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Abstract

This paper deals with ergodic theorems for particular time-inhomogeneous
Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a
Lyapunov/minorization condition, it is shown that, for any measurable bounded func-
tion f, the time average % fol f(X5)ds converges in L2 towards a limiting distribution,
starting from any initial distribution for the process (X;);>0. This convergence can be
improved to an almost sure convergence under an additional assumption on the initial
measure. This result is then applied to show the existence of a quasi-ergodic distribu-
tion for processes absorbed by an asymptotically periodic moving boundary, satistying
a conditional Doeblin condition.
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1. Notation
Throughout, we shall use the following notation:
e N={1,2,...,}and Zy = {0} UN.
e M (E) denotes the space of the probability measures whose support is included in E.
e [B(E) denotes the set of the measurable bounded functions defined on E.
e B1(E) denotes the set of the measurable functions f defined on E such that ||f]lsc < 1.

e Forall u € M (E)and p € N, L”(1) denotes the set of the measurable functions f : E +—
R such that (5. [f(x)|P u(dx) < +o00.

e Forany ;€ M{(E) and f € L!(1), we define
u(f) = /f(X)M(dX)-
E
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e For any positive function ¥,

M) = {u e M(E): u(y) < +o0}.

e Id denotes the identity operator.

2. Introduction

In general, an ergodic theorem for a Markov process (X;);>o0 and probability measure
refers to the almost sure convergence

t
} / fXds —> w(f), ¥f eL!(x). (1
0 — 00

In the time-homogeneous setting, such an ergodic theorem holds for positive Harris-recurrent
Markov processes with the limiting distribution 7 corresponding to an invariant measure for
the underlying Markov process. For time-inhomogeneous Markov processes, such a result does
not hold in general (in particular the notion of invariant measure is in general not well-defined),
except for specific types of time-inhomogeneity such as periodic time-inhomogeneous Markov
processes, defined as time-inhomogeneous Markov processes for which there exists y > 0 such
that, for any s <t, k€ Z, and x,

PlX; € | X;=x]= IP)[Xt+ky € '|Xs+ky =x]. ()

In other words, a time-inhomogeneous Markov process is periodic when the transition law
between any times s and ¢ remains unchanged when the time interval [s, f] is shifted by a
multiple of the period y. In particular, this implies that, for any s € [0, y), the Markov chain
(Xs+ny Inez, 1s time-homogeneous. This fact allowed Hopfner ef al. (in [20, 21, 22]) to show
that, if the skeleton Markov chain (X )nez, is Harris-recurrent, then the chains (X; ) )nez, »
for all s € [0, y), are also Harris-recurrent and

1 (! 1 [Y
- / fX5)ds — — / 7s(f)ds, almost surely, from any initial measure,
t 0 t—>00 Y Jo

where 7, is the invariant measure for (Xs1ny )nez, -

This paper aims to prove a similar result for time-inhomogeneous Markov processes said
to be asymptotically periodic. Roughly speaking (a precise definition will be explicitly given
later), an asymptotically periodic Markov process is such that, given a time interval T > 0,
its transition law on the interval [s, s 4+ 7] is asymptotically ‘close to’ the transition law,
on the same interval, of a periodic time-inhomogeneous Markov process called an auxiliary
Markov process, when s — oo. This definition is very similar to the notion of asymptotic
homogenization, defined as follows in [1, Subsection 3.3]. A time-inhomogeneous Markov
process (X;);>0 is said to be asymptotically homogeneous if there exists a time-homogeneous
Markovian semigroup (Q;)s>0 such that, for all s > 0,

lim sup |P[X;4s € -|X; = x] — 8:Qsll7y =0, 3
=00

where, for two positive measures with finite mass w1 and po, |1 — p2ll7v is the fotal
variation distance between w1 and p;:

et — pallzv :i= sup  [p1(f) — m2(f)l. 4)
feBi(E)
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In particular, it is well known (see [1, Theorem 3.11]) that, under this and suitable additional
conditions, an asymptotically homogeneous Markov process converges towards a probability
measure which is invariant for (Q;);>0. It is similarly expected that an asymptotically periodic
process has the same asymptotic properties as a periodic Markov process; in particular an
ergodic theorem holds for the asymptotically periodic process.

The main result of this paper provides for an asymptotically periodic Markov process to
satisfy

t L2(Po,.) 1 rv
A S(X5)ds = 7 I Bs(f)ds, Vf € B(E), Vi € Mi(E), &)

where Py, is a probability measure under which Xy ~ 1, and where g, is the limiting distri-
bution of the skeleton Markov chain (Xy,y )nez, » if it satisfies a Lyapunov-type condition and
a local Doeblin condition (defined further in Section 3), and is such that its auxiliary process
satisfies a Lyapunov/minorization condition.

Furthermore, this convergence result holds almost surely if a Lyapunov function of the
process (X;):>0, denoted by ¥, is integrable with respect to the initial measure:

Py, ;. -almost surely 1

f(X s —————— | " BuPds, Ve MiG)

This will be more premsely stated and proved in Section 3.

The main motivation of this paper is then to deal with quasi-stationarity with moving bound-
aries, that is, the study of asymptotic properties for the process X, conditioned not to reach
some moving subset of the state space. In particular, such a study is motivated by models such
as those presented in [3], which studies Brownian particles absorbed by cells whose volume
may vary over time.

Quasi-stationarity with moving boundaries has been studied in particular in [24, 25], where
a ‘conditional ergodic theorem’ (see further the definition of a quasi-ergodic distribution) has
been shown when the absorbing boundaries move periodically. In this paper, we show that a
similar result holds when the boundary is asymptotically periodic, assuming that the process
satisfies a conditional Doeblin condition (see Assumption (A")). This will be dealt with in
Section 4.

The paper will be concluded by using these results in two examples: an ergodic theorem for
an asymptotically periodic Ornstein—Uhlenbeck process, and the existence of a unique quasi-
ergodic distribution for a Brownian motion confined between two symmetric asymptotically
periodic functions.

3. Ergodic theorem for asymptotically periodic time-inhomogeneous semigroup.

Asymptotic periodicity: the definition. Let (E,£) be a measurable space. Consider
{(Er, £)i=0, (Ps.r)s<¢} a Markovian time-inhomogeneous semigroup, giving a family of mea-
surable subspaces of (E, £), denoted by (E;, £)r>0, and a family of linear operator (P ;)s</,
with Py, : B(E;) — B(E;), satisfying for any r < s <t,

P_&‘,s :Id, PS,l]lE, = ]lEs’ Pr,sPs,t :Pr,t~

In particular, associated to {(E;, &)r>0, (Ps.r)s<:} is @ Markov process (X;);>0 and a family of
probability measures (Ps y)s>0,xcE, such that, for any s <t,x € E5,and A € &,

Ps,x[Xt cA]l= Ps,t]lA(x)~
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We denote by Py, 1= f E, P, x(dx) any probability measure p supported on Es. We also
denote by E, ; and E; , the expectations associated to Py , and PP, respectively. Finally, the
following notation will be used for u € M (Ey), s <t, and f € B(E;):

MPS,Lf = ES,M[f(XI)]v UPs ;= Ps,u[Xz €l

The periodicity of a time-inhomogeneous semigroup is defined as follows. We say a semigroup
{(Fr, F)i=0, (Os,1)s<t} 1s y -periodic (for y > 0) if, for any s <1,

(Fy, Fr) = (Ft+ky, -E+ky)a Qs,t = Qs+ky,t+ky’ Vk e Z+'
It is now possible to define an asymptotically periodic semigroup.

Definition 1. (Asymptotically periodic semigroups.) A time-inhomogeneous semigroup
{(Er, £)i=0, (Ps.r)s<} 1s said to be asymptotically periodic if (for some y > 0) there exist a -
periodic semigroup {(Fs, F1)r=0, (Os,1)s<:} and two families of functions (¥)s>0 and (IZS)SZ()
such that I}S_H, = &S for all s > 0, and for any s € [0, y), the following hold:

L UiZo Nisk Es+iy NFs # 0.

