Y1

(
r
√

Λ
)

J1

(
α
√

Λ
)]

, (4.25)

where C is an arbitrary constant.
The eigenvalue problem (4.18) and (4.19) for ur and c′

s can be solved in a similar way
using the eigenfunctions of the operator L. The solution that satisfies ur(α) = ur(1 + α) =
0 and c′

s(α) = c′
s(1 + α) = 0 is given by

ur(r) = C1

[
J1

(
r
√

Λ
)

Y1

(
α
√

Λ
)

− Y1

(
r
√

Λ
)

J1

(
α
√

Λ
)]

,

c′
s(r) = C2ur,

⎫⎬
⎭ (4.26)

where C1 and C2 are some constants.
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Lorentz-force-driven flow in unsupported electrolyte layers

Substituting (4.26) into (4.18) and (4.19) we obtain

λ2 = −Λ2 − Ca(4Λ + Ha2)λ− C2 Ca Ma Pe−1λ, (4.27)

λC2 = Λ − Pe−1ΛC2, (4.28)

and then eliminating C2 from (4.27) we arrive at a cubic equation for λ,

(Pe λ+ Λ)(λ2 + Ca(4Λ + Ha2)λ+ Λ2) + bΛλPe = 0, (4.29)

where b = Ca Ma Pe−1 > 0 characterises the strength of the Marangoni flow.
For any admissible value of Λ from (4.23), one needs to solve (4.29) to find the

eigenvalue λ. Then the corresponding eigenfunctions (4.26) only contain one arbitrary
scaling factor C1 with C2 = Λ/(λ+ Pe−1Λ). Here we consider two physically distinct
situations: the diffusion-dominated regime, when the surface diffusivity is large, i.e. ds →
∞, and the advection-dominated regime, when ds → 0. Since the Hartmann number Ha,
the capillary number Ca and parameter b = Ca Ma Pe−1 in (4.29) do not depend on ds, the
diffusion-dominated regime corresponds to Pe → 0 with Ha, Ca and b remaining finite.
In this case (4.29) has three distinct solutions:

λ1,2 = −Ca
(
4Λ + Ha2)+ b Pe

2
± Ω

2

(
1 + b Pe

Ca(4Λ + Ha2)

2Ω2

)
+ O(Pe2), (4.30)

λ3 = −Pe−1Λ + b Pe + O(Pe2). (4.31)

Here Ω =
√

Ca2(4Λ + Ha2)2 − 4Λ2.
Note that λ3 is real and negative and its magnitude is always much larger than

|λ1,2|. Since Λ is real and positive, we conclude that the real parts of λ1,2 are always
negative. Moreover, λ1,2 become complex if Ca(4Λ + Ha2) < 2Λ implying that the radial
perturbation mode undergoes the transition from a monotonic to oscillatory decay. In
physical variables, the condition for the oscillatory decay of the radial mode is

√
ργ 〈h〉 > 2μ + B2(R2 − R1)

2σ

2Λ
, (4.32)

where the electric conductivity is σ = Kc(0)
b and Λ depends on the ratio of the radii R2/R1

via parameter α. It is instructive to compare condition (4.32) with the linear stability of an
unbounded flat free layer in the absence of the magnetic field. Neglecting the disjoining
pressure, the growth rate ω(k) of the least stable mode with the wavenumber k in an
unbounded horizontal free film can be obtained from (30) in Erneux & Davis (1993):

μ

ρ
ω(k) = −2k2 + k2

√
4 − ρ〈h〉γ

μ2 . (4.33)

It follows from (4.33) that the critical thickness 2〈h〉c of the layer above which the
relaxation dynamics is oscillatory is given by

2〈h〉c = 8μ2

ργ
. (4.34)

This coincides with our result (4.32) for B = 0.
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It is seen from (4.30) that in the absence of the Marangoni flow, that is, when b = 0, the
eigenvalue of the radial velocity perturbation with the largest real part is given by

λ1 = −Ca
(
4Λ + Ha2)

