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Abstract. Type I domains are the domains of the self-adjoint operators
determined by the weak formulation of formally self-adjoint differential expressions
�. This class of operators is defined by the requirement that the sesquilinear form
q(u, v) obtained from � by integration by parts agrees with the inner product 〈�u, v〉. A
complete characterisation of the boundary conditions assumed by functions in these
domains for second-order differential expressions is given in this paper. In the singular
case, the boundary conditions are stated in terms of certain ‘boundary condition’
functions and in the regular case they are given in terms of classical function values.
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1. Introduction. In this paper, we give a complete characterisation of the
boundary conditions of functions belonging to Type I domains [4] that are associated
with the differential expression

�u(x) = 1
w(x)

(−(p(x)u′(x))′ + g(x)u(x)), (1)

where x ∈ I = (a, b) , with −∞ ≤ a < b ≤ ∞. The expression � gives rise to the formal
sesquilinear form

q (u, v) =
∫

I
pu′v′ + guv

in addition to the form

〈�u, v〉 =
∫

I
(−(pu′)′ + gu)v.

The equality

q (u, v) = 〈�u, v〉 (2)

requires the vanishing of the boundary term

−pu′v
]b

a , (3)
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which is the most general condition for (2) to hold. Possible sufficient conditions for the
vanishing of this boundary term are pu′v (a) = 0 = pu′v (b) or simply pu′v (a) = pu′v (b)
provided that the expressions involved are defined. The former case is referred to as
separated boundary conditions, and the latter case is referred to as coupled boundary
conditions. Each one of these two classes of boundary conditions include more specific
possibilities such as v (a) = 0 = pu′ (b) or pu′ (a) = pu′ (b) , v (a) = v (b) among many
others. The natural question to ask then is which of these possible combinations of
boundary conditions give rise to Type I operators. In this paper, we give a complete
characterisation of such boundary conditions. We should also point out that the class
of Type I operators includes, as a special case the Friedrichs Extension [6] which satisfies
Dirichlet (i.e. separated) boundary conditions [8, 10] in the regular case (see the next
section). Since the Dirichlet boundary conditions are but a special form of the more
general separated boundary conditions mentioned above, the Friedrichs Extension is
a special case of Type I operators. Our work in this paper will establish that other
separated boundary conditions such as u (a) = u′ (b) = 0 give rise to Type I operators
which are therefore different from the Friedrichs Extension.

All self-adjoint operators associated with the expression � are realised through the
requirement

〈�u, v〉 = 〈u, �v〉
which, in turn, requires the vanishing of the more general boundary term

−pu′v + puv′]b
a . (4)

Type I operators are a special class of these operators in the requirement that

〈�u, v〉 = q (u, v) = 〈u, �v〉 (5)

and (consequently) the vanishing of the boundary terms

−pu′v
]b

a , −puv′]b
a . (6)

Equation (5), or equivalently equation (6), illustrates the specific attribute of Type I
operators. It does not hold for a general self-adjoint operator associated with �, even
in the regular case. For example, the expression �u = −u′′ + u defined on (0, 1) and
the boundary conditions u (0) + u′ (0) = u (1) + u′ (1) = 0 give rise to a self-adjoint
operator in L2 (I) . The function u (x) = −3x3 + 4x2 is in the domain of this operator
but −pu′v]10 	= 0. In this paper, it will be clear why this is so.

The study of self-adjoint operators associated with � is not new (see [7, 9, 12, 13]
and the references therein), while the study of boundary conditions associated with
them can be found in (see [3, 5, 7, 13]). The study of Type I operators appeared in
[4] and in a sense, this paper is a sequel to the work that started in the above cited
reference.

This paper consists of three sections in addition to the introduction. In Section 2 we
present some preliminary material that includes definitions, theorems and discussions
needed for the rest of the paper. It is designed to be, more or less, self-contained
and should help the reader to better follow the terminology used in connection with
singular operators. In Section 3 we characterise the boundary conditions of Type I
domains. In Section 4 we specialise to regular operators.
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2. Preliminaries. In this section, we introduce notation, definitions and
discussions that are necessary for this work. The main definitions and theorems can be
found in [4, 7, 9, 12, 13]. We assume that I = (a, b) , −∞ ≤ a < b ≤ ∞,

1/p, g, w ∈ Lloc (I)

and that w > 0 almost everywhere in I. We formally define on I the self-adjoint
differential expression

�u = 1
w

[(−pu′)′ + gu],

the sesquilinear form

q (u, v) =
∫ b

a
pu′v′ + guv,

the half-Lagrangian

{u, v} (x) := −u[1]v (x) (7)

and the Lagrangian

[u, v] (x) := {u, v} (x) − {v, u} (x) , x ∈ I,

where u[1] := pu′. For α, β ∈ I the notation {u, v}βα will mean {u, v} (β) − {u, v} (α) and
[u, v]βα will mean [u, v](β) − [u, v](α).

Denote by H the space L2
w(I) of complex valued square integrable functions with

respect to the weight w, by 〈·, ·〉 its inner product and by ‖·‖ its norm. The maximal
operator L generated by the expression � in H is defined by

D(L) = D = {u ∈ H : � (u) ∈ H} ,

Lu = � (u) , u ∈ D.

