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It is well known that the conventional cumulative sum (CUSUM) test suffers from
low power and large detection delay. In order to improve the power of the test, we
propose two alternative statistics. The backward CUSUM detector considers the
recursive residuals in reverse chronological order, whereas the stacked backward
CUSUM detector sequentially cumulates a triangular array of backwardly cumulated
residuals. A multivariate invariance principle for partial sums of recursive residuals
is given, and the limiting distributions of the test statistics are derived under local
alternatives. In the retrospective context, the local power of the tests is shown to be
substantially higher than that of the conventional CUSUM test if a break occurs in
the middle or at the end of the sample. When applied to monitoring schemes, the
detection delay of the stacked backward CUSUM is found to be much shorter than
that of the conventional monitoring CUSUM procedure. Furthermore, we propose
an estimator of the break date based on the backward CUSUM detector and show
that in monitoring exercises this estimator tends to outperform the usual maximum
likelihood estimator. Finally, an application of the methodology to COVID-19 data
is presented.

1. INTRODUCTION

Cumulative sums have become a standard statistical tool for testing and monitoring
structural changes in time series models. The CUSUM test was introduced by
Brown, Durbin, and Evans (1975) as a test for structural breaks in the coefficients
of a linear regression model yt = x′

tβt + ut with time index t, where βt denotes
the coefficient vector, xt is the vector of regressor variables and ut is a zero mean
error term. Under the null hypothesis, there is no structural change in βt, while,
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Figure 1. Retrospective testing and monitoring.

under the alternative hypothesis, the coefficient vector changes at unknown time
T∗ ≤ T .

Sequential tests, such as the CUSUM test, consist of a detector statistic and
a critical boundary function. The CUSUM detector sequentially cumulates stan-
dardized one-step ahead forecast errors, which are also referred to as recursive
residuals. The detector is evaluated for each time point within the testing period,
and, if its path crosses the boundary function at least once, the null hypothesis is
rejected. If the endpoint of the sample is fixed and the test is applied once to the
full sample by comparing the path of the detector with the boundary function, the
test is called a retrospective test (henceforth: R-test). A variety of R-tests have been
proposed in the literature (for recent reviews, see Robbins et al., 2011; Aue and
Horváth, 2013; Casini and Perron, 2019).

Since the seminal work of Chu, Stinchcombe, and White (1996), increasing
interest has been focused on monitoring structural stability in real time. Sequential
monitoring procedures (henceforth: M-tests) consist of a detector statistic and a
boundary function that are evaluated for periods beyond some historical time span.
The monitoring time span with t > T can either have a fixed endpoint M < ∞ or an
infinite horizon. In the fixed endpoint setting, the monitoring period starts at T +1
and ends at M, while the boundary function depends on the ratio m = M/T . In case
of an infinite horizon, the monitoring time span does not need to be specified before
the monitoring procedure starts. These two monitoring schemes are also referred
to as closed-end and open-end procedures (see Kirch and Kamgaing, 2015). The
null hypothesis of no structural change is rejected whenever the path of the detector
crosses some critical boundary function for the first time. Monitoring procedures
for a fixed end point were proposed in Leisch, Hornik, and Kuan (2000), Zeileis
et al. (2005), Wied and Galeano (2013), and Dette and Gösmann (2020), whereas
Chu et al. (1996), Horváth et al. (2004), Aue et al. (2006), Fremdt (2015), and
Gösmann, Kley, and Dette (2021) considered an infinite monitoring horizon. In
recent years, M-tests have become popular as tests for speculative bubbles in
financial markets (e.g., Phillips, Wu, and Yu, 2011; Homm and Breitung, 2012;
Astill et al., 2018).

A well-known drawback of the conventional CUSUM R-test is its low power,
whereas the CUSUM M-test may exhibit large detection delays. This is due to the
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fact that the pre-break recursive residuals are uninformative, as their expectation
is equal to zero up to the break date, while the recursive residuals have a nonzero
expectation after the break. Hence, the cumulative sums of the recursive residuals
contain a large number of uninformative residuals that only add noise to the
statistic. In contrast, if one cumulates the recursive residuals backwardly from the
end of the sample to the beginning, the cumulative sum collects the informative
residuals first, and the likelihood of exceeding the critical boundary will typically
be larger than when cumulating residuals from the beginning onwards. In this
paper, we show that backward CUSUM test procedures may indeed have a much
higher power and lower detection delays than the conventional CUSUM R- and
M-tests. Phillips and Shi (2018) proposed a reverse sample scheme for the PSY
procedure that is used for detecting crises (bubble collapses). The main difference
with our approach is that their regression is performed in reverse order, while our
approach estimates the model in the original time but reverses the order of the
(recursive) residuals.

Another way of motivating the backward CUSUM testing approach is to
consider the simplest possible situation, where, under the null hypothesis, it is
assumed that the process is generated as yt = μ + ut, with μ and σ 2 = Var(ut)

assumed to be known. To test the hypothesis that the mean changes at T∗, we
introduce the dummy variable D∗

t , which is unity for t ≥ T∗ and zero elsewhere.
The uniformly most powerful test statistic is the t-statistic for the hypothesis
δ = 0 in the regression yt − μ = δD∗

t + ut, which is given by σ−1(T − T∗ +
1)−1/2 ∑T

t=T∗(yt − μ). If μ is unknown, we may replace it by the full sample
mean y, resulting in the backward cumulative sum of the ordinary least squares
(OLS) residuals from period T through T∗. If T∗ is unknown, the test statistic is
computed for all possible values of T∗, whereas the starting point T of the backward
cumulative sum remains constant. Since the sum of the OLS residuals is zero, it
follows that the test is equivalent to a test based on the forward cumulative sum
of the OLS residuals. In contrast, if we replace μ with the recursive mean μt−1 =
(t −1)−1 ∑t−1

i=1 yt, we obtain a test statistic based on the backward cumulative sum
of the recursive residuals (henceforth: backward CUSUM). In this case, however,
the test is different from a test based on the forward cumulative sum of the recursive
residuals (henceforth: forward CUSUM). This is due to the fact that the sum of
the recursive residuals is an unrestricted random variable. Accordingly, the two
versions of the test may have quite different properties. In particular, it turns out
that the backward CUSUM is much more powerful than the standard forward
CUSUM at the end of the sample. Accordingly, this version of the CUSUM test
procedure is better suited for the purpose of real-time monitoring, where it is
crucial to be powerful at the end of the sample.

An additional problem of the conventional CUSUM test is that it has no
power against alternatives that do not affect the unconditional mean of yt (see
Krämer, Ploberger, and Alt, 1988). For both retrospective testing and monitoring,
we propose a multivariate sequential statistic in the fashion of the score-based
cumulative sum statistic of Hansen (1992) and the tests by Jiang and Kurozumi
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(2019). The maximum vector entry of the multivariate statistic yields a detector
and a sequential test that has power against a much larger class of structural breaks
than when using conventional CUSUM detectors.

We also suggest a new estimator for the break date based on backwardly cumu-
lated recursive residuals. This estimator outperforms the conventional estimator
constructed by the sum of squared residuals whenever the break occurs close to
the end of the sample, which is the relevant scenario for online monitoring.

This paper is organized as follows. In Section 2, the limiting distribution of
the multivariate CUSUM process is derived under both the null hypothesis and
local alternatives. Section 3 introduces the backward CUSUM and the stacked
backward CUSUM tests for both retrospective testing and monitoring. While
the backward CUSUM is only defined for t ≤ T and can thus be implemented
only for retrospective testing, the stacked backward CUSUM cumulates recursive
residuals backwardly in a triangular scheme and is therefore suitable for real-
time monitoring. The local powers of the tests are compared in Section 4. In
the retrospective setting, the powers of the backward CUSUM and the stacked
backward CUSUM tests are substantially higher than that of the conventional
forward CUSUM test if a single break occurs after one third of the sample size.
In the case of monitoring, the detection delay of the stacked backward CUSUM
under local alternatives is shown to be much lower than that of the monitoring
CUSUM detector by Chu et al. (1996). In Section 5, we present a strong invariance
principle for the multivariate CUSUM process and propose an infinite horizon
monitoring procedure. Section 6 considers the estimation of the break date based
on backwardly cumulated recursive residuals. We present an estimator, which is
more accurate than the conventional maximum likelihood estimator if the break
is located at the end of the sample. Section 7 presents Monte Carlo simulation
results, in Section 8, we provide a real-data example on monitoring SARS-CoV-2
infections during the COVID-19 pandemic, and Section 9 concludes.

Throughout the paper, we use the following notation: ‖a‖ = maxi=1,...,k |ai|
denotes the maximum norm and ‖A‖M = maxi=1,...,k

∑l
j=1 |Ai,j| denotes the maxi-

mum absolute row sum norm, where a ∈ R
k, and A ∈ R

k×l. We use
p−→ to denote

convergence in probability as T → ∞,
d−→ for convergence in distribution, and

d= to indicate that two random variables have the same distribution. The space of
right continuous functions with left limits (càdlàg) on [0,m], where 0 < m < ∞,
is denoted as D([0,m]), and its k-fold product space is D([0,m])k = D([0,m])×
·· ·×D([0,m]). The space is equipped with the Skorokhod metric (see Billingsley,
1999), and the symbol “⇒” denotes weak convergence with respect to this metric.

2. THE MULTIVARIATE CUSUM PROCESS

We consider the multiple linear regression model

yt = x′
tβt +ut, t ∈ N, (1)
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where yt is the dependent variable, and xt = (1,xt2, . . . ,xtk)
′ is the vector of

regressor variables including a constant. The k×1 vector of regression coefficients
βt depends on the time index t, and ut is an error term. The time point T divides
the time horizon into the retrospective time period t ≤ T and the monitoring period
t > T . We impose the following assumptions on the regressors and the error term.

Assumption 1.

(a) The errors satisfy E[ut] = 0, E[u2
t ] = σ 2 > 0, and E[|ut|8] < ∞ for all t.

(b) The regressors satisfy E[‖xt‖8] < ∞ for all t, and the sample covariance
matrices Ĉt = t−1 ∑t

j=1 xjx′
j are uniformly positive definite for all t > k with

plimT→∞ ĈT = C.
(c) There exists a positive definite � such that plimT→∞ T−1(

∑T
t=1 xtut)(

∑T
t=1

xtut)
′ = �.

Model (1) allows for conditionally heteroskedastic errors and local nonsta-
tionary regressors, provided that a global long-run covariance matrix � exists.
The regressors can contain lagged dependent variables such as in autoregressive
distributed lag models. We focus on models with a correctly specified dynamic
structure and uncorrelated errors.

