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We propose a linearized deterministic model for predicting coherent structures in
the wake of a floating offshore wind turbine subject to platform motions. The
model’s motion-to-wake predictive capability is achieved through two building blocks: a
motion-to-forcing (M2F) part and a forcing-to-wake (F2W) part. The M2F model provides
a unified framework to parameterize the effects of arbitrary floating wind turbine motions
as unsteady loads of a fixed actuator disk, requiring only the radial distribution of the
aerodynamics force coefficient on the blade as input. The F2W model is derived based on
a bi-global resolvent model obtained from the linearized Navier–Stokes equations, using
the time-averaged wake of a fixed wind turbine as input. In addition to its capability
of predicting sensitive frequency ranges, the model excels linear stability analysis by
providing spatial modes of the wake response in a motion-specific and phase-resolved
manner. The model successfully predicts the wake pulsing mode induced by surge, as
well as the similarity and difference of the wake meandering modes caused by sway and
yaw. Large-eddy simulations under different inflow turbulence intensities (TIs) and length
scales are further conducted to analyse the wake meandering triggered by the simultaneous
excitation of free-stream turbulence and sway motion. The results show distinct frequency
signatures for the wake dynamics induced by ambient turbulence and sway motion. The
inflow TI is found to have a stabilizing effect on the wake, reducing the motion-induced
wake responses. Such a stabilizing effect is captured satisfactorily with the proposed
model, provided that the effective viscosity is calibrated properly using the data from the
fixed turbine wake under the corresponding turbulent inflow.

Key words: wakes

† Email address for correspondence: xyang@imech.ac.cn

© The Author(s), 2024. Published by Cambridge University Press 980 A48-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
97

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:xyang@imech.ac.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.1097&domain=pdf
https://doi.org/10.1017/jfm.2023.1097


Z. Li and X. Yang

1. Introduction

As a wind turbine extracts kinetic energy from the atmospheric boundary layer, it leaves
behind a wake with low speed and high turbulence intensity (TI) (Vermeer, Sørensen &
Crespo 2003). Wakes reduce the power and increase the fatigue load of downstream wind
turbines in large wind farms and are responsible for a loss of over 10 % of annual energy
production (Barthelmie et al. 2009). A profound understanding of the fluid mechanics
underlying the wake evolution is thus indispensable for farm-level optimization of power
production and has become a focus for both the wind energy and fluid mechanics
community (Stevens & Meneveau 2017; Porté-Agel, Bastankhah & Shamsoddin 2020;
Shapiro, Starke & Gayme 2022). The major challenge is related to the wake’s high
Reynolds number and the complex interaction between the wind turbine wakes and the
atmospheric boundary layer (Veers et al. 2019; Meyers et al. 2022).

For floating offshore wind turbines (FOWTs), the degrees of freedom of the platform
motion further complicate the wake-turbine interaction in a two-way manner. On the
one hand, the motion of the FOWT can be intensified by the wake-induced unsteady
aerodynamic load (Wise & Bachynski 2020). On the other hand, the motion of the
FOWT can substantially enhance the unsteadiness in the far wake by triggering large-scale
coherent turbulent structures (Li, Dong & Yang 2022; Messmer, Hölling & Peinke 2023)
that may affect the load and performance of downstream neighbours. In this paper we
propose a linearized wake model based on the resolvent of the linearized Navier–Stokes
equation (LNSE), which can be solved by a personal computer within several minutes
for each simple harmonic motion, such that these coherent turbulent structures can be
predicted efficiently.

The wake of FOWTs has received research attention in the fields of fluid mechanics,
wind energy and ocean engineering over the past decade. Special influences of FOWT
motion were initially identified in the near wake in studies focusing on unsteady blade
aerodynamics (Sebastian & Lackner 2012; Farrugia, Sant & Micallef 2016; Tran & Kim
2016; Fontanella et al. 2021), where the breakdown of the tip vortices was found to
be accelerated by FOWT motions. At a floating wind farm level, the focus is shifted
to the motion-induced wake evolution at a larger downstream distance, using numerical
simulations (Lee & Lee 2019; Kopperstad, Kumar & Shoele 2020; Chen, Liang & Li 2022;
Li et al. 2022; Kleine et al. 2022; Ramos-García et al. 2022), wind tunnel experiments
with wind turbine models (Rockel et al. 2014, 2017; Bayati et al. 2017; Fu et al. 2019;
Schliffke, Aubrun & Conan 2020; Feist, Sotiropoulos & Guala 2021; Belvasi et al. 2022;
Meng et al. 2022b; Messmer et al. 2023) and field measurement with a full-scale FOWT
(Angelou, Mann & Dubreuil-Boisclair 2023). Despite variations in the environmental
settings, turbine sizes and motion types, these studies achieve some consensus on the far
wake evolution of a FOWT, which are synthesized in the following.

(i) Motion-specific. Most studies focus on the fore–aft motion, i.e. surge and pitch. The
wind tunnel experiments of Fontanella et al. (2021); Fontanella, Zasso & Belloli
(2022) reveal that surge motion induces a thrust variation and generates oscillations
of the axial wake velocity at the same frequency of the imposed motion, based
on measurements located at 2.3 times the rotor diameter downstream of the wind
turbine. Interestingly, this near wake velocity fluctuation may further develop into a
pulsing mode featured by alternating wind speed variation in the streamwise direction
and a varicose deformation in the far wake (Kopperstad et al. 2020). On the other
hand, the side-to-side motion, i.e. sway and roll, is found to trigger wake meandering
characterized by the wake’s oscillatory displacement in the lateral direction (Fu et al.
2019; Meng et al. 2022b), which is locked at the motion frequency and its multiples
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Resolvent model of wind turbine wakes under dynamic motion

(Li et al. 2022). Moreover, this wake meandering induced by the side-to-side motion
is found to trigger a faster wake recovery (Li et al. 2022) than the surge motion
(Schliffke et al. 2020). Recent experiments by Messmer et al. (2023) indicate that
if the surge motion falls in a specific frequency range, wake meandering can also be
triggered through a nonlinear mechanism (Gupta & Wan 2019).

(ii) Frequency-dependent. Since the shear layer and the helical vortices of wind turbine
wakes are unstable and have different sensitive frequencies (Iungo et al. 2013; Mao
& Sørensen 2018; Gupta & Wan 2019; Kleine et al. 2022), the wind turbine wake’s
response changes significantly as the frequency of the FOWT motion varies. The
Strouhal number is often employed as the characteristic non-dimensional number for
the frequency, which is defined as St = ωD/(2πU∞), with ω the angular frequency,
D the rotor diameter and U∞ the free-stream wind speed. The instability of the wake
is found to be less pronounced and the wake response is quasi-steady at small St.
One example is the experiment by Meng et al. (2022b), which found that a sway
motion at St < 0.01 with a rather large amplitude A = 0.2D only led to a wake
offset near the rotor with an amplitude close to the motion. When increasing the
motion frequency, the instability related to the shear layer of the wake can amplify
the motion-induced perturbation and develop in the far wake. An example is the
large-eddy simulation (LES) of Li et al. (2022), which showed that the sway motion at
St = 0.25 led to large far wake meandering even with a small initial motion amplitude
A = 0.01D. The study further employed linear stability analysis (LSA) and LES to
find a sensitive range of 0.2 < St < 0.6, in which the sway motion triggers large
wake meandering and enhances the wake recovery. These results are confirmed by
a recent wind tunnel experiment by Messmer et al. 2023. Besides, the experiment
by Messmer et al. (2023) discovers a novel nonlinear phenomenon caused by surge
motions with 0.6 < St < 0.9, which not only leads to the pulsing mode at the forcing
frequency but also results in lateral wake meandering at lower frequencies. For higher
motion frequencies, the analysis of Kleine et al. (2022) demonstrates that motions at
1.5 times the rotor frequency induces the strongest disturbances to the tip vortices in
the near wake.

(iii) Sensitive to ambient turbulence. The stability of free shear layers (wake, jet, mixing
layer, etc) is known to be sensitive to inflow turbulence (Ho & Huerre 1984). However,
motion-induced wake evolution is often investigated with uniform inflows (Chen et al.
2022; Kleine et al. 2022) or with very low TIs (Meng et al. 2022b). The LES of Li
et al. (2022) shows that the meandering induced by the rotor sway motion is inversely
related to the inflow TIs, such that the meandering amplitude increases when the
inflow TI is decreased, being exactly opposite to the trend for the wake meandering of
fixed wind turbines with turbulent inflows (Espana et al. 2012; Yang & Sotiropoulos
2019). For cases with sufficiently high TI, the wakes of a wind turbine with and
without sway motion are found to be similar (Li et al. 2022). This phenomenon is
also observed in the wind tunnel experiment by Belvasi et al. (2022), indicating no
obvious motion-enhanced wake recovery with an inflow TI = 8 %. However, at low to
intermediate intensities, the interplay between the rotor motion with the free-stream
turbulence is yet to be fully understood.

In summary, the existing research has shown that the wake of a FOWT responds actively
to the platform motion at low TIs (Kleine et al. 2022; Li et al. 2022; Messmer et al.
2023). It is found that certain motion types falling in a specific frequency range of the
shear layer instability can lead to wind speed fluctuation in the far wake and enhance
the wake recovery (Li et al. 2022; Messmer et al. 2023). While the LSA of the shear
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layer was shown to be able to estimate the sensitive frequency range (Gupta & Wan 2019;
Li et al. 2022), it is not yet possible to predict the wake response for a specific motion.
There are two reasons for this shortcoming. Firstly, the LSA focuses on the property
of the shear layer itself and formulates an eigenvalue problem without considering a
specific external perturbation. Secondly, the concrete form of the initial perturbation
caused by FOWT motions to the shear layer of the wake is neither well understood.
Recently, Kleine et al. (2022) studied the effect of FOWT motion on the near wake tip
vortices, but the effect of such motions on the shear layer and far wake evolution was not
considered.

In this work we propose a linear and deterministic model that predicts the far wake
evolution induced by specific rotor motions, as depicted by figure 1. The proposed
model consists of two parts, i.e. a forcing-to-wake (F2W) part and a motion-to-forcing
(M2F) part. The first part is designed to transfer arbitrary forcing on the rotor into the
wake response by establishing a bi-global resolvent model of the wake that reflects the
stability property of the wake shear layer. The latter part, i.e. the M2F model, equates
the motion of the wind turbine to a set of motion-specific unsteady aerodynamic forces.
When used separately, the F2W model can predict the optimal forcing at the rotor for
triggering the strongest far wake response. Combining both models predicts the wake
response in an end-to-end and motion-specific manner. In addition to this model, the
influence of ambient turbulence on a FOWT’s wake will be further investigated using LES,
considering both the effect of the inflow TI and the turbulence length scale, within a low
to intermediate TI condition (2.5 % ≤ TI ≤ 7.5 %). The predictive ability of the proposed
model will be evaluated in both uniform and turbulent inflow conditions. To the best of
the authors’ knowledge, no linearized model has been proposed to achieve such a global
and motion-specific prediction for FOWT’s wakes. As a first step, the model proposed
in the present paper assumes a non-sheared inflow and an axisymmetric wind turbine
wake.