L is closed and densely defined and its adjoint L0 := L∗ with domain D0 := D (L0)
is called the minimal operator generated by �. L0 is symmetric and it is known [9]
that L0 ⊂ L = L∗

0. Therefore, L0 is a symmetric closed operator and, any self-adjoint
extension L̂ of L0 satisfies L0 ⊂ L̂ = L̂∗ ⊂ L∗

0 = L.

For u, v ∈ D the limits

lim
x→a+

[u, v](x), lim
x→b−

[u, v](x)

both exist and are finite. We denote these limits by [u, v](a), [u, v](b), respectively. For
all u ∈ D0, v ∈ D, [u, v]ba = 0.

Our main assumption on q is the following:

(A) q is bounded below: q (u) := q (u, u) ≥ M ‖u‖2 for some M ∈ �.

This assumption guarantees (see [4]) that, for any value of d, the domain D always
contains a Type I domain. However, it excludes cases where one end point is LP but
not strongly LP (see [5]).
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We let V be the (dense) subspace of functions u ∈ H for which q (u) < ∞. V can
be given the structure of a Hilbert space if equipped with the norm induced by q + λ

where λ > max {M, 0} . Define the space D̃ by

D̃ = {u ∈ V : q (u, ·) is continuous on D0 with respect to the norm in H} . (8)

It turns out that D0 ⊂ D̃ ⊆ D. For u, v ∈ D̃, the limits

lim
x→a+

{u, v} (x), lim
x→b−

{u, v} (x)

both exist and are finite. We denote these limits by {u, v} (a), {u, v} (b), respectively. For
u, v ∈ D̃,

〈�u, v〉 = {u, v}b
a + q (u, v) . (9)

For u ∈ D0, v ∈ D, {u, v}b
a = 0. It will also be convenient to list the values of the half-

Lagrangians {u, v} and {v, u} at the endpoints a and b (if they exist) in a table which
will be called the multiplication table of u and v (see e.g. (12)) below.

The number d := dim (D mod D0) is called the deficiency index of L0. The number
δ := dim

(
D mod D̃

)
is called the co-deficiency index of L0. In our case d ∈ {0, 1, 2} and

δ ∈ {0, . . . , d} . In the following sections, the investigation of the boundary values of
functions will split into several cases depending on the values of d and δ. The various
cases will be denoted by a pair (d, δ) or by a triple (d, δ, n) if the case splits into subcases.
Our starting point for the analysis will always be the characterisation given in [4].

The endpoint a is regular if 1/p, g, w ∈ L (a, c) for some (and hence all) c ∈ I ; is
limit circle (LC) if all solutions of

�u = 0 (10)

are in L2
w (a, c) for some c ∈ I ; is limit point (LP) if it is not LC. Similar definitions hold

at b. An endpoint is singular if it is not regular. d = 0 if and only if both a and b are
LP, d = 1 if and only if one end point is LP and the other is LC and d = 2 if and only
if both a and b are LC. For convenience, whenever d = 1, we will always assume that
a is LC and b is LP.

If the formal operator � is in the case (d, δ) then we can select a set of 2d real
functions ψ1, . . . , ψ2d ∈ D mod D0 (empty if d = 0) of which 2d − δ are in D̃ mod D0

and the rest are in D mod D̃. In the case d = 1, ψ1, ψ2 can be selected so that they are
identically zero near b and [ψ1, ψ2] (·) = −1 near a. In the case d = 2, ψ1, ψ2, ψ3, ψ4
can be selected so that ψ1, ψ2 are identically zero near b, [ψ1, ψ2] (·) = −1 near a,

ψ3, ψ4 are identically zero near a and [ψ1, ψ2] (·) = −1 near b. We have

D = D0 � span{ψ1, . . . , ψ2d}. (11)

If ψ1, ψ2 ∈ D̃ mod D0 (such as when (d, δ) = (1, 0)), it was shown in [4] that they
can be chosen so that

{ψ1, ψ1}(a) = λa > 0, {ψ2, ψ2}(a) = −σ a, λaσ a = 1
4
,

[ψ1, ψ2] (a) = −1, {ψ1, ψ2}(a) + {ψ2, ψ1}(a) = 0.

The last two equations give {ψ1, ψ2} (a) = − 1
2 , {ψ2, ψ1} (a) = 1

2 . Replacing ψ1, ψ2

by ψ1/
√

λa, ψ2/
√

σ a, respectively, we obtain the following multiplication tables for
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ψ1, ψ2

(a) ψ1 ψ2

ψ1 1 −1
ψ2 1 −1

,

(b) ψ1 ψ2

ψ1 0 0
ψ2 0 0

. (12)

Observe that we still have [ψ1, ψ2] (·) = −1 near a. Similarly, if ψ3, ψ4 ∈ D̃ mod D0

they will be assumed to have the following multiplication table.

