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1182 D. Gepner and J. Heller

1. Introduction

In his 1970 International Congress of Mathematicians talk [36], Segal sketched a
computation of the endomorphism ring of the equivariant sphere spectrum for a finite

group G, identifying this endomorphism ring with the Burnside ring of finite G-sets.

Using other methods, this computation was recovered and massively generalized by tom
Dieck’s splitting theorem [13]. These results form a crucial layer of the foundations on

which the successes of equivariant homotopy in the ensuing decades were built, from

early foundations [27] to Carlsson’s resolution of the Segal completion conjecture [8] to
the Hill–Hopkins–Ravenel solution of the Kervaire invariant one problem [22].

An equivariant version of motivic homotopy theory was introduced by Voevodsky [11]

to study quotients of motives by group actions, which played a role in his work on the

Bloch–Kato conjecture. A number of authors have subsequently further developed this
theory, and variants, including Hu, Kriz, and Ormsby [25], Heller, Krishna, and Østvær

[19], Herrmann [21], and Carlsson and Joshua [9]. The state of the art is Hoyois’s [24],

where he develops the formalism of Grothendieck’s six operations in this theory.
In this paper we establish an analogue of tom Dieck’s splitting in the context of stable

motivic homotopy theory for finite group actions. Throughout, we assume that G is a

finite group whose order is coprime to the characteristics of the residue fields of the base
scheme B ; in other words, the group scheme associated to G is linearly reductive over B.

Our splitting theorem, proved in Theorem 7.4, computes the N -fixed points of suspension

spectra (more generally of ‘split spectra’) as a motivic G/N -spectrum, where N ⊴G is a

normal subgroup. In the case N =G, this takes the following form, where (H) denotes
the conjugacy class of a subgroup:

Theorem 1.1 (motivic tom Dieck splitting). Let G be a finite group whose order is

invertible on B. Let X be a based motivic G-space over B. There is an equivalence of

motivic spectra

ΘX ∶ ⊕
(H)

(Σ∞ (XH))
hWH

∼�→ (Σ∞X)G.

Corollary 1.2. For integers a and b, there is a canonical isomorphism

πG
a,b(1B) ≅ ⊕

(H)
πa,b (BWH+) .

The reader familiar with tom Dieck’s theorem [13] will recognize this result as taking a
very similar form as the classical result. The key difference here is that the functor (−)hG
is an algebro-geometric, or motivic, version of the homotopy orbits functor rather than

the familiar categorical construction. Recall that the ordinary homotopy orbits functor is
defined as follows. A G-spectrum Y determines a diagram on the category BG ≃BNisG,

and the homotopy orbits are the colimit of this diagram: YhG ≃ colimBGY . The motivic

version should then be thought of as a motivic, or parameterized, colimit of Y over the
category BétG of étale G-torsors. We do not make the version of the definition, as just

stated, precise here (this can be done using [6]); instead, we provide a direct construction

of the functor (−)hG. First, recall that Morel and Voevodsky [32] introduced a geometric
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The tom Dieck splitting theorem in equivariant motivic homotopy theory 1183

model for the classifying space of étale G-torsors. This construction is distinct from the
usual simplicial construction of the classifying space; rather, the simplicial construction

is a model for the classifying space of Nisnevich G-torsors. The equivariant manifestation

of this fact is that the universal free motivic G-space EG is not equivalent to the usual
simplicial construction E●G. The motivic homotopy orbits of a G-spectrum Y are defined

here by a variant on the standard formula YhG ≃(E●G+⊗Y )/G, obtained by replacing E●G

by EG. That is, we take YhG ≃ (Y ⊗EG+)/G as the definition of the motivic homotopy

orbits of Y.
Before explaining the intermediate results leading to the splitting theorem, we pause

to point out an obvious, but important, difference between ordinary equivariant and

motivic equivariant homotopy theory. In the topological case, equivalences are detected
by the fixed-point functors for subgroups H ≤ G. This corresponds to the fact that

a set of generators is given by the orbits G/H, or that the homotopy theory of G-

spaces can be presented as presheaves of spaces on the category of G-orbits. On the
other hand, generators for equivariant motivic homotopy theory are smooth schemes

over B with a G-action. Orbits G/H are examples of smooth G-schemes over B, but of

course there are many more. Equivalences between motivic G-spaces or G-spectra are not

detected by fixed points,1 because smooth G-schemes cannot in any meaningful way be
decomposed into pieces of the form G/H ×X (where X has trivial action). However, by

analyzing filtrations of equivariant motivic homotopy theory arising from localizations and

colocalizations determined by families of subgroups, as in §3, one can see that equivalences
can be detected using only (desuspensions of) smooth G-schemes of very special form,

namely those of the form G×KX such that there is a normal subgroup N ⊴K which acts

trivially on X and the quotient K/N acts freely on X. These are the G-schemes whose
stabilizers are concentrated at a single conjugacy class.