2. There exists x5 € g N 1>k Es+iy N Fs such that, for any n € Z,
||8sts+ky,s+(k+n)y [Ilfs—i-(k—ﬁ—n)y x -] = 8}(: Qs,s—&—ny [‘(Zli‘ x -ll7v kjo)o 0. (6)

The semigroup {(F;, F1)i>0, (Os.1)s<:} s then called the auxiliary semigroup of (Ps.)s<i-

When v, = ¥, = 1 for all s > 0, we say that the semigroup (Ps,1)s<t 18 asymptotically peri-
odic in total variation. By extension, we will say that the process (X;);>¢ is asymptotically
periodic (in total variation) if the associated semigroup {(E;, &)>0, (Ps.1)s<¢} is asymptotically
periodic (in total variation).

In what follows, the functions (¥)s>0 and (’,Ds)se[o,y) will play the role of Lyapunov
functions (that is to say, satisfying Assumption 1(ii) below) for the semigroups (Ps,;)s<; and
(Os,1)s<t, respectively. The introduction of these functions in the definition of asymptotically
periodic semigroups will allow us to establish an ergodic theorem for processes satisfying the
Lyapunov/minorization conditions stated below.

Lyapunov/minorization conditions. The main assumption of Theorem 1, which will be pro-
vided later, will be that the asymptotically periodic Markov process satisfies the following
assumption.

Assumption 1. There existt1 > 0,n9 € N, ¢ > 0, 6 € (0, 1), a family of measurable sets (K;)>0
such that K; C E, for all t > 0, a family of probability measures (vs) > on (Ky)s=0, and a family
of functions (\g)s>0, all lower-bounded by 1, such that the following hold:

(i) Forany s> 0, x € Ky, and n > ny,

8xPs,s+nt] = CVsint -

(ii) For any s >0,
Ps,s-i—t| ws—s—tl =< 9'¢Is + C]]-KX-

(iii) Forany s> 0andt €0, ty),
Ps,s—&-ld’s—i—t = Cl/fs-
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When a semigroup (Ps;)s<; satisfies Assumption 1 as stated above, we will say that the
functions (s)s>0 are Lyapunov functions for the semigroup (Ps ;)s<;. In particular, under (ii)
and (iii), it is easy to prove that for any s <t,

Pyt < c<1 + %)w ™

We remark in particular that Assumption 1 implies an exponential weak ergodicity in -
distance; that is, we have the existence of two constants C' > 0 and « > 0 such that, for all
s <t and for all probability measures w1, uo € M(Ey),

i1 Ps.c — 12Ps tlly, < C' T (W) + pa(ir)le <0, (8)

where, for a given function ¥, ||u — v||y is the ¥-distance, defined to be

Il =vlly = ;\ugp () —v(Hl, Yu,veMi@).

In particular, when ¢ = 1 for all # > 0, the ¥ -distance is the total variation distance. If we have
weak ergodicity (8) in the time-homogeneous setting (see in particular [15]), the proof of [15,
Theorem 1.3] can be adapted to a general time-inhomogeneous framework (see for example
[6, Subsection 9.5]).

The main theorem and proof. The main result of this paper is the following.

Theorem 1. Let {(E;, £)i=0, (Ps,0)s<t» Xi)i=0, (Ps.x)s=0.xcE,} be an asymptotically y-periodic
time-inhomogeneous Markov process, with y >0, and denote by {(F¢, F1)>0, (Qs.t)s<t} its
periodic auxiliary semigroup. Also, denote by (5)s>0 and (V) s>0 the two families of functions
as defined in Definition 1. Assume moreover the following:

1. The semigroups (Ps1)s<: and (Qs.1)s<; satisfy Assumption 1, with (Yg)s>0 and (1;5)520
respectively as Lyapunov functions.

2. Forany s €0, y), (Ysinynez, converges pointwise to Iﬂs.

Then, for any u € M1(Eq) such that u(y¥g) < 400,

—0, ©)]

—>00

1 [t 1 14 ~
‘_ / MPO,S[WS X -]ds — — / ﬁyQO,S[wS X ]dS
tJo v Jo

where B, € M (Fy) is the unique invariant probability measure of the skeleton semigroup
(Q0,ny Inez., satisfying B, (1}0) < 4-00. Moreover, for any f € B(E) we have the following:

1. Forany u € M(Ep),

2
1 [t 1 [Y
Eo, . ‘—/f(Xs)ds——/ By Qo,sfds — 0. (10)
t 0 Y Jo —00
2. If moreover u(yro) < +oo, then

1 /! 1 [v

—/f(XS)ds—> —/ By Qo.sfds, o ,-almost surely. (11)

t 0 t—>ooy 0
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Remark 1. When Assumption 1 holds for K; = E; for any s, the condition (i) in Assumption 1
implies the Doeblin condition.

Doeblin condition. There exist #p > 0, ¢ > 0, and a family of probability measures (v;);>0 on
(Er)s>0 such that, for any s > 0 and x € Ej,

8xPs,s+t0 2 CVsyyy- (12)

In fact, if we assume that Assumption 1(i) holds for K = Ey, the Doeblin condition holds
if we set 7o := npt;. Conversely, the Doeblin condition implies the conditions (i), (ii), and
(iii) with Ky = E; and ¢y = 1g, for all s > 0, so that these conditions are equivalent. In fact,
(ii) and (iii) straightforwardly hold true for (K)s>0 = (Es)s=0, (¥s)s=0 = (1£,)s=0, C =1, any
0 € (0, 1), and any #; > 0. If we set #; = fg and ng = 1, the Doeblin condition implies that, for
any s € [0, 1),

‘SxPx,s+ll = CVs+11 5 Vxe ES'
Integrating this inequality over 1 € M (E;), one obtains
WP sy > CVsryy, Vs€[0,17), Y€ M (Ey).
Then, by the Markov property, for all s € [0, t1), x € E;, and n € N, we have

8xps,s+ntl = (SxPs,s—l-(n—l)tl )Ps+(n—1)11,s+nt1 > CVs4nty »

which is (i).
Theorem 1 then implies the following corollary.

Corollary 1. Let (X;);>0 be asymptotically y-periodic in total variation distance. If (X;)i>0
and its auxiliary semigroup satisfy a Doeblin condition, then the convergence (10) is
improved to

— 0.
neM(Ep) feBi(E) t—00

2
1 [t 1 [
sup sup EO,M ‘;/(;f(xs)ds_;/o IBVQO,deS

Moreover, the almost sure convergence (11) holds for any initial measure (1.

Remark 2. We also note that, if the convergence (6) holds for all

00
xGUﬂEs+1y NFs,

k=0 I>k

then this implies (6) and therefore the pointwise convergence of (Vyyny Jnez, to 1/~/s (by taking
n=0in (6)).

Proof of Theorem 1. The proof is divided into five steps.

First step. Since the auxiliary semigroup ((Qs,;)s<; satisfies Assumption 1 with (1/75)320 as

Lyapunov functions, the time-homogeneous semigroup (Qo,ny Jnez, satisfies Assumptions 1
and 2 of [15], which we now recall (using our notation).

Assumption 2. ([15, Assumption 1].) There exist V : Fy — [0, +00), n1 € N, and constants
K >0and k € (0, 1) such that
QonyV <KV +K.
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Assumption 3. ([15, Assumption 2].) There exist a constant o« € (0, 1) and a probability
measure v such that

inf (SxQO,nly > av(),
XECR

with Cg .= {x € Fo : V(x) < R} for some R > 2K /(1 — k), where ny, K, and k are the constants
from Assumption 2.

In fact, since (Qy,;)s<; satisfies (ii) and (iii) of Assumption 1, there exist C > 0, 6 € (0, 1),
t1 >0, and (K)o such that

Qs,s+11 &s—i—tl =< 9&5 + CI]-K“ Vs >0, (13)

and 3 3
Qs,s+t¢s+t <Cy¥g, Vs>0,Vrel0,1)).