(a) ψ3 ψ4

ψ3 0 0
ψ4 0 0

,

(b) ψ3 ψ4

ψ3 1 −1
ψ4 1 −1

. (13)

A symmetric (self-adjoint) domain D† ⊂ D is the domain of a symmetric (self-
adjoint) extension L† of L0. A symmetric domain D† ⊂ D is a self-adjoint domain if
and only if it is a d-dimensional extension of D0. Consequently, a self-adjoint domain
D̂ ⊂ D̃ is a Type I domain.

3. Boundary conditions in the singular case. As discussed in Section 2, the general
requirement for a domain D̂ ⊂ D̃ to be a Type I domain is that {u, v}b

a = 0 for all
u, v ∈ D̂. This general boundary condition may be classified further as separated:

{u, v} (a) = {u, v} (b) = 0 ∀u, v ∈ D̂ (14)

or coupled:

{u, v} (a) = {u, v} (b) ∀u, v ∈ D̂
and {u, v} (a) 	= 0 for at least one pair u, v ∈ D̂.

(15)

In this section, we present a description of of Type I domains in terms of both types
of boundary conditions.

For d = 0 the only self-adjoint extension of L0 is L0 itself. In this case L0 is a Type I
operator and D0 satisfies separated boundary conditions (see [4]).

3.1. The limit point case. In this subsection, we assume that the deficiency index
d = 1 and, without loss of generality, that a is LC and b is LP. Select ψ1, ψ2 ∈ D mod D0

satisfying the properties discussed in Section 2. That is so that they are identically zero
near b and [ψ1, ψ2] (·) = −1 near a. We know from [4] that all Type I domains have
the separated boundary condition (14). Depending on the values of (d, δ) we have the
following cases:

Case (1,1) In this case ψ1, ψ2 can be selected so that ψ1 ∈ D̃ mod D0, ψ2 ∈
D mod D̃ and {ψ1, ψ1} (a) = 0.

Case (1,0)) In this case ψ1, ψ2 ∈ D̃ mod D0 and we may assume the multiplication
tables (12).

THEOREM 1 (Type I domains in the limit point case). Assume the endpoint a is LC
and the endpoint b is LP.

(a) If δ = 1 then there exists a function η ∈ D̃ mod D0 and a function ξ ∈ D mod D̃
such that {η, η} (a) = 0, [η, ξ ] (x) = −1 near a and ξ (x) = η (x) = 0 near b.
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The domain D1 defined by

D1 = {u ∈ D : {u, η} (a) = {η, u} (a) = 0} (16)

is a Type I domain. Conversely, if D̂ is a Type I domain then D̂ is given by (16).
(b) If δ = 0 then there exist two functions η1, η2 ∈ D̃ mod D0 such that {ηi, ηi}(a) =

0, i = 1, 2, [η1, η2](x) = −1 near a and η1(x) = η2(x) = 0 near b.

The domains D1 and D2 defined by

D1 = {u ∈ D : {η1, u}(a) = 0}, (17)

D2 = {u ∈ D : {u, η2}(a) = 0} (18)

are Type I domains. Conversely, if D̂ is a Type I domain then D̂ is given either by
(17) or (18).

Proof. (a): Let ψ1, ψ2 be the functions described in Case (1,1). The first statement
in this part follows upon putting η := ψ1 and ξ = ψ2. To show that the set D1 given
by (16) is a Type I domain, let u ∈ D1 and write u = u0 + α1ξ + α2η. The conditions
{u, η} (a) = {η, u} (a) = 0 give [u, η] (a) = 0. Therefore,

0 = [u, η] (a) = [u0, η] (a) + α1 [ξ, η] (a) + α2 [η, η] (a) = −α1

and

u = u0 + α1η, (19)

which means that u ∈ D̃. Thus, D1 ⊂ D̃. Furthermore, since D1 is a symmetric one-
dimensional extension of D0, D1 is a Type I domain. To prove the converse statement
assume D̂ is a Type I domain. Since D̂ ⊂ D̃, ξ /∈ D̂. Therefore, any u ∈ D̂ has the form
u = u0 + α1η, which agrees with the characterisation (19) of elements in D1. Thus,
D̂ ⊂ D1. Since both sets are one-dimensional extensions of D0, D̂ = D1.

(b): Let ψ1, ψ2 be the functions described in Case (1,0). The first statement in
this part follows upon putting η1 := ψ1 + ψ2 and η2 = ψ1 − ψ2. From (12) we get the
following multiplication tables for η1, η2:

(a) η1 η2

η1 0 4
η2 0 0

,

(b) η1 η2

η1 0 0
η2 0 0

.

Since {η1, η1}(a) = 0 and {η1, η2}(a) 	= 0, η1 ∈ D1 and η2 /∈ D1. Therefore, D1 is a
one-dimensional extension of D0 (any u ∈ D1 has the representation u = u0 + αη1).
Furthermore, it is easy to check that {u, v}(a) = {u, v}(b) = 0 for all u, v ∈ D1.

Therefore, D1 is a Type I domain. Similarly, we can show that D2 is a Type I domain.
To show the converse statement suppose that D̂ is a Type I domain that is not given by
(18). We claim that η2 /∈ D̂. If not then let u ∈ D̂ and write u = u0 + αη1 + βη2. Since
D̂ is a Type I domain, {u, η2} (a) = 0. It follows that

0 = {u, η2} (a) = α{η1, η2} (a) = 4α.