The remainder of this paper is structured as follows. Section 2 presents the numerical
methods and the set-ups of LES cases carried out in this study. The simulation results
of the wake for FOWT undergoing different motions are presented in § 3 with a uniform
inflow. In § 4 the proposed motion-to-wake (M2W) modelling is derived and validated
against LES results. Section 5 investigates the effects of free-stream turbulence on the
motion-induced wake meandering through LES, and proposes an extension of the M2W
model to incorporate these effects. Finally, a conclusion is provided at the end of the paper.

2. Large-eddy simulation method and case configuration

2.1. Numerical method
The nonlinear evolution of wind turbine wake is simulated with the VFS-Wind code (Yang
et al. 2015), assuming the air is a Newtonian fluid with a constant density and viscosity.
The flow is governed by the filtered incompressible Navier–Stokes equations, written in
Cartesian coordinates as

∇ · ũ = 0, (2.1)

∂ũ
∂t

+ (ũ · ∇)ũ = −∇p̃ + ν∇2ũ − ∇ · τ + f , (2.2)

where u = {ux, uy, uz} is the velocity vector in the Cartesian coordinates, p is the pressure
and ν is the fluid kinematic viscosity. Here ·̃ denotes the spatial filtering process; τ is the
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Figure 1. Structure of the proposed motion-to-wake model of floating wind turbine wakes.

subgrid-scale stress resulting from the filtering of the nonlinear convection term and is
closed with the dynamic Smagorinsky model (Smagorinsky 1963; Germano et al. 1991);
f denotes the body force term. In the equation, bold symbols represent vectors (e.g. u) or
two-dimensional tensors (e.g. τ ), the rest are scalar variables.

In wind turbine wake simulations the body force term f represents the effect of wind
turbines on the flow and is computed using a well-validated actuator surface model (Yang
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& Sotiropoulos 2018) for both the rotor and nacelle. This model simplifies each rotor blade
as a zero-thickness rotating surface that exerts aerodynamic forces on the surrounding
flow. The aerodynamic forces on each blade element are computed individually using
two-dimensional blade aerodynamic coefficients as

F = L + D, (2.3)

L = 1
2 cCL(α, Rec)|Vref |2eL, (2.4)

D = 1
2 cCD(α, Rec)|Vref |2eD, (2.5)

where F is the aerodynamic force per unit span, with L and D the lift and drag coefficients.
Here CL(α, Rec) and CD(α, Rec) are the lift and drag coefficients, depending on the local
airfoil and the angle of attack (α) and the Reynolds number (Rec) defined with the chord
length (c); Vref is the relative flow velocity with respect to the rotating blade; eL and eD are
unit vectors defining the lift and drag directions. Three-dimensional effects (Du & Selig
1998) and the tip loss (Shen et al. 2005) are corrected before computing the momentum
source in (2.2)

f = F/c = (L + D)/c. (2.6)

The actuator surface model for the nacelle enforces the non-penetration boundary
condition in the nacelle surface’s normal direction and applies frictional forces with
empirical friction coefficients (Yang & Sotiropoulos 2018). The smoothed discrete delta
function of Yang et al. (2009) is employed to map these forces to the background grid
nodes to avoid singularity issues.

The governing equations are discretized on a structured staggered grid using the finite
differencing method. Spatial discretization utilizes the second-order central differencing
scheme. The temporal integration employs a second-order fractional step scheme. The
Jacobian-free Newton–Krylov approach (Knoll & Keyes 2004) is used to solve the
nonlinear momentum equation. The generalized minimal residual approach (Saad 1993)
with multigrid as a preconditioner is used to solve the Poisson equation derived from
the continuity equation to enforce incompressibility and to determine the pressure. The
reader can refer to Ge & Sotiropoulos (2007) for a detailed description of the numerical
implementation.

2.2. Set-up of LES cases
The 10 MW reference wind turbine of the International Energy Agency (Bortolotti et al.
2019) is simulated in this work to reflect recent large-scale horizontal-axis offshore
wind turbines. The turbine has a three-blade rotor with a diameter of D = 198 m and a
cylindrical-like nacelle with a diameter of 10 m and a length of 5 m. In the simulation the
turbine is controlled with a fixed tip speed ratio λ = 9 defined as the ratio between the
blade tip speed and the wind speed. The wind speed is set to U∞ = 10 m s−1, close to
the rated condition. Under a uniform inflow condition and a fixed wind turbine, the LES
predicts the thrust and power coefficients of CT = 0.75 and CP = 0.48, being close to the
rotor’s design state. The corresponding axial induction factor is a = 0.25, computed with
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z
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Figure 2. Schematics of the computational domain (a); the surface mesh of the actuator surface model and
the Cartesian grid for the flow solver, with the three types of motion considered (b).

CT = 4a(1 − a). The thrust and power coefficients are computed as

CT = T
(

1
2

U2∞π

(

D
2

)2 )
, (2.7)

CP = Qωr
(

1
2

U3∞π

(

D
2

)2 )
, (2.8)

where T denotes the rotor thrust, Q is the rotor torque and ωr is the angular velocity of
the rotor. These values are averaged over 500 rotor revolutions beyond the initial transient
stage.

Due to the dynamic and complex environmental conditions in which they operate, the
floating wind turbines exhibit motions with six degrees of freedom (Lyu, Zhang & Li
2019). In this study we focus on three representative motions, namely the sway (in-plane
translation, along the y axis), the surge (out-of-plane translation, along the x axis) and the
yaw (out-of-plane rotation, along the z axis) as illustrated in figure 2. When assuming an
inflow without shear and an axisymmetric wake, yaw can be considered equivalent to pitch;
sway can be considered equivalent to heave, following a coordinate transformation. At
small amplitude, the roll motion of FOWT can be approximated by the sway motion since
the centre of gravity is far below the rotor hub centre (Ribeiro, Casalino & Ferreira 2023a).
Here, we assume that the FOWT is forced to oscillate harmonically for each motion.

For the surge motion, the rotor translates in the streamwise direction (x), with a
displacement of

δxh(t) = A sin (ωt). (2.9)
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For the sway motion, the rotor translates in the spanwise direction ( y), with a
displacement of

δyh(t) = A sin (ωt). (2.10)

For the yaw motion, the rotor rotates around the vertical axis (z), with an angular
displacement of

δγh(t) = A/R sin (ωt). (2.11)

The angle γh is equal to zero when the rotor is perpendicular to the streamwise direction.
The above definitions control the motions with A the linear displacement of the rotor

tip and ω the motion’s angular frequency. For a FOWT, the platform motion can be
excited due to a combined load from turbulent wind and waves and the motion response
falls in a large frequency range depending on the environment and the platform’s natural
frequency (Jonkman & Musial 2010; Robertson et al. 2014). Previous studies (Li et al.
2022; Messmer et al. 2023) have estimated the Strouhal number generally falls in the range
of St ∈ [0.1, 1.5] for utility-scale wind turbines. The motion amplitude A has been found
to be in the order of 1 %D by a recent field measurement on a spar-type floater (Angelou
et al. 2023), which is known for small motion; larger motion amplitudes are found for
semi-submersible floaters (Schliffke, Conan & Aubrun 2023). As a detailed investigation
on how the amplitude and the frequency affect the wake response has been presented
for sway motion in our previous work (Li et al. 2022), the present study employs only
representative values to showcase the wake response due to different motion types and to
validate the predictive capacity of the proposed M2W model. These specific values will be
presented later in the relevant context. An extra case without rotor motion is also included
as the baseline.

Both laminar and turbulent inflows are considered. For all the cases, the simulation
employs a rectangular computational domain as shown in figure 2. The length in the
streamwise direction (x) is 14D and is 7D in both the transversal (y) and the vertical
(z) directions. The wind turbine is placed on the domain centreline, and the rotor axis
is aligned with the x direction. The distance from the inlet to the turbine is 3.5D. The
origin of the coordinate system coincides with the rotor hub centre.

The computational domain is discretized by the Cartesian grid. The grid has a uniform
spacing in the y and z directions of �y = �z = D/40 in the region −2D < y < 2D and
−2D < z < 2D and is gradually stretched out of this region. The grid spacing in the
streamwise direction is �x = D/20. The rotor blade is discretized with an unstructured
triangular mesh (see figure 2). Previous work has demonstrated that such a spatial
resolution is sufficient to obtain mesh-independent results for both first- and second-order
turbulence statistics in the far wake (Li & Yang 2021).

We impose the inflow velocity at the inlet boundary (x = −3.5D). We neglect the wind
shear and set a uniform wind speed of U∞ = 10 m s−1 in the streamwise direction for
the cases with laminar inflow. The periodic boundary condition is imposed in the lateral
directions. The Neumann condition for the velocity (∂u/∂x = 0) is imposed at the outlet
(x = 10.5D).

The wake response to different floating wind turbine motions is first investigated under
uniform inflow conditions. The parameter space is summarized by table 1. All three motion
types (surge, sway, yaw) are considered. The wind turbine motion amplitude is kept small.
Our previous study has shown that the wind turbine wake is very sensitive to the rotor’s
side-to-side motion and that even small amplitude motion (A = 0.01D) can lead to large
meandering amplitude in the far wake, especially for cases with uniform inflow (Li et al.
2022). Provided the present M2W model is based on the linear assumption, we set the
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Amplitude Strouhal number

Fixed — —
Surge A/D = 0.01 St ∈ {0.10, 0.25, 0.50}
Sway A/D = 0.01 St ∈ {0.10, 0.25, 0.50}
Yaw A/D = 0.01 St ∈ {0.10, 0.25, 0.50}

Table 1. Parameter space for investigating the wake response to typical floating wind turbine motions under
uniform inflow conditions.

motion amplitude to A = 0.01D in LES to keep the nonlinearity at a minimal level to
facilitate the comparison between the model and the LES. To treat this small motion in
LES, the aerodynamic force of the blade is first computed on the Lagrangian nodes of the
actuator surface and is then distributed to the Eularian grid for the flow solver, employing
the discretized smoothed delta function as the kernel (Yang et al. 2009). It considers the
distance between the Lagrangian and the Eularian nodes, so the motion of the rotor can
be reflected even when the displacement is smaller than the grid size. The results of our
previous LES study that employed the same numerical approach (Li et al. 2022) have
been confirmed by Messmer et al. (2023) using a wind tunnel experiment. Among the
frequencies selected, St ∈ {0.1, 0.25, 0.5}, our previous study (Li et al. 2022) has shown
that St = 0.25 is close to the most sensitive forcing frequencies for the sway motion,
while sway motions at St = 0.10 and St = 0.50 lead to less amplified wake meandering
for the 5 MW reference wind turbine of the National Renewable Energy Laboratory. We
will verify if the same sensitive frequency range is valid for all three motion types.