We let n; € N be such that 6"2C(1+ 1S5) < 1. By (13) and recalling that v/, = ¥, for all
t >0, one has forany s>0andn e N,

. ~ C
Qs,s+nt1 I/fs+ntl = in/fs + m (]4)

Thus, for all n; > (”;41,
QO,nly I,ZfO = QO,nlyfnztl inyfnzthmyl//"ly

< 0" QO,n| y—nat wnl y—naty + m

<p"C H_L 1}+L
= 1-0)"" T 10

where we successively used the semigroup property of (Qs ;)s<s, (14), and (7) applied to
(Os.1)s<:- Hence one has Assumption 2 by setting V = 1}0, K= 9"2C(1 + %) and K := &.

We now prove Assumption 3. To this end, we introduce a Markov process (¥;)>0 and a
family of probability measures (I@’S’ ¥)s>0,xeF, such that

Py (Y €A) = Qs,1a(x), Vs<t, xeFs, A€ Fy.

In what follows, for all s >0 and x € F, we will use the notation IAES,X for the expectation
associated to P . Moreover, we define

T = mf{n € Z+ : Ynll € Kml }

Then, using (13) recursively, for all k € N, R > 0, and x € Cg (recalling that Cg is defined in the
statement of Assumption 3), we have

H::O,x[l/;ktl Yee) drg=k] = Eo,x[]lTpk—l]E(k—l)zl,Y(H),l (Y, Vi) L1k) |
< GEO,x[TZ(k—l)t. Y=ty L1 =k—1] < 0590 (x) < ROF.
Since ‘}kn > 1 for all k € Z, we have that for all x € Cg, for all k € Z,

Po «(Tx > k) < R6*.
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In particular, there exists ko > ng such that, for all k > kg — no,
A 1
Pox(Tkx > k) < >

Hence, for all x € Cpg,

ko—no
8xQ0,kot, = Pox(Yior, € ) = Z EO,x(]lTK:iPitl,Y,-,l (Yo €7))
i=0
ko—ng
zc Z Eo (HTK=i) X Vkony

i=0
= cPox(Tx < ko — no) vy,

>C
Z = Vkot; -
2 0l1

Hence, for all ny > |'k°7’1-|, for all x € Cg,

C
8XQ0,k()l| Qk()l‘] nry Z Evkon Qk()t| 1y

Thus, Assumption 3 is satisfied if we take nj:= f%}v[ko?”} o= % and v(.):=
Vot Qkoll MY

Then, by [15, Theorem 1.2], Assumptions 2 and 3 imply that Qg ,,,,, admits a unique invari-
ant probability measure 8, . Furthermore, there exist constants C > 0 and 6 € (0, 1) such that,
for all u € Mi(Fp), y

IQo.nny — By ll g, < Cre(Po)d™. 15)

Since B, is the unique invariant probability measure of Qg ;. and noting that 8, Qo , is
invariant for Qg ,,,, we deduce that 8, is the unique invariant probability measure for Qp,,,
and by (15), for all u such that u(l/}o) < 400,

||MQO,ny ﬂy”% —> 0.

Now, for any s> 0, note that Ssz,(§1ylﬁ0 < +o0 for all x € Fy (this is a consequence of

(7) applied to the semigroup (Qs()s<s), and therefore, taking u =8,Q; s1, in the above
convergence, !

||5sz,ny - ,3}/ ||1/”,0 njgo 0

for all x € F. Hence, since Qn},,n},ﬂl/?s < C(l + &)&ny by (7), we conclude from the above
convergence that

C
18¢Qs.cny — By Qo.sll, <c(1 + l—)naxg w =Byl = 0. (16)

Moreover, ﬂy(&o) < 400.

Second step. The first part of this step (up to the equality (20)) is inspired by the proof of
[1, Theorem 3.11].
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We fix s € [0, y]. Without loss of generality, we assume that mlzo Egyp NFs #. Then,
by Definition 1, there exists x; € ﬂlzo Egy1, N Fg such that for any n > 0,

H(sxsszrky,er(qun)y [1//x+(k+n)y x ] — (Sx.Y Qs,s+ny [JIA X ] ”TV kjo)o 0,
which implies by (16) that

lim lim ”Sx.yps+ky,s+(k+n)y[I/fs+(k+n)y X ] = ﬂyQO,s[l/}s X ] ”TV =0. (17)

n—00 k— 00
Then, by the Markov property, (8), and (7), one obtains that, for any k,n €N and x €
ﬂle Es+ly,

16xPs s+k+nyy — OxPstky,s+k+nyy ey iny
= || (8xPs.s1ky) Pstky.sttny — SxPsiky.stttnyy |Wyseomy
< C'[Ps,stky Usthy (X) + Ysky (x)]e™ 7"
< C"[Ys(X) + Yy (0], (18)

where C" := C/(C(l + &)\/1). Then, for any k, n € N,
182, P4 ktmyy W krmy X 1= By Qos[¥rs x v (19)

< C"[Ys(0) + sty (0]e™ " + ||8xA-Ps+ky,s+(k+n)y [(Ys+tny X 1— By QO,S[&S X ] HTV’

which by (17) and the pointwise convergence of (Vs Jkez, implies that
nl_i)rgonaxsps,ﬁny (Vstny X 1= By QO,s[Ips X ] ”TV

= lim limsup ||5xXPs,s+(k+n)y [ws+(k+n)y X -] = .3)/ QO,S[IZS X ] “TV

n—oQ k—> 00
=0. (20)

The weak ergodicity (8) implies therefore that the previous convergence actually holds for any
initial distribution u € M (Ep) satisfying u(yg) < +00, so that

||//LP0,s+ny [ws—&-ny x ] — ﬂyQO,s[&s X ] ”TV njgo 0. (21)
Since 5
||PLP0,s+ny [‘[fs—&-ny X ]= .By QO,S[W& X ] HTV <2
for all u € M1(Ep), s>0,and n € Z,, (21) and Lebesgue’s dominated convergence theorem
imply that

1 (Y .
- /() ||MPO,s+n;/ [(Ystny X -1— ,ByQO,x[l//s X ]”TVdS — 0,

)/ n— oo

which implies that

— 0.
TV n—oo

1 [” 1 (Y -
H - / WUPO,stny [Ysiny X -1ds — — / ﬂyQO,s[l//s X ']ds
v Jo v Jo
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By Cesaro’s lemma, this allows us to conclude that, for any u € M1(Ep) such that u(g) <
+00,

I 1 [” N
_/ H«Po,x[% X -]ds — — / ﬂyQO,y[K//s X ]ds
tJo v Jo

A%

1 (7 1 7 N
- / PLPO,S+ky [¢5+ky X -]ds — — / ﬁyQO,S[wS X ]dS
Y Jo v Jo

v

1 t
+ |- / :uP(),s[I//x x -]ds

LIy

— 0,
t— 00

which concludes the proof of (9) .

Third step. In the same manner, we now prove that, for any u € M (Ep) such that (o) <
+00,

1 (7 1 [
— / uPo sds — — f By Qo,sds — 0. 22)
t 0 Y Jo Vv — 00

In fact, for any function f bounded by 1 and © € M (Ep) such that (o) < +o0,

'/’LPO’H‘"V |:ws+ny X Li| _ﬁVQO,SI:&s X %:H

1/fx+ny

=< |Po,s+ny |:1/fs+ny X ﬁ] - ,ByQO,s |:szs X wi i| + ﬁyQO,s[&s X wi i|
s+ny s+ny sTny
- ﬂyQO,s[&s X %}
=< MPO,s+ny [ws—t-ny X -] = ﬂyQO,s[&s X ]” + .BVQO,S I:&s X f j|

A% I//s+ny

- ﬁyQO,S[&S X %:| .

