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The orientational trajectories of rod-like particles suspended in a liquid are influenced
by their surroundings, such as the type of flow and nearby walls, and deviate from the
well-known Jeffery orbits in shear flows. We consider two types of shear flows between
two parallel planar walls: wall-driven simple shear flow (C-flow), and parabolic flow
driven by an external body force (P-flow). We simulated hydrodynamically interacting
rod-like particles using a chain-of-spheres model immersed in a lattice Boltzmann fluid
within a confined channel. As these particles in shear flows approach the wall, their
orbits become flattened, exhibiting a ‘swinging motion’ on a plane parallel to the wall.
Near the wall, the influence of the wall on the orbital motion varies depending on the
flow type. In P-flow, the particles maintain their periodic swinging motions, whereas in
C-flow, they stop swinging and align with the flow direction. This difference arises due
to distinct hydrodynamic interactions with the wall in each flow type. Simulations also
replicated the ‘pole-vaulting’ motion, where particles move away from the wall during
their tumbling motion. For weakly sedimenting particles under shear flows, both flow
types showed behaviour similar to that of neutrally buoyant particles. However, in P-flow,
driven by gravity towards the wall, the particles cease their swinging motion and align
perpendicularly to the flow direction, consistent with experimental observations.

Key words: particle/fluid flow, suspensions, slender-body theory

1. Introduction
Rod-like particle suspensions are ubiquitous in nature and have diverse industrial
applications (Solomon & Spicer 2010). These small, elongated particles play a significant
role in various complex phenomena, ranging from the microscopic to the macroscopic
scales. For instance, in three-dimensional (3-D) printing, cellulose nanocrystal inks utilize
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these particles as building blocks for macroscale bulk materials (Hausmann et al. 2018).
Additionally, researchers have explored their potential for transporting microcargo within
narrow channels, offering promising possibilities for targeted drug delivery systems (Yang
& Bevan 2018; Yang et al. 2019). Beyond these specific examples, rod-like particles find
further applications in composite processes owing to their responsiveness to external
fields, making them valuable functional materials within these composites (De Vicente,
Klingenberg & Hidalgo-Alvarez 2011; Pignon et al. 2021; Kuznetsov et al. 2022). The
paper production industry utilizes short fibres, which are another form of rod-like particles,
as key components of the manufacturing process (Lundell, Söderberg & Alfredsson 2011).

Given their prevalence and diverse functionalities, understanding the behaviour of
rod-like particles in shear flow fields is crucial for various scientific and technological
advancements. Pioneering work by Jeffery described the motion of a non-Brownian
ellipsoidal particle in an unbounded linear shear flow at zero Reynolds number (Jeffery
1922). This study demonstrates that a particle’s orientational dynamics follows a set of
periodic orbits, with the period depending on the aspect ratio of the particle. Jeffery’s
solution determines a particle’s specific orbit based on its initial orientation using an orbit
constant. However, this solution predicts non-physical behaviour near solid boundaries.

Although several studies have reported the limited effects of walls on the rheology of
dilute suspensions of rod-like particles (Petrie 1999; Moses, Advani & Reinhardt 2001;
Zurita-Gotor, Bławzdziewicz & Wajnryb 2007; Park & Butler 2009), investigating particle
motion due to rod–wall interactions in planar shear flows remains an interesting subject.
Various experiments (Stover & Cohen 1990; Moses et al. 2001; Kaya & Koser 2009) and
numerical approaches (Ingber & Mondy 1994; Mody & King 2005) have explored the
effects of walls on particle motion, revealing the limited validity of Jeffery’s theory near
walls. The wall induces additional resistance to the rotation of the particles, leading to
longer rotation periods. However, this effect had minimal impact on the overall rotational
behaviour. The primary influence of walls on particle motion may arise from the direct
physical contact between the particles and the wall. This interaction can be determined
geometrically based on the length of the particle and its distance from the wall. The Jeffery
solution, a theoretical framework for describing particle motion in unbounded shear flows,
can be incorporated with wall constraints to account for the direct impact of walls on
particle trajectories (Ozolins & Strautins 2014; Perez et al. 2016), while neglecting the
hydrodynamic interactions between the particle and the wall.

However, microfluidic experiments have revealed three significant results that deviate
qualitatively from the predictions of geometric confinement models.

First, when particles undergo tumbling motion near a wall, they can exhibit a ‘pole-
vaulting’ motion (Stover & Cohen 1990; Moses et al. 2001; Mody & King 2005; Zurita-
Gotor et al. 2007; Park & Butler 2009), where they use the wall as a springboard to propel
themselves away from it. This behaviour can lead to a macroscopically observed decrease
in particle concentration near the wall compared to that in the bulk suspension.

Second, particles oriented parallel to the wall exhibit quite different behaviours near the
wall. Unlike their high-orbit counterparts, these particles maintain a relatively constant
separation distance from the wall while still being advected by the flow (Stover & Cohen
1990). Experimental studies analysing the projected images of these particles on the flow–
vorticity plane suggest a periodic oscillatory motion along the axis of flow direction on
the plane parallel to the wall, referred to as ‘swinging motion’ (Kaya & Koser 2009; Zöttl
et al. 2019). However, this behaviour may be specific to pressure-driven shear flows. In
wall-driven shear flows investigated by other studies, particles tend to align with the flow
direction and remain in this orientation without exhibiting periodic motion (Moses et al.
2001; Hijazi et al. 2003).
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Third, another noteworthy aspect is the behaviour of weakly sedimented fibres
under inclined liquid film flows. Near the wall, these fibres tend to orient themselves
perpendicularly to the flow direction, exhibiting a ‘rolling-sliding motion’ as they move
down the inclined plate (Carlsson, Lundell & Söderberg 2007; Holm & Söderberg 2007;
Carlsson 2009). This perpendicular orientation diminishes as the distance from the wall
increases, with fibres retaining their initial orbit constants. These tendencies are likely to
influence the concentration of fibres near the wall, although detailed results regarding this
aspect remain inconclusive (Lundell et al. 2011).

In this study, we present the results of a numerical investigation into the orientational
dynamics of rod-like particles near walls under two types of shear flows, Couette
flow (C-flow) and Poiseuille flow (P-flow), at negligibly small inertia. This research
aims to characterize how particle–wall interactions under shear flows influence a
particle’s orientational dynamics and trajectory. The influence of flow conditions on these
interactions will be studied systematically. The model of a rod-like particle, represented
by a chain of hard spheres, and the hydrodynamics of the particle immersed in a liquid,
are described in § 2. The suspending liquid was simulated using the lattice Boltzmann
(LB) method. The simulation results are presented in § 3. Section 3.1 provides a detailed
explanation of how the Jeffery orbits, which are modified by interactions with the wall,
change with the separation distance in different shear flows. In § 3.2, we describe the
effect of mechanical contact on the pole-vaulting motion of particles with tumbling
motions. Additionally, we present the trajectory changes of weakly sedimenting single
particles towards the wall, along with the corresponding orientation distribution at a dilute
concentration for each flow in § 3.3.