In addition to the six-functor formalism established in [24], the proof of Theorem 1.1

relies on several new results for equivariant motivic homotopy theory which should be

of independent interest. As with the splitting theorem, there are versions for all of these
results established relative to a normal subgroup N ⊴G; for simplicity we discuss here in

the introduction only the results for N =G.

The first key ingredient which we need is the geometric fixed-points functor, constructed
in §4.3. The geometric fixed points XΦG of a motivic G-spectrum X may be obtained

as the G-fixed points of a suitable localization of X, namely one determined by smooth

G-schemes with trivial action. This functor satisfies analogues of the main features of
the geometric fixed-points functor from ordinary equivariant motivic homotopy theory,

as follows:

1. It is a symmetric monoidal left adjoint, and (Σ∞Y+)ΦG ≃Σ∞ (Y G
+ ) for any Y ∈ SmB .

2. XΦG ≃ (X⊗ ẼP)G, where ẼP is the unreduced suspension of the universal motivic

G-space associated to the family P of proper subgroups of G.

1Of course, one can define a homotopy theory which has this property, but as pointed out by
Herrmann [21], equivariant algebraic K -theory is not representable in the resulting homotopy
category.
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1184 D. Gepner and J. Heller

3. XΦG ≃ (X[a−1])G, where a is the Euler class a ∶ S0 → T ρG and ρG is the reduced

regular representation.

Here, given a representation V, we write TV for the associate motivic sphere (i.e.,

its Thom space). The connection between items 2 and 3 is provided by a geometric

presentation for universal motivic G-spaces for families, established in §3, analogous to
Morel and Voevodsky’s geometric description of classifying spaces. In particular, for the

family of proper subgroups, what we find is that ẼP may be described by the formula

ẼP ≃ T∞ρG = colimnT
nρG , analogous to the familiar formula from topology.

Also of interest is that the construction of the geometric-fixed points functor here

permits a motivic version of the Tate square for Cp-equivariant motivic spectra in §4.4.
This is a homotopy push-out square of motivic spectra,

XCp XΦCp

XhCp XtCp,

where XhCp is a motivic version of the homotopy fixed-points functor, defined using ECp.
A second key ingredient entering into the splitting theorem is the motivic Adams

isomorphism, proved in Theorem 6.36. This fundamental result identifies the quotient

of a free G-spectrum with its fixed points. There is a natural transformation from the
former to the latter, and the bulk of the work in §6 is devoted to verifying that this

morphism is an equivalence. Our strategy is to first check that this transformation is an

equivalence on the full subcategory of dualizable free G-spectra. Of course, unless the

base is a field of characteristic 0, this does not suffice to conclude the result in general.
But since EG+ is a colimit of dualizable spectra, it does imply that the fixed points

of EG+ coincide with BG+. Using the fact that BG+ contains 1B as a summand, this

lets us define an inverse to the Adams transformation to obtain the general result. It
is worth pointing out that if f ∶ T →B is an étale torsor, then the Adams isomorphism

for f#1T is a straightforward consequence of ambidexterity, proved in [24], for the finite

étale map f. An obvious strategy presents itself. If q ∶X →B is a smooth G-scheme over
B with free action, then g ∶ X → X/G is an étale torsor and p ∶ X/G → B is smooth.

Since (g#1X)G ≃ (g#1X)/G and p# commutes with the quotient functor, to verify the

Adams isomorphism for p# (g#1X) it would suffice to check that the fixed-points functor

commutes with p#. Establishing this change-of-base formula directly appears to be as
difficult as the Adams isomorphism itself, and we actually obtain this base-change formula

as a consequence of the Adams isomorphism. It is interesting to note that from the

viewpoint of motivic homotopy theory of stacks, this is an instance of a smooth proper
base-change formula, along the nonrepresentable map BG→B.