Assumption 2. The error process ut is a martingale difference sequence with
respect to Ft, the σ -algebra generated by {(x′

i+1,ui)
′, i ≤ t}.

Following Brown et al. (1975) this assumption rules out autocorrelated error
processes. In practice, this may require a dynamic specification with a suitable lag
distribution of the variables. In Remark 1, we show that autocorrelated errors can
be accommodated by replacing the ordinary covariance matrix by a (consistent
estimate of the) long-run covariance matrix. Since the estimation of long-run
covariances can lead to finite sample size distortions (see e.g., Casini, 2021),
Assumption 2 is a common and convenient assumption in practice. The expression
of the global covariance matrix simplifies to � = σ 2C under Assumption 2.

Recursive residuals for linear regression models were introduced by Brown et al.
(1975) as standardized one-step ahead forecast errors, and are defined as

wt = yt − x′
tβ̂t−1

(1+ x′
t(
∑t−1

i=1 xix′
i)

−1xt)1/2
, t ≥ k +1,

and wt = 0 for t = 1, . . . ,k, where β̂t−1 = (
∑t−1

i=1 xix′
i)

−1 ∑t−1
i=1 xiyi. Using recursive

residuals instead of ordinary OLS residuals as in Ploberger and Krämer (1992)
has a number of advantages. First, the recursive residuals behave exactly as under
the null hypothesis until the parameters change, whereas a structural break affects
all OLS residuals in a different manner. Second, under Assumptions 1 and 2,
the recursive residuals form a martingale difference sequence regardless of the
estimation error in the recursive residuals. By contrast, the OLS residuals are
(slightly) autocorrelated, which only disappears if the sample size gets large.
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The conventional CUSUM detector is given by St,T = σ̂−1
T T−1/2 ∑t

i=1 wi, where
σ̂ 2

T denotes the sample variance of {wk+1, . . . ,wT}. Under the null hypothesis
H0 : βt = β0 for all t, the univariate CUSUM process obeys the functional central
limit theorem S�rT�,T ⇒ W(r), where W(r) is a standard Brownian motion (see
Sen, 1982). The univariate CUSUM R-test of Brown et al. (1975) rejects the
null hypothesis if the path of |St,T | exceeds the linear critical boundary function
bt = λαdlin(t/T) for at least one time index t = 1, . . . ,T , where

dlin(r) = 1+2r. (2)

The critical value λα is the (1 −α) quantile of sup0≤r≤1 |W(r)|/dlin(r) and deter-
mines the significance level α, which accounts for the multiplicity issue of the
sequential test procedure. In the monitoring context, Chu et al. (1996) considered
the radical type boundary function brad(r) = r1/2(log(r) − log(α2))1/2, which
is derived from the boundary crossing probability for a Brownian motion (see
Robbins and Siegmund, 1970). The conventional univariate CUSUM M-test rejects
the null hypothesis if the detector statistic |St,T − ST,T | exceeds bt = brad(t/T) for
some t > T .

A weakness of univariate CUSUM tests is that they focus on breaks in the
intercept. Ploberger and Krämer (1990) studied local alternatives of the form
βt = β0 +T−1/2g(t/T), where g : R→R

k is piecewise constant and bounded. The
authors showed that S�rT�,T ⇒ W(r)+π ′h(r), where π = e′

1C, e1 = (1,0, . . . ,0)′,
and

h(r) = 1

σ

∫ r

0
g(z)dz− 1

σ

∫ r

0

∫ z

0

1

z
g(v)dvdz. (3)

Consequently, univariate CUSUM tests have no power if g(r) is orthogonal to π .
To sidestep this difficulty, we follow Jiang and Kurozumi (2019) and consider the
multivariate statistic

QT(r) = 1

σ̂T

√
T

Ĉ−1/2
T

�rT�∑
t=1

xtwt.

Under Assumption 1, the multivariate series xtut obeys a multivariate functional
central limit theorem (see Phillips and Durlauf, 1986), which also applies to the
multivariate CUSUM process of recursive residuals.

THEOREM 1. Let Assumptions 1 and 2 hold true. If βt = β0 for all t, then

QT(r) ⇒ W(k)(r), r ∈ [0,m], (4)

for any m < ∞, as T → ∞, where W(k)(r) is a k-dimensional standard Brownian
motion. If βt = β0 + T−1/2g(t/T), where g(r) is piecewise constant and bounded,
then

QT(r) ⇒ W(k)(r)+C1/2h(r), r ∈ [0,m].
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This is an extension of the results in Jiang and Kurozumi (2019), who considered
slightly stronger assumptions and no local alternatives. Note that the function g(r)
is constant if and only if βt is constant. If βt = β0 for all t, we have h(r) = 0. By
contrast, under a local alternative with a nonconstant break function g(r), it follows
that h(r) is nonzero, and, consequently, C1/2h(r) is nonzero, since C1/2 is positive
definite. Hence, sequential tests that are based on QT(r) have power against a
larger class of alternatives than the tests of Brown et al. (1975) and Chu et al.
(1996).

Therefore, we consider R- and M-tests that are based on the multivariate detector
Qt,T = QT(t/T). Note that Qt,T = St,T if there is only an intercept in the model.
The multivariate forward CUSUM R-test is defined by the following rule: the
null hypothesis is rejected if the path of ‖Qt,T‖ exceeds the boundary function
bt = λαd(t/T) for at least one index t = 1, . . . ,T . Equivalently, we can express this
sequential test as a one-shot test, where H0 is rejected if the maximum statistic
QT = maxt=1,...,T ‖Qt,T‖/d(t/T) exceeds the critical value λα , which is the (1−α)

quantile of its limiting null distribution.

Assumption 3. The boundary function is of the form b(r) = λαd(r), where d(r)
is continuous. There exists ε > 0 such that d(r) > ε for all r ≥ 0.

By Theorem 1 and the continuous mapping theorem it follows that

QT
d−→ sup

r∈(0,1)

‖W(k)(r)‖
d(r)

under the null hypothesis. The multivariate forward CUSUM M-test with fixed
endpoint M = �mT� rejects H0 if the path of ‖Qt,T −QT,T‖ exceeds the boundary
function bt = λαd((t−T)/T) for at least one index t = T +1, . . . ,�mT�, where 1 <

m < ∞. The corresponding maximum statistic is QT,m = maxt=T+1,...,�mT� ‖Qt,T −
QT,T‖/d((t −T)/T), where, under H0,

QT,m
d−→ sup

r∈(0,m−1)

‖W(k)(r)‖
d(r)

.

Remark 1. If the dynamics of the model are not specified correctly, the errors
may be autocorrelated and Assumption 2 does not apply. In this case, the limiting
distribution differs from that in (4) and depends on the global long-run covariance
matrix �. Under additional strong mixing assumptions, the process xtut obeys
the multivariate functional central limit theorem T−1/2 ∑�rT�

t=1 xtut ⇒ �1/2W(k)(r)
(see Wooldridge and White, 1988). To obtain the same limiting distribution as in
Theorem 1, we may consider the modified multivariate CUSUM detector

Q̃T(r) = 1√
T

�̂
−1/2
T

�rT�∑
t=1

xtwt, r ∈ [0,m],

where �̂T is some consistent estimator for �. Suitable choices are the long-
run covariance estimators of Newey and West (1987) and Andrews (1991). An
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alternative is the double kernel HAC estimator by Casini (2021), which performs
well in the presence of locally stationary regressors. In the Appendix, we show
that if Assumption 1 holds and if there exists κ ≥ 8 such that supt E[‖xt‖κ ] < ∞,
supt E[|ut|κ ] < ∞, and (xt,ut)

′ is strong mixing of size −κ/(κ − 6), then, under
the null hypothesis, Q̃T(r) ⇒ W(k)(r), as T → ∞. Therefore, all R- and M-
tests can also be constructed based on the modified detector Q̃t,T = Q̃T(t/T). A
second approach to deal with possible autocorrelation was proposed by Robbins
et al. (2011). Their two-step adjustment approach first employs an ARMA model
in order to obtain the prewhitened residuals which in turn replaces the original
residuals in the detector. In our case the ARIMA prewhitening may be performed
in a recursive fashion. As shown by Robbins et al. (2011) the resulting detector
possesses similar asymptotic properties as the original detector (apart from a
scaling factor that depends on the long-run variance).

Remark 2. In practice, partial or one-sided tests can be beneficial in terms
of a more powerful test if one is interested in breaks in certain coefficients or
directions. For testing the partial hypothesis H0 : H′βt = H′β0, where H is a
k × l matrix with full column rank, we consider the partial CUSUM process
Q∗

T(t/T) = Q∗
t,T = σ̂−1

T T−1/2(H′CTH)−1/2H′ ∑t
j=1 xjwj. All R- and M-tests can be

defined with respect to Q∗
t,T , where Q∗

T(r) ⇒ W(l)(r), under H0 and the conditions
of Theorem 1. The R-test by Brown et al. (1975) and the M-test by Chu et al. (1996)
are partial structural break tests for which the matrix H coincides with the first unit
vector. In case of one-sided tests, e.g., H1 : H′βt > H′β0, the maximum norm can
be replaced by the simple maximum, so that H0 is rejected if p(H′Qt,T) exceeds
the respective boundary function, where p(x) = maxi=1,...,l xi, x ∈ R

l.

3. BACKWARD CUSUM R- AND M-TESTS

3.1. Backward CUSUM R-Test

An alternative approach is to cumulate the recursive residuals in reversed order.
Suppose there is a single break in βt at time t = T∗. Then, {wt, t < T∗} are the
residuals from the prebreak period, and {wt, t ≥ T∗} are those from the postbreak
period. As the prebreak recursive residuals are not affected by a violation of the
null hypothesis, they do not provide useful information about a subsequent break.
Accordingly, the partial sum process T−1/2 ∑t

j=1 wj behaves like a pure random
walk for t < T∗ and cumulating those residuals brings nothing but noise to the
detector statistic. In contrast, the postbreak residuals have nonzero mean and reveal
relevant information about a possible break. In order to focus on the postbreak
residuals, we therefore consider backwardly cumulated partial sums of the form
T−1/2 ∑t−1

j=0 wT−j. We define the retrospective backward CUSUM detector as

BQt,T = QT(1)−QT
(

t−1
T

) = 1

σ̂T

√
T

C−1/2
T

T∑
j=t

xjwj (t = 1, . . . ,T).
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Table 1. Asymptotic critical values for QT and BQT .