2. Model and simulation method

2.1. Classical Jeffery model
Jeffery (1922) analysed the motion of a single ellipsoidal particle in a uniform,
unidirectional viscous flow field. The particles were translated by the local fluid velocity,
and their orientation changes were determined by the rates of strain and rotation.
Specifically, when the rigid ellipsoidal particle is placed in a linear flow composed of
a symmetric strain rate e∞ = 1/2(∇u∞ + (∇u∞)T) and an antisymmetric rotation rate
w∞ = 1/2(∇u∞ − (∇u∞)T), the equation for the orientation vector p = (px , py, pz) of
the particle, illustrated in figure 1, is described in Guazzelli & Morris (2011) as

d p
dt

= w∞ · p + A2 − 1
A2 + 1

[
e∞ · p − p

(
p · e∞ · p

)]
, (2.1)

where the superscript ∞ refers to an undisturbed flow of pure liquid. Here, A is the aspect
ratio L/d, d is the particle diameter, and L is the particle length. Under uniform shear flow
with a constant shear rate γ̇ described by u∞ = γ̇ y x̂, (2.1) can be integrated and written
as

p = 1√
A2 sin2(ωt + κ)+ cos2(ωt + κ)+ 1/C2

J

⎡
⎣A sin(ωt + κ)

cos(ωt + κ)

1/CJ

⎤
⎦ , (2.2)

where the motion becomes periodic with period TJ = 2π(A + A−1)/γ̇ with angular
frequency ω= 2π/TJ , and the hat symbol denotes the unit vector along each vector,
throughout the paper. The two integration constants CJ (known as the orbit constant)
and κ (known as the phase angle) are determined from the initial orientation of particle as
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Figure 1. (a) Coordinate system used to simulate a rod-like particle. The particle is modelled by a linear chain
of beads of diameter d and length L . The chain orientation is characterized by a body-centred coordinate system
with the orientation vector p. In the angular form, one of the polar angles, φ, denotes the angle between the
y-axis and the orthogonal projection of the particle on the xy-plane, while the other angle, θ , denotes the angle
between the z-axis and the particle. A bead m is separated by a small surface-to-surface distance εd from the
neighbouring beads, and tm is the tangent vector from the (m − 1)th bead to the mth bead. The orientation
vector pm of bead m aligns with the orientational vector p of the particle at angle θm . (b) Schematic of a
periodic box with height H for simulating planar shear flows. The velocity field within the box, unaffected
by particles, is denoted by u∞. Each shear flow is generated by the lower and upper walls moving at the same
speed, uw/2, in the opposite directions for C-flow, and by applying an external force density Fext in the positive
x-direction for P-flow.

CJ =
√
(p0

x/A)2 + (p0
y)

2
/

p0
z and κ = tan−1(p0

x/(Ap0
y)), where the superscript 0 denotes

the initial value throughout the paper. The orbit constant varies between 0 and ∞. In
the special case at CJ = 0, the ellipsoid is always aligned along the vorticity axis (log-
rolling). In the other special case, at CJ = ∞, the ellipsoid rotates in the xy-plane with
two-dimensional (2-D) planar motion (tumbling). In between, the ellipsoid moves along
closed orbits around the vorticity axis (kayaking). The trajectories of the particles with
representative orbit constants are plotted in Appendix A.

Equation (2.1) can be rewritten in angular form using the spherical coordinate system’s
polar angles θ and φ (Stover & Cohen 1990; Guazzelli & Morris 2011), defined as px =
sin θ sin φ, py = sin θ cos φ and pz = cos θ as illustrated in figure 1(a):

θ̇ = γ̇ (A2 − 1)
4(A2 + 1)

sin 2θ sin 2φ, (2.3a)

φ̇ = γ̇

A2 + 1
(sin2 φ + A2 cos2 φ). (2.3b)

The integration of (2.3a) and (2.3b) leads to

tan θ = ACJ√
sin2 φ + A2 cos2 φ

, (2.4a)

tan φ = A tan (ωt + κ) , (2.4b)

respectively. The solutions obtained here, (2.4a) and (2.4b), are identical to the previously

derived (2.2), with CJ = (1/A) tan θ0
√

sin2 φ0 + A2 cos2 φ0 and tan κ = (1/A) tan φ0.
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2.2. Equations of motion for the chain-of-spheres model
To investigate the orientational behaviour of rod-like particles in confined flows
computationally, we present a coarse-grained model effective for dynamic simulations.
The model involves a particle with fore-and-aft symmetry suspended in a Newtonian liquid
within a planar channel. The suspending liquid is explicitly modelled using the LB method.

To model the motion of a rod-like particle in planar shear flows, we discretize it
into a chain of non-overlapping, hard spheres, so-called ‘beads’. The overall motion of
the particle is approximated using the collective motion of individual beads. As shown
schematically in figure 1(a), there are Nb beads with diameter d connected with a small
surface-to-surface distance εd (where ε = 0.02). Each bead has the same mass (Mm) and
moment of inertia (Im). This motion is described by Newton’s equations of motion, which
include their translational velocity (um) and angular velocity (ωm) as follows:

Mm
dum

dt
= FS

m + FB
m + F R

m + FH
m , (2.5)

Im
dωm

dt
= T R

m + T H
m , (2.6)

where subscript m represents each bead in the particle, ranging from 1 to Nb. If an external
force is present, then it is added to the total force acting on each bead.

For the rod-like particles, the individual beads were assumed to maintain a nearly
constant separation distance. Any small deviations from the equilibrium distance l0 =
(1 + ε)d are modelled using Hooke’s law. The stretching energy can be expressed as

US = KS

2

Nb∑
m=2

(lm − l0)
2, (2.7)

where lm = |tm | is the length of tangent vector tm that connects the centre of the (m − 1)th
bead in the rm−1 position to that of mth bead in the rm position. The stretching coefficient
is represented as KS = πEd/4, where E is Young’s modulus (Yamamoto & Matsuoka
1993).

To account for the particle stiffness, the bending energy UB is defined with a discrete
element of tm as given by Gauger & Stark (2006),

UB = K B

Nb−1∑
m=2

(1 − t̂m+1 · t̂m), (2.8)

where the bending coefficient is represented as K B = πEd3/64 (Yamamoto & Matsuoka
1993; Haeri, Knox & Ahmadi 2013). The stretching and bending forces acting on the mth
bead are FS

m = −∇rm US and FB
m = −∇rm UB , respectively. The resulting stiff chain of

beads has A = Nb + (Nb − 1)ε or the equilibrium length L = Ad.
The rotational constraint force F R

m is associated with the torque applied to maintain the
long axes of the particles aligned with the desired orientation. To restrict the rotation of the
bead towards the long axis of the particle, a rotational constraint was implemented. This
constraint was achieved by applying a rolling torque that acted in the opposite direction to
any perpendicular rolling motion of the bead:

T R
m = −K Rθm

p × pm

| p × pm | , (2.9)

where θm = cos−1( pm · p) represents the angle between the desired orientation ( p) and the
current orientation of an individual bead ( pm). To reduce model complexity, we assume
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that both bending and rolling deformations are governed by the same modulus, denoted as
K R = K B . Appendix B explores the effect of K R/K B on the orbit. The force experienced
by a bead due to the applied torque was calculated based on its position relative to the
particle’s centre of mass. This relationship is expressed as

F R
m = (T R

m × r̄m)/|r̄m |2, (2.10)

where r̄m represents the position vector of a specific bead relative to the particle’s centre of
mass. By incorporating (2.9) and (2.10), a particle undergoing free movement in a liquid,
without any external net force or torque, can be simulated. The hydrodynamic force (FH

m )
and torque (T H

m ) acting on each bead are described in the next subsection.

2.3. Lattice Boltzmann method
This study is based on the suspension dynamics of hard spherical particles simulated using
the LB method pioneered by Ladd and co-workers (Ladd 1994; Ladd & Verberg 2001;
Nguyen & Ladd 2002). The suspended beads interact hydrodynamically with the boundary
walls through the surrounding Newtonian liquid. The following hydrodynamic equations
govern the shear flows and the flow generated by the motion of the particle:

∂ρ

∂t
+ ∇ · (ρu)= 0 (2.11)

and
∂(ρu)
∂t

+ ∇ · (ρuu)= −∇ p + η∇2u + Fext , (2.12)

where ρ, u, p and η are the density, velocity, pressure and shear viscosity of the liquid,
respectively. If an external force is present, then an additional force density (Fext ) is added
to the liquid.