Once all of the foundational results are in place, the proof of the splitting theorem is

actually fairly straightforward. It is not hard to write down the map ΘX of the statement
of the theorem, and to check that it is an equivalence it suffices to check that it is an

equivalence when X is concentrated at a single conjugacy class – a case which follows from

the analysis in §3 of localizations and colocalizations of equivariant motivic homotopy.
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1.1. Outline

We use the language of ∞-categories throughout this paper. We begin in §2 by recalling

the construction of the ∞-categories of motivic G-spaces and motivic G-spectra from

[24], as well as a few extensions used in this paper. In §3 we study the colocalizations and

localizations of equivariant motivic homotopy theory which are determined by a family. In
§4 we define fixed-point functors and geometric fixed points. In §5 we define the quotient

functor on N -free spectra, and in §6 we prove the motivic Adams isomorphism. Finally,

in §7 we prove the motivic tom Dieck splitting theorem.

1.2. Notation

Throughout, B is a quasi-compact, quasi-separated base scheme and G is a finite group
whose order is invertible in OB . We write SchGB for the category of G-schemes which

are finitely presented and G-quasi-projective over B. For S ∈ SchGB , write SchGS for the

slice category over S and SmG
S ⊆ SchGS for the full subcategory whose objects are smooth

over S.

If E is a locally free OS-module, we write

VS(E) ∶= Spec(Sym(E∨)) and PS(E) ∶=Proj(Sym(E∨)),

respectively, for the associated vector bundle scheme and the associated projective bundle

on S. A representation of G over B will mean a locally free G-module on B (for a

recollection of the definition, see [38]). If M is a G-set, we let

ρM =OB[M] ∶= OB ⊗Z[M]

denote the associated permutation representation. In particular, ρG is the regular
representation.

We use the language of ∞-categories in this paper and mostly follow the terminology

in [28, 29], with the exception that we write Cat∞ for the ∞-category of not necessarily
small ∞-categories. We write MapC(x,y) for the space of maps in an ∞-category C and

MapC(x,y) for the spectrum of maps in a stable ∞-category. If C is a closed symmetric

monoidal ∞-category, we write FC(x,y) for the internal mapping object.

2. Equivariant motivic homotopy theory

We recall definitions and basic properties of equivariant motivic homotopy theory. We
will use the ∞-categorical approach to equivariant motivic spectra introduced by Hoyois

[24]. Since we are working with finite groups, the unstable homotopy category agrees with

those constructed by Voevodsky [11] and Heller, Krishna, and Østvær [19], and the stable

homotopy category agrees with the one from [20, Appendix A.4].

2.1. Equivariant geometry

Set S ∈ SchGB . If φ ∶G→K is a group homomorphism, we write

φ−1 ∶ SchKS → SchGφ−1S
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1186 D. Gepner and J. Heller

for the restriction functor, which regards a K -scheme over S as a G-scheme over S via
φ. When no confusion should arise, we write SchGS instead of SchGφ−1S .

Set X ∈ SchGB . Say that G acts freely on X if the action of G(T ) on X(T ) is free for

any T ∈ SchB . If G acts freely on X, then the fppf-quotient (X/G)fppf is representable by

an object X/G ∈ SchB (since all of our schemes are quasi-projective; see [37, Tag 07S7].
Since G is smooth, the fppf-torsor X →X/G is an étale torsor (as it is a smooth map and

so étale locally admits sections).

Definition 2.1. The stabilizer of a point x ∈X is the subgroup Stab(x) ≤G, defined by

Stab(x) = {g ∈G ∣ g⋅x = x and g acts as id on k(x)}.

Then G acts freely on X, provided Stab(x) = {e} for all x ∈X. More generally, if H ≤G

is a subgroup which acts freely on X, then the quotient X/H inherits an action of the
Weyl group W(H) =WG(H) ∶=NG(H)/H, and so defines a functor (−)/H ∶ SchG,H-free

B →
SchWH

B . This is the composite of the restriction functor SchG,H-free
B → SchNH,H-free

B and

followed by the quotient SchNH,H-free
B → SchWH

B .
Let N ⊴G be a normal subgroup. Suppose that either

(i) N acts trivially on S or

(ii) N acts freely on S.