We now remark that, since ¥ ,, > 1 for any s and n € Z,, one has that
Vs

WS—HW

— 1| <1+,

Since (Ystny Jnez, converges pointwise towards IZIS and B, Qo, SIZS < 400, Lebesgue’s domi-
nated convergence theorem implies

— 0.
n—0o0

sup
feBi(E)

ﬁVQO,S[lsz X f :| - ﬁyQO,s[&s X 5_]

ws+ny

Then, using (21), one has
” WPO s4ny — ,By Qo, s ” TV njo)o 0,

which allows us to conclude (22), using the same argument as in the first step.
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Fourth step. In order to show the ]Lz-ergodic theorem, we let f € B(E). For any x € Ey and

t>0,
|: 1 t 1 t 2
EO,x _/f(Xs)dS_EO,x[_/f(Xs)ds} :|
t Jo t Jo

2 t t
=3 /0 / Eo < [f Xo)f (Xi)] — Eo,[f (X)) Eo x[f (Xi)du ds

2 t t
=3 /0 / Eox[f(X,)(f(Xa) — Eox[f (X)) ]du dis

2 t t
-z /0 / Eox [ X ) Es x, [F(X)] — Es 5.0 . [F X)) it s,

where the Markov property was used in the last line. By (8) (weak ergodicity) and (7), one
obtains for any s <t

|Es x, [ (X1 = By .2 JF D] < CI1f oo [rs(Xs) + Yo (0)]e ™=, Py y-almost surely,
(23)
where C’ was defined in the first part. As a result, for any x € Ey and ¢ > 0,

|: 1 t 1 t 2
]EO,X _/f(XS)dS_EO,x[_/f(Xs)dsi| :|
t Jo tJo
—Ks —Kt

2¢ ”f”“"’ / / Eo o1/ (X, (¥ () + o) ]e = ds
zzc”ufuoo e

t —
2 /O Eo x[[F (Xl (¥s(Xs) + Iﬁo(x))]e”%ds

2C" || lloo
= —X

Kt

1 t
EO,x[? fo lf(Xs)I(llfs(Xs)JrI/fo(X))dS]

2C" || oo™
Kt?

t
/o € Eo <[ (X (s (Xs) + Yo(x)]ds.

Then, by (9), there exists a constant C > 0 such that, for any x € Ey, when t — oo,

t t 2 ~
Eo,x[ + f(Xs)dS—Eo,x[% | f(Xs)ds] ]SM
0 0

t
1 [v . 1
X—/ ﬂyQo,s[lflws]derO(—)- (24)
Y Jo t

Since f € B(E) and by definition of the total variation distance, (22) implies that, for all x € Ej,

— 0.
— 00

1 ¢ 1 4
sufuoo”— / 8. Po,sds — f B, 00.5ds
t Jo v Jo Tv'!

1 ¢ 1 v
! / Po.f() — — / B, 0o ofds
tJo Y Jo

https://doi.org/10.1017/apr.2022.41 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2022.41

Ergodicity of time-inhomogeneous processes and quasi-stationarity with moving boundaries 683

Then, using (22), one deduces that for any x € Ey and bounded function f,

2
Eo’x[ }
1 1 o 1 (7 ?
52<Eo,x[<— / FXo)ds — © f Po,sf(x)) }+‘— / Po.fe) — — / B, Oo.fds >—>0.
t Jo t Jo t Jo v Jo f—oa

The convergence for any probability measure u € M (Ep) comes from Lebesgue’s dominated
convergence theorem.

1 /! 1 4
! f FXy)ds — f B, 0o ofds
t Jo Y Jo

Fifth step. We now fix nonnegative /' € B(E), and u € M (Ep) satisfying () < 4o00. The
following proof is inspired by the proof of [26, Theorem 12].

Since u(¥o) < +o0, the inequality (24) implies that there exists a finite constant Cr , €
(0, co) such that, for ¢ large enough,

1 [ 1 (!
]EO,M. ‘_ / SXs)ds — EO,# - / f(Xs)dS:|
tJo Lt Jo

Then, for n large enough,

2 r 2 2
1 n ‘l n C‘f’#
]Eo,u[n—z | sexods —Ea, | o [ f(Xs)ds} }57.

Then, by Chebyshev’s inequality and the Borel-Cantelli lemma, this last inequality implies

that
1 ’12 1 n2
) f f(Xs)dS - ]EO,[L |:_2 / f(Xs)de|
n 0 n 0

One thereby obtains by the convergence (22) that

2
< Cf,u_
t

—> 0, o, ,-almost surely.
n— oo

2
1 (" 1 [
) /0 f(XS)dsnjgo ; /0 By Qo,sfds, Py, ,-almost surely. 25)

Since the nonnegativity of f is assumed, this implies that for any 7 > 0 we have

(V)2 t [Vi?
/ FXy)ds < f F(Xy)ds < f FXy)ds.
0 0 0

These inequalities and (25) then give that

1! 1 [Y

- / fX5)ds — — / By Qo.sfds, Py ,-almost surely.

t 0 1—00 Y Jo

In order to conclude that the result holds for any bounded measurable function f, it is enough to
decompose f =f, —f_ with f; := f v 0 and f_ = (—f) Vv 0 and apply the above convergence
to f+ and f_. This concludes the proof of Theorem 1. (|

Proof of corollary 1. We remark as in the previous proof that, if ||f||cc <1 and ¥y =1,
an upper bound for the inequality (24) can be obtained, which does not depend on f and x.
Likewise, the convergence (21) holds uniformly in the initial measure thanks to (23). U
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Remark 3. The proof of Theorem 1, as written above, does not allow us to deal with semi-
groups satisfying a Doeblin condition with time-dependent constant c, that is, such that there
exist fo > 0 and a family of probability measure (v;);>0 on (E;);>¢ such that, for all s > 0 and
x € E;,

axPs,x+to 2 Cs+t1yVstiy-
In fact, under the condition written above, we can show (see for example the proof of the
formula (2.7) of [9, Theorem 2.1]) that, for all s <t and w1, ur € Mi(Ey),

[
1Py — aPyslley <2 T (= cimy).
k=0

Hence, by this last inequality with w1 = 8P g4y, M2 = 8y, replacing s by s+ ky and ¢ by
s+ (k + n)y, one obtains

L]
||8xPs,s+(k+n)y - 8xPs+k)/,s+(k+n)y ||TV =< 2 l_[ (1 - Cs+(k+n)y—lt0)a

=0

which replaces the inequality (18) in the proof of Theorem 1. Plugging this last inequality into
the formula (19), one obtains
%

18Py st tmy — ByQosllrv <2 [T (1 = cortermy—ing) + 18xPssiy sttmy — By Qoslrv.
=0

Hence, we see that we cannot conclude a similar result when ¢, — 0 as s — 400, since, for

n fixed,
%)

lim sup l_[ (I = Cs4(ktnyy—irg) = L.

k— 00 =0

4. Application to quasi-stationarity with moving boundaries

In this section, (X;);>0 is assumed to be a time-homogeneous Markov process. We consider
a family of measurable subsets (A;);>0 of E, and define the hitting time

T4 = inf{t >0:X; € A;}.

For all s <¢, denote by F;, the o-field generated by the family (X,)s<u<;, With F;:= Fo ;.
Assume that 74 is a stopping time with respect to the filtration (F;);>0. Assume also that for
any x &€ Ao,
Poxlta <+ooc]l=1 and Pyy[ta >1t]>0, Ve>0.

We will be interested in a notion of quasi-stationarity with moving boundaries, which studies
the asymptotic behavior of the Markov process (X;);~0 conditioned not to hit (A;);>o up to
the time . For non-moving boundaries (A; = A for any ¢ > 0), the quasi-limiting distribution
is defined as a probability measure « such that, for at least one initial measure p and for all
measurable subsets A C E,

Po,u[X: € Alta > 1] t—>—o)o a(A).
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Such a definition is equivalent (still in the non-moving framework) to the notion of quasi-
stationary distribution, defined as a probability measure « such that, for any 7 > 0,

PoulX: €-lta > tl=0. (26)

If quasi-limiting and quasi-stationary distributions are in general well-defined for time-
homogeneous Markov processes and non-moving boundaries (see [11, 23] for a general
overview of the theory of quasi-stationarity), these notions are nevertheless not well-defined
for time-inhomogeneous Markov processes or moving boundaries, for which they are no
longer equivalent. In particular, under reasonable assumptions on irreducibility, it was shown
in [24] that the notion of quasi-stationary distribution as defined by (26) is not well-defined for
time-homogeneous Markov processes absorbed by moving boundaries.