2
+ Ω

2
. (4.35)

The perturbation of the surfactant is decoupled from that of the radial flow and has a
negative real eigenvalue λ3 = −Λ Pe−1. In this regime, any perturbation of the surfactant
distribution relaxes on the time scale |λ3|−1, which is much shorter than the characteristic
decay time −Re(λ1,2

−1) of fluid motion. In the presence of the Marangoni flow when
b /= 0, the perturbations of the radial velocity and surfactant concentrations are coupled
and their dynamics is characterised by the leading eigenvalues λ1,2. The Marangoni flow
leads to a further stabilisation of the leading perturbation mode as follows from (4.30).
Indeed, by analysing the real parts of the leading eigenvalues we conclude that

Re(λ1,2)|b>0 < Re(λ1,2)|b=0 < 0 (4.36)

regardless of the sign of Ω2. As a consequence, the characteristic decay time of the flow
perturbation decreases in the presence of the Marangoni effect.

As follows from (4.19), in the advection-dominated regime Pe → ∞ the dynamics of
the surfactant perturbation is governed by the radial flow ur. Indeed in this limit λc′

s =
−L{ur}, which shows that the surfactant plays the role of an active scalar field advected
by the flow while its gradient influences the stability of the flow. By letting Pe → ∞ in
(4.28) and then substituting C2 = Λ/λ in (4.27) we obtain

λ± ≈ 1
2

[
−Ca

(
4Λ + Ha2

)
±
√

Ca2 (4Λ + Ha2)2 − 4Λ(Λ + b)

]
. (4.37)

From (4.37) we see that the Marangoni flow has no effect on the stability of the base flow
if the expression under the radical is negative. However, if

Ca2
(

4Λ + Ha2
)2 − 4Λ(Λ + b) > 0, (4.38)

the leading eigenvalue λ+ becomes real and negative, and the presence of surfactant has a
stabilising effect since |λ+|b>0 > |λ+|b=0. These analytical results extend an earlier study
on the linear stability of planar soap films (Miksis & Ida 1998) by including the Lorentz
force effects. The observation of the stabilising role of the Marangoni flow in the limit of
diffusion-dominated and advection-dominated regimes is in agreement with Miksis & Ida
(1998), where it was also found that for long-wavelength perturbations the presence of the
Marangoni flow decreases the growth rate of the dominant perturbation mode.

To illustrate the structure of the oscillatory radial mode, we consider the
diffusion-dominated regime in a film with the average thickness 2〈h〉 = 20 μm and take
all other parameters as in figure 3. For α = 1, the leading eigenvalue of the operator
L is Λ ≈ 10.218, which corresponds to the complex leading eigenvalue of the radial
mode λr ≈ −1.179 ± 10.149i. The corresponding eigenfunction ur is shown in figure 4(a).
Figure 4(b) depicts the instantaneous streamlines of the corresponding flow field in a
vertical cross-section of the film (r, z). The streamlines are obtained by recalling that the
vertical flow velocity w is given by w(r, z) = −r−1(rur)

′z so that the kinematic equation
(4.4) can be written in the form ∂th = −w(r, 1) = −r−1(rur)

′. The film interface oscillates
about h0 = 1 with a decreasing amplitude while the fluid flows from the inner to the outer
cylinder and back.
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Lorentz-force-driven flow in unsupported electrolyte layers
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Figure 4. (a) Leading eigenfunction ur = Y1(α
√

Λ)J1(r
√

Λ) − J1(α
√

Λ)Y1(r
√

Λ) of the radial perturbation
mode for the same parameters as in figure 3 and 〈h〉 = 10 μm. (b) Streamlines of the radially perturbed flow
field in a vertical cross-section of the film.