In either case, the quotient functor yields a functor

SmG,N-free
S → Sm

G/N
S/N .

Write q ∶ S → S/N for the quotient map of schemes and q−1 ∶ SmG/N
S/N → Sm

G/N
S for the

functor defined by q−1(Y ) = Y ×S/N S.

Proposition 2.2. Suppose that N acts freely on S. Then (−)/N and π−1q−1 are inverse

equivalences

(−)/N ∶ SmG
S ⇄ Sm

G/N
S/N ∶ π−1q−1.

Proof. Let f ∶ X → S be in SmG
S . By descent, we have a Cartesian square in

SmS (hence in SmG
S )

X S

X/N S/N.

It follows that (−)/N is fully faithful. It is also essentially surjective, since if Y ∈ SmG/N
S/N ,

then Y ≅ (Y ×S/N S)/N .

Let ι ∶H ↪G be a monomorphism of groups. The induction-restriction adjunction

ι! ∶ SchHS ⇄ SchGS ∶ ι−1
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restricts to an adjunction

ι! ∶ SmH
S ⇄ SmG

S ∶ ι−1.

When H ≤ G is a subgroup and ι is the inclusion, we often write ι!(X) = G×H X, and

this scheme is described concretely as follows. The scheme G×X becomes an H -scheme
under the action h(g,x) = (gh−1,hx), and we define

G×H X = (G×X)/H.

The scheme G×HX has a left G-action through the action of G on itself. We can describe
G×H X in slightly more concrete terms as follows. Choose a complete set of left coset

representatives gi; then G×H X = ∐gi Xi, each Xi is a copy of X, and g ∈ G acts as

k ∶Xi →Xj , where k ∈H satisfies ggi = gjk.
Set X ∈ SchGB . The presheaf of sets XG is the presheaf of sets on SchB defined by

XG(Y ) = {y ∈X(Y ) ∣ y is fixed by G}.

If X →B is seperated, the presheaf XG is represented by a closed subscheme of X which
is finitely presented over B, which is moreover smooth over B if X is (see [12, Proposition

XII.9.2, Corollaire XII.9.8] or [10, Proposition A.8.10]). Note that if H ≤G is a subgroup,

the fixed-point subscheme XH comes equipped with an action of the Weyl group W(H).
Now, suppose that N ⊴G is a normal subgroup which acts trivially on S. Write π ∶G→

G/N for the quotient map. Restricting action along π defines a functor π−1 ∶ SchG/NS →
SchGS , which is left adjoint to fixed points. We will usually simply write again X instead of
π−1X, whenever context makes the meaning clear. Now, restricting attention to smooth

S -schemes, we obtain the adjunction

π−1 ∶ SmG/N
S ⇄ SmG

S ∶ (−)N .

2.2. Families of subgroups

Families of subgroups provide a convenient way to filter equivariant motivic homotopy

theory.

Definition 2.3. A family F of subgroups of G is a set of subgroups which is closed
under taking subgroups and conjugation.

Example 2.4. The following families play an important role:

1. The trivial family Ftriv ∶= {e}.
2. The family of all subgroups Fall ∶= {H ≤G ∣H is a subgroup}.
3. The family of proper subgroups P ∶= {H �G ∣H is a proper subgroup}.
4. For a normal subgroup N ⊴G, define F[N] ∶= {H ≤G ∣N /⊆H}. Note that P =F[G].
5. For a normal subgroup N ⊴ G, define F(N) ∶= {H ≤ G ∣ H ∩N = {e}}. Note that

F(G) = Ftriv.
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1188 D. Gepner and J. Heller

If F is a family, we write co(F) ∶= Fall−F for its complement. Note that co(F) is not

a family.2

Remark 2.5. A family of subgroups can be equivalently viewed as a sieve on the orbit

category OrbG. The sieve corresponding to F is the full subcategory OrbG[F] ⊆OrbG of
orbits such that G/H ∈OrbG[F] if and only if H ∈ F .

A family F determines a sieve on SmG
S by letting SmG

S [F] ⊆SmG
S be the full subcategory

whose objects are smooth G-schemes over S such that all stabilizers are contained in F .

It is useful to make the following more general definition:

Definition 2.6. Let E be a set of subgroups of G which is closed under conjugacy. Write

SmG
S [E] ⊆ SmG

S for the full subcategory whose objects are those smooth G-schemes X

over S such that Stab(x) ∈ E for every point x ∈X.