Another asymptotic notion to study is the quasi-ergodic distribution, related to a conditional
version of the ergodic theorem and usually defined as follows.

Definition 2. A probability measure B is a quasi-ergodic distribution if, for some initial
measure u € M (E \ Ap) and for any bounded continuous function f,

1 t
EO,H[;/O f(Xy)ds

In the time-homogeneous setting (in particular for non-moving boundaries), this notion has
been extensively studied (see for example [2, 8, 10, 12, 13, 1618, 24]). In the ‘moving bound-
aries” framework, the existence of quasi-ergodic distributions has been dealt with in [24] for
Markov chains on finite state spaces absorbed by periodic boundaries, and in [25] for pro-
cesses satisfying a Champagnat—Villemonais condition (see Assumption (A’) below) absorbed
by converging or periodic boundaries. In this last paper, the existence of the quasi-ergodic dis-
tribution is dealt with through the following inequality (see [25, Theorem 1]), which holds for
any initial state x, s <, and for some constants C, y > 0 independent of x, s, and :

TA > l‘i| t—>_o)o B().

IPo.+(X; € |Ta > 1) — Qox(Xs € )7y < Ce™ 77,
where the family of probability measures (Qy,1)s>0,xcE, i defined by

Qs x[T]:= lim P [T'ta>T], Vs<t, xe E\As, I' € Fs .
T—o0

Moreover, by [9, Proposition 3.1], there exists a family of positive bounded functions (1;)s>0
defined in such a way that, for all s <t and x € Ej,

Es,x(nt(Xt)]ltA >1) = N5(X).
Then we can show (this is actually shown in [9]) that

_ 1:(Xy)
Qx,x(r) — ]Ex,x (ﬂF,TA >t_7]s(x) )

and that, for all u € M(Ey),

P, (X € |Ta > 1) — Qo.pospu(Xs € 7y < Ce V™),
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where
no(x)p(dx)
1o * p(dx) := ————.
w(no)
By the triangle inequality, one has

1 ! 1 ! C
H n / Po,u[Xs € -|ta > tlds — n / Qo, yoxulXs € -1ds <—, Vt>0. 27
0 0

v Vi

In particular, the inequality (27) implies that there exists a quasi-ergodic distribution 8 for
the process (X;);>0 absorbed by (A/);>0 if and only if there exist some probability measures
uw € Mi(Ep) such that % f(; Qo,no#u[Xs € -1ds converges weakly to 8, when ¢ goes to infinity.
In other words, under Assumption (A’), the existence of a quasi-ergodic distribution for the
absorbed process is equivalent to the law of large numbers for its Q-process.

We now state Assumption (A').

Assumption 4. There exists a family of probability measures (v;)>0, defined on E \ A, for each
t, such that the following hold:

(A1) There exist to > 0 and c¢1 > 0 such that
Py x[Xgt11y € -lta > 5+ 10l = C1V5449, V5>0, VX E\A,.
(A’2) There exists ¢ > 0 such that
Ps v lta > 11> 2P c[ta > 1], Vs <t, VxeE\A;,.

In what follows, we say that the pair {(X;);>0, (A;);>0} satisfies Assumption (A’) when
the assumption holds for the Markov process (X;);>0 considered as absorbed by the moving
boundary (A;)s>0-

The condition (A’1) is a conditional version of the Doeblin condition (12), and (A’2) is
a Harnack-like inequality on the probabilities of surviving, necessary to deal with the con-
ditioning. They are equivalent to the set of conditions presented in [1, Definition 2.2], when
the non-conservative semigroup is sub-Markovian. In the time-homogeneous framework, we
obtain the Champagnat—Villemonais condition defined in [5] (see Assumption (A)), shown as
being equivalent to the exponential uniform convergence to quasi-stationarity in total variation.

In [25], the existence of a unique quasi-ergodic distribution is proved only for converging
or periodic boundaries. However, we can expect such a result on existence (and uniqueness)
for other kinds of movement for the boundary. Hence, the aim of this section is to extend the
results on the existence of quasi-ergodic distributions obtained in [25] to Markov processes
absorbed by asymptotically periodic moving boundaries.

Now let us state the following theorem.

Theorem 2. Assume that there exists a y-periodic sequence of subsets (B;)>0 such that, for
any s € [0, y),

Evi=E\ [ JAwy UBs #4,

keZy 1>k

and there exists x5 € Es such that, for any n <N,

”Ps+ky,)qr [Xs+(k+n)y e,ta>s+k+Nyl- Ps,xx [Xs+ny €., 13>s+Nylllrv kjo)o 0.
(28)
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Assume also that Assumption (A') is satisfied by the pairs {(Xi)0, (A0} and

{(Xt)tz()v (Bt)tZO}-
Then there exists a probability measure 8 € M| (E) such that

2

t
sup sup IE0,M|: % /0 f(Xo)ds — B(f)| |ta > t:| = 0. 29)

reM(E\Ag) feB(E)
Remark 4. Observe that the condition (28) implies that, for any n € Z,

]P)s—i-ky,xs [ta>s+(k+ nyl — Ps,xx [tg > s+nyl
k— 00

Under the additional condition B; C A; for all t > 0, these two conditions are equivalent, since
foralln <N,

1Pstky x [ Xstktnyy €5 Ta > 5+ (k+N)y] =Py [Xstny €, 18> 5+ Nylllrv
= [|Pstky x; [Xst+(k+m)y € > T8 <5+ (k+N)y < talllTv
<Pstiy B <5+ (k+N)y < 14]
= |Psthy x [ta > s+ (k + N)y] = Ps i [t3 > s + Nyl
where we used the periodicity of (B;);>0, writing
Py 2, [Xsiny €, 18>8+ Nyl =Pyiiy 1 [Xsrktn)y €, 18> 5+ (k+N)y]
for all k € Z. This implies the following corollary.

Corollary 2. Assume that there exists a y-periodic sequence of subsets (B);=0, with B; C A;
for all t > 0, such that, for any s € [0, y), there exists x; € Es such that, for any n < N,

Pyiky x[ta > s+ (k+n)y] — Py, [t >s+nyl.
k— 00

Assume also that Assumption (A’) is satisfied by {(X1)1>0, (A)>0} and {(X)1>0, (Br)>0}-
Then there exists B € M1 (E) such that (29) holds.

Proof of theorem 2. Since {(X;);>0, (B:);>0} satisfies Assumption (A’) and (By);>0 is a
periodic boundary, we already know by [25, Theorem 2] that, for any initial distribution pu,
t— % f(; Po,u[Xs € -t > t]ds converges weakly to a quasi-ergodic distribution f.

The main idea of this proof is to apply Corollary 1. Since {(X;);>0, (A;)=0} and
{(X)=0, (B)>0} satisfy Assumption (A’), [25, Theorem 1] implies that there exist two fam-
ilies of probability measures (Q?,x)szo,x B\, and ( ﬁx)szo,x B\B, such that, for any s <1,
xXeE\A;,ye E\B;,and I" € Fy,

Q)= Jim Py [Tty > T] and QP Ir]= Aim Py, [Tlzg > T).