The suspension was simulated using the LB method, which has been proven effective
for calculating hydrodynamic forces and torques on suspended spherical particles. This
includes both Brownian and non-Brownian particles across various suspensions (Ladd
& Verberg 2001; Dünweg et al. 2007; Chun et al. 2019; Chun & Jung 2021). The LB
equation describes the time evolution of the velocity distribution function ni (r, t) moving
at a discrete location r and time t :

ni (r + ciδt , t + δt )= ni (r, t)+
b∑

j=0

Li j (ni (r, t)− neq
i (r, t))+ Fi , (2.13)

where neq
i denotes the equilibrium distribution function, ci represents the microscopic

velocity of lattice vectors i (i = 0, 1, . . . , b, where b is equal to 18 for a 3-D 19-velocity
model) (Ladd 1994; Ladd & Verberg 2001; Nguyen & Ladd 2002). For simplicity, we set
both the lattice grid spacing (δ) and time step (δt ) to unity. The liquid’s density and the mo-
mentum density ( j ) can be expressed as moments of the velocity distribution function:

ρ =
b∑

i=0

ni , j =
b∑

i=0

ni ci . (2.14)

Furthermore, the liquid velocity under an external force is determined by mid-point
evaluation as follows (Ladd & Verberg 2001):

u = 1
ρ

(
j + Fext

2
δt

)
. (2.15)
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The contribution to the population density due to the external force is given by
Fi = aci Fext · ciδt/c2

s . Here, ci denotes the magnitude of the microscopic velocity,
and aci represent the weighting factors, which are defined as a0 = 1/3, a1 = 1/18 and
a

√
2 = 1/36. The speed of sound in the lattice is given by c2

s = c2/3, where c = δ/δt . This
study employed a two-relaxation-time model (Ginzburg & d’Humieres 2003) for collision
operator Li j . One relaxation time controls the liquid viscosity, whereas the other ensures
the correct no-slip boundary condition on the solid surfaces (Chun & Ladd 2007).

The fluid fills the entire space, including the interiors of the solid particles, enabling
the particles to be treated as having the same density as the surrounding fluid (Ladd 1994).
The hydrodynamic force FH

m and torque T H
m acting on a bead mapped onto the lattice were

calculated using the equations

FH
m =

∑
rb

f b(rb), T H
m =

∑
rb

(rb − rm)× f b(rb), (2.16)

where f b represents the surface traction acting on the boundary node at position rb. This
force is calculated based on momentum transfer from the liquid nodes to the boundary
nodes, as detailed in previous literature (Ladd & Verberg 2001). In addition to these
hydrodynamic contributions, pairwise lubrication forces derived from theoretical models
were incorporated to account for unresolved interactions at small separation distances
(e.g. less than the lattice grid spacing) (Nguyen & Ladd 2002). These forces served as
corrections to the numerical models. However, it is assumed that hydrodynamic lubrication
fails at extremely small surface separations, where collision forces dominate particle
motion. This behaviour is captured by the minimum hydrodynamic separation distance
(or the surface roughness parameter), which effectively limits the maximum lubrication
force at contact. The effect of these forces on the collisional dynamics is explored in
Appendix C.

The collision dynamics of a chain of spheres is modelled using the classical hard-sphere
approach (Alder & Wainwright 1959), which accounts for perfectly elastic collisions
in bead–bead and bead–wall interactions. However, this model neglects the mechanical
properties of the particles, such as mechanical friction, which becomes significant in
concentrated suspensions (Mari et al. 2014). Hard-sphere collision dynamics proceeds
on an event-by-event basis (Alder & Wainwright 1959), capturing interactions with
nearby walls or subsequent collisions between beads of different rod-like particles. As
particles with low inertia move through a viscous liquid, their collisional energy is rapidly
dissipated by the surrounding fluid, even in the case of perfectly elastic collisions.

2.4. Simulation conditions
We considered a channel flow geometry with solid walls bounding the system in the
y-direction, and periodic boundary conditions in the x- and z-directions (figure 1b). This
configuration allows for the generation of unidirectional shear flows along the x-axis. We
investigate two types of shear flows with the same average strain rate (Γ ), defined as the
magnitude averaged over the entire region at steady flow. In C-flow, the flow is driven by
oppositely moving walls with equal speeds along the x-axis. Conversely, a P-flow is driven
by an external body force acting in the positive x-direction on both the particles and the
liquid confined between stationary walls. Within the incompressible flow limit of the LB
method, this body force density mimics a constant macroscopic pressure gradient.

The size of the periodic box is 23d in both width and length, and 9d in height (H ), with
the bead diameter fixed at d = 2.4δ. The aspect ratios of the particles in the simulations
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Set p0
x p0

y p0
z θ0 φ0 ACJ κ

S0 1 0 0 π/2 π/2 ∞ π/2
S1 cos(π/20) 0 sin(π/20) 9π/20 π/2 cot(π/20) π/2
S2 cos(2π/20) 0 sin(2π/20) 8π/20 π/2 cot(2π/20) π/2
S3 cos(3π/20) 0 sin(3π/20) 7π/20 π/2 cot(3π/20) π/2
S4 cos(4π/20) 0 sin(4π/20) 6π/20 π/2 cot(4π/20) π/2

Table 1. Sets of initial orientations for a rod-like particle placed on a plane parallel to the wall are specified
either as an orientation vector or in an angular form, along with the corresponding orbit constant and phase
angle.

were either 6.1 (Nb = 6) or 4.1 (Nb = 4). Additional numerical results, including those for
larger channels and more elongated particles, are provided in the supplementary material.

The spring constants KS , K B and K R were set to sufficiently large values (E = 100
in lattice units; Chun & Jung 2023) to rigidly stiffen the chain of beads. This ensured
that any changes in chain length due to stretching or bending during the simulation were
negligible, keeping them below 10−4L . A viscous liquid flows slowly at low Reynolds
numbers (Re = 0.01−0.02), well below 0.1, where Re is defined as Re = ρΓ L2/4η (Di
Giusto et al. 2024), based on the average shear rate across the channel and particle length.
The effect of small inertia on orbit drift is explored in Appendix D.

A single particle was initially positioned at a centre distance y0
c from the bottom

wall, oriented parallel to it (i.e. p0
y = 0 or φ0 = π/2). During the simulation, the

particle orientation can span the entire range, from being parallel to the flow direction
(corresponding to a very high Jeffery coefficient, CJ = ∞) to being parallel to the vorticity
direction (corresponding to CJ = 0). However, for analytical purposes, five specific initial
orientations relative to the x-axis were selected (sets S0–S4 in table 1). These orientations
ranged from 0 to 4π/20 with increments of π/20 on the plane specified in the table.

3. Results and discussion
The simulation results based on the initial conditions can be broadly categorized into
two groups. Sets S1–S4 represent general initial conditions corresponding to kayaking
motions in an unbounded flow, as used for the analysis of deformed Jeffery orbits in § 3.1.
In contrast, set S0 represents a special case where particle motion remains in the xy-plane,
with tumbling expected in an unbounded flow. This set will be used for the analysis of
pole-vault motion in § 3.2.

3.1. Deformed Jeffery orbits
When a particle is sufficiently far from any walls, it exhibits orientational motions that
follow the orbit predicted for an unbounded linear shear flow, as shown in Appendix A
(figures 11a,b). In these conditions, the particle undergoes periodic rotation while
simultaneously translating in the direction of the flow. The orbit period is close to the
theoretical value predicted by Jeffery’s solution, but slightly smaller. This discrepancy
gradually increases with increasing aspect ratios. Non-ellipsoidal particles can be
addressed by introducing the effective value Ae instead of A, resulting in the period
expressed as TJ = 2π(Ae + A−1

e )/γ̇ . Experimentally, the cylinders were found to have
an effective aspect ratio approximately Ae/A = 0.7 (Stover & Cohen 1990). However,
more sophisticated relationships for Ae have been proposed (Anczurowski & Mason 1968;
Cox 1971). In our chain-of-spheres model, this ratio has values Ae/A = 0.95 and 1.0 for
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0

1

2 A = 4.1, P-flow

A = 4.1, C-flow

A = 6.1, P-flow

A = 6.1, C-flow

Exp (Stover & Cohen)

Jeffery

3

2 4 6 8

yc/d0

T o
/
T J

Figure 2. Ratio of orbit periods To/TJ for C-flow and P-flow, compared with experimental results by Stover
and Cohen (‘Exp’) (Stover & Cohen 1990) varying the distance from a wall. Here, To represents the orbit
period of the particle’s trajectory, while TJ is the theoretical value in unbounded flows. The error bar
represents the standard deviation due to different initial particle orientations of sets S1–S4. The shaded area for
y0

c /d � 0.5 represents the prohibited region where a bead cannot overlap with a solid wall. The experimental
data, redrawn from previous literature (Stover & Cohen 1990), were collected using a P-flow channel under
the following conditions: L = 600 μm, d = 50 μm (A = 12) and Ae/A = 0.7. These measurements provide
detailed observations of individual particles moving through a microfluidic cell, captured as discrete data points
rather than averaged values.