Hence, u = u0 + βη2 and u ∈ D2, which means that D̂ ⊂ D2; a contradiction. Thus any
u ∈ D̂ has the representation u = u0 + αη1, which gives D̂ ⊂ D1. Since D1 is a Type I
domain, D̂ = D1. �
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REMARK 2. In special cases the boundary conditions stated in (16), (17) or (18)
may reduce to the classical ones u (a) = 0 or u[1] (a) = 0. For example, in the case
δ = 1, if ψ1 (a) is finite and non-zero, D1 is described by the boundary condition
u[1] (a) = 0. This is because for any u ∈ D1, we can write u = u0 + αψ1 and note that
{u0, ψ1} (a) = 0 and {ψ1, ψ1} (a) = 0 give also u[1]

0 (a) = 0 and ψ
[1]
1 (a) = 0. Similarly, if

ψ
[1]
1 (a) is finite and non-zero, D1 is described by the boundary condition u (a) = 0. In

the case δ = 0, if ψ
[1]
2 (a) is finite and non-zero then D2 is described by the boundary

condition u (a) = 0 and, since {ψ2, ψ1} (a) > 0, ψ1 (a) is finite and non-zero. This
means that D1 is described by the boundary condition u[1] (a) = 0 while D2 is described
by the boundary condition u (a) = 0.

The following two examples illustrate Theorem 1.

EXAMPLE . Let γ > 0 and consider the operator �(y) = 1
xγ+1 (−(x2y′)′ + γ 2−1

4 y)
defined on (0,∞). The two functions ϕ (x) = x(−1+γ )/2, θ (x) = x(−1−γ )/2 are solutions
for � (y) = 0. Let ψ1, ψ2 ∈ D be such that

ψ1 (x) =
{

ϕ (x) near 0

0 near ∞ , ψ2 (x) =
{

θ (x) near 0

0 near ∞ . (20)

Since [ψ1, ψ2] (x) = −γ for all x near 0, we conclude that ψ1, ψ2 are linearly
independent modulo D0. Since {ψ1, ψ1} (0) = 0 and {ψ2, ψ2} (0) does not exist, ψ1 ∈ D̃
and ψ2 ∈ D mod D̃. Hence, (d, δ) = (1, 1) . Therefore, there is only one Type I domain
D1 determined by the boundary condition {u, ψ1} (0) = {ψ1,u} (0) = 0.

EXAMPLE . Consider the operator � (y) = −y′′ − y defined on (0,∞) . The two
functions θ (x) = cos x, (d, δ) , ϕ (x) = sin x are solutions for � (y) = 0. Select ψ1, ψ2 ∈
D as in (20). Then (d, δ) = (1, 0) . The two Type I domains corresponding to this case
are

D1 = {u ∈ D : u(0) = 0},
D2 = {u ∈ D : u′(0) = 0}.

3.2. The limit circle case. In this subsection, we assume that the deficiency index
d = 2 and that functions ψ1, ψ2, ψ3, ψ4 ∈ D mod D0 have been selected so that ψ1, ψ2
are identically zero near b, [ψ1, ψ2] (·) = −1 near a, ψ3, ψ4 are identically zero near a
and [ψ3, ψ4] (·) = −1 near b.

Case (2,2) In this case we may assume that ψ1, ψ3 ∈ D̃ mod D0 and ψ2, ψ4 ∈
D mod D̃ (see [4, comment after Lemma 17]) and {ψ1, ψ1} (a) = {ψ3, ψ3} (b) = 0. D̃ is
itself a Type I domain.

Case (2,1) In this case ψ1, ψ2, ψ3, ψ4 ∈ D can be selected so that either

ψ1, ψ2, ψ3 ∈ D̃ mod D0, ψ4 ∈ D mod D̃

or

ψ2, ψ3, ψ4 ∈ D̃ mod D0, ψ1 ∈ D mod D̃.
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Subcase (2,1,1) If ψ1, ψ2, ψ3 ∈ D̃ mod D0 then we may assume the multiplication
tables (12) and {ψ3, ψ3} (b) = 0. To describe Type I domains (necessarily satisfying
separated boundary conditions), put

η1 = ψ1 + ψ2, η2 = ψ1 − ψ2,

η3 = ψ3, η4 = ψ4.

Then η1, η2, η3, η4 have the following properties:

η1, η2, η3, η4 ∈ D mod D0,

η1, η2, η3 ∈ D̃, η4 ∈ D mod D̃,

[η3, η4] (·) = −1 near b,

(a) η1 η2 η3

η1 0 0 0
η2 4 0 0
η3 0 0 0

,

(b) η1 η2 η3

η1 0 0 0
η2 0 0 0
η3 0 0 0

.

(21)

Using Theorem 18 in [4] we get that there are two Type I domains described by

D1 = D0 + span{η1, η3},
D2 = D0 + span{η2, η3}.