In particular, the quasi-ergodic distribution § is the limit of > % fot g,u[XS € -]ds, when t
goes to infinity (see [25, Theorem 5]). Also, by [25, Theorem 1], there exist constants C > 0
and x > 0 such that, for any s <t < T, for any x € E \ Ay,

|Q (X € 1= Pys[X; € -|ta > T 1y, < Ce*T70,
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and for any x € £\ By,
Q81X € 1= PsilX; € |15 > T 1y, < Ce™* 7.
Moreover, for any s <7< T and x € Ej,

IPsx[X: € -|ta > T1 = Ps x[X; € |t > TlI1v

Ps,x[xt €, 1a>T] I[Ds,x[xt €, 3>T]
Ps,x[TA >T] IEDS,X[TB >T]

TV
IP)s,x(l’B >T) IPS,)C[XI €, 1a>T] _ IF)s,x[xt €, 3>T] H
]P)s,x(TA >T) ]Ps,x[TB >T] ]PS,X[TB >T] TV

]P)s,x(TB >T) ]P)s,x[Xt €-,14>T] _ ]Ps,x[Xt €-,ta>T] H
]P)s,x(TA >T) IP)s,)c[":B’ >T] ]P)s,x[TB >T] TV

"

< |Ps‘x(TB >T)— ]Ps,x(TA >T)| + ”Ps,x[xt €,ta>T]— Ps,x[Xt e, g>Tlllrv
- ]Ps,x(TB >T) IP>s,x[TB >T]

IA

]Ps,x[Xt €, ta>T] ]Ps,x[Xt €, p>T] H
Ps,x[TB >T] HDs,)c[TB >T] TV

<2 ”Ps,x[Xt €,ta>T]—- Ps,x[Xt e, w>Tllrv

HDs,x[TB >T] ' ©0

since
|]P)s,x(TB >T)— PS,X(TA >T)| < ”]Ps,x[Xt €,ta>T] - ]Ps,x[Xt €, g >Tlll7v.
Then we obtain, for any s <t < T and x € Ej,

|4 X e 1-QF X € 1]y

”Ps,x[xt €,ta>T] - Ps,x[xt e, w>Tllrv

<2Ce 042
HDs,)c[TB >T]

(3D
The condition (28) implies the existence of x; € Eg such that, for any n <N, forall ke Z,
kl—lfgo IPstky [ Xsternyy €5 ta > 5+ (k+N)y] —Ps  [Xs1ny €, 18> 5 +Nylllrv =0,
which implies by (31) that, for any n <N,
h}:‘_‘i.‘jp 1@k s Kottty € 1= QF o Xsttkrnyy € 1] 7y < 2Ce 7N,
Now, letting N — oo, for any n € Z; we have
kl_i)rgOHQ?+ky,xs Xt ttmy € 1= Q2 gy [Xstttny €17y

= kl_i)rgo”(@?-i-ky,xs(x:-i-(k-i-n)y €)— Qﬁxx(xsﬁw € )”TV

=0.
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In other words, the semigroup (Q‘? z) defined by

s<t
O f0) = EL(F(X)), Vs<i, Vf€B(E\A), VxeE\A,

is asymptotically periodic (according to Definition 1, with v, = ¥/, = 1 for all s > 0), associ-
ated to the auxiliary semigroup (Q%,) _ defined by

08 f(x):= EX (f(X,)). Vs<t, Vf € B(E\B,)., VxE\B,.

Moreover, since Assumption (A') is satisfied for {(X;);>0, (As)s>0} and {(X;);>0, (Bs)r>0}, the
Doeblin condition holds for these two Q-processes. As a matter of fact, by the Markov property,
foralls<t<Tandxe E\ Ay,

IP)s,x(Xt €lta>T)= Es,x I]-X,e-,rA>t

[ Ixe.ry>t Prx,(ta>T) ]
| Py x(ta > ) Pr g, 50 (ta > T)

P x,(Ta > T)]
IEDs,x(TA >T)

= Es,x

P x,(ta > T)
= Es,x ]lX,e N
i Prg, 60 (ta > T)

. t:|, (32)

where, for all s <r and pu € M(Ey), ¢r (1) := Py u(X; € -|ta > 1). By (A’l), for any s >0,
T > s+ tg, x € E \ Ay, and measurable set A,

Pytio.X, 11y (Ta > T) Pytsyy(ta > T)

Pyt 1, py,560 (T4 > T)

Es,xl:]]-Xs+t0 eA Tw>s+ tO] > Cl /A Vs+1 (dy)

Pyt19.¢5119.50(Ta > T)
that is, by (32),

IP)s+t0,y(TA > T)
Pyt to.potrg.s@0(Ta > T)

Py (Xysny € Alta > T) = ¢ /,4 vy ()

Letting 7 — oo in this last inequality and using [9, Proposition 3.1], for any s > 0, x € E'\ Ay,
and measurable set A,
Ns+io (y )

2 Koy € A) > / o () Sy
QA,( +o )>c1 AV—H()( y)¢s+z0,s(8x)(ns+f0)

The measure

Ns+1g ()’)
Bs+10,5(8x) (Ns415)

is then a positive measure whose mass is bounded below by c;, by (A’2), since for all s >0
and T > s + 1y,

A / by ()
A

Pry(ta > T)
Vsttp(dy) —————— > 2.
/E\AWO O P g0 (a > T)

This proves a Doeblin condition for the semigroup (Q‘;‘,)

1) s<t®
to prove a Doeblin condition for the semigroup (Q%,)

The same reasoning also applies
Then, using (27) followed by

s<t’
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Corollary 1, we have
t

.1 R Y
lim — A PO’“[XS€'|IA>t]dSZz£Igo;/O Qé,no*u(XSe')ds

t—oo t

= lim — / (@0 ﬂo*u[XSe']dsz‘B’

t—oo t

where the limits refer to convergence in total variation and hold uniformly in the initial
measure.
For any u € M(E\ Ag), f € B1(E), and t > 0,

1
EO,[L ;

Then, by [25, Theorem 1], for any s < u <t, for any u € M{(E \ Ap) and f € B(E),

2

t
f f(Xs)ds
0

2 t t
T8 > t:| =5 fo / Eo. . [f Xs)f (X)) Ta > flduds.

‘EO’MV(XS)f(XMNTA >1]— 0 ng*u[f(x )f(Xu)]‘ =< C”f”OOe—K(t—u)’

where the expectation EQA " is associated to the probability measure Q/(;‘ ok Hence, for any

uw e Mi(E\ Ag), feBl(E) and > 0,
]

1 2 o 1!
EO,M ; TA >t EO ok 1L ; 0 f(XS)dS —

4C [t !
<— / / e =gy ds
0 Js

_4C4C( - e
~ Kt K212 '

t
/ SXs)ds —
0

is asymptotically periodic in total variation and satisfies the Doeblin

2
:|—>0
11— 00

TA > t] —> 0.
t—00

Moreover, since (Q‘? ,)
condition, like (Qg ,)

s<t

Corollary 1 implies that

s<t’

@ L
sup sup ]Eo,no*u ’— / f(Xs)ds —
neM(E\Ag) feBI(E) rJo

Then
2

1 t
! / FXods — B()
tJo

reM(E\Ag) feBI(E)

sup sup Eo |:

O

Remark 5. It seems that Assumption (A’) can be weakened by a conditional version of
Assumption 1. In particular, such conditions can be derived from Assumption (F) in [6], as
will be shown later in the paper [4], currently in preparation.
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5. Examples

5.1. Asymptotically periodic Ornstein—-Uhlenbeck processes

Let (X;)>0 be a time-inhomogeneous diffusion process on R satisfying the stochastic
differential equation
dXt == dW[ - )\.(t)det,

where (W;);>0 is a one-dimensional Brownian motion and A : [0, 0o) — [0, 00) is a function
such that
sup |A(D)] < +o0

>0

and such that there exists y > 0 such that

s+y
inf/ A(u)du > 0.
N

s>0
By It6’s lemma, for any s <1,

t
X,=e fsf Au)du |:Xs + / efju )»(V)dvdwui| )

N

In particular, denoting by (P; ;)s<; the semigroup associated to (X;)r>0, for any f € B(R), r > 0,
and x € R,

t
Psylf(x) —E f o f_; )‘,(u)dux +e f; Mu)du / €2 fAu )L(V)dvdu X N(O, 1) ,
s

where A/(0, 1) denotes a standard Gaussian variable.

Theorem 3. Assume that there exists a y-periodic function g, bounded on R, such that
A~ 00 & Then the assumptions of Theorem 1 hold.