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

α = 10% 0.848 0.944 0.996 1.031 1.058 1.080 1.097 1.112 1.125 1.138

α = 5% 0.947 1.034 1.082 1.115 1.141 1.161 1.177 1.190 1.203 1.214

α = 1% 1.144 1.219 1.258 1.283 1.303 1.324 1.343 1.357 1.368 1.381

Note: Simulated (1 − α) quantiles of supr∈(0,1) ‖W(k)(r)‖/(1 + 2r) based on 100,000 Monte Carlo
replications are reported. The Wiener process is approximated on a grid of 50,000 equidistant
points.

The null hypothesis is rejected if ‖BQt,T‖ exceeds the boundary bt = λαd((T − t−
1)/T) for at least one time index t. The maximum statistic is given by

BQT = max
t=1,...,T

‖BQt,T‖
d( T−t+1

T )
,

and, under the local alternatives defined in Theorem 1, the continuous mapping
theorem implies

BQT
d−→ sup

r∈(0,1)

‖W(k)(1)+C1/2h(1)−W(k)(r)−C1/2h(r)‖
d(1− r)

d= sup
r∈(0,1)

‖W(k)(r)+C1/2(h(1)−h(1− r))‖
d(r)

. (5)

Hence, the limiting distribution of BQT under H0 coincides with that of QT .
Simulated asymptotic critical values under the linear boundary (2) are presented in
Table 1. Under local alternatives, the limiting distributions ofBQT andQT differ. A
simple illustrative example of the detector paths together with the linear boundary
(2) of Brown et al. (1975) are depicted in Figure 2, in which two processes
with k = 1 and a single break in the mean at 3/4 and 1/4 of the sample are
simulated.

Unlike the forward CUSUM detector, the backward CUSUM detector is not
measurable with respect to the filtration of available information at time t and is
therefore not suitable for a monitoring procedure. The path of ‖BQt,T‖ cannot be
monitored in real-time, as it is only defined for t ≤ T with fixed endpoint T. To
obtain a feasible M-test in practice, we resort to a triangular backward inspection
scheme of recursive residuals, which is discussed below.

3.2. Stacked Backward CUSUM R-Test

Let BQT(t) = maxs=1,...,t ‖QT(t/T) − QT((s − 1)/T)‖/d((t − s + 1)/T) be the
backward CUSUM maximum statistic with endpoint t. The idea of the stacked
backward CUSUM scheme is to compute this statistic sequentially for each t,
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Figure 2. Illustrative example for the backward CUSUM with a break in the mean.
Note: The process yt = μt +ut , t = 1, . . . ,T , is simulated for T = 100 with μt = 0 for t < τ ∗T , μt = 1
for t ≥ τ ∗T , and ut ∼ NID(0,1), where τ ∗ = 0.75 in the upper panels and τ ∗ = 0.25 in the lower panels.
The bold solid line paths are the trajectories of ‖Qt,T‖ and ‖BQt,T‖, where the detectors are univariate
such that the norm is just the absolute value. In the background, the recursive residuals are plotted. The
dashed and dash-dotted lines correspond to the linear boundary dlin(r) with significance levels α = 5%
and α = 0.1%, respectively.

yielding BQT(1), . . . ,BQT(T). The corresponding maximum statistic SBQT is
the maximum among this sequence of backward CUSUM statistics. An impor-
tant feature is that this sequence is measurable with respect to the filtration of
information at time t, so that BQT(t) is itself a sequential statistic. Stacking all
backward CUSUM statistics on one another leads to a triangular array structure
given by

SBQs,t,T = QT
(

t
T

)−QT
(

s−1
T

) = 1

σ̂T

√
T

C−1/2
T

t∑
j=s

xjwj (t ∈ N, s = 1, . . . ,t),

(6)

which is denoted as the stacked backward CUSUM detector. We reject H0 if
‖SBQs,t,T‖ exceeds the triangular boundary bs,t = b( t

T , s−1
T ) for some t = 1, . . . ,T

and s = 1, . . . ,t.

Assumption 4. The triangular boundary function is of the form b(r,s) =
λαd(r,s), where d(r,s) is continuous. There exists ε > 0 such that d(r,s) > ε for
all 0 ≤ s ≤ r.
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The stacked backward CUSUM R-test can be equivalently expressed in terms
of a maximum statistic. H0 is rejected if the double maximum statistic

SBQT = max
t=1,...,T

BQT(t) = max
t=1,...,T

max
s=1,...,t

‖SBQs,t,T‖
d( t

T , s−1
T )

,

exceeds λα . Under the local alternatives defined in Theorem 1, it follows that

SBQT
d−→ sup

r∈(0,1)

sup
s∈(0,r)

‖W(k)(r)−W(k)(s)+C1/2[h(r)−h(s)]‖
d(r,s)

.

3.3. Stacked Backward CUSUM M-Test

Since the triangular detector (6) is measurable with respect to the information set at
time t, it can be monitored online across all time points t > T . The null hypothesis
is rejected if ‖SBQs,t,T‖ exceeds bs,t = b( t

T , s−1
T ) at least once for some t ≥ T + 1

and s = T +1, . . . ,t. The M-test maximum statistic with a fixed horizon m < ∞ is
given by

SBQT,m = max
t=T+1,...,�mT�

max
s=T+1,...,t

‖SBQs,t,T‖
d( t

T , s−1
T )

,

where, analogously to (5),

SBQT,m
d−→ sup

r∈(1,m)

sup
s∈(1,r)

‖W(k)(r)−W(k)(s)+C1/2[h(r)−h(s)]‖
d(r,s)

d= sup
r∈(0,m−1)

sup
s∈(0,r)

‖W(k)(r)−W(k)(s)+C1/2[h(r +1)−h(s+1)]‖
d(r,s)

.

Simulated critical values for the stacked backward CUSUM R- and M-tests under
the linear triangular boundary

dsbq(r,s) = 1+2(r − s) (7)

are presented in Table 2.

4. LOCAL POWER

In order to illustrate the advantages of the backward CUSUM tests, we consider
the simple local break model βt = β0 + T−1/2g(t/T) with g(r) = c1{r≥τ∗}, where
c ∈ R

k, and τ ∗ denotes the break location. From (3) it follows that

h(r) = cσ−1

(∫ r

τ∗
dz−

∫ r

0

∫ z

τ∗

1

z
dvdz

)
= cσ−1τ ∗(ln(r)− ln(τ ∗))1{r≥τ∗}, (8)
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Table 2. Asymptotic critical values for SBQT,m (fixed m).

k = 1 k = 2 k = 3 k = 4

α 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

m = 1.2 0.780 0.859 1.023 0.857 0.932 1.082 0.900 0.973 1.121 0.930 1.002 1.147

m = 1.4 0.944 1.030 1.208 1.026 1.107 1.270 1.073 1.153 1.316 1.107 1.183 1.345

m = 1.6 1.024 1.114 1.290 1.109 1.189 1.356 1.156 1.235 1.398 1.190 1.266 1.428

m = 1.8 1.077 1.166 1.341 1.161 1.241 1.406 1.207 1.285 1.446 1.241 1.318 1.476

m = 2 1.116 1.202 1.374 1.195 1.274 1.438 1.243 1.319 1.479 1.275 1.351 1.506

m = 4 1.268 1.346 1.510 1.342 1.414 1.567 1.386 1.455 1.600 1.415 1.483 1.625

m = 10 1.392 1.462 1.610 1.460 1.527 1.665 1.499 1.564 1.695 1.526 1.589 1.722

k = 5 k = 6 k = 7 k = 8

α 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

m = 1.2 0.953 1.021 1.167 0.971 1.038 1.182 0.986 1.052 1.194 0.999 1.065 1.205

m = 1.4 1.131 1.206 1.363 1.151 1.225 1.378 1.167 1.240 1.390 1.180 1.253 1.402

m = 1.6 1.214 1.290 1.446 1.235 1.310 1.461 1.251 1.324 1.473 1.264 1.337 1.486

m = 1.8 1.265 1.340 1.493 1.285 1.360 1.512 1.301 1.374 1.525 1.314 1.387 1.538

m = 2 1.299 1.374 1.529 1.318 1.392 1.544 1.334 1.407 1.555 1.347 1.419 1.565

m = 4 1.436 1.504 1.644 1.453 1.522 1.659 1.469 1.536 1.673 1.482 1.548 1.683

m = 10 1.546 1.608 1.739 1.563 1.624 1.755 1.576 1.638 1.765 1.587 1.649 1.774

Note: Simulated (1−α) quantiles of supr∈(0,m−1) sups∈(0,r) ‖W(k)(r)−W(k)(s)‖/(1+2(r − s)) based
on 100,000 Monte Carlo replications are reported. The Wiener process is approximated on a grid of
50,000 equidistant points. The critical values for SBQT (R-test) coincide with those for SBQT,m
(M-test) with m = 2.

and, under the linear boundaries (2) and (7), the R-tests satisfy

QT
d−→ sup

r∈(0,1)

‖W(r)+h(r)‖
1+2r

, BQT
d−→ sup

r∈(0,1)

‖W(r)+h(1)−h(1− r)‖
1+2r

,

SBQT
d−→ sup

r∈(0,1)

sup
s∈(0,r)

‖W(r)−W(s)+h(r)−h(s)‖
1+2(r − s)

. (9)

Asymptotic local power curves from the limiting distributions in (9) for the case
k = 1 are presented in Figure 3. The (2,3)-element of the panel of figures shows
that for a fixed break size the backward CUSUM and the stacked backward
CUSUM outperform the forward CUSUM if a single break τ ∗ is located after 15%
of the sample size. If the break date τ ∗ tends to the end of the sample, the power
gain of BQT and SBQT increases substantially.

For the M-test statistics with fixed endpoint m = 2, the limiting distributions
of QT,m and SBQT,m for a break at τ ∗ ∈ (1,2) coincide with those for the R-
tests presented in (9) for a break at τ ∗ ∈ (0,1). Hence, the power of SBQT,m
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Figure 3. Asymptotic local power curves.
Note: The upper six panels show simulated asymptotic local power curves for the R-testsQT (solid),
BQT (dashed) and SBQT (dotted) from equation (9). The bottom three panels show simulated
asymptotic mean local delays for the M-testsQT,m (solid) and SBQT,m (dotted) from equation (10),
and the test by Chu et al. (1996) (dash-dotted), where m = 4. The Brownian motions in the limiting
distributions are approximated on a grid of 1,000 equidistant points and the rates are obtained from
100,000 Monte Carlo repetitions using size-adjusted 5% critical values.

is higher than that of QT,m if breaks are located after 15% of the premonitoring
sample.