To consider the effect of turbulence, we impose synthetic turbulence generated by the
spectral tensor method of Mann (1994) at the inlet boundary of the computational domain,
in addition to the uniform streamwise flow of U∞ = 10 m s−1. The control parameters of
the synthetic turbulence are (i) αε2/3 a scalar to control the TIs; (ii) Γ , a non-dimensional
number for defining the anisotropy, setting to 3.9 according to the wind energy standard
(IEC 2019); (iii) LMann, a length scale proportional to the size of the most energetic
eddy, varies in LMann ∈ {D/8, D/4, 3D/8, D/2}, which are referred to as L1 to L4 in an
increasing order. Taking D = 198 m into account, LMann falls into the range of 24.75 m
to 99 m, containing the recommended value, LMann = 33.6 m for zhub ≥ 60 m, by IEC
(2019). We generate a total of 12 turbulent inflows, with three TIs (shown in table 2) and
four length scales. The obtained inflow turbulence length scales L

xj
ui for different LMann

are shown in figure 3, which represents the spatial scales of turbulent eddies with the
most energy for the three fluctuating wind velocity components ui = {ux, uy, uz} in the
streamwise (x), transverse (y) and vertical (z) directions, respectively (Nandi & Yeo 2021).
The integral lengths are computed with

L
xj
ui =

∫ ∞

0

〈ui(x)ui(x + ξej)〉
〈

u2
i
〉 dξ. (2.12)

Our previous study (Li et al. 2022) compared the wake of a fixed wind turbine and a sway
wind turbine under inflow with different TIs but only a fixed LMann close to the L4 case,
leaving the effect of inflow turbulence length scale unexplored. For this reason, the present
work uses LMann to control the inflow turbulence length scale, which has been found to be
critical for the wake meandering of a fixed wind turbine (Espana et al. 2011; Gambuzza &
Ganapathisubramani 2023).
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Turbulence intensity σu/U∞ σv/U∞ σw/U∞ σu : σv : σw

T1 2.5 % 1.8 % 1.3 %
1 : 0.74 : 0.51T2 5.0 % 3.7 % 2.5 %

T3 7.5 % 5.6 % 3.8 %

Table 2. Componentwise TI of the synthetic turbulence imposed at the inlet for the turbulent inflow cases.
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Figure 3. Integral length scale of velocity components ui in directions xj. Results are shown for the
(a) streamwise, (b) transversal and (c) vertical directions.

Inflow turbulence

Turbulence intensity
T1: σu/U∞ = 2.5 %
T2: σu/U∞ = 5.0 %
T3: σu/U∞ = 7.5 %

Length scale

L1: LMann = D/8
L2: LMann = D/4
L3: LMann = 3D/8
L4: LMann = D/2

Turbine motion

Fixed —

Sway
A1: A/D = 0.01, St = 0.25
A2: A/D = 0.02, St = 0.25
A3: A/D = 0.04, St = 0.25

Table 3. Parameter space employed for investigating the joint effect of inflow turbulence and turbine motion
on the wake evolution of a FOWT.

For cases with turbulent inflow, we consider only the sway motion since it leads to
the largest wake meandering (as shown in § 3) and has the potential to enhance the
wake recovery (Li et al. 2022; Messmer et al. 2023). Three different sway amplitudes
are investigated, i.e. A ∈ {0.01D, 0.02D, 0.04D}, and are referred to as A1, A2 and A3,
in increasing order. Increasing the motion amplitude is to strengthen the wake response,
such that the motion-induced wake response can be distinguished from the background
turbulence. The reduced frequency of the sway motion is equal to St = 0.25, falling near
the most sensitive frequency for the wake’s shear layer. The parameter space employed for
investigating the joint effect of inflow turbulence and turbine motion is listed in table 3,
containing 48 cases for LES.
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Figure 4. Instantaneous streamwise velocity deficit in the wake on the hub-height plane for a fixed rotor (a),
a FOWT rotor with surge (b–d), sway (e–g) and yaw (h–j) motions. The frequency of rotor motion is St =
0.10, 0.25, and 0.50 for the first, second, and last column, respectively. All contours are plotted at the same
time tU∞/D = 60. Inflow: uniform. Method: LES.

3. Wake response to rotor motions in uniform inflow

In this section we investigate the wake response to wind turbine motions by analysing the
results of LES in uniform inflow condition.

3.1. Instantaneous wake
The wake behaviour for different rotor motions are first examined by comparing the
instantaneous velocity deficit (�ux = ux − U∞) on the hub-height plane, as depicted in
figure 4.

As seen, the wake of a fixed wind turbine remains nearly straight when travelling
downstream due to the absence of incoming flow disturbances. Only small-scale
fluctuations are observed in the far wake due to the wake-generated turbulence.

At St = 0.1, none of the three motions is able to generate remarkable changes to
the wake, indicating the wake is nearly insensitive to the disturbances at this frequency
regardless of the rotor motion types.

As the motion frequency increases to St = 0.25, the wake contour shows significant
differences from the fixed turbine case. Firstly, the wake response is found to be dependent
on the motion type. Specifically, the wake for cases with surge motion remains almost
straight, but an alternating wind speed is found in the wake, where the wake is separated by
regions with relatively higher and lower wind speeds. This accordion-like wake movement
(Ramos-García et al. 2022) is referred to as wake pulsing by Messmer et al. (2023).
In contrast, both sway and yaw motions induce obvious lateral wake motions, i.e. wake
meandering, starting from x ≈ 5D. Notably, the wake meandering caused by sway and yaw
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Figure 5. Instantaneous wake for cases with sway (a) and yaw (b). The mitigating case (c): the sway and the
yaw motions are combined directly. The enhancement case (d): the yaw motion is lagged by half a period. The
red dash-dot lines plot the wake centreline yc(x) and the dashed lines approximate the wake boundary using
yc(x) ± 0.5D. Inflow: uniform. Method: LES.

exhibits strong similarity, i.e. both have a wavy form with almost identical wavelengths,
and both amplitudes gradually increase with downstream distance.

In figure 5 we compare the wake meandering caused by sway (a) and yaw (b) for cases
with St = 0.25. The wake trajectory is outlined by the centreline yc(x, t), computed as the
weight centre of the velocity deficit as

yc(x, t) =
∫ +∞
−∞ �ux(x, y, t)y dy
∫ +∞
−∞ �ux(x, y, t) dy

. (3.1)

At this instant, it is found that the lateral motion of the wake trajectory yc(x) is opposite
in direction for sway (a) and yaw (b), when the motions are defined with (2.10) and (2.11)
with A = 0.01D and St = 0.25. This opposite wake motion is confirmed by computing the
correlation coefficient of the instantaneous wake centre position time history at x = 8D,
which yields ρ = −0.93. Such an opposite wake centre displacement indicates that if the
sway and the yaw motions are combined with different phase lags, the wake meandering
can be either strengthened or weakened. To this end, a quick proof of concept is illustrated
in figure 5, for cases with in-phase (c) and opposite-phase sway–yaw combinations (d).
Here, in-phase refers to a direct combination of sway and yaw motions defined by (2.10)
and (2.11), whereas the opposite-phase case employs a yaw motion with a 180◦ phase lag.
As seen, the wake meandering is significantly mitigated in figure 5(c) but enhanced in
figure 5(d). The standard deviations of the instantaneous wake position yc(x = 8D, t) are
0.24D (sway only), 0.20D (yaw only), 0.11D (sway yaw motion in-phase), 0.31D (sway
yaw motion opposite-phase). However, such an interesting phase relation between sway
and yaw can be neither explained straightforwardly using the rotor displacement nor with
the LSA (Li et al. 2022) since an end-to-end M2W relation is not established in LSA.
Such a phase-resolved prediction capability will be fulfilled by the model proposed by this
work, as shown in § 4.3.
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Figure 6. Time-averaged velocity wake deficit contour on the hub-height plane and profiles at
x = 2D, 4D, 6D, 8D. See figure 4 for a detailed caption. Inflow: uniform. Method: LES.

When further increasing the motion frequency to St = 0.50, figure 4 shows that the wake
response becomes weaker for all motion types. The wake pulsing is still observed for the
case with surge but its wavelength is reduced. For the cases with sway and yaw motions,
the meandering of the wake is less apparent, while more velocity fluctuations at smaller
scales are found compared with the wake of a fixed wind turbine.

3.2. Time-averaged wake
To investigate the wake recovery enhancement due to rotor motion, we compare the
time-averaged velocity deficit �ūx = ūx − U∞ on the hub-height plane, as depicted in
figure 6. Consistent with the findings for instantaneous wakes, the fastest wake recoveries
are observed for the cases with sway and yaw motions at St = 0.25. In these cases,
the expansion rate of the time-averaged wake is significantly increased from x ≈ 5D,
where the onset of meandering is observed in the instantaneous wake, as shown by the
counterparts of figure 4. Furthermore, the velocity profiles deviate noticeably from the
Gaussian shape, which is caused by the non-Gaussian distribution of the instantaneous
wake centre locations when motion-induced wake meandering amplitude is significant (Li
et al. 2022). However, for the sway and the yaw motions at other frequencies, and for the
surge motion at all three frequencies, the time-averaged wake closely resembles that of
a fixed wind turbine. This observation is consistent with the wind tunnel measurements
of Schliffke et al. (2020), which found that surge motion has only a weak effect on the
time-averaged wake recovery.

Moreover, the wake recovery enhancement due to wind turbine motion is compared
quantitatively in figure 7, by plotting the space–time-averaged velocity deficit �Ũx. This
space–time-averaged velocity deficit is obtained by averaging the time-averaged velocity
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Figure 7. Space–time-averaged velocity deficit in the wake on the hub-height plane over −0.5D < y < 0.5D.
Results are shown for motions at a reduced frequency of St = 0.10 (a), St = 0.25 (b) and St = 0.50 (c). Inflow:
uniform. Method: LES.

deficit �ūx over the wake region, y ∈ [−0.5D, 0.5D], on the hub-height plane. As seen, at
St = 0.1, the curves for cases with different types of motion collapse, indicating that the
effect of motion is negligible at this frequency for all motion types. However, at St = 0.25,
the velocity deficit is recovered by approximately 0.2U∞ more at x = 10D for both sway
and yaw motions compared with the fixed wind turbine case. In contrast, the effect of
surge motion is still minimal. As the motion frequency increases to St = 0.5, the wake
recovery rate for sway and yaw motions is reduced, while that for the surge motion is
slightly enhanced. At x = 10D, the motion-enhanced extra wake recovery is 3.8 %, 8.3 %
and 6.3 % of the free-stream wind speed U∞ for the surge, the sway and the yaw motions,
respectively. It is worth noting the above comparison showcases the effect of the wake
instability triggered by rotor motion and is based on a small rotor motion amplitude A =
0.01D. Motions with large amplitudes that directly modify the wake, without triggering
flow instability, are not considered in this study.

4. Resolvent-based M2W model

In the following we present a linear model for predicting the wake response to dynamic
rotor motion. The structure of the M2W model is depicted in figure 1. The model’s input is
the time-averaged wake of a fixed wind turbine, which can be obtained conveniently from
simulation (Li et al. 2022) or experiments (Iungo et al. 2013). Based on the time-averaged
wake, the first building block of the M2W model, i.e. the F2W model, is established using
the resolvent of the LNSE (Towne, Schmidt & Colonius 2018; Jovanović 2021), which will
be introduced in § 4.1. The second building block is the M2F model, which parameterizes
the effect of rotor motion as unsteady forces on a fixed actuator disk. This building block
will be derived in § 4.2. Finally, the M2W prediction is achieved by connecting the two
building blocks. The predictive capability of the M2W model will be verified against LES
in § 4.3.