Subcase (2,1,2) If ψ2, ψ3, ψ4 ∈ D̃ mod D0 we similarly define the four functions
ζ 1, ζ 2, ζ 3, ζ 4 by

ζ 1 = ψ1, ζ 2 = ψ2 + ψ3,

ζ 3 = ψ2 − ψ3, ζ 4 = ψ4.

Then ζ 1, ζ 2, ζ 3, ζ 4 have the following properties:

ζ 1, ζ 2, ζ 3, ζ 4 ∈ D mod D0,

ζ 2, ζ 3, ζ 4 ∈ D̃, ζ 1 ∈ D mod D̃,

[ζ 1, ζ 2] (·) = −1 near a,

(a) ζ 2 ζ 3 ζ 4

ζ 2 0 0 0
ζ 3 0 0 0
ζ 4 0 0 0

,

(b) ζ 2 ζ 3 ζ 4

ζ 2 0 0 0
ζ 3 0 0 0
ζ 4 0 4 0

.

(22)

We also have two Type I domains described by

D3 = D0 + span{ζ 2, ζ 3},
D4 = D0 + span{ζ 2, ζ 4}.

Case (2,0) In this case we may assume the multiplication table (12) for ψ1, ψ2
and the multiplication table (13) for ψ3, ψ4. To describe Type I domains satisfying
separated boundary conditions put

η1 = ψ1 + ψ2, η2 = ψ1 − ψ2,

η3 = ψ3 + ψ4, η4 = ψ3 − ψ4.
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Then η1, η2, η3, η4 have the following properties:

η1, η2, η3, η4 ∈ D̃ mod D0,

(a) η1 η2 η3 η4

η1 0 0 0 0
η2 4 0 0 0
η3 0 0 0 0
η4 0 0 0 0

,

(b) η1 η2 η3 η4

η1 0 0 0 0
η2 0 0 0 0
η3 0 0 0 0
η4 0 0 4 0

.

(23)

Using Theorem 18 in [4] we get that there are four Type I domains satisfying separated
boundary conditions. These domains are described by

D1 = D0 + span{η1, η3}, D2 = D0 + span{η1, η4},
D3 = D0 + span{η2, η3}, D4 = D0 + span{η2, η4}.

To describe Type I domains satisfying coupled boundary conditions put

ξ 1 (t) = ψ1 + cosh tψ3 + sinh tψ4, ξ 2 (t) = ψ2 + sinh tψ3 + cosh tψ4, (24)

ξ 3 (t) = −ψ1 + cosh tψ3 − sinh tψ4, ξ 4 (t) = ψ2 + sinh tψ3 − cosh tψ4, (25)

t ∈ �. Then, for all t ∈ �, ξ 1 (t) , ξ 2 (t) , ξ 3 (t) , ξ 4 (t) have the following properties:

ξ 1 (t) , ξ 2 (t) , ξ 3 (t) , ξ 4 (t) ∈ D̃ mod D0,

(a) ξ 1 (t) ξ 2 (t) ξ 3 (t) ξ 4 (t)
ξ 1 (t) 1 −1 −1 −1
ξ 2 (t) 1 −1 −1 −1
ξ 3 (t) −1 1 1 1
ξ 4 (t) 1 −1 −1 −1

,

(b) ξ 1 (t) ξ 2 (t) ξ 3 (t) ξ 4 (t)
ξ 1 (t) 1 −1 e2t e2t

ξ 2 (t) 1 −1 e2t e2t

ξ 3 (t) e−2t −e−2t 1 1
ξ 4 (t) −e−2t e−2t −1 −1

.

(26)

Using Theorem 18 in [4] we get that there are two one-parameter families of Type I
domains satisfying coupled boundary conditions. These domains are described by

D1(t) = D0 + span{ξ 1(t), ξ 2(t)},
D2(t) = D0 + span{ξ 3(t), ξ 4(t)},

t ∈ �.

THEOREM 3 (Type I domains in the limit circle case). Assume both endpoints are
LC. The boundary values of functions belonging to Type I domains are described as
follows:
(a) If δ = 2 then there exist two functions η1, η2 ∈ D̃ mod D0 such that {ηi, ηj} (a) =

{ηi, ηj}(b) = 0, i, j = 1, 2 and two functions ξ 1,ξ 2 ∈ D mod D̃ such that [η1, ξ 1](x) =
−1 near a, [η1, ξ 1](·) = 0 near b, [η2, ξ 2](·) = 0 near a, [η2, ξ 2](·) = −1 near b.