A = 6.1 and 4.1, respectively, as shown in Appendix A (figure 11d). Notably, these values
are different from those of the ellipsoids and cylinders.

As the particle approaches the wall, its trajectory deviates from the Jeffery orbit,
leading to a notable increase in its orbit period To. This trend is consistent with previous
theoretical results (Gavze & Shapiro 1997; Skjetne, Ross & Klingenberg 1997; Pozrikidis
2005; Zurita-Gotor et al. 2007) and agrees reasonably well with the experimental results
(Stover & Cohen 1990) shown in figure 2. The data indicate that for distances greater than
y0

c /d ≈ 3, To/TJ remains nearly constant at value 1. However, closer to the wall, the orbit
period increases substantially for both flows, resulting in To/TJ > 1. This increase varied
depending on the flow type, with the C-flow exhibiting a significantly larger increase than
the P-flow near y0

c /d = 1. Furthermore, the size of the error bars also increased closer to
the wall, stemming from the tendency of particles with longer trajectories, such as those
in set S1, to exhibit larger To values than those in set S4, as shown in figure 3. This larger
To is caused by the wall exerting more resistance to the rotational motion of the particle.

The increase in the orbit period near the wall can be elucidated by two factors, a
deformation of the orbit shape, and a decrease in angular velocities. First, we examined
how the orbit shape deforms with variations in distance from the wall under different initial
conditions. Figure 3 illustrates the 3-D orbit trajectories at four representative distances
and their projections onto the xy-plane for sets S1–S4. Far from the wall (as shown in
figures 3a,b), the orbit trajectories for all conditions (sets S1–S4) in both flow types align
well with the predictions of the Jeffery solutions. However, as the distance from the wall
decreases (figures 3c–f ), some orbits deviate from the Jeffery predictions due to wall
interaction. These deviating orbits lose their original shape and become flattened.

Comparing figures 3(e) and 3(f ), the degree of flattening for the C-flow is relatively
greater for all initial conditions in sets S1–S4 at the same y0

c , resulting in orbits
confined within a geometrically limited range (grey area in figure 3e). In contrast, for the
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0.1
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0

0

0

−0.2
1

S1
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S3
S4

(yc/d  = ∞)
0(a)

(c)

(e)

(g)

(b)

(d )

( f )

(h)

Jeffery

Figure 3. Time evolution of the orientation for sets S1–S4 at A = 6.1 is illustrated. The left-hand panels display
the trajectories on a unit sphere, while the right-hand panels project them onto the xy-plane. For comparison
with the simulation results, Jeffery orbits (reference) are shown as dots on the 3-D plots. The arrows in the
2-D plots indicate the rotation direction for all orbits. Each flow type results for different distances from the
wall: (a,b) y0

c /d = 5, (c,d) y0
c /d = 2, (e,f ) y0

c /d = 1.1 and (g,h) y0
c /d = 0.6. In (c)–(h), the grey regions in

the 2-D plots represent the allowable configurational space owing to the geometrical constraint for y0
c < L/2.

Additionally, movies 1, 2 and 3 in the supplementary material depict the dynamics shown in these images,
corresponding to (c,d), (e,f ) and (g,h), respectively.

P-flow, simple geometric confinement based on impenetrability at the wall surface is no
longer valid, as shown in figures 3( f ) and 3(h). In these figures, some orbits in set S1
of figure 3( f ) and all orbits in figure 3(h) extend beyond the geometrically confined
region. These particles maintain flattened trajectories rather than adopting trajectories with
smaller orbit constants, as allowed by geometric constraints. For the cases closest to the
wall (figures 3g,h), the orbit shapes of the two flow types are qualitatively distinct. In the
C-flow (figure 3g), the particles lose their periodic motion and align with the flow
direction, consistent with experiments where fibres near the wall tend to align with the flow
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0.6

0.4
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0.2

0

0.6

0.4
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0.1

0.2

0

(a) (b) (c) (d )

ych

Figure 4. Time evolution of the displacement of the centre of mass (�yc = yc − y0
c ) and the surface distance

(h) for a particle with A = 6.1, over a single orbit period. The particle is initially positioned at two representative
separation distances (moderate y0

c /d = 1.1, and close y0
c /d = 0.6) under C-flow and P-flow conditions:

(a) y0
c /d = 1.1 (C-flow), (b) y0

c /d = 1.1 (P-flow), (c) y0
c /d = 0.6 (C-flow) and (d) y0

c /d = 0.6 (P-flow). The
different lines in each plot correspond to the different initial conditions (sets S1–S4). In (c), where the particle
in the C-flow exhibits no periodic motion, we define To as the time required for the particle to reach a steady
yc position.

direction and remain in this orientation (Moses et al. 2001; Hijazi et al. 2003). Conversely,
in the P-flow (figure 3h), the particles exhibit a clear swinging or oscillatory motion (see
also supplementary movie 3), as observed in experiments (Kaya & Koser 2009).

To analyse the distinct near-wall behaviours of rod-like particles observed in C-flow
(figure 3g) and P-flow (figure 3h), we further examined their behaviours in a more
general Couette–Poiseuille flow – a combination of the two shear flows – presented in the
supplementary material. As the mixed flow gradually transitions from C-flow to P-flow
with increasing Fext and decreasing uw, a transition point emerges where the particle
behaviour shifts noticeably from flow-aligned motion to swinging motion, depending
on the particle’s aspect ratio. This aspect-ratio dependence of the transition point is
particularly evident for A< 10 (as shown in figure S8 of the supplementary material). In
this regime, particle alignment in the flow direction, characteristic of C-flow, progressively
decreases across all Couette–Poiseuille flow cases as A decreases. We confirmed that the
difference in the near-wall particle motion between two shear flow types (i.e. C-flow and
P-flow) is not caused by inertia or wall-particle collisions (as shown in figures S5 and S6 of
the supplementary material). However, a more conclusive understanding of the underlying
mechanism driving this transition requires further theoretical investigation – for instance,
using prolate ellipsoid models, as explored in studies by Hsu & Ganatos (1994), Gavze &
Shapiro (1997) and Pozrikidis (2005).

We then examined the lateral dynamics of the particles in sets S1–S4 for two
representative separation distances: moderate (y0

c /d = 1.1) and close (y0
c /d = 0.6), as

shown in figure 4, by tracking the y-position and surface distance (h). At moderate
separations for both flows (shown in figures 4a,b), the particles continuously moved away
from and closer to the wall, alternating between moving away and returning to their
initial distances. This oscillatory behaviour is reflected in the relationship between the
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C-flow, yc/d = 4.4

0
 

0
 C-flow, yc/d = 1.1

0
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0
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0
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0.2
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101
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Figure 5. Angular velocities are plotted over a single orbit period at A = 6.1 for set S1; angular velocities
are non-dimensionalized with the local shear rate. For reference, Jeffery’s solutions from (2.3a) and (2.3b),
along with C-flow data at y0

c /d = 4.4, are also plotted for comparison: (a) φ̇/γ̇ in time, (b) φ̇/γ̇ in φ angle and
(c) θ̇/γ̇ in time.

centre position and surface distance, where the peaks of �yc = yc − y0
c correspond to the

minimum values of h. Notably, the particle returned to its initial separation distance after
every half-period. Interestingly, in the case of P-flow (figure 4b), the particles exhibited a
unique behaviour. As indicated by the negative values of�yc, the particle’s centre slightly
approaches the wall before reaching its closest point. This phenomenon is in agreement
with the theoretical results reported in previous studies (Yang & Leal 1984). The observed
oscillation of the separation distance during the swinging motion is likely due to the
presence of a boundary wall, which is consistent with the findings in the literature
(Bretherton 1962; Yang & Leal 1984; Gavze & Shapiro 1997; Mody & King 2005).