4.1. Forcing-to-wake model
The resolvent analysis is a powerful tool for predicting the response of a linear fluid system
to forcing (Trefethen et al. 1993), either from external sources (Jovanović & Bamieh 2005;
Sipp et al. 2010) or from the nonlinear term of the Navier–Stokes equations (McKeon &
Sharma 2010; Wu & He 2023). To derive the resolvent-based F2W model, we apply the
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Resolvent model of wind turbine wakes under dynamic motion

Reynolds decomposition to the variables of the Navier–Stokes equation as

u = ū + δu, (4.1)

p = p̄ + δp, (4.2)

f = f̄ + δf , (4.3)

where u, p, f represent the velocity, pressure and rotor forcing, respectively. The
time-averaged part is denoted by the ·̄ symbol and the perturbation part is denoted by the δ

symbol. The time-averaged wake of a fixed wind turbine, obtained with LES, is employed
as the time-averaged part.

The first assumption of the present model is the linear assumption, following which
the evolution of small coherent perturbations due to rotor forcing can be described by the
LNSEs as

∂(δu)

∂t
+ (ū · ∇)(δu) + (δu · ∇)ū + ∇(δp) − νeff ∇2(δu) = B(δf ), (4.4)

∇ · (δu) = 0, (4.5)

where the matrix B defines the spatial restriction such that forcing δ f is confined in the
rotor region. The effect of the turbulent Reynolds stresses is approximated by νeff ∇2(δu)

(Morra et al. 2019), using an effective viscosity νeff (Del Alamo & Jimenez 2006; Symon
et al. 2023).

Secondly, to ensure computational efficiency, the model assumes the axisymmetry of
the wake and is derived in the cylindrical coordinate system. The state variables of the
flow are expressed in the cylindrical coordinate system as

q(x, r, θ, t) = [p, u]T = [p, ux, ur, uθ ]T(x, r, θ, t), (4.6)

with ux, ur, uθ the velocity components in the axial (x), radial (r) and azimuthal (θ)

directions, and p the pressure. Similarly, the volume forcing to the flow is expressed as

f (x, r, θ, t) = [ fx, fr, fθ ]T(x, r, θ, t). (4.7)

With these notations, (4.4) and (4.5) can be formulated into a linear system of the
fluctuation part δq(x, r, θ, t) as

∂δq
∂t

= Lδq + Bδf , (4.8)

where the concrete form of L is provided in Appendix A, following the standard procedure
for linearizing the Navier–Stokes equations (Kaplan et al. 2021).

Thirdly, we employ the effective viscosity (Symon et al. 2023) to model the effects of
small-scale turbulence on the large turbulent coherent structures (Del Alamo & Jimenez
2006) in the wake, due to the large Reynolds number of the wind turbine wake. Looking for
the optimal effective viscosity for resolvent analysis is still an ongoing topic in turbulence
research (Gupta et al. 2021; Pickering et al. 2021). In this work, we employ a basic mean
flow consistent effective viscosity. The effective viscosity is approximated by a linear
fitting of the Reynolds shear stress u′

xu′
r and the streamwise velocity gradient (dūx/dr)
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from LES of a fixed wind turbine wake as

νeff = − u′
xu′

r

dūx/dr
. (4.9)

In the present model, the effective viscosity is assumed to be dependent only on the
streamwise location (x), i.e. νeff = νeff (x) is computed at each downstream location to
account for its streamwise variation.

Due to the linear nature of the model, the solution is sought in the frequency domain.
To this end, the state variables and the forcing are decomposed using the Fourier series,
by assuming the homogeneity in time and in the azimuthal direction as

δf (x, r, θ, t) =
∞
∑

ω=−∞

∞
∑

m=−∞
f̂ m,ω(x, r) exp (i(mθ − ωt)) , (4.10)

δq(x, r, θ, t) =
∞
∑

ω=−∞

∞
∑

m=−∞
q̂m,ω(x, r) exp (i(mθ − ωt)) , (4.11)

with i = √−1 the imaginary unit, m the azimuthal wavenumber and ω the angular
frequency. Substituting this ansatz to the linearized equation (4.8) results in an
input–output system for each (m, ω) pair as

(−iωI − Lm)q̂m,ω(x, r) = Bf̂ m,ω(x, r), (4.12)

or equivalently,

q̂m,ω(x, r) = Rm,ω f̂ m,ω(x, r), (4.13)

with Rm,ω = (−iωI − Lm)−1B the resolvent operator that transfers the forcing mode
f̂ m,ω(x, r) to the response mode q̂m,ω(x, r). Here I is the identity matrix and Lm is
provided in Appendix A.

The above equation is discretized in a two-dimensional domain of −2D < x < 10D and
0 < r < 3.5D. The grid spacing and the discretization scheme in the streamwise direction
are the same as LES with a number of grid points Nx = 240. In the radial direction,
Chebyshev polynomials are employed to discretize the equation with Nr = 100 collocation
points. The same mapping technique employed by Li et al. (2022) is adopted to set half of
the points inside the wake region 0 < r < 0.5D.

4.1.1. Optimal rotor forcing and wake response
As the resolvent operator Rm,ω connects the rotor forcing to the wake response, the optimal
rotor forcing leading to the strongest wake response can be found by analysing this linear
operator. To this end, we define the energy gain of the resolvent operator as

G2
opt (ω, m) = max

f̂ ω,m

‖q̂ω,m‖2
E

‖ f̂ ω,m‖2
f

, (4.14)
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which denotes the energy amplification in the wake to the rotor forcing. The energy norm
of the wake response and of the rotor forcing is defined as

‖q̂‖2
E = q̂HW qq̂ =

∫

Ω

(

û2
x + û2

r + û2
θ

)

r dθ dr dx, (4.15)

‖ f̂ ‖2
f = f̂ HW f f̂ =

∫

Γ

(

f̂ 2
x + f̂ 2

r + f̂ 2
θ

)

r dθ dr, (4.16)

where W q and W f are the weight matrices of the discretized energy norm. The integration
domains for the energy norm definition expand 0 < x < 10D, 0 < r < 3.5D, 0 < θ < 2π
for Ω and x = 0, 0 < r < 3.5D, 0 < θ < 2π for Γ .

The optimization problem defined in (4.14) is equivalent to finding the largest eigenvalue
of the following problem (Garnaud et al. 2013):

W −1
f RHW qRf̂ = λf̂ . (4.17)

Here the largest eigenvalue is equal to the square of the optimal gain (λmax = G2
opt), and the

eigenvector corresponds to the optimal rotor forcing mode ( f̂ opt). The optimal response
mode is obtained by solving (4.13) once the optimal forcing mode is obtained.

One issue related to the computational cost is that the explicit construction of the
bi-global resolvent operator Rm,ω = (−iωI − Lm)−1B gives rise to a prohibitive memory
cost due to the storage of a large dense matrix of (4 × Nx × Nr) × (4 × Nx × Nr). This
problem is circumvented by employing the Arnoldi algorithm, as described by Martini
et al. (2021) and Kaplan et al. (2021).

Figure 8 depicts the computed optimal gain Gopt(St, m) as a function of the forcing
frequency St and the azimuthal wavenumber m. The curve of the optimal gain for the
rotor forcing with m = 0 is found to have a flat plateau in 0.2 < St < 0.4 where the gain
is elevated. For m /= 0, the optimal gains of the opposite azimuthal wavenumbers show
a similar variation via St, but differ slightly as a result of the non-zero time-averaged
rotational velocity of the wake. For the gains of the rotor forcing with m = ±1, they
both have a distinct peak near St ≈ 0.25, which is the largest among all azimuthal
wavenumbers considered. Further increasing the wavenumber beyond |m| ≥ 2 reduces the
magnitude of the optimal gain. From an application aspect view, the rotor forcings with
azimuthal wavenumbers m = 0 and m = ±1 are important because they can be induced
by floating wind turbine motions, as will be shown in § 4.2. Bottom fixed turbines can
also generate these rotor forcings with wake control techniques such as the dynamic
induction control (DIC, Goit & Meyers 2015) (m = 0) and the helix wake control approach
(m = ±1) (Frederik et al. 2020). We note that the most unstable modes have an azimuthal
wavenumber of m = ±1, which agrees with the result obtained by Viola et al. (2014) using
local LSA with eddy viscosity.

It is also worth noting that the optimal gain is dependent on the definition of the energy
norm of the wake response and rotor forcing. One may change the definition of (4.15) to
focus on other wake properties. One example of using the energy of streamwise velocity
fluctuation to define the energy gain is shown in Appendix B.1.

Furthermore, Appendix B.2 investigates the sensitivity of the optimal gain to the
effective viscosity (νeff ), because the present model employs a simple νeff modelling that
does not account for the possible variation of νeff due to the dynamic wake response. The
results show that, even νeff is augmented or diminished by a factor of two, the present
model is able to predict the peak frequency leading to the maximum gain reasonably
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Figure 8. Optimal gain as a function of the forcing frequency St. Each branch represents a different azimuthal
wavenumber m. Inflow: uniform. Method: F2W model.

well for cases with m = 1, which leads to the strongest wake response, where the peak
frequency predicted by the model consistently falls in the range 0.2 < St < 0.3. However,
it is noteworthy that the magnitude of the optimal gain demonstrates sensitivity to νeff .
An increase in effective viscosity tends to stabilize the flow, thereby diminishing the
magnitude of the optimal gain. As the result suggested, the present model can be employed
to effectively narrow the focus of the frequency range for flow control purposes, such that a
more detailed investigation could be realized through methods like model experiments or
LES, where the nonlinear effects leading to the uncertainty of νeff can be incorporated
properly. Moreover, advanced effective viscosity modelling can also be developed to
enhance the predictive capability of the proposed model.

The spatial modes of the optimal rotor forcing are plotted in figure 9 for the case
with St = 0.25. The streamwise forcing is larger than the radial and azimuthal forcing
components, indicating that the wake is more sensitive to forcing in the streamwise
direction. The streamwise and radial components of the forcing modes for m = ±1 are
similar, except the rotational directions which are the opposite. Larger discrepancies
are observed in the azimuthal component, due to the non-zero time-averaged rotational
velocity of the wake.

The optimal forcing is also dependent on the forcing frequency as depicted by figure 10,
where the forcing modes for St = 0.10, 0.25 and 0.50 are compared for the same azimuthal
wavenumber m = 1. As seen, the spatial patterns are found to be similar for different
motion frequencies. However, increasing the Strouhal number generally moves the forcing
region toward the edge of the disk, and the forcing structure becomes narrower. A similar
trend is also found for other azimuthal wavenumbers but is not shown for conciseness.

The wake response under the optimal forcing is depicted in figure 11 for cases with
m = 0 and m = ±1, St = 0.10, 0.25, 0.50. These modes are plotted in the rOx plane where
r = 0 corresponds to the wake centreline. For all cases, the wake response shows a wavy
pattern in the x direction, as the fluctuating velocity field behaves as a wave travelling
downstream. The wavelength of the coherent structures is found to be negatively related to
the forcing Strouhal number St, as one can expect. Besides, the streamwise development
of the fluctuation magnitude is also dependent on the Strouhal number. For cases with
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Figure 9. The real part of the spatial mode of the optimal rotor forcing predicted by the resolvent analysis
at St = 0.25 for the azimuthal wavenumber m = 0 (a–c), m = 1 (d–f ), m = −1 (g–i). The forcing modes are
normalized such that ‖ f̂ ‖f = 1, as defined by (4.16). Inflow: uniform. Method: F2W model.