The domain D1 defined by

D1 = {u ∈ D : {u, η1} (a) = {η1, u} (a) = {u, η2} (b) = {η2, u} (b) = 0} (27)

is a Type I domain. Conversely, if D̂ is a Type I domain then it is given by (27).
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(b) If δ = 1 then precisely one of the following situations holds:
(i) there exist four functions η1, η2, η3, η4 ∈ D mod D0 with the properties listed in

(21), or
(ii) there exist four functions ζ 1, ζ 2, ζ 3, ζ 4 ∈ D mod D0 with the properties listed in

(22).
If (i) holds then the two domains D1, D2 defined by

D1 = {u ∈ D : {u, η1}(a) = {u, η3}(b) = {η3, u}(b) = 0}, (28)

D2 = {u ∈ D : {η2, u}(a) = {η3, u}(b) = {η3, u}(b) = 0} (29)

are Type I domains. Conversely, if D̂ is a Type I domain then it is described by either
(28) or (29).
If (ii) holds then the two domains D3, D4 defined by

D3 = {u ∈ D : {u, ζ 2}(a) = {ζ 2, u}(a) = {ζ 3, u}(b) = {u, ζ 3}(b) = 0}, (30)

D4 = {u ∈ D : {u, ζ 2}(a) = {ζ 2, u}(a) = {u, ζ 4}(b) = {ζ 4, u}(b) = 0} (31)

are Type I domains. Conversely, if D̂ is a Type I domain then it is described by either
(30) or (31).

(c) If δ = 0 then there are four functions η1, η2, η3, η4 ∈ D̃ mod D0 with the
multiplication tables given by (23), and for any t ∈ � there exist four functions
ξ 1 (t) , ξ 2 (t) , ξ 3 (t) , ξ 4 (t) ∈ D̃ mod D0 with the multiplication table given by (26).
(i) The four domains

D1 = {u ∈ D : {u, η1}(a) = {u, η3}(b) = 0}, (32)

D2 = {u ∈ D : {u, η1}(a) = {η4, u}(b) = 0}, (33)

D3 = {u ∈ D : {η2, u}(a) = {η3, u}(b) = 0}, (34)

D4 = {u ∈ D : {η2, u}(a) = {η4, u}(b) = 0} (35)

are Type I domains satisfying separated boundary conditions. Conversely, if D̂ is
a Type I domain satisfying separated boundary conditions then it is described by
precisely one of the equations (32)–(35).

(ii) The two one-parameter families of domains

D1(t) = {u ∈ D : {u, ξ i(t)}(a) = {u, ξ 1(t)}(b),
{ξ 2(t), u}(a) = {ξ 2(t), u}(b)}, (36)

D2(t) = {u ∈ D : {u, ξ 3(t)}(a) = {u, ξ 3(t)}(b),
{ξ 4(t), u}(a) = {ξ 4(t), u}(b)} (37)

are Type I domains satisfying coupled boundary conditions. Conversely, if D̂ is
a Type I domain satisfying coupled boundary conditions then it is described by
either (36) or (37).

Proof. (a): Let ψ1, ψ2, ψ3, ψ4 be as defined in Case (2,2). The first assertion in this
part follows by letting η1 = ψ1, η2 = ψ3, ξ 1 = ψ2, ξ 2 = ψ4. To show that the domain
D1 defined by (27) is a Type I domain, we let u ∈ D1 and write u = u0 + α1η1 + α2η2 +
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β1ξ 1 + β2ξ 2. The conditions {u, η1}(a) = {η1, u}(a) give [η1, u](a) = 0. Therefore

0 = [u, η1] (a)

= [u0, η1] (a) + α1 [η1, η1] (a) + α2 [η2, η1] (a) + β1 [ξ 1, η1] + β2 [ξ 2, η1]

= −β1.

We similarly show that β2 = 0. Therefore, D1 ⊂ D̃. Since D1 is also a symmetric two-
dimensional of D0, D1 is a self-adjoint domain. The converse statement also follows
in the same way as in the proof of Part (a) of Theorem 1.

(b): We prove Part (i) only. The first assertion in this part follows by choosing
η1, η2, η3, η4 as described in Subcase (2, 1, 1). The conditions {η3, u}(b) = {u, η3}(b) = 0
serve to take η4 out of D1. The condition {u, η1}(a) = 0 serves to take η2 out of D1. To
see this, let u ∈ D1 and write u = u0 + α1η1 + α2η2 + α3η3. Using the multiplication
table (21), we get

0 = {u, η1}(a) = α2{η2, η1}(a) = 4α2.

Moreover, we automatically have

{η1, u}(a) = {η1, u0 + α1η1 + α3η3}(a) = 0.

We can then show (as in Part (a)) that D1 is a Type I domain. Similar arguments work
for D2. To prove the converse statement, suppose D̂ is a Type I domain such that
D̂ 	= D2. Since D̂ ⊂ D̃, η4 /∈ D̂. We claim that η2 /∈ D̂. If not, then for any u ∈ D̂ we
may write u = u0 + α1η1 + α2η2 + α3η3. Using the multiplication tables in (21) and
the condition {u, η2}(a) = 0, which is satisfied for any two functions in D̂, we get

0 = α1{η1, η2}(a) = 4α1.

Hence, α1 = 0 and u ∈ D2; resulting in D̂ ⊂ D2 contrary to the assumption. Thus,
any u ∈ D̂ has the representation u = u0 + α1η1 + α3η3, which means that D̂ ⊂ D1.
However, since both domains are two-dimensional extensions of D0, we get D̂ = D1.