It is instructive to consider the limit of a vanishingly small inner radius, that is, α →
0. Using the asymptotic expressions for the Bessel functions, J1(x) ≈ x/2 and Y1(x) ≈
−2/(πx), as x → 0, it can be shown that the leading eigenvalue Λ from (4.23) is finite
and is given by the first non-zero root of J1(

√
Λ) = 0, that is, Λ = 3.83172 = 14.6819. For

〈h〉 = 10 μm, this corresponds to a complex eigenvalue of the radial mode λr = −1.695 ±
i14.584. The eigenfunction ur from (4.26) has a removable singularity at r → α → 0 and
its shape is similar to that of ur shown in figure 4(a). Therefore, in the absence of the
applied voltage, the leading radially symmetric oscillation mode in a circular unsupported
free film is a damped rocking mode with the shape as in figure 4(b).

The eigenvalue problem (4.17) for the azimuthal velocity perturbation uθ can only be
found analytically for a weak magnetic field at Ha → 0. When Ha = 0, the spectrum of
the azimuthal velocity perturbations is real and is given by

λuθ = −Λ Ca. (4.39)

Comparing (4.39) with (4.30) we observe that in the absence of the Marangoni flow (b =
0) and when Ha = 0, the absolute value of the eigenvalue |λuθ | of the monotonically stable
azimuthal velocity perturbation is exactly half of the real part of the eigenvalue λur of the
radial velocity mode.

4.2. Linear stability of a deformed film in the presence of electric current
In this section we study the linear stability of the azimuthal flow in a deformed film in the
diffusion-dominated regime, when perturbations of the surfactant and solute fields relax
instantaneously. The azimuthal and radial velocity perturbation modes discussed in the
previous section become coupled in the presence of an electric current. This implies that,
for any infinitesimal value of Q, the spectrum of the generalized eigenvalue problem (4.15)
is discrete and contains the eigenvalues that originate from each of the possible radial and
azimuthal velocity modes existing in the absence of current.

To visualise how the stability of the azimuthal flow changes with the applied voltage,
we choose 〈h〉 = 10 μm and keep all other parameters as in figure 3. The numerical
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Figure 5. (a) Real part of the first three leading eigenvalues as a function of the value of Q for the same
parameters as in figure 3. The solid (dashed) lines correspond to complex (purely real) eigenvalues, respectively.
Labels BP and NS mark the loci of the branching point of the azimuthal velocity mode and the point of neutral
stability of the radial velocity mode, respectively; (b) the relative strength of the radial to azimuthal velocity
mode χ ; (c) the neutrally stable film profile at point NS in panel (a); (d) the azimuthal velocity f0 in a neutrally
stable film; the magnitudes of the neutrally stable radial (e) and azimuthal ( f ) velocity perturbations.

continuation method is then employed to track each mode and the corresponding
eigenvalue using the value of Q as the continuation parameter. To this end, the generalized
eigenvalue problem (4.15) is solved simultaneously with (3.16) and (3.17). To quantify
the relative coupling strength between the perturbations of the radial and the azimuthal
velocity, we introduce the parameter

χ = arctan

⎛
⎜⎜⎜⎝
∫ 1+α

α

|ur|2 dr∫ 1+α

α

|uθ |2 dr

⎞
⎟⎟⎟⎠. (4.40)

Thus, χ = π/2 corresponds to the pure radial and χ = 0 to pure azimuthal modes,
respectively.

The real parts of the first three leading eigenvalues labelled by r1, θ1 and θ2 are shown
in figure 5(a). At Q = 0 the leading mode is the azimuthal velocity mode θ1 with the
real eigenvalue λθ1 ≈ −0.589. The second least stable mode r1 corresponds to the radial
velocity. It has the complex eigenvalues λr1 = −1.179 ± 10.149i. The third mode θ2 is
again the azimuthal velocity mode with the real eigenvalue λθ2 ≈ −2.298. As the value
of Q increases, the two leading azimuthal velocity modes remain monotonically stable
until the branching point BP is reached, where the two modes form a complex conjugate
pair with a negative real part collide. A further increase of the value of Q leads to the
destabilisation of the leading radial mode r1, which becomes neutrally stable at the point
NS, where Im{λr1} �= 0. The corresponding film thickness profile h0(r) and the base
azimuthal flow f0(r) are shown in figure 5(c,d), respectively.
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Figure 6. (a) Neutral stability curve in the (Qc, Ca) plane for Ha2
1 = 0.0013. (b) Neutral stability curve in the

(Qc, Ha2) plane for Ca = 10−5. The vertical dashed line corresponds to Qc = 124.