St = 0.10 and 0.25, the velocity fluctuation generally increases with downstream location,
while increasing the frequency to St = 0.5 dampens the far wake fluctuation for x > 5D.

The above method provides an efficient way to relate the wake response due to rotor
forcing by the resolvent operator. To find the optimal forcing and response it takes
approximately several minutes for each pair of wavenumber and frequency (m, St) on a
desktop computer. However, since the rotor forcing is not directly related to the motion
of FOWT, one cannot predict the wake response in a motion-specific manner yet. This
shortcoming necessitates the development of a M2F model of the floating wind turbine in
the next subsection.

4.2. Motion-to-forcing model
In this section we derive the second part of the M2W model, i.e. the M2F model. The
idea of this modelling is to replace wind turbine motion with equivalent force. The model
proposed here is an actuator disk fixed at the time-averaged position of the moving wind
turbine, but exerting unsteady motion-dependent forces. To remain consistent with the
resolvent F2W model, we decomposed the force on the actuator disk f (r, θ, t) into a
time-averaged thrust and an unsteady part as follows:

f (r, θ, t) = [−f̄T(r) + δfx(r, θ, t), δfr(r, θ, t), f̄θ (r) + δfθ (r, θ, t)]T. (4.18)
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Figure 10. Same as figure 9 but for different St with the azimuthal wavenumber m = 1.

The time-averaged force on the rotor is simplified as a normal thrust f̄T(r) and rotational
force f̄θ (r). The radial variation of the thrust force is maintained to account for the blade
design, which has been shown to be important for the wake recovery (Dong et al. 2023).
Here f̄T(r) is computed from the time-averaged blade thrust F̄T(r) as

f̄T(r) = m · F̄T(r)δr
2πrδr

= m · F̄T(r)
2πr

, (4.19)

where m = 3 is the number of blades and δr → 0 is the width of an annulus at r.
Furthermore, the thrust coefficient C̄T(r) of the actuator disk is computed as

C̄T(r) = f̄T(r)
1
2

U2∞
. (4.20)

Figure 12 shows the time-averaged blade forces (a) and force coefficients of the rotor
disk (b) obtained from the LES for different turbine motions. As seen, F̄T(r) and C̄T(r)
are almost unaffected by the rotor motion, because the oscillatory motion is relatively
small, which is consistent with the experiments with model wind turbine rotors (Fontanella
et al. 2022; Meng et al. 2022a). From the theoretical aspect, recent studies of Wei &
Dabiri (2023) and Heck, Johlas & Howland (2023) have established relations between
the thrust force for wind turbines with surge motion velocity amplitudes and yaw angles.
For example, Wei & Dabiri (2023) has shown that the time-averaged rotor thrust of a
periodically surging wind turbine (F̄T ) is related to that of a stationary wind turbine F̄T,0
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Figure 11. The real part of the optimal response of the wake velocity predicted by the resolvent analysis for
the azimuthal wavenumbers m = 0 (a–c), m = 1 (d–f ) and m = −1 (g–i) with forcing frequencies of St =
0.10, 0.25, 0.50. The modes are plotted in a two-dimensional rOx plane, where ûx, ûr and ûθ represent the
velocity fluctuation in the streamwise, radial and azimuthal directions. The response modes are normalized
such that ‖q̂‖E = 1, as defined by (4.15). Inflow: uniform. Method: F2W model.

as follows:

F̄T

F̄T,0
= 1 + 1

2
u2

h

U2∞
. (4.21)

Here uh = Aω is the motion amplitude of the rotor. The above equation indicates that the
motion-induced thrust variation is small (uh ≈ 0.016U∞, u2

h ≈ 0.0003U2∞ for A = 0.01D
and St = 0.25; uh ≈ 0.13U∞, u2

h ≈ 0.017U2∞ for A = 0.04D and St = 0.5). For yaw
motion, Heck et al. (2023) also demonstrates a quadratic dependence of the thrust change
with the yaw angle, which can also be ignored for γ � 1. For this reason, we assume that
the thrust force and the thrust coefficient C̄T(r) for all motions with small amplitudes can
be approximated by those of a stationary wind turbine. The rotational force coefficient
C̄θ (r) can also be computed by the same approach.

In the following we derive a linear M2F model to compute the unsteady force on the
actuator disk induced by surge, sway and yaw motions, taking only the time-averaged
force coefficients (C̄T(r) and C̄θ (r)) as input and assuming that the motion amplitude is
small.

4.2.1. Surge
The surge motion refers to the displacement in the streamwise direction (x) as shown in
figure 13(a). This motion generates a streamwise velocity of the rotor, denoted as (uh(t) =
δẋh(t)), which alters the relative velocity between the free stream and wind turbine. To
account for this variation, the thrust of the actuator disk is computed with a corrected
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Figure 12. Comparison of time-averaged blade forces (a) and force coefficients of the rotor disk (b) for
different motion types. The normal forces (F̄T ) and coefficients (C̄T ) are plotted in colour and the rotational
ones (F̄θ and C̄θ ) are plotted in grey. The reduced frequency of the motion is equal to St = 0.25 and the
amplitude is A = 0.01D. Inflow: uniform.

wind speed Urel = U∞ − δẋh(t), while the thrust coefficient is assumed to equal C̄T(r).
This assumption is validated by examining the blade force results from LES with small
uh(t). Based on these assumptions, the unsteady part of the rotor forcing is computed as

δfx(r, θ, t) = −
(

1
2 U2

relC̄T(r) − 1
2 U2

∞C̄T(r)
)

= 1
2 C̄T(r)(2U∞δẋh(t) − δẋ2

h(t))

≈ U∞C̄T(r)δẋh(t). (4.22)

The minus sign at the first step reflects that the thrust force points in the opposite
direction of x of the coordinate system. In the final step of (4.22), linear approximation is
employed to truncate the high-order terms of δẋh(t), assuming δẋh(t) � U∞. Substituting
the harmonic surge displacement in (2.9)–(4.22) yields the unsteady streamwise forcing
for harmonic surge motion as

δfx(r, θ, t) ≈ ωA cos(ωt)U∞C̄T(r). (4.23)

Similarly, the azimuthal component can be computed as

δfθ (r, θ, t) ≈ −ωA cos(ωt)U∞C̄θ (r). (4.24)

The resulting unsteady forcing is depicted in figure 14(a–c).

4.2.2. Sway
The sway motion refers to the side-to-side translation of the rotor as shown in figure 13(b).
Compared with surge motion, sway does not affect the axial relative velocity, indicating
that the rotor thrust remains almost constant in the rotor-following frame of reference.
However, since the thrust moves with the wind turbine, an unsteady variation of the thrust
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Figure 13. Schematics of floating wind turbine motion for surge (a), sway (b) and yaw (c). The red solid line
outlines the instantaneous rotor position and the black dashed line shows the time-averaged rotor position. Red
arrows illustrate the motion. The coordinates of O = (0, 0, 0) and O′ = (δxh(t), δyh(t), δzh(t)). The derived
unsteady force is applied only inside the black dashed circle.
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Figure 14. Spatial mode of the linearized unsteady forcing for surge motion (a–c), sway motion (d–f ) and yaw
motion (g–i). Plots (a,d,g), (b,e,h) and (c, f,i) show the streamwise, radial and azimuthal components of the
rotor forcing, respectively. The forcing is computed for the cases with the reduced motion frequency St = 0.25.
All modes are normalized by AU2∞. Method: M2F model.
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is generated in the ground-fixed frame of reference, which can be expressed as

δfx(r, θ, t) = −( fT(r, θ, t) − f̄T(r))

= −
(

1
2

U2
∞C̄T(r′(t)) − 1

2
U2

∞C̄T(r)
)

≈ −1
2

U2
∞

∂C̄T(r)
∂r

(r′(t) − r)

≈ 1
2

U2
∞

∂C̄T(r)
∂r

cos θδyh(t). (4.25)

Here, r and r′(t) denote the distance from a point P(0, y, z) to the time-averaged
rotor centre O = (0, 0, 0) and to the instantaneous wake centre O′(t) = (0, δyh(t), 0),
respectively, as illustrated in figure 13(b). The distance to the moving hub centre is
computed as r′(t) =

√

( y − δyh(t))2 + z2. Assuming small δyh(t), the last step in the
equation is achieved by using the approximation

r′(t) − r =
√

( y − δyh(t))2 + z2 −
√

y2 + z2

≈ − y
√

y2 + z2
δyh(t)

= − cos (θ)δyh(t). (4.26)

Substituting δyh(t) defined in (2.10) into (4.25) yields an unsteady streamwise forcing as

δfx(r, θ, t) ≈ A
2

sin (ωt)U2
∞

∂C̄T(r)
∂r

cos θ. (4.27)

Similarly, the unsteady forces in the azimuthal direction are modelled as

δfθ (r, θ, t) ≈ −A
2

sin (ωt)U2
∞

∂C̄θ (r)
∂r

cos θ. (4.28)

Figure 14(d–f ) illustrate the spatial mode of the unsteady forcing for the sway motion.

4.2.3. Yaw
The yaw motion corresponds to the rotational motion along the z axis, which induces a
misalignment between the rotor-normal direction and the streamwise direction as shown
in figure 13(c). The direction vector of the thrust depends on the yaw angle γh(t) as follows:

n = [− cos γh(t), − sin γh(t), 0]. (4.29)

The leading-order effect of this directional variation is a side force in the transverse
direction,

δfy(r, θ, t) = −f̄T(r) sin (δγh(t))

≈ −1
2 U2

∞C̄T(r)δγh(t), (4.30)

with Taylor expansion applied in the last step, assuming a small yaw angle |δγh(t)| � 1.
The lateral force δfy(r, θ, t) is projected in the radial (r) and azimuthal (θ ) directions of
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Motion Unsteady forcing/ (AU2∞)

δfx(r, θ, t) δfr(r, θ, t) δfθ (r, θ, t)

Surge ω cos(ωt)C̄T (r)/U∞ 0 −ω cos(ωt)C̄θ (r)/U∞

Sway
1
2

sin(ωt)
∂C̄T (r)

∂r
cos θ 0 −1

2
sin (ωt)

∂C̄θ (r)
∂r

cos θ

Yaw − 1
2R

sin(ωt)C̄θ (r) sin θ − 1
2R

sin(ωt)C̄T (r) cos θ
1

2R
sin(ωt)C̄T (r) sin θ

Table 4. Summary of the unsteady forcing generated by the proposed actuator disk model for harmonic
surge, sway and yaw motions, as defined by (2.9)–(2.11).

the cylindrical coordinates, yielding

δfr(r, θ, t) = δfy(r, θ, t) cos θ

≈ −1
2 U2

∞C̄T(r)δγh(t) cos θ, (4.31)

δfθ (r, θ, t) = −δfy(r, θ, t) sin θ

≈ 1
2 U2

∞C̄T(r)δγh(t) sin θ. (4.32)

Substituting the prescribed harmonic yaw motion defined in (2.11) into (4.31) and (4.32),
the unsteady forcing caused by harmonic yaw motion is expressed as

δfr(r, θ, t) ≈ − A
2R

sin (ωt)U2
∞C̄T(r) cos θ, (4.33)

δfθ (r, θ, t) ≈ A
2R

sin (ωt)U2
∞C̄T(r) sin θ. (4.34)

The unsteady forcing in the streamwise direction, mainly contributed by the time-averaged
rotational force, is expressed as

δfx(r, θ, t) = − A
2R

sin(ωt)U2
∞C̄θ (r) sin θ. (4.35)

The spatial modes of the unsteady forcing are illustrated in figure 14(g–i).