Another important performance measure for M-tests is the delay between the
actual break and the detection time point. Aue and Horváth (2004) and Aue,
Horváth, and Reimherr (2009) derived the asymptotic distribution of the detection
stopping link time of CUSUM M-tests that are based on OLS residuals. For QT,m

and SBQT,m, the detection stopping times are given by

DT,m,Q = min

{
t ∈ {T +1, . . . ,�mT�}

∣∣∣∣‖Qt,T −QT,T‖
d( t−T

T )λα,m,Q
≥ 1

}
,

DT,m,SBQ = min

{
t ∈ {T +1, . . . ,�mT�}

∣∣∣∣ max
T<s≤t

‖SBQs,t,T‖
d( t

T , s−1
T )λα,m,SBQ

≥ 1

}
,
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where λα,m,Q and λα,m,SBQ are the corresponding critical values. Under the same
setting as in (9), the relative detection stopping times satisfy

DT,m,Q

T
d−→min

{
r ∈ (0,m−1)

∣∣∣∣‖W(r)+h(r +1)−h(r)‖
(1+2r)λα,m,Q

≥ 1

}
, (10)

DT,m,SBQ

T
d−→min

{
r ∈ (0,m−1)

∣∣∣∣ sup
s∈(0,r)

‖W(r)−W(s)+h(r +1)−h(s+1)‖
(1+2(r − s))λα,m,Q

≥ 1

}
,

as T → ∞, where the limiting relative stopping times are denoted as τD,Q and
τD,SBQ, respectively. The asymptotic mean local delays E(τD | τ ∗ ≤ τD ≤ m)− τ ∗,
where τD ∈ {τD,Q,τD,SBQ}, are presented in the bottom panels of Figure 3 for m = 4
and different break locations. The asymptotic mean local delay of SBQT,m is much
lower than that of QT,m. Moreover, the asymptotic mean local delay of SBQT,m

slowly decreases in τ ∗ and is much lower than that ofQT,m, except for early breaks.

Remark 3. While, for one-shot tests, the critical value determines the type I
error, sequential testing involves two degrees of freedom. Besides the test size,
which is controlled asymptotically by an appropriately chosen value for λα , the
shape of the boundary determines the distribution of potential relative crossing
time points r. As already noted by Brown et al. (1975), the forward CUSUM
with the linear boundary (2) puts more weight on detecting breaks that occur
early in the sample (c.f. Figure 3). In Figure 4, we present the distributions of
the first boundary crossing under the null hypothesis, which is also referred to
as the “distribution of the size” (see Anatolyev and Kosenok, 2018). The results
indicate that the size is skewed for the forward and backward CUSUM tests and
almost evenly distributed for stacked backward CUSUM tests, which is due to
the weighting scheme of the linear triangular boundary function (7). There is no
consensus on which distribution should be preferred, as whether one wishes to
put more weight on particular regions of time points of rejection depends on the
particular application. However, Zeileis et al. (2005) and Anatolyev and Kosenok
(2018) argue that if no further information is available, one might prefer a uniform
distribution to a skewed one.

5. INFINITE HORIZON MONITORING

The functional central limit theorem given by Theorem 1 is not suitable for
analyzing the asymptotic behavior of an infinite horizon monitoring statistic, since
the variance of QT(r) is unbounded as r → ∞, and supr≥1 ‖QT(r)−W(k)(r)‖ might
not converge in general. Instead, we need an almost sure invariance principle,
which is specified by the following high level condition:

Assumption 5. There exists a k-dimensional Brownian motion W(k)(t) such that

t∑
j=1

xjuj = �1/2W(k)(t)+o(t1/2), (a.s.).
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Figure 4. Size distributions of the retrospective and monitoring detectors.
Note: The frequencies of the location of the first boundary exceedance under the null hypothesis
are shown for a significance level of 5% for the model with k = 1. The frequencies are based on
random draws under the limiting null distribution of the maximum statistics. The retrospective cases
are considered for the upper three histograms and the fixed endpoint monitoring case with m = 10 for
the lower three. The linear boundaries (2) and (7) are considered in the first five plots and the radical
boundary by Chu et al. (1996) is used in the last plot.

Almost sure invariance principles were first studied by Strassen (1967), who
verified Assumption 5 under the additional assumption that xtut is a stationary
and ergodic martingale difference sequence. Optimal rates were first derived by
Komlós, Major, and Tusnády (1975). Aue and Horváth (2004) and Aue et al. (2009)
present examples where Assumption 5 is satisfied, which include martingale
difference sequences and linear processes with GARCH-type innovations under
mild regularity conditions. For more general dependent processes under suitable
regularity conditions, Assumption 5 was shown by Wu et al. (2007) and Berkes,
Liu, and Wu (2014) with respect to a physical dependence measure (see also Berkes
et al., 2011).

THEOREM 2. Let Assumptions 1, 2, and 5 hold true and let βt = β0 for all
t ∈ N. There exists a k-dimensional standard Brownian motion W(k)(r), such that,
as T → ∞,

sup
r>1

r−1/2‖QT(r)−W(k)(r)‖ = oP(1).
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This result is the key tool to establish the limiting distributions of infinite horizon
monitoring statistics under H0 and indicates the need of further restrictions on the
boundary function. In the Appendix, we also show that this result remains valid
if we replace QT(r) by the autocorrelation robust statistic Q̃T(r) under additional
mixing assumptions. The infinite horizon forward CUSUM and stacked backward
CUSUM maximum statistics are defined as

QT,∞ = max
t≥T+1

‖QT( t
T )−QT(1)‖
d( t−T

T )
,

SBQT,∞ = max
t≥T+1

max
s=T+1,...,t

‖QT( t
T )−QT( s−1

T )‖
d( t

T , s−1
T )

.

Analogously to the fixed horizon case, H0 is rejected if the statistic exceeds the (1−
α) quantile of its limiting null distribution. Since a maximum over a noncompact
set can be unbounded, we need further restrictions on the boundary functions for
infinite horizon monitoring.

Assumption 6. The boundary functions that are defined in Assumptions 3 and 4
satisfy supr>1

√
r/d(r −1) < ∞ and supr>1 sups∈(1,r)

√
r/d(r,s) < ∞.

Under this assumption we show the following theorem:

THEOREM 3. Let βt = β0 for all t, and let Assumptions 1–6 hold true. Then,
as T → ∞,

QT,∞
d−→ sup

r∈(0,1)

‖B(k)(r)‖
(1− r)d( r

1−r )
,

SBQT,∞
d−→ sup

r∈(0,1)

sup
s∈(0,r)

‖(1− s)B(k)(r)− (1− r)B(k)(s)‖
(1− r)(1− s)d( 1

1−r,
1

1−s )
,

where B(k)(r) is a k-dimensional standard Brownian bridge.

The linear boundary dlin(r) (see equation (2)) satisfies Assumption 6, whereas
for the linear triangular boundary dsbq(r,s) (see equation (7)) it is not satisfied.
Instead, the boundary must be at least of order

√
r uniformly among all s, which

motivates the alternative boundary

dinf(r,s) = √
r(1+2(r − s)), 0 ≤ s ≤ r.

Simulated critical values for the M-tests under the boundaries dlin(r) and dinf(r,s)
are presented in Table 3.

6. ESTIMATION OF THE BREAKPOINT LOCATION

As soon as the testing procedure has indicated a structural instability in the
coefficient vector, the next step is to locate the break point. In the single break
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Table 3. Asymptotic critical values for infinite horizon M-tests.

Stacked backward CUSUM Forward CUSUM

k = 1 k = 2 k = 3 k = 4 k = 5 k = 1 k = 2 k = 3 k = 4 k = 5

α = 10% 0.911 0.974 1.010 1.035 1.054 0.864 0.956 1.006 1.040 1.066

α = 5% 0.976 1.036 1.071 1.094 1.113 0.958 1.044 1.090 1.121 1.146

α = 1% 1.113 1.169 1.199 1.219 1.236 1.148 1.222 1.261 1.289 1.308

Note: Simulated (1−α) quantiles of the limiting distributions presented in Theorem 3 based on 100,000
Monte Carlo replications are reported. For SBQT,∞ we use boundary dinf(r,s), and for QT,∞ the
boundary dlin(r) is implemented. The Brownian bridge is approximated on a grid of 50,000 equidistant
points.

model with βt = β0 +δ1{t≥T∗}, where δ �= 0, Horváth (1995) suggested to estimate
the relative break date τ ∗ = T∗/T by the relative time index for which the likelihood
ratio statistic is maximized. As an asymptotically equivalent estimator, Bai (1997)
proposed the maximum likelihood estimator

τ̂ ret
ML = T−1 · argmin

t=1,...,T
{R1(t)+R2(t)}, (11)

where R1(t) is the OLS residual sum of squares when using observations until time
point t and R2(t) is the OLS residual sum of squares when using observations from
time t +1 onwards. In case of monitoring, Chu et al. (1996) considered

τ̂ mon
ML = T−1 · argmin

t=T+1,...,Td

{R1(t)+R2(t)} (12)

to estimate τ ∗
mon = T∗/Td, where Td denotes the detection time point, which is the

stopping time at which the detector statistic exceeds the boundary function for the
first time. The maximum likelihood estimator is very accurate if the breakpoint is
located in the middle of the sample. However, by construction, the true breakpoint
T∗ tends to be close to the stopping time Td, and R2(T∗) is computed from very
few observations, which may lead to a large finite sample estimation error for
the maximum likelihood estimator. A theoretical explanation for this effect is
given in Casini and Perron (2021a, 2021b), where the finite-sample distribution
of the least squares estimator is investigated using a continuous record asymptotic
framework.

To bypass this problem, we use backwardly cumulated recursive residuals to
estimate the relative break location. In the single break model, ‖BQ�rT�,T‖ is
asymptotically proportional to ‖h(1) − h(r)‖, which is constant in the prebreak
period and decreases to zero in the postbreak period. When scaled by its asymp-
totic standard deviation, the detector is asymptotically proportional to ‖h(1) −
h(r)‖/√1− r, which in turn (see equation (8)) is proportional to(− ln(τ ∗)1{r<τ∗} − ln(r)1{r≥τ∗}

)
/
√

1− r,
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where the maximum is attained at r = τ ∗. Accordingly, we consider

τ̂ret = 1

T
· argmax

t=1,...,T

‖BQt,T‖√
T − t +1

, τ̂mon = 1

T
· argmax

t=T+1,...,Td

‖BQt,Td‖√
Td + t −1

. (13)

THEOREM 4. Let βt = β0 +δ1{t/T≥τ∗}, where δ �= 0, and let Assumption 1 hold

true. If τ ∗ ∈ (0,1], then τ̂ret
p−→ τ ∗, as T → ∞; if τ ∗ ∈ (1,Td/T], then τ̂mon

p−→ τ ∗,
as T → ∞.