Proof. In our case, the auxiliary semigroup (Qs ;)s<; of Definition 1 will be defined as
follows: for any f € B(R), t > 0, and x € R,

t
Osf@)=E|f|e Jy gwduy 4 o= [ gtwdu | / 218 g N0, 1)
s

In particular, the semigroup (O ;)s<; 1S associated to the process (¥;);>¢ following

We first remark that the function ¥ :x+— 1 +x%is a Lyapunov function for (P;;)s<; and
(Os,1)s<t- In fact, for any s > 0 and x e R,

: ) s+
Py W () = 1+ e 2 j;*V Mu)du, 2 + e 2 f;*V Au)du /Y v &2 N AW g,

N

S S S S+y u
o2 M ) 4 ) =2 [ M0 =2 [T M / 2y g,

s

<e iy (x) + C,
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where C € (0, +00) and cjpf := 1nf,>o = ftH'y A(u)du > 0. Taking 0 € (e~2vcint 1), there exists
a compact set K such that, for any s > O

Py sty ¥ (x) =09 (x) + Clg(x).

Moreover, for any s > 0 and ¢ € [0, y), the function P 4,/ is upper-bounded uniformly in
s and . It remains therefore to prove Assumption 1(i) for (Ps )s<;, which is a consequence of
the following lemma.

Lemma 1. For any a, b_, by > 0, define the subset C(a, b_, b;+) C M{(R) as
C(av b,, b+) = {N(mv O) ‘me [_av a]’ o€ [bfv b+]}

Then, for any a, b—, by > 0, there exist a probability measure v and a constant ¢ > 0 such that,
forany uwe€C(a, b—, by),
> cv.

The proof of this lemma is postponed until after the end of this proof.
Since A~ g and these two functions are bounded on R, Lebesgue’s dominated
convergence theorem implies that, for all s <¢,

’ t+k)/

t
)L(u)du—/ g(w)du

— 0.
k— o0
In the same way, for all s <t,

t+ky t
/ 62 j:;:—ky A(V)dvdu N &2 s gWadv g,
s+ky k=00 Js

Hence, for any s <t,
t+ky

o Jsthy Mu)du e f; g(u)du’
k— 00
and
u t g7
;I;f)},/ Au)du \/ 2fs+ky A(V)dvdu — e f; g(wdu / e2 /s sWdv gy,
k—o00 s
Using [14, Theorem 1.3], for any x € R,
||5xPs+ky,t+ky - 8sz+ky,t+ky l7v — 0. (33)
k— 00

To deduce the convergence in yr-distance, we will draw inspiration from the proof of [19,
Lemma 3.1]. Since the variances are uniformly bounded in k (for s <t fixed), there exists
H > 0 such that, for any k e Nand s <t,

8:Pysky rky [V <H and 8,0, [v?] <H. (34)

Since limjy -0 Jf((x) =0, for any € > 0O there exists /. > 0 such that, for any function f such

that |f] < ¢ and for any |x| > [,

[Feol =

Combining this with (34), and letting K, := [—[, /], we find that for any k € Z_, f such that
Ifl <v,and x e R,

ey (x)?
T
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(Sxps+ky,t+ky [f]lKg] <e and (Ssz,t[f]]-Kg] <e€.
Then, for any k € Z. and f such that |f| < ¢,

|8xPytky.tkyf — 0xQs.if | < 2€ + |6xPytky,1tky [f Lk ] — 82 Qs.i[f Lk (35)

<2e + (1 + ) 18:Pssky irky — 8:Qs.tll7v- (36)

Hence, (33) implies that, for & large enough, for any f bounded by ,

|8xPytky,i+kyf — 0xQs,if | < 3€, (37)
implying that
||8xPs+ky,t+ky — 8;0stlly — 0.
k— 00
We now prove Lemma 1. O

Proof of Lemma 1. Defining

_ (,'(71/1)2 _ (x+a)2
filr):=e 2% ne -7

we conclude easily that, for any m € [—a, a] and ¢ > b_, for any x € R,

_a=m)?
e 22 >f(x).

Imposing moreover that o < b, one has

1 _ (x—m)? 1
e 27 > (),
V2ro 21 b+fv
which concludes the proof. (]

5.2. Quasi-ergodic distribution for Brownian motion absorbed by an asymptotically
periodic moving boundary

Let (W;)>0 be a one-dimensional Brownian motion, and let 2 be a C !_function such that

hmin ;= infh(f) >0 and  hpex := sup h(t) < 400.
>0 >0

We assume also that

—o0 < inf /' (r) < sup I/ (¢) < +o0.
=0 >0

Define
T = inf{t > 0: |Wt| > h(t)}

Since A is continuous, the hitting time 7, is a stopping time with respect to the natural filtration
of (Wy)>0. Moreover, since sup,- A(f) < +00 and inf;>¢ A(f) > 0,

Psx[th <+o0]=1 and P [t >1]>0, Vs<t, Vxe[-h(s), h(s)].
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The main assumption on the function /4 is the existence of a y-periodic function g such that
h(t) < g(t), for any ¢ > 0, and such that

h~ oo g and B~ 00 g

Similarly to 3, define
7o = inf{t > 0: |W,| = g(®)}.

Finally, let us assume that there exists ng € N such that, for any s > 0,

inf{u > s: h(u) = }r>1£h(t)} — s <ngy. (38)

This condition says that there exists ng € N such that, for any time s > 0, the infimum of the
function % on the domain [s, +00) is reached on the subset [s, s + ngy].
We first prove the following proposition.

Proposition 1. The Markov process (W;);=0, considered as absorbed by h or by g, satisfies
Assumption (A’).

Proof. In what follows, we will prove Assumption (A’) with respect to the absorbing
function A. The proof can easily be adapted for the function g.

e Proof of (A’1). Define T := {s > 0: h(s) = inf;> h(r)}. The condition (38) implies that
this set contains an infinity of times.

In what follows, the following notation is needed: for any z € R, define 7, as
7, ;= inf{t > 0:|W;| =z}

Also, let us state that, since the Brownian motion absorbed at {—1, 1} satisfies Assumption
(A) of [5] at any time (see [7]), it follows that, for a given fy > 0, there exist ¢ >0 and v €
Mi((—1, 1)) such that, for any x € (—1, 1),

fo
h2

max

T >

]P’(),X|:W2to/\t0 €- A to] >cv. 39)
hmax

Moreover, in relation to the proof of [7, Section 5.1], the probability measure v can be
expressed as

1
v=7 (Po,1—e[Wr, € -I71 > t2] + Po,—14¢[Wy, € |71 > 12]) (40)

for some 0 <t < h%% Atgand e € (0, 1).
The following lemma is very important for the next part of the argument.
Lemma 2. For all 7 € [Amin, fmax],
Pox[Wy € -|t; >ul >cv,, VYxe(—z, 2), Yu>r,

where ty is as previously mentioned, ¢ > 0 is the same constant as in (39), and
v(f) = / Sfz)v(dx),
1,1

with v € M((—1, 1)) defined in (40).

The proof of this lemma is postponed until after the current proof.
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Let s € 7. Then, for all x € (—A(s), h(s)) and t > 0,

Py x[th(s) >s5+1]
P W, (S t|l> =
s,x[ S+t |t >s+1t]> Px,x["—'h =~ s+1]

]:EDS,X[WS+I € '|Th(s) >s+1].
By Lemma 2, for all x € (—h(s), h(s)) and ¢ > 19,

IP)s,)c[vvs—‘,-z‘ € '|Th(s) >s+1]> CVp(s)»
which implies that, for any ¢ € [1, to + noy],

> HDs,x['fh(s) >s5+1]

Py [Wesr€-ltp >s+1t] >
s,x[ s+t | h ] Ps,x[fh >S-‘rl]

CVh(s)

. PS,X[Th(S) >s+1)+noyl
- Ps il > s+ 1]

CVp(s)- (4 1)

Let us introduce the process X" defined by, for all > 0,

W

L=

By Itd’s formula, for any ¢ > 0,

L dw. ty (s)
Xh:Xh—}—/ u —/ X"ds
R O N A O R

|
MP = / —dWY) .
( t)tzo < 0 h(s) s 120

By the Dubins—Schwarz theorem, it is well known that the process M" has the same law as