4.2.4. Summary of M2F model
Table 4 summarizes the unsteady forcing for a FOWT undergoing harmonic surge, sway
and yaw motions. Their spatial modes are plotted in figure 14. As seen, the forcing appears
in different directions and has different azimuthal dependencies. The forcing for surge
motion is axisymmetric, i.e. the azimuthal wavenumber is zero (m = 0). For sway and
yaw motions, the forcing shows a side-to-side pattern, which can be decomposed into
m = ±1 components. Moreover, we note that the magnitude of surge forcing is directly
proportional to the motion frequency ω. For sway and yaw motion, the motion frequency
does not explicitly influence the forcing magnitude.

It is important to note that under the current uniform inflow condition, vertical and
lateral motions (heave and sway) can be considered equivalent, differing only in their
direction of motion. Similarly, the equivalence between pitch and yaw can be achieved
through a change of coordinates. Roll motion around the turbine’s centre of gravity
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results in a side-to-side motion at the rotor’s height, which can be approximated as lateral
motion (sway). Furthermore, the forcings of these elementary motions can be employed to
compose forcings of complex, realistic motions.

4.3. Prediction of the M2W model for uniform inflow
In this subsection we show that the wake response of a FOWT can be predicted in an
end-to-end manner by connecting the M2F and F2W models.

Firstly, the motion-induced forcing is projected to the basis functions ei(mθ−ωt), as
defined in (4.10), to obtain the corresponding forcing modes f̂ m,ω(x, r). Secondly, these
forcing modes are then substituted into (4.13) of the F2W model to solve for the response
modes q̂m,ω(x, r). Finally, the wake response is reconstructed with (4.11). It is worth noting
that the above procedure is not limited to the rotor forcings derived in § 4.2. The unsteady
rotor forcing obtained by other computational methods can also be employed as input.

Taking the streamwise forcing induced by the sway motion as an example, it can be
projected on four basis functions as

δfx(r, θ, t) = −AU2∞
8i

∂C̄T(r)
∂r

(

ei(θ−ωt) − e−i(θ−ωt) + ei(−θ−ωt) − e−i(−θ−ωt)
)

. (4.36)

The coefficient of each basis function, ei(mθ−nωt), forms the spatial modes as follows:

f̂ x
m,nω(x = 0, r) = −n

AU2∞
8i

∂C̄T(r)
∂r

(4.37)

with m = ±1 and n = ±1. The forcing components in the radial and azimuthal directions
can be decomposed similarly. By substituting all forcing modes into (4.13) and solving for
the wake response mode-by-mode, the final wake response is

δq(x, r, θ, t) = q̂1,ω(x, r)ei(θ−ωt) + q̂−1,−ω(x, r)e−i(θ−ωt)

+ q̂−1,ω(x, r)ei(−θ−ωt) + q̂1,−ω(x, r)e−i(−θ−ωt). (4.38)

The wake response for FOWT subject to the surge or the yaw motions are computed with
the same procedure.

Figure 15 depicts the three-dimensional coherent structure computed with the M2W
model for the surge, sway and yaw motions. All the motions have the same frequency
St = 0.25 and the same amplitude A = 0.01D. For surge motion, the velocity fluctuation
is distributed uniformly in the azimuthal direction, while for sway and yaw motions, the
streamwise velocity fluctuation mainly resides on the lateral sides of the wake. These
spatial modes are consistent with the wake pulsing pattern for the surge motion and the
wake meandering phenomenon for the sway and yaw motions.

The wake response is further analysed on the hub-height plane. Figure 16(a) displays
the spatial modes of the velocity fluctuation (ûx and ûy) predicted by the M2W model at
St = 0.25, and is compared with the Fourier modes obtained with LES in figure 16(b).
It is worth noting that all contours are plotted with the same magnitude allowing a
direct comparison. As seen, the proposed M2W model predicts correctly the response
modes compared with the LES in terms of flow structures. For surge motion, the pulsing
mode of the wake observed in the instantaneous wake contour (figure 4) is revealed as
a symmetric alternation of the streamwise velocity along the centreline. Furthermore,
the lateral velocity is opposite in sign across the wake centreline, indicating a varicose
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Figure 15. Streamwise velocity fluctuation predicted by the M2W model for surge (a), sway (b) and yaw (c) at
St = 0.25. The red and blue surfaces correspond to the isocontour of |δux| = 0.05U∞, respectively. The base
flow is depicted by a light blue shadow. Inflow: uniform. Method: M2W model.

deformation of the wake. For the sway and yaw motions that lead to wake meandering,
the model predicts an anti-symmetric mode for streamwise velocity fluctuation, while the
lateral velocity fluctuation spans throughout the entire wake. Moreover, the M2W model
is capable of predicting the difference in the near wake for the sway and yaw motions.
For the sway motion, an obvious anti-symmetric streamwise velocity fluctuation is found
immediately behind the tip and the root of the blade, coincident with the rotor forcing
distribution (see figure 14d). In comparison, the yaw motion induces a relatively smaller
streamwise velocity fluctuation in the near wake, since the yaw motion does not result in
a streamwise forcing near the rotor tip (see figure 14g–i). Thanks to the motion-specific
modelling, the M2W model provides a phase-resolved prediction of the wake response
that captures very well the phase opposition in the far wake for the sway and yaw motions.
The predicted spatial modes are also comparable to the Fourier modes of the LES results.
However, when comparing the model’s prediction quantitatively with the LES, we notice
some discrepancies in the far wake. The linear model systematically underestimates the
wavelength of the velocity fluctuation, e.g. the coherent structures of the LES travel
approximately one-quarter of a wavelength faster than those predicted by the M2W model
at x = 10D for all motion types. This difference should be attributed to the base flow
employed by the M2W model, i.e. the time-averaged wake of a fixed wind turbine. With
such a base flow, the increase of wind speed in the far wake enhanced by turbine motions
(in figure 7) is not accounted for. This underestimated wind speed in the base flow that
might also explain the diamond pattern of ûx in the far wake for cases with sway and yaw,
predicted by the M2W model, since the velocity near the wake centre is apparently slower
than in the free stream for the base flow employed. In contrast, these structures are almost
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Figure 16. Real part of the spatial mode of the fluctuating velocity on the hub-height plane, predicted by the
M2W model (a) and the Fourier modes of LES (b). Here ûx and ûy represent the modes of streamwise and
lateral components, respectively. The motions have an amplitude of A = 0.01D and a reduced frequency of
St = 0.25. Inflow: uniform.

square in the result of LES, because these flow structures are convected by the actual wake
velocity taking into account the enhanced wake recovery in LES.

The predictive capability of the M2W model is further verified at St = 0.10 and
St = 0.50 in figures 17 and 18. At St = 0.10, the lower magnitude of wake response
is well captured by the linear model. Interestingly, the velocity fluctuation is found to
manifest principally in the streamwise component, leaving the transverse velocity mode
less obvious for both the model prediction and the LES results. Such a lower transverse
velocity is in agreement with the weaker meandering motion observed in the instantaneous
wake field (figure 4). It is worth noting that the phase opposition for yaw and sway motions
is still observed. At St = 0.50, the wavelength of velocity fluctuation is significantly
shortened in the streamwise direction. Moreover, the fluctuation magnitude is found to
reach a peak at approximately x = 4D and then decreases with downstream distance.
The above wake patterns are successfully captured by the proposed M2W model and the
predicted velocity fluctuations show generally good agreement with LES, despite some
underestimation of the velocity fluctuation magnitude, which might be due to the rather
basic mean flow consistent effective viscosity employed in the model.

Overall, the above comparison has demonstrated the success of the M2W model in
predicting the wake response. While the model shares some aspects with stability analysis
(Iungo et al. 2013) or resolvent analysis (Towne et al. 2018) that focuses on the optimal
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Figure 17. Comparison of spatial modes predicted by the M2W model and LES at St = 0.10. The M2W
model (a) and the Fourier modes of LES (b). Inflow: uniform.

growth of perturbations, the present model excels by its capability to predict the wake
response in a motion-specific manner through the additional M2F modelling. For this
reason, the present model can be further employed to compute the wake response under a
combination of rotor motions by simply summing the wake responses of elementary ones,
thanks to the linearity of the model.

5. Effect of ambient turbulence

As wind turbines often operate in turbulent environments, in this section we investigate the
effects of TI and length scale on the wake of a FOWT by LES and incorporate these effects
into the proposed M2W model. Information on the turbulent inflow and wind turbine
motion has been provided in § 2.2.

5.1. Large-eddy simulation results

5.1.1. Instantaneous wake
A visualization of the wind turbine wake is provided in figure 19, showing the contour
of the instantaneous streamwise velocity deficit �u = ux − U∞ on the hub plane for the
fixed wind turbine cases (a) and the cases with A3 motion (b).
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0y/DSurge

–1

1

0y/DSway

–1

1

0y/D

x/D x/D

Yaw

–1

0 2 4 6 8 10 0 2 4 6 8 10

Figure 18. Same as figure 17 at St = 0.50.

It is worth noting that the snapshots in each counterpart in subfigures (a,b) are
synchronized, i.e. the same turbulent inflow is employed and the figures are compared
at the same temporal instant, so the additional effect due to sway can be directly observed.
Compared with the uniform inflow condition, figure 19(a) indicates that the inflow
turbulence triggers the wake meandering that increases in magnitude with inflow TIs.
However, the effect of turbulence integral length is more difficult to tell based on this
visualization and will be analysed quantitatively in § 5.1.3. Figure 19(b) indicates that
the rotor sway motion results in extra deformation of the wake. Such deformation is
particularly pronounced for the cases with the lowest TI (T1) but becomes less notable
when the TI is increased, which is in agreement with previous findings (Li et al. 2022).
It is worth noting that the attenuation effect due to ambient turbulence is rather strong,
provided that the sway motion amplitude in this figure 19(b) is A = 0.04D, being four
times as large as that in figure 4 for the uniform inflow.

5.1.2. Spectral analysis of motion-induced velocity fluctuation
To further reveal the flow dynamics, we conduct a spectral analysis of the wake velocity
with the spectral proper orthogonal decomposition (SPOD), using the approach of Towne
et al. (2018). The in-plane velocity components on the hub-height plane are analysed,
with spatial restriction in the region of −1D < x < 10.5D, −1.5D < y < 1.5D. The
time sequences of the snapshots are divided into six segments, each with a size of
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Figure 19. A snapshot of instantaneous wake at the hub-height plane plotted by the velocity deficit �u. Cases
with a fixed wind turbine (a) and rotor sway motion A3 (b). The red dash-dot lines plot the wake centreline
yc(x) and the dashed lines approximate the wake boundary using yc(x) ± 0.5D. Inflow: synthetic turbulence.
Method: LES.