Under the C-flow in close proximity to the wall (figure 4c), all trajectories collapsed,
regardless of the initial conditions. The particle exhibited non-periodic translational
motion aligned with the flow direction, with one end nearly contacting the wall while
maintaining its separation distance instead of oscillating. In this orientation, the wall has a
stabilizing influence on the rod-like particles, as reported in previous studies (Moses et al.
2001; Hijazi et al. 2003). In contrast, for the P-flow (figure 4d), all initial conditions except
set S1 show a swinging motion where one end of the particle rests on the wall while the
other end rotates around it, maintaining the initial separation distance after each period.
However, for set S1, as shown in figure 4(d), the particles drift away from the wall. This
behaviour is likely due to non-hydrodynamic effects, such as mechanical contacts; more
details on this behaviour are provided in § 3.2.

The angular velocities of the particles in periodic orbits were further analysed at both
separation distances. Among the initial orientation conditions of sets S1–S4, only the
results for set S1, which had the highest orbit constant, are shown as representative orbits
in figure 5. We recall that θ is measured with respect to the z-axis, and φ is the angle in
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A = 4.1, P-flow

A = 6.1, Jeffery
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yc/d0
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yc/d0

〈φ
〉/γ.

.

〈φ
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(a) (b)

Figure 6. Initial angular velocities of set S1 are shown for A = 6.1 and 4.1. The shaded area (y0
c /d � 0.5)

represents the prohibited region where a bead cannot overlap with a solid wall. (a) Plot for 〈φ̇〉/γ̇ : positive
values indicate a clockwise rotation around the z-axis on the shear plane, whereas negative values signify
an anticlockwise rotation. (b) Plot for 〈θ̇〉/γ̇ . Note the change in the sign of the C-flow when y0

c /d < 1 for
(a) and (b). This corresponds to the rotational directions opposite to those of the Jeffery orbits, as indicated by
the hatched regions.

the xy-plane, measured clockwise from the y-axis. The C-flow results at a distant wall
location (y0

c /d = 4.4) are plotted along with the analytical solutions of (2.3a) and (2.3b).
Figures 5(a) and 5(b) show a substantial decrease in φ̇ during the swinging motion when

the particle aligns parallel to the wall, specifically at orientations φ = π/2 and 3π/2. In
contrast, for orientations φ = π and 2π , φ̇ exhibits slightly higher values compared to
the Jeffery solution. This increase was most pronounced when the particle was closest to
the wall (y0

c /d = 0.6), consistent with previous experimental observations (Moses et al.
2001). This behaviour can be attributed to the particle’s translational motion parallel to
the wall, which induces a faster rate of rotation (Hsu & Ganatos 1994). Interestingly, the
wall plays a dual role. Although it facilitates a faster rotation for certain orientations, it also
exerts significant drag forces on the particle, particularly during motion parallel to the wall,
which can ultimately slow down the overall angular velocity. As is evident in figure 5(c),
the changes of the other angular velocity, θ̇ , exhibit less deviation from the Jeffery solution
compared with φ̇ across all conditions. This suggests that the elongated period observed
in figure 2 is primarily a consequence of the extended residence time of the particles along
the wall. This extended time near the wall led to a moderate decrease in the oscillatory
speed parallel to the wall, which manifested as the observed swinging motion.

Our analysis successfully clarifies the observed elongation of the period for oscillatory
swinging motions near the wall, primarily attributed to a decrease in φ̇. However, the
mechanism behind the emergence of aperiodic motion near the wall in the C-flow
(figures 3(g) and 4(c)) remains elusive. To address this, we conducted an additional
analysis to examine how the changes in angular velocities correlate with varying distances
from the wall. We calculated the angular velocities for the initial short time interval
during which the particle–wall distance remained nearly constant. Figure 6 presents the
initial angular velocity for each flow type as a function of the distance from the wall.
Here, we define initial angular velocity as the average value over a short time interval
�t . During this interval, the initial orientation φ0 = π/2 changes by a small angle
�φ = 0.01π . For this time interval, the time-averaged values of the two angular velocities
from the Jeffery solutions were calculated. For the φ angle, it is evaluated analytically
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Figure 7. Visualization of the flow around a single particle (A = 6.1) in set S1. The plot combines streamlines
(solid arrows) depicting the flow direction with a contour plot showing the y-component of the disturbance
velocity. The upward y-component flow is red, while downward flow is blue. To account for the particle’s
movement along the flow, the x-axis is defined in a body-centred coordinate frame (x ′). Plots for (a) y0

c /d = 2
(C-flow), (b) y0

c /d = 2 (P-flow), (c) y0
c /d = 0.8 (C-flow) and (d) y0

c /d = 0.8 (P-flow). The xy-plane was located
at the centre of the particle in the z-direction.

as 〈φ̇〉 = 1/�φ
∫ φ0+�φ
φ0 φ̇ dφ = γ̇ /2(1 − (A2 − 1)/(A2 + 1) sin(�φ) cos(�φ)/�φ), and

for the θ angle, it is evaluated numerically with 〈θ̇〉 = 1/�t
∫ �t

0 θ̇ dt , where θ̇ and φ̇ are
given in (2.3a) and (2.3b), respectively. The time-averaged angular velocities of the Jeffery
solutions for A = 6.1 and 4.1 are plotted together in figure 6, and are represented by dashed
lines.

Figure 6(a) reveals a monotonic decrease in 〈φ̇〉 as the particle approaches the wall.
This decrease deviates from the Jeffery solution approximately at y0

c /d = 3, with the
magnitude of deviation varying according to the flow type. Notably, C-flow exhibited a
significantly larger decrease. Intriguingly, near the wall (y0

c /d < 1) for C-flow, the value
of 〈φ̇〉 becomes negative. This reversal of sign implies a change in rotation around the
z-axis, from clockwise to anticlockwise. Meanwhile, figure 6(b) shows the behaviour of
〈θ̇〉. Unlike 〈φ̇〉, it exhibits values close to the Jeffery solution everywhere except near
the wall (y0

c /d < 1). In this region, 〈θ̇〉 deviates from the Jeffery solution by adopting the
opposite sign. This implies a decrease in θ , causing the particle to rotate towards the x-axis
and effectively align with the flow.

The flow field around the particles is significantly modified in the presence of a nearby
wall. Here, we analyse the 2-D disturbance flow field generated by the suspended particle
over the previously defined time interval �t . This disturbance flow, denoted by u′, is
obtained by subtracting the flow field of the pure fluid (without the particle) from the
time-averaged flow field extracted from simulations. To visualize this disturbance flow
field, in figure 7 we present streamlines and a contour plot of the y-component velocity
(u′

y) on the xy-plane at the centre of the particle in the z-direction.
Figures 7(a) and 7(b) show that for both the flow types, when the particle is not close

to the wall, the streamlines resemble the flow field generated by a force dipole. These
streamlines exhibit near antisymmetry along the particle’s major and minor axes. This
suggests that the liquid is pulled towards the upper head and lower tail of the particle,
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while being pushed away from the lower head and upper tail. Here, the head is designated
as the first bead in the positive x-direction, and the tail is designated as the last bead. These
flow characteristics lead to a downward flow (blue) near the head, and an upward flow (red)
near the tail, as shown in the figures. These flow patterns indicate that the particles could
rotate clockwise in the xy-plane, similar to the Jeffery solution. However, as the particles
approach the wall, the flow patterns near the head and tail change depending on the flow
type. In the P-flow (figure 7d), the patterns remain largely similar to those observed when
the particles are farther away. By contrast, the C-flow (figure 7c) exhibits a reversal with
an upward flow forming near the head and a downward flow forming near the tail. This
explains the anticlockwise rotation of the φ angle observed in figure 6(a).