This result implies that the breakpoint estimators (13) are consistent, as T → ∞.

7. FINITE SAMPLE PERFORMANCE

We illustrate the finite sample performance of the R-tests and M-tests for the
models

yt = γt +ut, (model I)

yt = 1+γtzt +ut, (model II)

yt = γt +0.5yt−1 +ut, (t = 1, . . . ,T), (model III)

where γt = 0.8 · 1{t/T≥τ∗}, ut and et are independent and NID(0,1), and zt = (1 −
0.5L)et, where L is the lag operator. For model I and model II we consider the
full structural break tests, and for model III partial break tests with H = (1,0) are
considered (see Remark 2).

7.1. Retrospective Tests (R-Tests)

In Table 4, the empirical sizes and powers of the retrospective tests are compared
with that of the sup-Wald test of Andrews (1993). First, we observe that BQT and
SBQT outperform QT , except for the case τ ∗ = 0.1. Second, while QT has much
lower power than the sup-Wald test, the reversed order cumulation structure in
BQT and SBQT seems to compensate for the weakness of QT . Andrews (1993)
showed that the sup-Wald test is weakly optimal in the sense that, in the case
of a single structural break, its asymptotic local power curve approaches the
power curve from the infeasible point optimal maximum likelihood test, as the
significance level tends to zero. Within the framework of the considered models,
BQT performs similarly well as the sup-Wald test and thus has comparably good
power properties as the weakly optimal test. In contrast to SBQT , the the sup-Wald
test is not suitable for monitoring since its statistic is not measurable with respect
to the filtration of information at time t.

7.2. Monitoring Procedures (M-Tests)

Fixed endpoint M-tests are particularly useful when the monitoring period is short.
M-tests with infinite horizon can be used for long monitoring periods of arbitrary
length. To evaluate the performance of the M-tests for finite samples, we simulate
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Table 4. Empirical sizes and powers of the R-tests.

Model I Model II Model III

BQT SBQT QT supW BQT SBQT QT supW BQT SBQT QT supW

Size 4.3 3.4 4.2 4.6 4.4 4.1 4.1 4.8 4.9 4.2 5.3 5.8

τ ∗ Power

0.1 54.4 67.4 73.6 51.8 51.2 63.0 68.2 53.0 24.3 26.5 40.5 36.1

0.4 99.8 99.5 92.3 99.8 99.9 99.7 93.2 99.9 98.2 94.6 66.9 98.7

0.6 99.9 99.4 72.5 99.8 99.8 99.3 72.9 99.9 99.4 96.8 47.0 98.8

0.9 56.4 25.2 5.8 46.9 52.3 33.2 6.0 49.8 49.8 19.9 6.6 34.7

Note: Rejection rates of the retrospective tests are reported for a significance level of 5% and a sample
size of T = 200. The results are obtained from 100,000 Monte Carlo repetitions under the linear
boundaries dlin(r) and dsbq(r,s). The sup-Wald test by Andrews (1993) with trimming parameter 0.15
is denoted as supW.

Table 5. Empirical sizes and mean detection delays of the fixed endpoint M-tests.

Model I Model II Model III

SBQ Q SBQ Q SBQ Q
Size 4.0 4.6 6.4 5.6 4.4 5.0

τ ∗ Absolute mean detection delay

1.1 27.4 27.3 26.9 27.1 29.1 28.8

1.2 26.6 31.9 26.2 31.1 27.9 34.6

1.3 26.1 36.5 25.9 35.3 27.2 40.2

1.4 25.9 40.9 25.7 39.3 26.8 45.1

1.5 25.8 44.7 25.4 42.2 26.4 47.7

Note: The empirical sizes are reported in percentage points. Starting in row 4, the empirical mean
detection delays are presented for different breakpoints τ ∗. Results are obtained for a significance
level of 5%, a pre-monitoring sample size of T = 200, a monitoring period of m = 2, boundaries
dlin(r) and dsbq(r,s), and from 100,000 Monte Carlo repetitions. Critical values from Tables 1 and 2
are implemented.

the same models as for the R-tests for time points t = 1, . . . ,mT , where we specify
m = 2 for the fixed endpoint tests and m = 20 for the infinite horizon tests. The
results in Table 5 show that the mean delay for SBQT,m is much lower than that
of QT,m and is almost constant across the breakpoint locations.

For infinite horizon monitoring, SBQT,∞ performs similarly well compared to
conventional tests (see Table 6). The detection delay of QT,∞ is much higher than
that of SBQT,∞, and the gap increases further with increasing τ ∗. Compared to
the tests of Chu et al. (1996) and Fremdt (2015), we find a similar picture. Note
that the two alternative tests have no power in model II and are therefore omitted
for this case.
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Table 6. Empirical sizes and mean detection delays of the infinite horizon
M-tests.

Model I Model II Model III

SBQ Q CSW FR SBQ Q SBQ Q CSW FR

Size 3.8 4.8 2.2 4.3 6.4 5.8 6.3 5.2 2.2 6.1

τ ∗ Absolute mean detection delay

1.5 27.6 46.4 70.2 53.6 27.3 44.2 29.7 52.8 84.1 51.8

2 33.8 69.5 80.3 76.7 32.9 65.6 36.7 82.2 94.3 74.8

4 57.2 162.2 111.9 169.8 52.9 150.8 64.4 200.9 126.3 167.7

6 81.1 254.9 136.9 263.6 72.3 235.4 93.9 319.6 151.3 261.6

Note: The empirical sizes are reported in percentage points. Starting in row 4, the empirical mean
detection delays are presented for different breakpoints τ ∗. Results are obtained for a significance level
of 5%, a pre-monitoring sample size of T = 200, a monitoring period of m = 20, boundaries dlin(r) and
dinf(r,s), and from 100,000 Monte Carlo repetitions. Critical values from Table 3 are implemented. The
univariate infinite horizon M-tests by Chu et al. (1996) and Fremdt (2015) with boundary parameter
0.25 are denoted as CSW and FR, respectively.

Table 7. Bias and RMSE of breakpoint estimators.

T = 100 T = 200

Bias RMSE Bias RMSE

τ ∗ BQ ML BQ ML BQ ML BQ ML

0.5 −0.03 0.01 0.14 0.11 −0.02 0.01 0.08 0.05

0.65 −0.03 0.00 0.14 0.12 −0.02 0.00 0.08 0.05

0.8 −0.03 −0.04 0.15 0.18 −0.01 −0.01 0.09 0.08

0.85 −0.04 −0.07 0.17 0.22 −0.02 −0.02 0.10 0.11

0.9 −0.06 −0.13 0.19 0.30 −0.03 −0.04 0.12 0.17

0.95 −0.10 −0.25 0.24 0.43 −0.05 −0.14 0.17 0.32

0.97 −0.13 −0.33 0.28 0.50 −0.08 −0.24 0.22 0.42

0.99 −0.20 −0.44 0.35 0.58 −0.15 −0.40 0.30 0.56

Note: The bias and root mean squared error (RMSE) for the break date estimators (11) and (13)
are reported based on 100,000 Monte Carlo repetitions, where model (model I) is simulated for
t = 1, . . . ,T . BQ denotes the backward CUSUM estimator (13), and ML denotes the maximum
likelihood estimator (11).

7.3. Breakpoint Estimators

To compare the breakpoint estimator in equation (13) with its maximum likelihood
benchmark in (11) and (12), we present Monte Carlo simulation results in Table 7.
If the break τ ∗ is located after 85% of the sample, the estimator based on
backwardly cumulated recursive residuals has a much lower bias and root mean
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Figure 5. Ljung-Box and robust Q statistics of the residuals.
Note: The cumulative Ljung-Box (LB) and robust Q-statistics (Q̃) of Dalla, Giraitis, and Phillips
(2020) are plotted for the residuals of model (14). The left plot shows the statistics using the sample
from the first premonitoring training period (April 10 until May 21) and the right plot for the second
premonitoring training period (July 20 until August 30). The dashed line indicates the 5% critical
values. The plots are created using the R-package testcorr provided by Dalla et al. (2020).

squared error than the maximum likelihood estimator, which is due to the fact that
the postbreak entails only few observations.

8. EMPIRICAL APPLICATION TO COVID-19 INFECTIONS

We consider the time series yt of daily new cases of SARS-CoV-2 infections in the
United States during the first months of the COVID-19 pandemic. The starts of the
first three waves of infections are observed in March, June, and September 2020.
To monitor for a second and third waves of infections, we consider premonitoring
training samples of 6 weeks (T = 46) starting at the times after the first and second
peak. The training sample periods are given by April 10 until May 21, and July 20
until August 30. To account for a seasonal unit root in yt we consider the seasonally
differenced series ỹt = yt − yt−7. Weekly differences are used to account for the
seasonalities resulting from the weekly reporting pattern of COVID-19 data with
lower numbers on weekends. We estimate the dynamic model

ỹt = φ0 +φ1̃yt−2 +φ2̃yt−7 +ut = x′
tβ +ut, (14)

where xt = (1,̃yt−1,̃yt−7)
′, and β = (φ0,φ1,φ2)

′. The parameters for lags 2 and 7
are the only significant autoregressive parameters.