Tw = 20D/U∞, containing Nw = 1600 snapshots. A Hamming window with 50 % overlap
is employed. This configuration results in a frequency resolution of �St = 0.05 and a
Nyquist frequency of Stmax = 40.

Figure 20 compares the wake velocity spectra by plotting the leading SPOD eigenvalue
λ1 that contains the largest modal energy as a function of frequency. In figure 20(a)
it is found that the turbulence energy for cases with the same inflow condition has
approximately the same spectrum for cases with and without rotor motion, except a
prominent peak at the motion frequency (St = 0.25). In all inflow conditions, the level
of this peak is found to be positively related to the motion amplitude, but inversely related
to the inflow TI. A minor peak at approximately double forcing frequency St ≈ 0.5 can
also be identified, especially for cases with low inflow TI, reflecting a weak nonlinear
evolution of the motion-induced wake meandering (Li et al. 2022). At higher frequencies,
peaks at the blade passing frequency (St ≈ 8.6) and its multiples also exist but are not
plotted. Figure 20(b) rearranged the same data to further probe into the effect of the inflow
turbulence length scale. The figure clearly reveals that increasing the inflow turbulence
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Figure 20. Comparison of the energy spectra of the leading SPOD mode. The same data are employed in both
subfigures to demonstrate the effect of sway amplitude (a) and inflow turbulence length scale (b). A dotted
vertical red line represents the sway motion frequency St = 0.25. Inflow: synthetic turbulence. Method: LES.
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length scale leads to a stronger velocity fluctuation at the lower frequency range St < 0.25,
reflecting the stronger low frequent motion of the wake induced by the inflow. At higher
frequencies, St > 0.25, the effect of the length scale becomes less apparent. Interestingly,
at the frequency of the sway motion St = 0.25, the free-stream turbulence length scale in
the considered parameter space has a relatively weak effect on the motion-induced wake
response compared with the TI.

5.1.3. Statistics of wake centre displacement
In figure 21 a statistical view of the instantaneous wake trajectories is provided, by plotting
wake centrelines yc(x) at 60 random instants, accounting for approximately 0.2 % of the
entire simulation. The red dashed lines represent the standard deviation of the wake
positions σyc(x) computed for the entire time series. For the cases with the fixed wind
turbine, i.e. the wake meandering is induced by free-stream turbulence alone, previous
studies (Espana et al. 2011; Porté-Agel et al. 2020; Gambuzza & Ganapathisubramani
2023) generally consent that the wake meandering amplitude increases with both TI and
length scale. The simulation results in figure 21(a) show that the present simulation set-up
captures well this trend of variation for cases without wind turbine motion, where the
expansion rate of the wake trajectory envelope is found to increase with both TI and length
scale. However, figure 21(b) shows a less apparent trend with TI and length scale due
to the co-existence of motion-induced and free-stream-induced contributions, where the
envelope of the wake centrelines is found to expand at comparable rates for all cases.

To further probe into the wake meandering behaviour when both inflow turbulence and
sway motion exist, we plot the histogram of the instantaneous wake centre in figure 22.
For cases with the lowest TI (T1), the sway motion significantly alters the distribution
of yc(t) (see left panels in figure 22), suggesting there is a significant contribution from
the sway-induced harmonic motion of the wake, as has been revealed by Li et al. (2022).
This feature disappears for cases with higher inflow TIs, indicating less apparent harmonic
wake meandering motions.

5.2. Motion-to-wake model considering ambient turbulence
In this section the M2W model proposed in § 4 is extended to account for the effects of
free-stream turbulence. As observed in § 5.1.3, the amplitude of wake meandering induced
by rotor motion is reduced when the ambient TI is increased, indicating an overall decrease
in the energy in the wake.

The effect of inflow turbulence on the motion-induced forcing is first scrutinized.
However, the LES results demonstrate that the change in the time-averaged thrust for
computing the motion-induced forcing is always less than 2 %, even for the cases with
the strongest ambient turbulence (T3L4 case), as shown in figure 23, indicating that the
M2F part is almost unaffected by the ambient turbulence and is not responsible for the
reduction of wake meandering. Therefore, the influence of ambient turbulence can only
take place in the F2W stage. In the following we propose two corrections at this stage
regarding the mean flow and the effective viscosity, respectively.

As the time-averaged wake is employed as the base flow for deriving the resolvent
operator, the effects of free-stream turbulence on the mean flow are investigated first.
Figure 24 displays the time-averaged wake deficit under various inflows with different
TIs and length scales. As shown in figure 24(a), increasing TI significantly modifies the
time-averaged wake, characterized by a thickening of the shear layer in the near field
starting from x = 2D. In contrast, figure 24(b) compares the wake deficits for cases with
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Figure 21. Instantaneous centreline of the wake yc(x). Wake trajectories at 60 random instants are plotted
in each case. Red dashed lines represent the standard deviation σyc (x) of the wake centre position. Wake
meandering is induced by free-stream turbulence alone (a), free-stream turbulence plus A3 sway motion (b).
Inflow: synthetic turbulence. Method: LES.

four inflow turbulence length scales at the same TI (T2). As seen, the velocity profiles for
different cases nearly collapse in the near wake region (0 < x < 4D), with only remarkable
differences in the far wake (x > 5D). Overall, the above observation suggests that the
inflow turbulence length scale has a weaker effect on the mean flow for the considered
parameter space compared with TI.
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Figure 23. Comparison of time-averaged blade force (a) and thrust coefficient (b) for different inflow
conditions. The sway motion has an amplitude of A = 0.04D with St = 0.25. The error bar in the inset indicates
a range of ±1 %. Method: LES.

A second factor that affects wake evolution is the effective viscosity, as defined in (4.9).
To investigate this effect, we computed the effective viscosity using the LES results of a
fixed wind turbine wake and compared it for different inflow conditions in figure 25. As
seen, free-stream turbulence increases the magnitude of the eddy viscosity for all inflow
conditions compared with the uniform inflow case, and νeff is positively related to both
the free-stream TI and length scale. The streamwise variation of νeff shows a similar trend
for all cases, starting at νeff (x = 0) = 0 and developing with downstream distances until
it saturates on a plateau at x ≈ 4D to 6D depending on the TI. In the near wake, higher
TI induces a faster increase of νeff and, in general, a higher plateau level in the far wake.
In contrast, the effect of the integral length scale is less evident in the near wake, but
increasing the length scale results in an elevated νeff on the far wake plateau for a same
TI. Beyond the plateau, νeff decreases in cases with high turbulent intensities and length
scale, e.g. T3L4, being consistent with Scott et al. (2023).
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Figure 25. Mean flow consistent effective viscosity for cases with different free-stream turbulence. Inflow:
synthetic turbulence. Method: LES. Results are shown fro (a) T1, (b) T2, (c) T3.

The M2W model is modified to incorporate these effects, by using the base flow and
the effective viscosity informed from the wake of a fixed wind turbine with the same
inflow from LES. The effects of the mean flow and effective viscosity modifications are
first analysed by checking the optimal gain of the resolvent operator, shown in figure 26,
where the optimal gain for the meandering mode, i.e. mode with azimuthal wavenumber
m = 1, are compared for cases with different TIs and a fixed inflow turbulence length
scale L2. Figure 26(a) shows the result when only the mean flow correction is applied.
As seen, the optimal gain decreases drastically when the TI is increased, indicating that
the time-averaged wake generated by higher inflow turbulence becomes more stable to the
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Figure 26. Effects of mean flow correction alone (a) and both mean flow correction and inflow dependent
effective viscosity (b) on the optimal energy gain of the rotor forcing for synthetic turbulence with length scale
L2 and TIs T1, T2, T3. Method: F2W model. (a) Mean flow, (b) mean flow and eddy viscosity.

forcings associated with motion. In figure 26(b) the wake was found to be further stabilized
when both mean flow and effective viscosity corrections were applied. According to this
prediction, the optimal gain for case T1L2 is reduced to approximately 40 % of that for
uniform inflow.

Finally, figure 27 compares Fourier modes of LES in figure 27(a) with that predicted
by the M2W model in figure 27(b) for cases with A3 sway motion and with different
inflow TIs T1–T3 and a fixed length scale L2. As seen, the Fourier modes are very similar
to those for uniform inflow in 16(b), indicating that the motion-induced wake dynamics
is still a dominant part at the motion frequency for the considered cases without inflow
large-scale coherent motions. In figure 27(a) flow structures in the near wake are more
apparent since the sway motion has an amplitude of A = 0.04D, which is four times
as large as that in the uniform condition. However, these modes grow at a slower rate
downstream showing a weaker amplification effect of the wake shear layer. Overall, the
proposed M2F model captures the above features of the wake satisfactorily. However,
some differences between LES and the linear model can still be identified, including the
discrepancy near the hub, which may be related to the nacelle, which is accounted for only
by LES. Moreover, the effective viscosity employed here is a rather simple one, improved
effective viscosity models (Pickering et al. 2021) can be considered to further improve
the accuracy. Direct modelling of the nonlinear term of the Navier–Stokes equations as an
extra forcing term may also be helpful to improve the accuracy in predicting these coherent
turbulent structures (He, Jin & Yang 2017).

6. Summary and conclusion

In this paper we propose a linear M2W model for fast predicting the wake response of
a floating wind turbine subject to platform motions in a motion-specific manner. The
proposed model consists of two building blocks.

The first building block is the F2W model, which transfers the external forcing of the
rotor to the wake response. This model is based on the resolvent model derived from the
LNSEs and is simplified using the axisymmetry of the turbine’s wake. The model predicts
the optimal forcing at St ≈ 0.25 with an azimuthal wavenumber m = ±1 on the rotor area.
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Figure 27. Spatial mode in the wake obtained with Fourier transform of LES velocity field at the motion
frequency (a) and predicted by the M2W model (b). Sway motion with A = 0.04D, St = 0.25. Inflow TIs T1,
T2 and T3 with length scale L2. Inflow: synthetic turbulence.

The second building block is the M2F model, which represents the effects of rotor
motion with equivalent unsteady forces on a stationary actuator disk. The forces are
derived from the time-averaged blade force coefficients using a linear assumption.
Forcings for the harmonic surge, sway and yaw motions are derived as examples, but they
can be generalized for other motion types as long as the motion amplitude remains small
enough to fulfil the linear assumption.