3.2. Pole-vault motion of a rod-like particle
Unlike the initial conditions described in the previous subsection, which result in 3-D
ellipsoidal trajectories, the particles in set S0 exhibited circular motion in the xy-plane far
from the wall. When close to a solid surface, the Jeffery orbit becomes impossible because
such motion leads to collisions with the wall. Previous experiments have revealed signif-
icant differences in the tumbling motion of particles near solid walls compared to their
behaviour in the centre of a channel. Stover & Cohen (1990) were the first to address this
issue. They observed that particles with a high Jeffery orbit constant approaching within
a distance of less than half the particle length from the wall experience an irreversible
interaction. The particle abruptly moved away from the wall, reaching a stable distance of
approximately half its length. This distance allowed for the characteristic tumbling motion
of the particles. Additionally, previous studies reported a uniform decrease in angular
velocity over time (Stover & Cohen 1990; Skjetne et al. 1997; Krochak, Olson & Martinez
2010). Although these studies suggested the possibility of a non-hydrodynamic interaction
between particle and wall, the precise nature of this interaction remains elusive.

Figure 8 depicts the translational and angular motions of a particle initially in set S0,
positioned less than half the particle length away from the surface. Beginning with the
uniform shear rate condition (figure 8a), a notable feature across all initial positions is
the presence of peaks in the yc graph. These peaks occur when the particle’s orientation
becomes perpendicular to the wall at φ = π and 2π during each cycle. For a particle
located far from the wall (y0

c /d = 3), the translational motion is reversible, and exhibits a
repeated trajectory before and after each peak. Under the other two conditions, only the
first peak is irreversible, whereas the subsequent peaks are reversible. This phenomenon
was particularly pronounced for the initial condition closest to the wall (y0

c /d = 1.1).
Figures 8(c) and 8(d) depict the particle orientations in chronological order before and
after the first peak for these two distances. Comparing these figures allows us to directly
visualize the difference between the reversible tumbling and irreversible pole-vaulting
motions. As shown in figure 8(c), the particle makes perpendicular contact with the
surface and rapidly detaches from it. In contrast, figure 8(d) shows that one end of the
particle initially contacted the surface at a low angle, and maintained this contact until
detachment after passing through a perpendicular orientation. During this contact, the
tip of the particle primarily slides along the wall surface because of the lubricating film
flow (see supplementary movie 7 for an example of a pole-vaulting motion). As shown in
figure 8(b), the P-flow also exhibited pole-vaulting motion, similar to the C-flow. However,
the higher shear rate near the wall caused it to appear earlier.

Simulations revealed that the particle made repeated contact with the surface at every
180◦ rotation. However, after the initial contact, the separation distance permanently
increased to a value slightly greater than the original distance during pole-vault. Once

1009 A51-15

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
8.

19
0.

23
9.

19
3,

 o
n 

28
 A

pr
 2

02
5 

at
 1

0:
56

:2
2,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

5.
22

5

https://doi.org/10.1017/jfm.2025.225
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.225


B. Chun and H.W. Jung

7.6 9.3 10.0 10.7 11.5 12.2 13.8 21.5

Tumbling

Pole-vaulting

41.532.730.930.129.328.627.725.1Γ t = 0

Γt = 0

20 40 60 80

Γt

xz

y

C-flow, yc /d = 1.10

C-flow, yc /d = 30

(b)

P
ol

e-
va

ul
t

(c)

(d )

0.5

Po
le

-v
au

lt

1.0

0

y c
 /

 (
L/

2
)

(a)

yc /d = 30

yc /d = 20

yc /d = 1.10

C-flow P-flow

0 20 40 60 80

0.5

Γt

φ
/
2
π

1.0

Figure 8. Plot of pole-vaulting in shear flows for set S0 with A = 6.1. The particle is initially placed at
three separation distances from the wall: y0

c /d = 3, 2 and 1.1. Notably, these distances are less than half
the particle length. Time evolution of the separation distance and the φ angle for both (a) C-flow and (b)
P-flow. (c,d) Schematic figures depicting the orientation of a particle near the wall at specific times during the
first half period, for (c) y0

c /d = 3 (C-flow) and (d) y0
c /d = 1.1 (C-flow). Note the difference in the change of

particle–wall distance before and after the collision in the figures.

the particle reached this stable distance, it underwent a tumbling motion. In other words,
although the particle centre oscillates vertically during rotation, it maintains a consistent
separation distance. This irreversible change in separation distance is attributed to the
collisional forces generated by the mechanical contact between the particle’s tip and
the wall during the pole-vaulting motion. The dependence of the displacement on the
minimum hydrodynamic separation distance is explored in detail in Appendix C.

3.3. Particle orientation in slow sedimentation under shear flows near a wall
We now examine the motion of a rod-like particle sedimenting towards a wall within
shear flows, with gravity directed along the velocity gradient direction of shear, i.e.
g = −g ŷ, where g is the gravitational acceleration. Here, the gravitational force acting
on each bead is treated as an additional external force applied in the y-direction. The
relative sedimentation rate under shear flow is quantified by a dimensionless number
called the Shields number (Sh), which represents the ratio of the viscous transport to
the gravitational settling velocity of a single particle (Jain, Tschisgale & Fröhlich 2021):
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Sh = u2
τ

(ρp/ρ − 1)gd
, (3.1)

where ρp is the particle density. We define the characteristic friction velocity (Jain et al.
2021) uτ , based on the shear stress of the sedimenting particle under shear flow, as Γ d.
This definition reflects that a particle spends most of its time parallel to the wall during
settling.

Experiments involving sedimenting particles in a quadratic film flowing down an
inclined plane revealed that short fibres (with aspect ratio approximately 10) tended to
align with the vorticity axis (Carlsson et al. 2007; Holm & Söderberg 2007). According
to Carlsson et al. (2007), a liquid film with thickness H = 17 mm flowed down an
inclined plate with a small angle α= 2.6◦ in an experiment where the particle density
was approximately 1300 kg m−3 and the liquid density was approximately 1210 kg m−3.
Fibres with diameter d = 50 μm were suspended within this film. The average shear rate
of the quadratic flow can be given by Γ = gH sin α/2ν = 9.87 s−1, where the kinematic
viscosity of the liquid (ν) was 3.83 × 10−4 m2 s−1. Using these values, the Shields number
can be calculated as Sh = 6.7 × 10−3. Based on this value, we conducted the simulation
with Sh = 7 × 10−3.

Sedimenting particles in both shear flows (shown in figure 9 and supplementary
movies 4 and 5, depicting C-flow and P-flow, respectively) exhibit orientational behaviour
similar to that of the neutrally buoyant particles discussed in §§ 3.1 and 3.2, although their
vertical positions and orbital trajectories experienced drift. As the particles sedimented,
the yc value decreased monotonically from the channel’s midplane to approximately 0.5d,
except for the special case of set S0, which exhibited mixed tumbling and pole-vaulting
motions (figures 9a,h). Concurrently, the orientation angle φ reaches a steady-state value
approximately 3π/2 (as shown by in figures 9e,j), indicating that py approaches zero
(figures 9(e–g) for C-flow, and figures 9(l–n) for P-flow). These observations implied that
the particles were aligned along a plane parallel to the wall.

However, as the particle approaches the wall, the wall-induced effects on its θ angular
motion and px dynamics become specific to the type of shear flow. In C-flow, the absolute
values of the θ orientation angle (figure 9b) and px (figures 9e–g) reach steady-state
values π/2 and 1, respectively. This suggests that the sedimenting particles near the
wall eventually aligned along the flow direction. Conversely, in P-flow, both the θ angle
and (px , py) approach zero with the oscillating (figure 9i) or spiralling (figures 9l–n)
trajectories, suggesting that sedimenting particles near the wall swing and drift to an
orientation perpendicular to the flow.