Both the Ljung-Box and the robust Q-statistic of Dalla et al. (2020) do not
indicate any significant autocorrelation in the residuals for the pre-break training
periods (see Figure 5). We consider the infinite-horizon stacked backward CUSUM
statistic for a break in the intercept and the infinite horizon forward CUSUM of
Chu et al. (1996). We are interested in detecting positive changes in the intercept φ0

and apply one-sided infinite horizon monitoring statistics with a significance level
of 5%. The critical values for the partial right-sided tests are given by those of the
full test with α = 0.1 and k = 1 (see Remark 2). We consider the infinite-horizon
stacked backward CUSUM statistic for a break in the intercept and the infinite
horizon forward CUSUM of Chu et al. (1996). To compare the detector statistics,

https://doi.org/10.1017/S0266466622000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000159


680 SVEN OTTO AND JÖRG BREITUNG
0

20
00

0
40

00
0

60
00

0
80

00
0

New infections and detection times (dynamic modeling)

Mar May Jul Sep Nov

SBQ detection time
Q detection time

−
20

00
0

−
10

00
0

0
10

00
0

20
00

0

Seasonal differences and detection times (dynamic modeling)

Mar May Jul Sep Nov

��
��

��

��

��

��

��

��

�� ��

��

��

��
��

��
��

��
��

��

��

�� ��

��
��

��

��

��

��

��

��
��

��

��
�� ��

��

0.
0

0.
5

1.
0

1.
5

2.
0

Monitoring second wave (dynamic modeling)

�
�

� � �
�

�

�

� �
�

�
� �

� � �
�

�
�

� �

�
�

�

�

�

�

�

�
�

�

� �
�

�

May 22 May 29 Jun 05 Jun 12 Jun 19 Jun 26

��

�

scaled SBQ detector
scaled Q detector
breakpoint estimator
critical value

��
��

��

�� ��

�� ��

��

�� �� ��

��
�� ��

��
�� �� ��

��
��

�� ��

�� ��
��

��

��

��

��

��

��

��

��

��

��

��

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Monitoring second wave (autocorrelation robust)

� �
�

� �
� �

�
� � �

�
� �

� � � � �
�

� �
� �

�

�

�

�

�

�

�

�

�

�

�

�

May 22 May 29 Jun 05 Jun 12 Jun 19 Jun 26

��

��

��
��

��

��

��

��

��

��
��

��

��

��

��

��
��

��
��

��

��

�� ��

��

��
�� �� ��

��

��

��

��

��

��

�� ��
��

��

��

�� ��

�� ��

0.
0

0.
5

1.
0

Monitoring third wave (dynamic modeling)

�
�

� �

�
�

�

�

� � �

�

�

�

�

� �
� �

�

�

� �

�

� �
� �

�

�

� �

�

�
� �

�

�

�
� �

� �

Aug 31 Sep 07 Sep 14 Sep 21 Sep 28 Oct 05 Oct 12

��

�� ��

��

��

�� ��

��

��

��

��

��
��

��

��

��

��

��
��

��

��

�� ��
�� ��

�� ��
��

��
�� ��

��

��
��

��
�� ��

��

�� ��
��

�� ��

0.
0

0.
5

1.
0

1.
5

Monitoring third wave (autocorrelation robust)

�

� �
�

�
� �

�

�
�

� � �

�

�

�

�

�
�

�

�

� � �
� �

� �

�
� � �

�
� �

�
�

�

� �
�

� �

Aug 31 Sep 07 Sep 14 Sep 21 Sep 28 Oct 05 Oct 12

0
50

00
10

00
0

Recursive residuals (second wave monitoring)

May 22 May 29 Jun 05 Jun 12 Jun 19 Jun 26

recursive residuals (dynamic modeling)
recursive residuals (autocorrelation robust)

−
10

00
0

0
10

00
0

20
00

0

Recursive residuals (third wave monitoring)

Aug 31 Sep 07 Sep 14 Sep 21 Sep 28 Oct 05 Oct 12

Figure 6. Monitoring daily new COVID-19 infections in the US.
Note: The results of the M-tests for the dynamic model (left column) and the autocorrelation robust M-
tests (right column) are presented. The plots show the new infections (first row) and the seasonally
differenced infections (second row). The third and fourth row present the standardized recursive
residuals (solid), the scaled stacked backward CUSUM detector (dashed), and the scaled forward
CUSUM detector (dotted). The shaded areas represent the pre-monitoring training periods, the dashed
vertical lines represent the detection time point of the stacked backward CUSUM, the dotted vertical
lines are the detection times of the forward CUSUM, and the vertical dash-dotted lines are the backward
CUSUM breakpoint estimators given by equation (13). The horizontal solid line represents the critical
boundary of the scaled detectors.

we scale them by their boundaries and critical values, so that H0 is rejected in favor
of a positive change in φ0 if the detector exceeds unity, respectively. An alternative
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to the dynamic modeling in (14) is to apply autocorrelation robust M-tests to the
model ỹt = φ0 + ut, where we replace σ̂T with the long-run variance estimator by
Newey and West (1987) (see Remark 1).

The results are presented in Figure 6. Both monitoring procedures find an
indication for a rise in SARS-CoV-2 infections in the US at the end of June and
the end of September. The stacked backward CUSUM detects the breaks much
earlier and becomes significant between 2 and 16 days before the forward CUSUM
becomes significant. This confirms our theoretical analysis and shows that precious
time can be saved by applying the backward monitoring scheme.

9. CONCLUSION

In this paper, we propose two alternatives to the conventional CUSUM detectors
by Brown et al. (1975) and Chu et al. (1996). It has been demonstrated that
cumulating the recursive residuals backwardly results in much higher power than
using forwardly cumulated recursive residuals, in particular if the break is located
at the end of the sample. Accordingly, the backward scheme is especially attractive
for online monitoring. To this end, the stacked triangular array of backwardly
cumulated recursive residuals is employed and we find that this approach yields a
much lower detection delay than the monitoring procedure by Chu et al. (1996).
Due to the multivariate nature of our tests, they also have power against structural
breaks that do not affect the unconditional mean of the dependent variable. We also
propose a new break date estimator which outperforms conventional estimators if
the break is located at the end of the sample.

APPENDIX

A. Technical Proofs

A.1. Auxiliary Lemmas. We first present some auxiliary lemmas which we require
for the main proofs.

LEMMA 1. Let Assumptions 1 and 2 hold true. Then, for any fixed m < ∞, as
T → ∞,

1√
T

�rT�∑
t=1

xtut ⇒ σC1/2W(k)(r), r ∈ [0,m].

Proof. Note that M−1/2 ∑�sM�
t=1 xtut ⇒ �1/2W(k)(s), s ∈ [0,1], as M → ∞, by Theorem

7.19 in White (2001). Then, on the space D([0,m])k, as T → ∞,

1√
T

�rT�∑
t=1

xtut=
√

m√
M

�(r/m)M�∑
t=1

xtut⇒√
m�1/2W(k)(r/m)

d= �1/2W(k)(r), r ∈ [0,m]. (15)

�
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Assumption 7. There exists κ ≥ 8 such that supt E[‖xt‖κ ] < ∞, supt E[|ut|κ ] < ∞, and
(xt,ut)

′ is strong mixing of size −κ/(κ −6).

LEMMA 2. Let Assumptions 1 and 7 hold true. Then, for any fixed m < ∞, as T → ∞,

1√
T

�rT�∑
t=1

xtut ⇒ �1/2W(k)(r), r ∈ [0,m].

Proof. We have M−1/2 ∑�sM�
t=1 xtut ⇒ �1/2W(k)(s), s ∈ [0,1], as M → ∞, by Corol-

lary 4.2 in Wooldridge and White (1988). The result follows by analogous arguments
as in (15). �

LEMMA 3. Let βt = β0 for all t ∈N, and let Assumption 1 hold true. Moreover, let either
Assumption 2 or 7 hold true. Then, for any m < ∞, as T → ∞,

max
1≤t≤mT

1√
T

∥∥∥∥Yt −
t−1∑
j=1

1

j
Yj −Xt

∥∥∥∥ = oP(1),

where Xt = ∑t
j=1 xjwj and Yt = ∑t

j=1 xjuj.

Proof. Let fj = (1+ (j−1)−1x′
jĈ

−1
j−1xj)

−1/21{j>k}. Since β̂j = β0 + j−1Ĉ−1
j Yj, we can

represent the recursive residuals as

wj = fj(yj − x′
jβ̂j−1) = fj

(
uj − (j−1)−1x′

jĈ
−1
j−1Yj−1

)
.

The multivariate cumulative sum can be written as

Xt =
t∑

j=1

xjujfj −
t−1∑
j=1

fj+1

j
xj+1x′

j+1Ĉ−1
j Yj,

and we have

T−1/2
(

Yt −
t−1∑
j=1

1

j
Yj −Xt

)
= T−1/2(At +Bt),

where

At =
t∑

j=1

xjuj(1− fj), Bt =
t−1∑
j=1

(
fj+1xj+1x′

j+1Ĉ−1
j − Ik

)1

j
Yj. (16)

It remains to show that max1≤t≤mT T−1/2‖At‖ = oP(1) and max1≤t≤mT T−1/2‖Bt‖ =
oP(1). For the first part, note that, for j > k,

0 ≤ √
j−1(1− fj) =

√
j−1

√
1+ 1

j−1 x′
jĈ

−1
j−1xj −1√

1+ 1
j−1 x′

jĈ
−1
j−1xj

≤
√

x′
jĈ

−1
j−1xj, (17)
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which implies that
√

j(1 − fj) = OP(1), as j → ∞. Since Ĉj is uniformly positive definite,
there exists a uniformly minimal eigenvalue λmin > 0, which is defined as the infimum of
all eigenvalues of the matrices {Ĉj}j>k. Any Rayleigh quotient of C−1

j−1 is bounded above

by λ−1
min < ∞. Therefore, for any j and δ > 0,

E[|√j(1− fj)|δ] ≤ E[|x′
jĈ

−1
j−1xj|δ/2] ≤ λ

−δ/2
min E[|x′

jxj|δ/2] ≤ λ
−δ/2
min E[‖xj‖δ].

Hence, by the Hölder inequality,

E
[‖xjuj

√
j(1− fj)‖2+ε

] ≤ (
E
[‖xj‖6+3ε

]
E
[|uj|6+3ε

]
E
[|√j(1− fj)|6+3ε

])1/3
< ∞, (18)

for any 0 < ε ≤ (κ −6)/3. Then,

Var
[

max
1≤t≤mT

T−1/2‖At‖
]

≤ 1

T
Var

[�mT�∑
j=1

‖xjuj(1− fj)‖
]

= A∗
T,1 +A∗

T,2, (19)

where

A∗
T,1 = 1

T

�mT�∑
j=1

Var
[‖xjuj(1− fj)‖

] ≤ 1

T

�mT�∑
j=1

1

j
E
[‖xjuj

√
j(1− fj)‖2]

, (20)

which is O(ln(mT)/T) since the harmonic series satisfies
∑�mT�

j=1 j−1 = O(ln(mT)), and

A∗
T,2 = 2

T

�mT�−1∑
τ=1

�mT�−τ∑
j=1

Cov
[‖xjuj(1− fj)‖,‖xj+τ uj+τ (1− fj+τ )‖],

which is zero under Assumption 2. Under Assumption 7, we apply Corollary 14.3 of
Davidson (1994). Let α(τ) be the α-mixing sequence of (x′

t,ut), and consider 0 < ε ≤
(κ −6)/3. Then, by (18), there exists a constant K < ∞, such that

A∗
T,2 ≤ 12

T

�mT�−1∑
τ=1

�mT�−τ∑
j=1

(
E[‖xjuj(1− fj)‖2+ε ]E[‖xj+τ uj+τ (1− fj+τ )‖2+ε ]

)1/(2+ε)

α(τ )
1− 2

2+ε

≤ 12K

T

∞∑
τ=1

α(τ)
1− 2

2+ε

�mT�∑
j=1

1

j
= O(ln(mT)/T) = o(1), (21)

since 1−2/(2+ε) ≤ (κ −6)/κ . Consequently, max1≤t≤mT ‖At,T‖ = oP(1) by Chebyshev’s
inequality. For the second term, we consider the decomposition Bt = Bt,1 +Bt,2, where

Bt,1 =
t−1∑
j=1

1

j
xj+1x′

j+1(fj+1Ĉ−1
j −C−1)Yj, Bt,2 =

t−1∑
j=1

1

j
(xj+1x′

j+1C−1 − Ik)Yj.