The M2W prediction is achieved by combining both building blocks and is validated
by LES results. The proposed model captures the wake pulsing mode induced by surge
motion, as well as the wake meandering mode induced by sway or yaw. Moreover, the
proposed model also captures the phase difference in the response mode caused by
different rotor movements, which enables the study of wake response under platform
motions with multi-degrees of freedom in a phase-resolved manner.
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Large-eddy simulations were conducted under different inflow TI and length scales
to analyse the wake meandering triggered by the simultaneous excitation of free-stream
turbulence and sway motion. The results suggest that the wake dynamics induced by
ambient turbulence and sway motion show distinct frequency signatures. The turbulence is
found to have a stabilizing effect on the wake, making the motion-induced wake response
more apparent at lower turbulence levels. This confirms our previous finding (Li et al.
2022). The stabilizing effect is found to be more sensitive to the inflow TI than the length
scale. The model is capable of predicting the sway-induced wake response satisfactorily,
provided that the base flow and the effective viscosity are obtained from the fixed wind
turbine case subject to the same turbulent inflow.

We note that the motion-specific, phase-resolved prediction capability and the linearity
of the proposed model offer a unique advantage for evaluating the wake response induced
by rotor motions or active control of blades (using only the F2W model) through a rotor
forcing term. It is also highly efficient, taking barely five minutes for each case on a desktop
with eight cores, and can be considered a fast tool for designing dynamic wake control
strategies for FOWTs and for designing active wake control strategies to enhance the
mixing of wake with free-stream flow. For that purpose, one can employ the present model
to select the candidate control strategies and employ high-fidelity numerical simulations
or experiments to verify the outcome to accelerate the process of design.

The limitations of the developed model mainly come from the linear and axisymmetric
assumptions, which are employed to simplify the model and to guarantee efficiency. Firstly,
as the present model is linear, both the M2F and F2W models are developed assuming an
infinitely small disturbance.

In the M2F model we have assessed the error in modelling the rotor thrust force,
which is proportional to (uh/U∞)2, where uh represents the rotor hub velocity. Regarding
the F2W model, the modelling error arises from the linearization of the Navier–Stokes
equations. This linearization excludes the nonlinear advection term of the coherent
velocity components, which are not known a priori, thereby making a quantitative
estimation of the error challenging. Based on these considerations, it is anticipated that
the error associated with the linear simplification becomes prominent when the rotor
oscillates at sensitive frequencies and the ambient TI is low. Nonlinear effects are not
considered by the present model, but it is of interest to take them into account in future.
In this regard, the M2F model should be modified to include the nonlinear rotor forcing
due to large rotor motion, as shown recently by Heck et al. (2023) and Wei & Dabiri
(2023); the F2W model should also take into account the interaction between modes
and the wake-response-induced modifications of the time-averaged wake and the eddy
viscosity. This can be achieved via an iterative approach as demonstrated by Rosenberg
& McKeon (2019) in turbulent channel flows. Secondly, the present model is developed
based on the axisymmetric wake assumption and ignores the shear of the inflow. Although
Appendix C demonstrates that the present model is able to provide a qualitatively correct
wake response, it will be very interesting to further develop tri-global models (Ribeiro,
Yeh & Taira 2023b) that directly take the non-axisymmetry into account and to investigate
the wake interaction with the ocean free surface waves (Yang, Meneveau & Shen 2014;
Yang et al. 2022).
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Nonlinear Mechanics’ of the National Natural Science Foundation of China (no. 11988102) and NSFC
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Appendix A. Derivation of the resolvent operator

The bi-global resolvent operator employed for the F2W modelling is derived based on the
LNSEs expressed in the cylindrical coordinate. To derive the LNSE, all the variables are
decomposed into a time-averaged part and a perturbation part as follows:

q = [p, ūx, ūr, ūθ ]T + [δp, δux, δur, δuθ ]T, (A1)

f = [−f̄T , f̄r, f̄θ ]T + [δfx, δfr, δfθ ]T. (A2)

Here the variables expressed with a capital letter represent the time-averaged part, and
variables with δ are the small perturbation part.

We drop the δ sign for the perturbation in the following for simplicity. The LNSE reads
as

1
r

∂(rur)

∂r
+ 1

r
∂uθ

∂θ
+ ∂ux

∂x
= 0, (A3)

∂ux

∂t
+ Ωux + ur

∂ ūx

∂r
+ ux

∂ ūx

∂x
+ ∂p

∂x
− νeff �ux = fx, (A4)

∂ur

∂t
+ Ωur + ur

∂ ūr

∂r
+ ux

∂ ūr

∂x
− 2ūθ

r
uθ + ∂p

∂r
− νeff

[(

� − 1
r2

)

ur − 2
r2

∂uθ

∂θ

]

= fr,

(A5)

∂uθ

∂t
+ Ωuθ + ur

∂ ūθ

∂r
+ uθ

∂ ūθ

∂θ
+ ūr

r
uθ + ūθ

r
ur

+ 1
r

∂p
∂θ

− νeff

[(

� − 1
r2

)

uθ + 2
r2

∂ur

∂θ

]

= fθ , (A6)

with

Ω = ūr
∂

∂r
+ ūθ

r
∂

∂θ
+ ūx

∂

∂x
, (A7)

Δ = 1
r

∂

∂r

(

r
∂

∂r

)

+ 1
r2

∂2

∂θ2 + ∂2

∂x2 . (A8)

Substituting the ansatz

[p, ux, ur, uθ ]T = [p̂, ûx, ûr, ûθ ]Tei(mθ−ωt) (A9)

and

[ fx, fr, fθ ]T = [ f̂x, f̂r, f̂θ ]Tei(mθ−ωt) (A10)
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into (A3)–(A6) yields

0 = 1
r

∂(rûr)

∂r
+ im

r
ûθ + ∂ ûx

∂x
, (A11)

− iωûx = −Ω ûx − ûr
∂ ūx

∂r
− ûx

∂ ūx

∂x
− ∂ p̂

∂x
+ νeff �ûx + f̂x, (A12)

− iωûr = −Ω ûr − ûr
∂ ūr

∂r
− ûx

∂ ūr

∂x
+ 2ūθ

r
ûθ − ∂ p̂

∂r

+ νeff

[(

� − 1
r2

)

ûr − 2mi
r2 ûθ

]

+ f̂r, (A13)

− iωûθ = −Ω ûθ − ûr
ūθ

∂r
− ūr

r
ûθ − ūθ

r
ûr − im

r
p̂

+ νeff

[(

� − 1
r2

)

ûθ + 2mi
r2 ûr

]

+ f̂θ , (A14)

with

Ω = ūr
∂

∂r
+ ūθ

r
mi + ūx

∂

∂x
, (A15)

Δ = 1
r

∂

∂r

(

r
∂

∂r

)

− m2

r2 + ∂2

∂x2 . (A16)

Arranging all the terms with respect to the state variables [p̂, ûx, ûr, ûθ ] on the right-hand
side of the above equation in a matrix form yields the matrix Lm of (4.13).

Appendix B. Sensitivity study of the optimal gain predicted by the F2W model

B.1. Sensitivity to the energy norm definition
In § 4.1.1 it has been stated that the optimal gain is dependent on the definition of the
energy norm. In this appendix we employ the energy of the streamwise velocity fluctuation
to define the norm of the wake response, as streamwise TI is often employed to define the
wake expansion in analytical models, e.g. in the study of Niayifar & Porté-Agel (2016).
The energy norm is defined as

‖q̂‖2
E = q̂HW ′

qq̂ =
∫

Ω

(

û2
x

)

r dθ dr dx, (B1)

where matrix W ′
q is defined with the energy of the streamwise velocity fluctuation

exclusively. The integration domains for the energy norm remain the same as in § 4.1.1.
The energy norm of the rotor forcing remains the same as defined by (4.16).

Figure 28(a) shows the optimal gain obtained with the F2W model using the energy
norm defined with the streamwise velocity. Compared with figure 28(b), where the energy
norm is defined with all the three velocity components, the optimal gains in figure 28(a)
have smaller amplitudes, since the energy of the fluctuating velocities in the radial and
tangential directions is excluded. Notably, the optimal forcing continues to be realized at
the azimuthal wavenumber m = 1, with a sensitive frequency range close to St = 0.25.
Here, only positive azimuthal wavenumbers m ≥ 0 are considered for conciseness, since
the results with negative azimuthal wavenumbers m < 0 have a similar trend.
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Figure 28. Optimal gain for rotor forcing as a function of the forcing frequency St. The energy norm is defined
with (a) the streamwise velocity only (B1) and (b) three velocity components (4.15). Each branch represents a
different azimuthal wavenumber m. Inflow: uniform. Method: F2W model.
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solid and dotted lines represent the results obtained with the effective eddy viscosity fitted from mean flow
multiplied by 0.5, 1.0 and 2.0, respectively. Inflow: uniform. Method: F2W model.

B.2. Sensitivity to the eddy viscosity
The sensitivity of the optimal gain to the eddy viscosity (νeff ) is investigated in this
appendix. The F2W model is established using the time-averaged wake under uniform
inflow. We vary the baseline νeff (the mean flow consistent one) by multiplying it by 0.5,
1.0 and 2.0. The obtained optimal gain is plotted in figure 29. As seen, for both azimuthal
wavenumbers (m = 0 and m = 1), the shapes of the Gopt(St) are similar for different values
of the effective eddy viscosity. For m = 1, the most sensitive forcing frequency always falls
in the range of St ∈ [0.2, 0.3]. Increasing effective eddy viscosity results in a decrease of
the energy gain, indicating the wake becomes more stable for larger νeff . It is worth noting
that the considered change of νeff is rather larger but can be expected for a wind turbine
operating in the atmospheric boundary layer during a diurnal cycle. Increasing νeff by
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turbine (a,c) and with a sway wind turbine (b,d). Plots (a,b) show the instantaneous wake and (c,d) show the
time-averaged wake. Inflow: inhomogeneous shear turbulence. Method: LES.

a factor of two corresponds approximately to a change of inflow from uniform flow to
turbulence flow T1L4, as shown in figure 25.

Appendix C. Effect of inhomogeneous shear inflow

In this appendix we assess the applicability of our model in the context of more realistic
anisotropic boundary layer turbulence.

We conduct a precursory LES to generate the sheared inflow. The computational domain
for the wake simulation is also adjusted to account for the influence of the bottom wall.
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ûx ûy
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Figure 32. Spatial mode in the wake obtained with Fourier transform of LES velocity field at the motion
frequency (a) and predicted by the M2W model (b). Sway motion with A = 0.04D, St = 0.25. Inflow:
inhomogeneous shear turbulence.

The numerical set-up is the same as Li & Yang (2021). Figure 30 shows the statistical
characteristics of the turbulent inflow generated from the precursory LES. The mean flow
profile can be approximated using a power law with an exponent represented as α = 0.09,
as depicted in figure 30(a). At the hub height, the TI values are Iu = 6.8 %, Iv = 4.4 % and
Iw = 3.6 % for the streamwise, transverse and vertical velocity components, respectively,
as shown in figure 30(b).

Subsequently, we compare the wakes of a stationary wind turbine with those of a
wind turbine undergoing sway motion (St = 0.25, A = 0.04D). Figure 31 presents the
contour of the streamwise velocity deficit at the hub-height plane. As observed, the sway
motion leads to additional meandering in the instantaneous wake, and the time-averaged
wake recovers more rapidly. Furthermore, figure 32 offers a comparison of the coherent
turbulent structures in the wake of the swaying wind turbine, demonstrating a good
agreement between the LES data and the model predictions. These findings are consistent
with the observation using a synthetic turbulent inflow in § 5.
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