W > .
( fO hZ(S)d‘S >0

'(s) = /S LS
o h*(u)

and, for any s <t and for any trajectory w,

Define

Then, defining

M (w):= @ exp| — l HOOW?, . — K ($)h(s)w> (42)

st T h(s) P 2 Ih(f) Ih(S)

t
- f Wi o [0 () — [h(u)h’(u)]’]duD, (43)
A
Girsanov’s theorem implies that, for all x € (—h(s), h(s)),
Psxltn > s+ 10l = ]EI”(S)vﬁ |:6Sth+lo(W)]lr| > [y zldui|- @
l h=(u)
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s+10 1
T] > —duy,
{ /0 h2(u) }

and since /1 and /" are bounded on R, the random variable £ Sh s+1,(W) is almost surely bounded
by a constant C > 0, uniformly in s, such that for all x € (—h(s), h(s)),

On the event

s+1o 1
h
Elh(‘g)*ﬁg) |:5S,S+I()(W)1tl> s+ dldi| < CPO’ﬁ ['L’l > K hz(u)du} (45)

0 hz(u)
Since h(t) > h(s) for all t > s (since s € T),
fo
" 10) —I"(s) < —.
(54 10) = 10) = 18

By the scaling property of the Brownian motion and by the Markov property, one has for all
x € (—h(s), h(s))

Ps [ty > s + tol = Po x[Thes) > tol

r 1 s+
= Eo’ﬁ ]l_[l>fxx+to %duPO,ij_HO 1 |:Tl > hz_(s) — '/S‘ hz_(s)dsi|:|

L hz(u)

s+1o 1
:]P)O,ﬁ T1 >l hz_(u)dui|

1 s+to 1
PO>¢1h(s+z0)—lh(s)(8") |:Tl - h2(s) _/; hz(”)du]’

where, for any initial distribution p and any ¢ > 0,

() = Po,u[W; € |ty > 1].

The family (¢;);>0 satisfies the equality ¢; o ¢s = ¢4 for all s, £ > 0. By this property, and
using that
fo

2
max

for any s > 0, the minorization (39) implies that, for all s > 0 and x € (—1, 1),

I'(s + 1) — I"(s) >

Bii(s19)—1(s)(x) Z V.

Hence, by this minorization, and using that /4 is upper-bounded and lower-bounded positively
on R, one has forall x € (—1, 1)

f s+1to 1
P0»¢1h<s+to>—1h<x>(5") [n = h2(s) _/s hz(u)du]

P inf | 0 L
> - . .
=€ 0’”[“ >§§o{h2(s> / 12(u) ””
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that is to say,

1 st ]
P x[Thes) T+~§0+ o] > cPy, vl:fl - mf { 2J/ / 2—du}j|
Py, h()[fl > [ h2( e du u] h(s) Js  h¥(u)

In other words, we have just shown that, for all x € (—h(s), h(s)),

P 1 1 s+1o 1
sl iy > SH101  Cp H inf 0 / —dul|>o. (46)
Py [th > s + to] C h2(s) p h2(u)

Moreover, by Lemma 2 and the scaling property of the Brownian motion, for all x €
(=h(s), h(s)),
P x[Ths) > s +to +noy |l
s,x[‘[h(s) > s+ 1]

= Po. Py (Wi €-ltaey>10] [ This) > 0¥ ]
> cPo, vy [This) > noy]

=c / v(dy)Pr(syyLThes) > noy ]
L1

> cPy,, [n > ”g—y} > 0. @7)
'min
Thus, combining (41), (46), and (47), for any x € (—h(s), h(s)) and any ¢ € [tg, to + noy ],

]P)s,x[Ws+t E-ltp>s+1t1> C1Vh(s), (48)

noy y s+y 1
cl = CPo,v|:Tl > :| IP’O ,,I:rl > 1nf{ 5 / z—du”c.
W] C s )y Rw

We recall that the Doeblin condition (48) has, for now, been obtained only for s € 7.
Consider now s & 7. Then, by the condition (38), there exists s; € 7 such that s <s; <
s 4 ngy . The Markov property and (48) therefore imply that, for any x € (—h(s), h(s)),

where

Py xlWstig4noy € 1t > s +10 +noy1 =Py ¢, [Wistigtnoy €-1Th > s+ 10 +noy1 = crvnes),
where, for all s < ¢ and pu € M ((—h(s), h(s))),
O s(u) := Py, [W; € - |1y > 1].
This concludes the proof of (A'1).
e Proof of (A'2). Since (W;);>¢ is a Brownian motion, note that for any s < r,

sup P [ty > t] =P oltn > 1].
xeE1,1)

Also, for any a € (0, h(s)),

inf P [ty > t] =Py o[ty > 1.
Fa.a]
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Thus, by the Markov property, and using that the function s+ Pso[t, > #] is non-
decreasing on [0, #] (for all # > 0), one has, for any s <t,

Ps,a[fh >t]> Ex,a[]lro<s+y<rhpro,0[7:h >t >Psulro<s+y < Th]Ps,O[Th >t]. (49)

Defining a := Z;ﬁ’ by Lemma 2 and taking s := inf{u > s:u € T}, one obtains that,
forall s <t,

]P)s,vh(sl)['ch > 1] :/ v(dx)Ps,l1(s1)x[Th > 1]
L1

> v([—a, a)Ps nspalth > ]

> v([—a, aDPo py,lto <y <mu]l  sup  Psx[zn>1].
xe(h(s),h(s))

This concludes the proof, since, using (40), one has v([—a, a]) > 0. U
We now prove Lemma 2.

Proof of Lemma 2. This result comes from the scaling property of a Brownian motion.
In fact, for any z € [Amin, Aimax]), X € (—2, 2), and >0, and for any measurable bounded

function f,
T, > t]
=Eo,x [f(z X Wg)

]
1> — |
1 2
Then the minorization (39) implies that for any x € (—1, 1),

To
3 :| > Cv.
hmax

This inequality holds for any time greater than héo . In particular, for any z € [Amin, hmax] and
xe(—1,1),

1
Eox[f(W)lr, > t] = ]E(),x[f(Z X EWZZ-12>

]P)(),X|:W n €-T] >
>

ihax

max

Po'xl:Wto €.
)

0]
> > cv.
z

Then, for any z € [a, b], f positive and measurable, and x € (—z, z),

EO,x[f(Wto)lfz > to]l >cv; (f),

where v.(f) := 5 f(z x x)v(dx). This completes the proof of Lemma 2. O
We now conclude the section by stating and proving the following result.

Theorem 4. For any s <t,n € N, and any x € R,

Pyyiy xltn <t+ky <7,] — 0.
k— 00

In particular, Corollary 2 holds for (W;)s>o absorbed by h.
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Proof. Recalling (43), by the Markov property for the Brownian motion, one has, for any
k,neNand any x € R,

[t + ky) 1
Pstky ltn >t +kyl= h(Tky)Eo’x[ exp ( - EA?J,;{(W)> 1, >Ih(t+ky)—1h(s+ky):|’

where, for any trajectory w = (Wy)u>0,

Al )= (t + ky)h(t + ky)w?, — W (s 4 ky)h(s + ky)w}

(t+ky)—I"(s+ky)
t—s ) )
/ / /!
+ /(; Wlh(u+s+k)/)71h(s+ky)[(h (l/t +s+ kV)) - [h(l/l +s5+ kJ/)h (u + 5+ k]/)] ]dl/t

Since h ~;_, 0 &, one has for any s, 7 € [0, y]

itk [s0
h(s 4+ ky) k—oo || g(s)’

For the same reasons, and using that the function / is bounded on [s + ky, t + ky] forall s <,
Lebesgue’s dominated convergence theorem implies that

1+ ky) = 1"+ ky) —> I8 = IGs)

for all s <t € [0, y]. Moreover, since 1 ~;_, o, g and i’ ~;_, o g’, one has for all trajectories
w=(wy)u>0 and s <7 € [0, ]

t
AL k09) —> g OOWE () pe(s) — £/ (WG + / Wieo (' )* = [g(w)g' ()] 1du.

N

Since the random variable

1 h
exp (= S A kW) Ly piky) sy
is bounded almost surely, Lebesgue’s dominated convergence theorem implies that
IP)A‘Jrky,x['fh >t+ky] — HDs,)c['rg > 1],
k— 00
which concludes the proof. (|
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