Note that, by (17),
√

j(f −1
j+1Ĉj − Ĉj) = OP(1), as j → ∞. Thus, by Lemmas 1 and 2, for any

s > 0, plimT→∞ x�sT�+1x′�sT�+1(f�sT�+1Ĉ−1
�sT� − C−1)T−1/2Y�sT� = 0. Consequently,
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as T → ∞,

max
1≤t≤mT

T−1/2‖Bt,1‖ = sup
r∈[0,m]

∫ r

0
x�sT�+1x′�sT�+1(f�sT�+1Ĉ−1

�sT� −C−1)T−1/2Y�sT� ds

+oP(1),

which is oP(1) by the continuous mapping theorem. For Bt,2, we apply Abel’s formula of
summation by parts, which is given by

t∑
j=1

Ajbj =
t∑

j=1

Ajbt +
t−1∑
j=1

j∑
i=1

Ai(bj −bj+1), Aj ∈ R
k×k, bj ∈ R

k, t ∈ N. (22)

By setting Aj = xj+1x′
j+1C−1 − Ik and bj = j−1T−1/2Yj we get

T−1/2Bt,2 =
t−1∑
j=1

Ajbt−1 +
t−2∑
j=1

j∑
i=1

Ai(bj −bj+1) = B∗
t,T,1 +B∗

t,T,2 +B∗
t,T,3,

where

B∗
t,T,1 = (C̃tC

−1 − Ik)T
−1/2Yt−1, B∗

t,T,2 =
t−2∑
j=1

j−1

j(j+1)
(C̃jC

−1 − Ik)T
−1/2Yj,

B∗
t,T,3 = −∑t−2

j=1
j−1
j+1 (C̃jC

−1 − Ik)T
−1/2xj+1uj+1, and C̃t = (t−1)−1 ∑t

j=2 xjx
′
j. Lemmas

1 and 2, the continuous mapping theorem, and the fact that plimt→∞ C̃t = C imply

max
1≤t≤mT

‖B∗
t,T,1‖ = sup

r∈[0,m]
‖(C̃�rT�C−1 − Ik)T

−1/2Y�rT�‖ = oP(1),

and

max
1≤t≤mT

‖B∗
t,T,2‖ = sup

r∈[0,m]

∫ r

0
‖(C̃�rT�C−1 − Ik)T

−1/2Y�rT�‖dr = oP(1).

For the last term, note that (C̃jC
−1 − Ik)T

−1/2xj+1uj+1 is either a martingale difference
sequence or strong mixing. Then, by the fact that we have bounded eighth moments, and by
Theorems 24.3 and 24.6 in Davidson (1994), we have max1≤t≤mT ‖B∗

t,T,3‖ = oP(1), and
the assertion is shown. �

LEMMA 4. Let Assumptions 1 and 5 hold true, and let βt = β0 for all t ∈ N. Moreover,
let either Assumption 2 or 7 hold true. Then, as T → ∞,

sup
t>T

1√
t

∥∥∥∥Yt −
t−1∑
j=1

1

j
Yj −Xt

∥∥∥∥ = oP(1),

where Xt = ∑t
j=1 xjwj and Yt = ∑t

j=1 xjuj.
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Proof. Analogously to the proof of Lemma 3, it remains to show that

sup
t>T

1√
t

∥∥∥∥Yt −
t−1∑
j=1

1

j
Yj −Xt

∥∥∥∥ = sup
t>T

1√
t

∥∥At +Bt
∥∥ = oP(1),

where At and Bt are defined in (16), which satisfy supt≤T T−1/2‖At + Bt‖. Thus, for any
n ∈ N,

sup
T<t≤nT

t−1/2‖At +Bt‖ ≤ sup
T<t≤nT

T−1/2‖At +Bt‖ ≤ sup
t≤nT

T−1/2‖At +Bt‖ = oP(1),

plim
t→∞

t−1/2‖At +Bt‖ ≤ plim
t→∞

sup
l≤t

t−1/2‖Al +Bl‖ = 0,

and the assertion follows. �

LEMMA 5. Let Assumption 1 hold true, let βt = β0 for all t, and let m < ∞. Under
Assumption 2,

1√
T

�rT�∑
t=1

xtwt ⇒ σC1/2W(k)(r), r ∈ [0,m],

and, under Assumption 7,

1√
T

�rT�∑
t=1

xtwt ⇒ �1/2W(k)(r), r ∈ [0,m],

where W(k)(r) is a k-dimensional standard Brownian motion.

Proof. Lemma 3 implies that

sup
r∈[0,m]

1√
T

∥∥∥Y�rT� −
∫ r

0
z−1Y�zT� dz−X�rT�

∥∥∥ = oP(1), (23)

where Xt = ∑t
j=1 xjwj and Yt = ∑t

j=1 xjuj. Under Assumption 2, Lemma 1, the continuous
mapping theorem, and (23) imply

1√
T

X�rT� ⇒ σC1/2
(

W(k)(r)−
∫ r

0
z−1W(k)(z)dz

)
, r ∈ [0,m].

Analogously, under Assumption 7,

1√
T

X�rT� ⇒ �1/2
(

W(k)(r)−
∫ r

0
z−1W(k)(z)dz

)
, r ∈ [0,m],

by Lemma 2. It remains to show that, for any r ≥ 0,

W(k)(r)−
∫ r

0
z−1W(k)(z)dz

d= W(k)(r). (24)

Let Wj(r) and Bj(r) be the jth component of W(k)(r) and B(k)(r), respectively. We show the
identities for each j = 1, . . . ,k, separately. Using Cauchy–Schwarz and Jensen’s inequalities,
we obtain

∫ r
0 z−1E[|Wj(z)|]dz < ∞ as well as

∫ r
0 z−1E[|Wj(r)Wj(z)|]dz < ∞, which
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justifies the application of Fubini’s theorem in the subsequent steps. Since both Wj(r) and

F(Wj(r)) = Wj(r)− ∫ r
0 z−1Wj(z)dz are Gaussian with zero mean, it remains to show that

their covariance functions coincide. Let w.l.o.g. r ≤ s. Then,

E[F(Wj(r))F(Wj(s))]−E[Wj(r)Wj(s)]

=
∫ r

0

∫ s

0

E[Wj(z1)Wj(z2)]

z1z2
dz2 dz1 −

∫ s

0

E[Wj(r)Wj(z2)]

z2
dz2 −

∫ r

0

E[Wj(s)Wj(z1)]

z1
dz1

= (2r + r ln(s)− r ln(r))− (r + r ln(s)− r ln(r))− r = 0,

and the assertion follows. �

LEMMA 6. Let h be a R
k-valued function of bounded variation, and let {At}t∈N be

a sequence of random (k × k) matrices with supr∈[0,m] ‖T−1 ∑�rT�
t=1 (At − A)‖M = oP(1),

where m < ∞. Then, as T → ∞,

sup
r∈[0,m]

∥∥∥ 1

T

�rT�∑
t=1

(At −A)h( t
T )

∥∥∥ = oP(1).

Proof. By the application of Abel’s formula of summation by parts, which is given in
(22), it follows that

�rT�∑
t=1

(At −A)h( t
T ) =

�rT�∑
t=1

(At −A)h(
�rT�

T )+
�rT�−1∑

t=1

t∑
j=1

(Aj −A)(h( t
T )−h( t+1

T )).

The fact that h(r) is of bounded variation yields supr∈[0,m] ‖h(r)‖ = O(1) as well as

supr∈[0,m] ‖
∑�rT�−1

t=1 (h( t
T )−h( t+1

T ))t/T‖ = O(1). Consequently,

sup
r∈[0,m]

∥∥∥ 1

T

�rT�∑
t=1

(At −A)h(
�rT�

T )

∥∥∥ ≤ sup
r∈[0,m]

∥∥∥ 1

T

�rT�∑
t=1

(At −A)

∥∥∥
M

∥∥∥h(
�rT�

T )

∥∥∥ = oP(1)

and

sup
r∈[0,m]

∥∥∥ 1

T

�rT�−1∑
t=1

t∑
j=1

(Aj −A)(h( t
T )−h( t+1

T ))

∥∥∥

≤ sup
r∈[0,m]

�rT�−1∑
t=1

t

T

∥∥∥1

t

t∑
j=1

(Aj −A)

∥∥∥
M

∥∥∥h( t
T )−h( t+1

T )

∥∥∥ = oP(1).

Then, by the triangle inequality, the assertion follows. �

A.2. Main Proofs.

Proof of Theorem 1. Consider the auxiliary sequence y∗
t = x′

tβ0 + ut, which
coincide with yt if βt = β0. Moreover, define β̂∗

t−1 = (
∑t−1

j=1 xjx
′
j)

−1 ∑t−1
j=1 xjy

∗
j and

ft = (1 + (t − 1)−1x′
tĈ

−1
t−1xt)

−1/21{t>k}. Then, w∗
t = ft(y∗

t − x′
tβ̂

∗
t−1) are recursive

https://doi.org/10.1017/S0266466622000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000159


BACKWARD CUSUM FOR TESTING AND MONITORING 687

residuals from a regression without any structural break in the coefficients. If βt =
β0 + T−1/2g(t/T), we have yt = x′

tβt + ut = y∗
t + T−1/2x′

tg(t/T), and β̂t−1 = β̂∗
t−1 +

T−1/2(t −1)−1Ĉ−1
t−1

∑t−1
j=1 xjx

′
jg(j/T), which implies that

wt = w∗
t + ftT

−1/2x′
tg(t/T)− ftT

−1/2(t −1)−1Ĉ−1
t−1

t−1∑
j=1

xjx
′
jg(j/T).

We decompose T−1/2 ∑�rT�
t=1 xtwt = S1,T (r)+S2,T (r)+S3,T (r), where

S1,T (r) = 1√
T

�rT�∑
t=1

xtw
∗
t , S2,T (r) = 1

T

�rT�∑
t=1

ftxtx
′
tg( t

T ),

S3,T (r) = − 1

T

�rT�∑
t=1

ft(t −1)−1xtx
′
tĈ

−1
t−1

t−1∑
j=1

xjx
′
jg(

j
T ).