To statistically evaluate the angle distribution of particles near a wall, dilute suspensions
with a low particle concentration (nL3 = 0.5) of particles with A = 6.1 were simulated
(see supplementary movie 6 depicting particle dynamics at dilute concentrations). This
concentration was chosen to be high enough for statistical analysis, but low enough
to minimize particle–particle interactions, where n represents the number density of
particles. To prevent particle overlap at close proximity, short-range forces, including
elastic contact and lubrication (Ladd & Verberg 2001; Nguyen & Ladd 2002), were
introduced at the bead level between interacting beads belonging to different rod-like
particles. After reaching a stationary state, the time-averaged and ensemble-averaged
orientation distributions of the particles near the wall (defined as those with yc < d)
were calculated for three random initial configurations. This definition naturally excludes
particles undergoing pole-vaulting behaviour, because most of these particles are oriented
parallel to the planar wall. The orientation distribution, quantified by the angle ψ relative
to flow direction, is presented in figure 10 for each type of flow. In this figure, the
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Figure 9. Time evolution of the dynamics of a sedimenting particle (A = 6.1) for sets S0, S1, S2 and S4
under two flow conditions: (a)–(g) C-flow and (h)–(n) P-flow. The initial separation distance (y0

c ) is set to the
channel’s midplane (H/2) for all conditions. In (c) and (j), the steady-state φ angles for sets S1, S2 and S4 are
indicated with . Also, (d)–(g) and (k)–(n) show the projected orientation trajectories on the xy-plane: (d,k)
for set S0, (e,l) for set S1, (f ,m) for set S2, and (g,n) for set S4, where the initial orientations are marked with

, while the steady-state orientations are indicated with . Note that owing to the pole-vaulting and tumbling
motions, there is no steady-state orientation in the special cases (d) and (k).
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Figure 10. Orientation distribution of the projection angleψ for particles near the wall. The angleψ represents
the projection of the orientation vector p onto the xz-plane, measured relative to the x-axis (see inset
schematic). Representative snapshot images of particles near the wall for C-flow and P-flow are shown in the
insets.

angle ψ represents the projection angle of the orientation vector onto the xz-plane
measured from the x-axis. An average of 3000 samples was used for each configuration
(see supplementary movie 6).

This general trend strongly reflects the results observed for the single particle dynamics
of sets S1–S4, as described previously. In C-flow, a sharp peak is observed at ψ = 0◦,
indicating that most particles are aligned with the flow direction. In contrast, P-flow
exhibits a peak atψ = 90◦, indicating that particles are primarily oriented perpendicular to
the flow and exhibit a ‘rolling-sliding motion’ as they move along the flow. This behaviour
can also be observed in supplementary movie 6. These observations are consistent with
those reported in previous studies on inclined film flows of weakly sedimenting particles
(Carlsson et al. 2007; Holm & Söderberg 2007; Carlsson 2009) and pressure-driven
channel flows of strongly sedimenting particles (Wittmann et al. 2024). The orientation
distribution of particles in P-flow is notably broader, with a peak at approximately ψ =
90◦, indicating weaker alignment perpendicular to the flow compared to that of a single
particle. This deviation from strong alignment can be attributed to weak hydrodynamic or
contact interactions occurring during the swinging motion of particles near the wall.

4. Conclusions
We numerically examined the orientational motion of rod-like particles near a wall
in confined shear flows, Couette flow (C-flow) and Poiseuille flow (P-flow) using the
LB method. The numerical results agree well with Jeffery’s theoretical predictions for
particles positioned more than half of the particle length away from the wall.

Simulations of a single particle revealed that as the separation distance from the
wall decreased, the orbits deviated significantly from the theoretical predictions. They
flattened and became more parallel to the wall, exhibiting periodic swinging motions.
The type of shear flow significantly affects the behaviour of a particle with a separation
distance smaller than its diameter. In the P-flow, a particle maintains its swinging motion.
Interestingly, under the C-flow, the particle ceases periodic motion and aligns with
the flow direction. Visualization of the disturbance flow field around the suspended
particles revealed that only the C-flow experienced a reversed flow pattern compared with
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Jeffery’s solution. This reversal explains the emergence of particle alignment in the flow
direction in the vicinity of the wall under C-flow.

Simulations also successfully reproduced the qualitative behaviour of pole-vaulting
near a wall in the experiments of Stover & Cohen (1990), in which particles moved
away from the wall in both types of shear flow. The transition from tumbling to pole-
vaulting for particles occurred gradually as the separation distance decreased. The degree
of displacement depends on the minimum hydrodynamic separation distance used in the
proposed method.

In both shear flows, the weakly sedimenting particles exhibited an orientational
behaviour similar to that of the neutrally buoyant particles. In the C-flow, the sedimenting
particles eventually align with the flow direction. This behaviour was repeated for dilute
suspensions. Conversely, in the P-flow, the spiralling trajectories of a single particle in the
flow–gradient plane suggest that the sediment particles swing and drift in an orientation
perpendicular to the flow. This behaviour is similar to observations in inclined film flow
experiments (Carlsson et al. 2007; Holm & Söderberg 2007; Carlsson 2009), but with a
broader distribution owing to interparticle interactions.

Overall, our results demonstrate that wall effects significantly modify the Jeffery orbits
of rod-like particles in shear flow. We observed differences in these orbits depending on
the type of shear flow through a planar channel. These findings go beyond theoretical
predictions that do not account for hydrodynamic interactions with the wall, and are
qualitatively consistent with previous experimental results.

Our findings strongly suggest that the type of shear flow significantly impacts the
orientational dynamics of rod-like particles near boundaries. While modelling individual
particles is feasible at low concentrations, higher concentrations necessitate a continuum
approach based on particle number density in many cases. For spherical particles, a
simple zero-flux boundary condition is sufficient. However, rod-like particles require
additional considerations to account for restricted orientational configurations near the
wall. A common approach involves imposing geometrical constraints on particle rotation,
as demonstrated in the Schiek–Shaqfeh model (Schiek & Shaqfeh 1995; Krochak et al.
2010). Our results, however, propose a simpler alternative: in C-flow, a boundary condition
addressing orientation parallel to the flow direction could be applied, while in P-flow,
a boundary condition normal to the flow direction, combined with rotational diffusion
arising from interparticle interactions, may be more suitable.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.225.
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Appendix A. Orbits of a rod-like particle far from a wall
The rotational motions from our LB models were compared with those predicted by the
Jeffery solutions for three representative CJ values, far from the wall (figure 11). For
the verification study, a cubic periodic box of size 23d (or equivalently, H/L = 3.8 for
a particle with A = 6.1) was used, as shown in figures 11(a)–11(c). The particles were
placed at the centre of the channel. A uniform shear with a shear rate γ̇ is generated for
the C-flow. The agreement between the simulations and predictions was excellent for all
CJ values.
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Figure 11. Time evolution of a rod-like particle’s orientation in a simple shear flow far from a wall. A rod-
like particle with A = 6.1 is analysed for three representative values, CJ = 10, 1 and 0.1, with TJ = 2π(Ae +
A−1

e )/γ̇ and Ae/A = 0.95 in (a)–(c). The solid lines represent the theoretical values from the Jeffery solution,
whereas the simulation results are shown as symbols. (a) Orientational trajectory on a unit sphere. (b) Polar
angle θ as a function of time over a single period. (c) Polar angle φ as a function of time over a single period.
Notably, the trajectory of the polar angle φ is independent of the orbit constant. (d) Comparison of the orbit
periods as a function of the aspect ratio.