Oscillatory neutrally stable perturbation is a mixture of radial and azimuthal flows as
quantified by χ in figure 5(b). Since the perturbation fields ur and uθ are both complex,
the real physical radial and azimuthal perturbations of the base flow are given by the real
and imaginary parts of |ur| exp(i(Im{λr1}t + Ψr(r))) and |uθ | exp(i(Im{λr1}t + Ψθ(r)))
with spatially varying phase shifts Ψr = arctan(Im{ur}/Re{ur}) and Ψθ = arctan(Im{uθ }/
Re{uθ }). The spatially varying amplitudes of the neutrally stable radial and azimuthal
velocity perturbations |ur| and |uθ | are shown in figure 5(e, f ).

To gain deeper understanding of how the stability of the base flow changes with other
parameters in figure 6(a), we show the neutral stability curve for Ha2 = 1.3 × 10−3 in the
plane (Qc, Ca), where Qc is the critical value of the Lorentz force parameter above which
the base flow is linearly unstable. It is noteworthy that there exists a finite limiting value of
Qc = 124 as Ca → 0. Such a limiting behaviour of the neutral stability curves confirms
the dynamic nature of the flow instability. Indeed, for the fixed 〈h〉, viscosity μ and density
ρ, the limit of Ca → 0 corresponds to a large surface tension γ → ∞. The existence of a
finite value of Qc implies that regardless of the strength of stabilising surface tension forces
the instability can always be induced if the applied voltage exceeds the critical value Vc.

We set Ca = 10−5 and trace the locus of the neutral stability in the (Qc, Ha2) plane in
figure 6(b). The dashed line corresponds to Qc = 124 and it fits almost perfectly the lower
part of the curve (small Ha2). This simple relationship between Ha2 and Qc represents
a universal stability threshold in the limit of small capillary and Hartmann numbers.
Reintroducing dimensional variables from (3.1) we obtain the critical value of the applied
voltage Vc,

Vc = 124μ

Bσ(R2 − R1)2

√
γ 〈h〉
ρ

. (4.41)

The asymptotic result (4.41) is valid for the selected radii ratio R2/R1 = 2 and
(Ca, Ha2) → (0, 0). At the critical value of Vc the film is strongly deformed and has a
shape similar to solution (2) in figure 3(c). The minimum value of the film thickness is
attained at the inner cylinder and is approximately 6 % of 〈h〉.

5. Conclusions

We derived a set of leading-order equations in the lubrication approximation that
describe the electromagnetically driven flow of electrolyte solutions and/or non-magnetic
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liquid metals in a thin horizontal free layer with deformable surfaces placed in a
uniform magnetic field normal to the layer. The equations are written in a generic
coordinate-invariant form and can be used to study electromagnetically driven flows in
an arbitrary geometry dictated by the shape and size of the deployed electrodes. The
equations account for the presence of surfactants and chemical species dissolved in the
bulk of the fluid. Inspired by recent studies of the electromagnetically driven flows in
supported shallow annular layers between two coaxial cylinders (Figueroa et al. 2009;
Pérez-Barrera et al. 2016; Suslov et al. 2017; McCloughan & Suslov 2020), we choose a
similar geometry and apply the derived model to investigate the flow and its stability in an
annular free film spanning the gap between two coaxial cylindrical electrodes.