(c): (i) Showing that Di, i = 1, 2, 3, 4 are Type I domains is by now a standard
procedure. To show the converse statement suppose D̂ is a Type I domain satisfying
separated boundary conditions. Assume D̂ 	= D2. We claim that either η1 /∈ D̂ or η4 /∈ D̂.

If not, then both η1, η4 ∈ D̂. For any u ∈ D̂ we may write

u = u0 + α1η1 + α2η2 + α3η3 + α4η4.

Using the multiplication tables in (23) and the conditions {u, η1}(a) = {u, η3}(b) = 0,
we get

4α2 = 0, 4α4 = 0.

Therefore, u ∈ D1 and, by a similar argument as above, D̂ = D1. Similarly, we can show
that if D̂ 	= D4 then D̂ = D3.

(c): (ii) The direct statement is again straightforward to show. To prove the converse
statement, assume that D̂ is a Type I domain satisfying coupled boundary conditions. If
D̂ = D2 (t) for some t ∈ �, then there is nothing to prove. So, suppose that D̂ 	= D2 (t)
for all t ∈ �. Fix a t ∈ �. We claim that ξ 3 (t) /∈ D̂. If not then ξ 3 (t) ∈ D̂ . For any
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u ∈ D̂ we can write

u = u0 + α1ξ 1 (t) + α2ξ 2 (t) + α3ξ 3 (t) + α4ξ 4 (t) .

The multiplication tables in (26) together with the conditions {ξ 3(t), u}(a) =
{ξ 3 (t) , u}(b), {u, ξ 3(t)}(a) = {u, ξ 3(t)}(b) yield

−α1 + α2 + α3 + α4 = e−2tα1 − e−2tα2 + α3 + α4,

−α1 − α2 + α3 − α4 = e2tα1 + e2tα2 + α3 − α4.

These two equations give α1 = α2 = 0. Therefore, u ∈ D2 (t) and D̂ ⊂ D2 (t) , which is
a contradiction. We can similarly show that ξ 4 (t) /∈ D̂. Thus, D̂ = D1 (t) . �

Reflecting back on the proof of the last part of Theorem 3 we see that if D̂ is a Type
I domain satisfying coupled boundary conditions then either D̂ = D1 (t) for all t ∈ �

or D̂ = D2 (t) for all t ∈ �. In other words, the domains D1 (t) and D2 (t) defined in (36)
and (37) are independent of t ∈ �. This fact could also have been observed from the
multiplication tables (26) because, for i, j = 1, 2 or i, j = 3, 4, the multiplication tables
for

{
ξ i (t) , ξ j (t)

}
(·) at the endpoints are equal and independent of t . We then have the

following corollary, which sharpens the results in [4].

COROLLARY 4. Assume both endpoints are LC. If δ = 0, then there are precisely two
Type I domains satisfying coupled boundary conditions. These domains are described by
(36) and (37) for any (and hence, all) t ∈ �.

The following examples will serve to illustrate Theorem 3.

EXAMPLE. Let �(y) = 1
w

[−(x2y′)′ + m(m + 1)y], m > 0 defined on (0,∞), where

w (x) = min
{

1
x2m+2

, x2m+2
}

.

The equation � (y) = 0 has two solutions θ (x) := x−(m+1), ϕ (x) := xm for which
[θ, ϕ] (·) = 2m + 1 > 0 so that θ, ϕ are linearly independent modulo D0. Since
θ, ϕ ∈ L2

w (0,∞) , d = 2. Therefore, both 0 and ∞ are LC. Also, θ [1]θ (x) ∼
x−(2m+1), ϕ[1]ϕ (x) ∼ x2m+1, θ [1]ϕ (x) ∼ 1, ϕ[1]θ (x) ∼ 1 (here ∼ means equality up to
a multiplicative constant). Choose η1, η2 ∈ D̃ mod D0 and ξ 1, ξ 2 ∈ D mod D̃ such that

η1 =
{

ϕ near 0,

0 near ∞,
η2 =

{
0 near 0,

θ near ∞,

ξ 1 =
{

0 near 0,

ϕ near ∞,
ξ 2 =

{
θ near 0,

0 near ∞.

Then we are in Case (2,2). The only Type I domain in this case is described by the
boundary conditions

D1 = {u ∈ D :
(
xm+2u′) (0) = (

xm+1u
)

(0) = (
x−m+1u′) (∞) = (

x−mu
)

(∞) = 0}.

EXAMPLE . Consider the operator �(y) = −((1 − x2)y′)′ defined on (0, 1). The
equation �(y) = 0 has two solutions ϕ(x) = 1, θ (x) = log 1+x

1−x . Choose functions
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η1, η2, η3 ∈ D̃ mod D0 and ξ ∈ D mod D̃ such that

η1 =
{

ϕ near 0
0 near 1

, η2 =
{

θ near 0
0 near 1

,

η3 =
{

0 near 0
ϕ near 1

, ξ =
{

0 near 0
θ near 1

.

Then we have a Case (2,1). The two Type I domains D1, D2 in this case are given by
the boundary conditions

D1 = {
u ∈ D : u[1] (0) = u[1] (1) = 0

}
,

D2 = {
u ∈ D : u (0) = u[1] (1) = 0

}
.