Lemma 5 yields S1,T (r) ⇒ �1/2W(k)(r), where �1/2 = σC1/2 under Assumption 2.
Analogously to (19)–(21), we have

E

[
sup

r∈[0,m]

∥∥∥ 1

T

�rT�∑
t=1

(ft −1)xtx
′
t

∥∥∥2

M

]
= o(1).

Moreover, supr∈[0,m] ‖Ĉ�rT� −C‖M = oP(1) due to Assumption 1(b), and, consequently,

sup
r∈[0,m]

∥∥∥ 1

T

�rT�∑
t=1

ftxtx
′
t −C

∥∥∥
M

= oP(1). (25)

Since g(r) is piecewise constant and therefore of bounded variation, Lemma 6 yields

sup
r∈[0,m]

∥∥∥S2(r)−
∫ r

0
Cg(s)ds

∥∥∥ = sup
r∈[0,m]

∥∥∥ 1

T

�rT�∑
t=1

(ftxtx
′
t −C)g( t

T )

∥∥∥ = oP(1).

For the third term, let

p1,t = Ĉ−1
t

1

t

t∑
j=1

xjx
′
jg(

j
T ), p2,t = Ĉ−1

t
1

t

t∑
j=1

Cg(
j
T ), p3,t = 1

t

t∑
j=1

g(
j
T ).

From Assumption 1(b) and Lemma 6, ‖p1,T − p3,T‖ ≤ ‖p1,T − p2,T‖+‖p2,T − p3,T‖ =
oP(1). Consequently,

sup
r∈[0,m]

∥∥∥S3,T (r)+ 1

T

�rT�∑
t=1

ftxtx
′
tp3,t−1

∥∥∥ ≤
∫ m

0
‖f�sT�x�sT�x′�sT�(p3,�sT� −p1,�sT�)ds‖

= oP(1).
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Since p3(r) = p3,�rT� is a partial sum of a piecewise constant function, it is of bounded
variation, and, together with (25), Lemma 6 yields

sup
r∈[0,m]

∥∥∥ 1

T

�rT�∑
t=1

(f −1
t xtx

′
t −C)p3,t−1

∥∥∥ = oP(1),

which implies that supr∈[0,m] ‖S3,T (r)+ 1
T C

∑�rT�
t=1 p3,t−1‖ = oP(1), and

sup
r∈[0,m]

∥∥∥S3,T (r)+
∫ r

0

∫ s

0

1

s
Cg(v)dvds

∥∥∥ = oP(1).

Consequently, supr∈[0,m] ‖S2,T (r) + S3,T (r) − σCh(t/T)‖ = oP(1), and, by Slutsky’s
theorem,

S1,T (r)+S2,T (r)+S3,T (r) ⇒ σC1/2W(k)(r)+σCh(r). (26)

Finally,

QT (r) = σ̂−1
T C−1/2

T (S1,T (r)+S2,T (r)+S3,T (r)) ⇒ W(k)(r)+C1/2h(r),

since σ̂ 2
T is consistent for σ 2 (see Krämer et al., 1988).

Note that, if we replace Assumption 2 by Assumption 7, the corresponding limiting
result for the autocorrelation robust statistic Q̃T (r) under H0 follows analogously. Moreover,
under the local alternatives we have

S1,T (r)+S2,T (r)+S3,T (r) ⇒ �1/2W(k)(r)+σCh(r),

in equation (26) so that Q̃T (r) ⇒ W(k)(r)+σ�−1/2Ch(r). �

Proof of Theorem 2. By Assumption 5 there exists a k-dimensional standard Brownian
motion W(k)(t) such that

sup
t>T

t−1/2∥∥Yt −�1/2W(k)(t)
∥∥ = oP(1),

and there exists a random variable ξ and some ε > 0 such that ‖Yt − �1/2W(k)(t)‖ ≤
ξ t1/2−ε , which implies that

sup
t>T

t−1/2
∥∥∥∥

t−1∑
j=1

j−1(
Yj −�1/2W(k)(j)

)∥∥∥∥ ≤ sup
t>T

t−εξ

t∑
j=1

j−1 = oP(1).

Therefore,

sup
t>T

t−1/2
∥∥∥∥Yt −

t−1∑
j=1

j−1Yj −�1/2

⎛
⎝W(k)(t)−

t−1∑
j=1

j−1W(k)(j)

⎞
⎠∥∥∥∥ = oP(1).

By Lemma 4, from the fact that T−1/2W(k)(t)
d= W(k)(t/T), and from (24), it follows that

there exists another k-dimensional standard Brownian motion W̃(k)(t), such that

sup
r>1

r−1/2∥∥T−1/2X�rT� −�1/2W̃(k)(r)
∥∥ = oP(1),
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and the assertion follows, since � = σ 2C under Assumption 2, and since σ̂ 2
T , ĈT , and �̂T

are consistent estimators for their population counterparts. �

Proof of Theorem 3. By the triangle inequality, we have

‖QT (r)−QT (s)‖−‖W(k)(r)−W(k)(s)‖ ≤ ‖QT (r)−W(k)(r)‖+‖QT (s)−W(k)(s)‖

for any r and s. Thus,

sup
r>1

‖QT (r)−QT (1)‖
d(r −1)

− sup
r>1

‖W(k)(r)−W(k)(1)‖
d(r −1)

≤ sup
r>1

‖QT (r)−W(k)(r)‖
d(r −1)

+ sup
r>1

‖QT (1)−W(k)(1)‖
d(r −1)

≤ sup
r>1

(‖QT (r)−W(k)(r)‖√
r

√
r

d(r −1)

)
+ sup

r>1

(‖QT (1)−W(k)(1)‖√
r

√
r

d(r −1)

)

≤ 2

(
sup
r>1

‖QT (r)−W(k)(r)‖√
r

)(
sup
r>1

√
r

d(r −1)

)
= oP(1)

for some k-dimensional standard Brownian motion W(k)(r), which implies that

QT,∞ = sup
r∈(1,∞)

‖QT (r)−QT (1)‖
d(r −1)

d−→ sup
r∈(1,∞)

‖W(k)(r)−W(k)(1)‖
d(r −1)

.

We transform the expression into a supremum over the unit interval. A k-dimensional
Brownian motion W(k)(r) and a k-dimensional Brownian Bridge B(k)(r) have the distri-

butional relation B(k)(r)
d= (1 − r)W(k)(r/(1 − r)), which can be verified by comparing

their covariance functions. Consider the bijective function f : (0,1) → (0,∞) given by
f (η) = η/(1−η). The limiting distribution of QT,m can be rearranged as

sup
r∈(1,∞)

‖W(k)(r)−W(k)(1)‖
d(r −1)

d= sup
r∈(0,∞)

‖W(k)(r)‖
d(r)

= sup
η∈(0,1)

‖W(k)(f (η))‖
d(f (η))

d= sup
η∈(0,1)

‖B(k)(η)‖
(1−η)d

( η
1−η

) .

For the second result, we analogously have

sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (r)−QT (s)‖
d(r,s)

− sup
r∈(1,∞)

sup
s∈(1,r)

‖W(k)(r)−W(k)(s)‖
d(r,s)

≤ sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (r)−W(k)(r)‖
d(r,s)

+ sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (s)−W(k)(s)‖
d(r,s)

≤ 2

(
sup

r∈(1,∞)

‖QT (r)−W(k)(r)‖√
r

)(
sup

r∈(1,∞)

sup
s∈(1,r)

√
r

d(r,s)

)
= oP(1)
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for some k-dimensional standard Brownian motion W(k)(r). Then,

SBQT,∞ = sup
r∈(1,∞)

sup
s∈(1,r)

‖QT (r)−QT (s)‖
d(r,s)

d−→ sup
r∈(1,∞)

sup
s∈(1,r)

‖W(k)(r)−W(k)(s)‖
d(r,s)

.

Consider again the bijective function f from above, which analogously implies that

sup
r∈(1,∞)

sup
s∈(1,r)

‖W(k)(r)−W(k)(s)‖
d(r,s)

d= sup
r∈(0,∞)

sup
s∈(0,r)

‖W(k)(r)−W(k)(s)‖
d(r +1,s+1)

= sup
η∈(0,1)

sup
s∈(0,f (η))

‖W(k)(f (η))−W(k)(s)‖
d(f (η)+1,s+1)

= sup
η∈(0,1)

sup
ζ∈(0,η)

‖W(k)(f (η))−W(k)(f (ζ ))‖
d(f (η)+1,f (ζ )+1)

d= sup
η∈(0,1)

sup
ζ∈(0,η)

‖B(k)(η)/(1−η)−B(k)(ζ )/(1− ζ )‖
d((1−η)−1,(1− ζ )−1)

= sup
η∈(0,1)

sup
ζ∈(0,r)

‖(1− ζ )B(k)(η)− (1−η)B(k)(ζ )‖
(1−η)(1− ζ )d((1−η)−1,(1− ζ )−1)

. �

Proof of Theorem 4. Adopting the notation of the local break in Theorem 1, we have
βt +T−1/2g(t/T) with g(t/T) = T1/2δ1{t≥T∗}. Note that

∫ r

0
1{z≥τ∗} dz−

∫ r

0

∫ z

0

1

z
1{v≥τ∗} dvdz =

∫ r

0

τ∗
z

1{z≥τ∗} dz = τ∗(
ln(r)− ln(τ∗)

)
1{r≥τ∗}.

By equation (3) and Theorem 1,

QT (r)−T1/2σ−1τ∗C1/2δ
(

ln(r)− ln(τ∗)
)
1{r≥τ∗} ⇒ W(k)(r), r ∈ [0,m].

Then, by the continuous mapping theorem,

τ̂ret = 1

T

(
argmax
1≤t≤T

‖QT (1)−QT ( t+1
T )‖√

T − t +1

)
= argsup

r∈(0,1)

‖QT (1)−QT (r)‖√
T
√

1− r

= argsup
r∈(0,1)

(
ln(1)− ln(τ∗)

)
1{1≥τ∗} − (

ln(r)− ln(τ∗)
)
1{r≥τ∗}√

1− r
+oP(1)

= τ∗ +oP(1),

since − ln(τ∗)/
√

1− r is strictly increasing for r ∈ (0,τ∗) and − ln(r)/
√

1− r is strictly
decreasing for r ∈ [τ∗,1). Analogously, if τ∗ ∈ (1,τd],

τ̂mon = 1

T

(
argmax
T<t≤Td

‖QTd (1)−QTd ( t+1
Td

)‖
√

Td − t +1

)
= argsup

r∈(0,1)

− ln(r)1{r≥τ∗} − ln(τ∗)1{r<τ∗}√
τd − r

+oP(1)

= τ∗ +oP(1),

where τd = Td/T . �
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