Similar to mechanically driven flows in soap films (Wu et al. 1995), a steady azimuthal
electromagnetically driven flow can only exist in a deformed layer, where the radial
component of the gradient of the Laplace pressure balances the centrifugal force. This
is in contrast to supported thicker layers, where the free-surface deformation is typically
negligible compared with the thickness of the layer while the flow speed does not exceed
several centimetres per second. The other important feature distinguishing the flows in free
layers and films from those in supported layers is that in the former the Laplace pressure
dominates while in the latter the hydrostatic pressure gradient defines the fluid trajectory
in the plane of the layer.

If the intermolecular forces are neglected, the azimuthally invariant steady-state flow
can be found for an arbitrarily large electric current flowing through the film. The minimal
film thickness is achieved at the inner electrode. It decreases as a power law function of
the applied voltage remaining non-zero so that the point of a true film rupture is never
reached.

We determined that the azimuthal flow in approximately flat free films with a small
velocity is linearly unconditionally stable. For relatively weak magnetic fields of the order
of 10−2 T and fluid parameters corresponding to a weak electrolyte solution used in the
experiments of Figueroa et al. (2009) and Pérez-Barrera et al. (2016), we found that the
azimuthal velocity perturbations decay monotonically while the decay of radial velocity
perturbations of the base flow in layers with the average thickness in the micrometre range
is oscillatory. However, as the film thickness is decreased below a certain critical value
given by condition (4.32) (�100 nm for a film existing between coaxial cylinders with
the inner and outer radii of 1 and 2 cm, respectively), the relaxation dynamics is found
to be dominated by viscous damping with a monotonic decay of a radial flow and the
associated surface deformation. This result contrasts the observations of instabilities in
supported thicker annular layers, where the primary flow becomes unstable with respect to
three-dimensional perturbations of the velocity without a noticeable variation of the layer
depth. The fluctuations of the solute concentration in the bulk has no effect on the growth
rate of the leading modes. In the presence of a surfactant, the Marangoni effect leads to
further stabilisation of the base flow, which is in agreement with earlier studies of planar
soap films in the absence of magnetic fields (Miksis & Ida 1998).

By following the branch of steady-state solutions into the regime of large applied voltage
and, consequently, large electric currents, we find that the steady azimuthal flow eventually
becomes unstable with respect to a mixture of oscillatory azimuthal and radial velocity
perturbations at a certain critical value of the applied voltage, at which the deformation
amplitude of the layer is of the order of the average film thickness. This suggests that
electromagnetically driven flows in free films may not be ideal candidates for studying
two-dimensional turbulence since the primary instability of the base flow sets in only
when the film is already strongly deformed. We note that a similar conclusion was made
earlier in Rivera & Wu (2000), where it was hypothesised that strong damping caused by
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the interactions of the flow within a film with a surrounding gas layer that are enhanced by
the surface deformation may be the cause for the energy leakage responsible for stronger
than expected decays of the velocity correlation function. However, the two-dimensional
turbulence is still possible if strongly non-uniform magnetic fields are used. Thus, we
anticipate that the gradient of the magnetic field will further destabilise the base flow,
lead to the generation of vorticity and, as a result, to a much more irregular flow pattern
(Cuevas, Smolentsev & Abdou 2006).

Finally, we briefly mention the action of intermolecular forces characterised by the
disjoining pressure. They play a major role in the instability and subsequent stabilisation
of free soap films that are thinner than ∼100 nm. It is well known (Israelachvili
2011; Overbeek 1960) that long-range van der Waals forces destabilise free layers
sandwiched between dielectric media with identical properties. These forces alongside the
gravity-induced drainage of the fluid constitute the primary source of film instability. As
the film thickness decreases below 10–50 nm, an electric double layer is typically formed
consisting of the monolayers of soap ions adsorbed at each interface. Strong electric
double-layer forces lead to the repulsion between the film surfaces and the formation of
highly stable black soap films with a thickness under 50 nm. Therefore, it is important to
study the role of the disjoining pressure on the steady azimuthal flow and its stability in
the strong-current regimes when the deformation of the layer is significant. Intermolecular
forces, black soap films and film rupture will become the topic of our future investigations.
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