EXAMPLE. To provide an example for the Case (2,0) consider the operator � (y) =
− (

x1/3y′)′ + 1
3 x−2/3y defined on (0, 1) . The equation � (y) = 0 has two series solutions

ϕ (x) = x2/3σ (x) and θ (x), where

σ (x) = 1 +
∞∑

n=1

xn

n! 5 · 8 · · · (3n + 1)
,

θ (x) = 1 +
∞∑

n=1

xn

n! 1 · 4 · · · (3n − 3)
.

It can be easily checked that ϕ (x) , θ (x) ∈ D̃ mod D0. Choose functions ηi ∈ D̃ mod D0,

1 ≤ i ≤ 4 such that

η1 (x) =
{

ϕ (x) near 0,

0 near 1,
η2 (x) =

{
θ (x) near 0,

0 near 1,

η3 (x) =
{

0 near 0,

ϕ̃ (x) near 1,
η4 (x) =

{
0 near 0,

θ̃ (x) near 1,

where ϕ̃, θ̃ are linear combinations of ϕ, θ such that ϕ̃ (1) = 0 = θ̃
′
(1) , ϕ̃′ (1) = θ̃ (1) =

1. Then { ϕ̃, ϕ̃} (1) = { θ̃ , θ̃} (1) = 0. The four Type I domains with separated boundary
conditions are

D1 = {
u ∈ D : u[1] (0) = u (1) = 0

}
,

D2 = {
u ∈ D : u[1] (0) = u′ (1) = 0

}
,

D3 = {u ∈ D : u (0) = u (1) = 0} ,

D4 = {
u ∈ D : u (0) = u′ (1) = 0

}
.

To obtain Type I domains with coupled boundary conditions we choose functions
ψ i ∈ D̃ mod D0, 1 ≤ i ≤ 4 such that

ψ1 (x) =
{

θ (x) − ϕ (x) near 0,

0 near 1,
ψ2 (x) =

{
θ (x) + ϕ (x) near 0,

0 near 1,

ψ3 (x) =
{

0 near 0,

ϕ̂ (x) near 1,
ψ4 (x) =

{
0 near 0,

θ̂ (x) near 1,
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where ϕ̂, θ̂ are linear combinations of ϕ, θ such that ϕ̂ (1) = ϕ̂′ (1) = −1, θ̂ (1) = −1 =
θ̃

′
(1) = 1. Defining the functions ξ 1 (t) , ξ 2 (t) , ξ 3 (t) , ξ 4 (t) as in (24), (25) we get the

multiplication tables (26). The two ‘one-parameter families of’ domains in this case
are given by

D1 = {
u ∈ D : u (0) = u (1) , u[1] (0) = u[1] (1)

}
,

D2 = {
u ∈ D : u (0) = −u (1) , u[1] (0) = −u[1] (1)

}
,

which are in agreement with Corollary 4.

4. Boundary conditions in the regular case. When the formally self-adjoint
expression � is regular, a and b are finite and 1/p, q are integrable on (a, b) . Any function
u ∈ D is absolutely continuous as well as its pseudo-derivative on [a, b] . Furthermore,
u and u[1] attain arbitrary complex values at a and b. Hence, in the regular case D̃ = D,

d = 2 and δ = 0. All these properties make it possible to obtain boundary conditions
describing Type I domains directly in terms of the boundary values of u and u[1]. The
goal of this section is to specialise the results in Subsection 3.2 to the regular case.

For Type I operators with separated boundary conditions, choose real functions
η1, η2, η3, η4 ∈ D such that

η1 (a) = 1, η
[1]
1 (a) = 0, η1 (b) = 0, η

[1]
1 (b) = 0,

η2 (a) = 0, η
[1]
2 (a) = 1, η2 (b) = 0, η

[1]
2 (b) = 0,

η3 (a) = 0, η
[1]
3 (a) = 0, η3 (b) = 1, η

[1]
3 (b) = 0,

η4 (a) = 0, η
[1]
4 (a) = 0, η4 (b) = 0, η

[1]
4 (b) = 1.

THEOREM 5 (Type I domains in the regular case). Assume both a and b are regular.
Then the boundary values of functions belonging to Type I domains are described as
follows:

(1) The four domains given by

D1 = {
u ∈ D : u[1] (a) = u[1] (b) = 0

}
,

D2 = {
u ∈ D : u[1] (a) = u (b) = 0

}
,

D3 = {
u ∈ D : u (a) = u[1] (b) = 0

}
,

D4 = {u ∈ D : u (a) = u (b) = 0}

are Type I domains with separated boundary conditions. Conversely, if D̂ is a Type
I domain with separated boundary conditions then D̂ is equal to one of the above
four domains.

(2) The two domains given by

D1 = {
u ∈ D : u (a) = u (b) , u[1] (a) = u[1] (b)

}
,

D2 = {
u ∈ D : u (a) = −u (b) , u[1] (a) = −u[1] (b)

}
are Type I domains with coupled boundary conditions. Conversely, if D̂ is a Type
I domain with coupled boundary conditions then D̂ is equal to one of the above
two domains.
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