To investigate the effect of aspect ratio on the rotation period, we performed additional
simulations with various particle aspect ratios. To ensure that the particles remained
sufficiently far away from the walls, we employed a cubic periodic box of variable sizes. In
all cases, the H/L ratio remained above 2.7. The particles were placed at the centre of the
channel in each simulation. As shown in figure 11(d), the simulated periods increased with
the aspect ratio, which is qualitatively similar to Jeffery’s predictions. Symbols represent
the average value obtained for the three CJ values (10, 1 and 0.1), with error bars indicating
the standard deviation due to variations in the initial particle orientations. The error bars
are small enough to be less than the size of the symbols. The observed quantitative
discrepancies between Jeffery’s predictions and the simulated periods can be attributed
to the fundamental difference in particle shape. Jeffery’s solution assumes ellipsoids for
the calculations, whereas our chain-of-spheres model diverges from this assumption. An
illustrative example of this shape difference is the deviation of the experimental rotational
periods for cylinders from Jeffery’s model predictions (Anczurowski & Mason 1968; Cox
1971; Stover & Cohen 1990). Non-ellipsoidal particles can be addressed by introducing
an effective value Ae instead of A. In our chain-of-spheres model, this ratio has values
Ae/A = 0.95 and 1.0 for A = 6.1 and 4.1, respectively.

Appendix B. Effects of K R/K B on angular motions
To determine an appropriate value for K R , we analyse the particle’s rotational behaviour
as the K R/K B ratio varies, while keeping K B fixed at K B = πEd3/64 with E = 100.
Figure 12 shows an example of the time evolution of the rotation angles for CJ = 1. In this
study, a uniform shear flow was generated by employing a cubic periodic box with size
17d (equivalent to H/L = 2.7 for a particle with A = 6.1). The particle exhibits rotation,
and preferentially spends more time aligned with the flow–vorticity plane (i.e. φ = π/2 or
3π/2) in the case without rotational constraints (K R/K B = 0) compared to the Jeffery so-
lution (figure 12b). As the K R value increases, the period of the angular motion gradually
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Figure 12. Angular motions for a particle with A = 6.1 at CJ = 1 in the variation of K R/K B with a fixed value
of K B . The modulus ratio (K R/K B ) varies as 0, 2 × 10−6, 4 × 10−6, 1 × 10−4. Here, the theoretical value
of TJ is calculated using 2π(Ae + A−1

e )/Γ with Ae/A = 0.95.

decreases, converging to the Jeffery solution when K R/K B reaches 10−4. While graphs
were not drawn for values greater than K R/K B = 10−4, the period is understood to remain
constant beyond this point. For simplicity, we used K R/K B = 1 throughout this study.

Appendix C. Influence of minimum hydrodynamic separation distance on pole-
vaulting motion
In LB simulations, lubrication forces derived from theoretical models have been
successfully incorporated to account for the unresolved hydrodynamic interactions at small
separation distances (Nguyen & Ladd 2002). These forces can involve setting a lower
limit (hmin) for the surface distance, which determines the maximum lubrication force
at contact. This limit can represent the inherent roughness of the physical surface (Davis
et al. 2003; Felsted et al. 2023) or be used to avoid excessively large lubrication forces
for numerical stability (Bartuschat & Rüde 2015; Rettinger & Rüde 2018). By applying
this lower limit h = max(h, hmin), the model allows for mechanical contact between the
particle and wall, moving beyond purely hydrodynamic interactions.

The effect of hmin on the normal lubrication force is illustrated in figure 13(a). The
figure depicts a spherical particle with radius a approaching a planar wall at speed U . The
solid line represents the theoretical values from the literature (Cichocki & Jones 1998),
and is given by

Flub,N

6πηaU
= a

h
+ 1

5
ln

(
1 + a

h

)
+ 0.97127 + 1

21
h

a
ln

(
1 + a

h

)
. (C1)

The case with hmin = 0 perfectly matches the singular theoretical solution. Setting
non-zero values of hmin , such as 10−6δ, 10−4δ, 10−2δ, effectively determines the
corresponding maximum lubrication force value.

Figure 13(b) illustrates the transition from tumbling motion to pole-vaulting motion
for a rod-like particle with A = 6.1 as hmin varies. The particles were initially aligned
parallel to the wall (set S0) with centre position y0

c /d = 1.1. The figure shows the time
evolution of the particle’s centre position relative to the wall owing to interactions during
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Figure 13. (a) Normal force Flub,N acting on a spherical particle with radius a as it approaches a planar surface
at speed U . The drag force obtained from LB simulations is plotted, normalized by the drag force on an isolated
sphere, F0 = 6πηaU . The solid line represents the theoretical prediction from lubrication theory (Cichocki &
Jones 1998), as detailed in (C1). A lower limit on the surface distance for lubrication correction, hmin , is
introduced as h = max(h, hmin). (b) Time evolution of the separation distance of a rod-like particle (A = 6.1)
initially placed at y0

c /d = 1.1 in orientation set S0 under C-flow with uniform shear rate γ̇ . (c,d) Schematic
figures depicting the orientation of a particle near the wall at specific times during the first half period, for (c)
hmin = 10−2δ and (d) hmin = 0. Supplementary movie 7 provides a visualization of the particle’s movement
and changes in orientation over time.

its tumbling motion. The particle rebound behaviour exhibited an increasing placement
of the centre position after the elastic collision as hmin increases, in contrast to the
case of purely hydrodynamic interactions with hmin = 0. Comparing the visualized data
for hmin = 10−2δ and hmin = 0 demonstrates the contrasting effects of the inclusion
of irreversible mechanical collisions (figure 13c) versus the reversible hydrodynamic
interactions (figure 13d). It is noteworthy that pole-vaulting was reproduced without
resorting to any special treatment, simply by setting a limit on the hydrodynamic
separation distance. Throughout this paper, we employed hmin = 10−2δ to capture the
non-hydrodynamic interactions during tumbling, as observed in the experiments (Stover
& Cohen 1990).

Appendix D. Orbit drift under small inertia
A commonly observed effect of finite inertia, both theoretically (Subramanian & Koch
2005) and experimentally (Di Giusto et al. 2024), is orbit drift. In the Jeffery solution,
valid at zero Reynolds number, the orbit trajectories of particles form stationary closed
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Figure 14. Time evolution of orbits for a particle with A = 6.1 for sets S0, S1, S2 and S4 at two different
confinement ratios, (a) H/L = 3 and (b) H/L = 1.5, under C-flow conditions for 0 � t/TJ � 12. To ensure
minimal wall effects, particles were positioned far from the walls (y0

c /d > 4). Specifically, the particle centre
was placed at the midplane of each channel (y0

c /d = 18.3 and 9.2, respectively). Jeffery orbits (reference) are
plotted as dots on the 3-D plots. Arrows indicate the direction of time evolution for trajectories spiralling
outwards from these reference orbits towards the shear plane (px py plane). (c) The orbit drift over time is
shown by the increase in θ , evaluated at φ = 0 for each period.

loops that are determined by the particle’s initial orientation. However, under finite inertia,
the orbits of rod-like particles gradually shift towards the shear plane over time, leading
to an increase in both the orbit constant and the angle θ relative to the original trajectory.
This observable orbit drift due to inertia generally occurs in flows with sufficiently high
Re. As demonstrated in the experimental results of Di Giusto et al. (2024), no notable
changes were observed for Re< 0.1 across various initial configurations, with significant
inertial effects becoming evident only at Re>O(1).

Following the established research on orbit drift, we investigated the inertia-induced
orbit drift of particles with A = 6.1 in C-flow at Re = 0.02. The particles were initially
placed at the midplane in two different channels: H/L = 3 (figure 14a) and H/L = 1.5
(figure 14b). Figures 14(a) and 14(b) demonstrate that channel width has a negligible effect
on orbit drift. The band-like trajectories observed in sets S1 and S2, as marked by the black
arrows, indicate the progression of orbit drift. However, further analysis of the drift rate,
reflected by the gradual increase in θ over time shown in figure 14(c), suggests that orbit
drift is negligible within the time frame considered in this study.
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