Notation 2.7. Set X ∈ SchGS . Write

XF ∶= ⋃
H∈co(F)

XH

and

X(F) ∶=X −XF .

The subset X(F) ⊆ X is the set of points whose stabilizers are in F . Observe that
X(F) ⊆X is an open invariant subscheme and XF ⊆X is a closed invariant subscheme,

since XF is a finite union of closed subschemes.

2.3. Motivic G-spaces

Recall that the Nisnevich topology can be defined via a cd-structure.

Definition 2.8 ([40]). Let C be a small category which has an initial object ∅.

1. A cd-structure on C is a collection A of commutative squares in C such that if Q ∈ A
and if Q′ is isomorphic to Q, then Q′ ∈ A.

2. Given a cd-structure A in C, the Grothendieck topology tA generated by A is the

smallest topology on C such that:

(a) the empty sieve is a covering sieve of ∅ and

(b) given any square

V Y

U X

p

j

in A, the sieve generated by {U →X,Y →X} is a covering sieve.

2Rather, it is a cofamily, meaning it is closed under conjugation and K ∈ co(F) whenever K
contains a subgroup in co(F).
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Definition 2.9. An equivariant map f ∶Y →X is said to be fixed-point reflecting at y ∈Y
if f induces an isomorphism Stab(y) ≅ Stab(f(y)). If this condition holds at every y ∈ Y ,

then f is simply said to be fixed-point reflecting.

Let CS ⊆ SchGS be a full subcategory containing ∅. We often require CS to satisfy one or

both of the following properties:

(P) If Y →X is fixed-point reflecting and étale, then Y ∈ CS whenever X ∈ CS .
(H) If X ∈ CS , then so is X ×SA

1.

Our primary examples of interest are the categories SmG
S [E], where E is a set of

subgroups closed under conjugacy. More generally, we could also consider the following

property:

(P′) If Y →X is an equivariant étale map, then Y ∈ CS whenever X ∈ CS .

The condition (P) on CS guarantees that the fixed-point Nisnevich cd-structure (defined
later) is complete, while the condition (P′) guarantees that the Nisnevich cd-structure is

complete. Some categories of interest in this paper – for example, SmG
S [co(F)] for a family

F – do not satisfy (P′) but do satisfy the weaker property (P). We will see in Proposition

2.13 that when CS satisfies (P′), then the topology associated to the fixed-point Nisnevich
cd-structure coincides with the Nisnevich topology.

Definition 2.10. Let CS ⊆ SchGS be a full subcategory containing ∅.

1. The Nisnevich cd-structure Nis on CS consists of Cartesian squares

V Y

U X,

p

j

(2.11)

where j is open immersion, p is étale, and the map (Y −V )red → (X −U)red is an

isomorphism in SchS .

2. The fixed-point Nisnevich cd-structure fpNis on CS consists of Cartesian squares as
in the Nisnevich cd-structure, but with the added condition that p is a fixed-point-

reflecting étale map.

Remark 2.12. In general, if G is a flat group scheme over B, one may choose a scheme

structure on Z ∶=X ∖U so that Z is invariant under the G-action [24, Lemma 2.1]. Since
G is a finite discrete group, Zred is invariant and the map p−1(Z)red →Zred is equivariant.

Proposition 2.13. Suppose that CS satisfies (P′). The topology tfpNis coincides with the

Nisnevich topology on CS.
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1190 D. Gepner and J. Heller

Proof. Every tfpNis-cover is a Nisnevich cover. We show that the reverse implication
holds. It suffices to show that any Nisnevich square

V Y

U X.

p

j

admits a tfpNis-refinement.

Write fpr(Y ) ⊆ Y for the set of points where p is fixed-point reflecting. Since Y →X is
unramified and Stab(X) →X is universally closed, [35, Proposition 3.5] applies to show

that the set fpr(Y ) ⊆ Y is an invariant open subset. We have that Y ∖V ⊆ fpr(Y ). It
follows that the outer square

fpr(V ) fpr(Y )

V Y

U X

i

p

j

(2.14)

is a fixed-point Nisnevich square (as is the top square). In particular, {j,pi} is a tfpNis-

cover which refines {j,p}.
Write P(CS) for the ∞-category of presheaves of spaces on CS . Note that CS does not

necessarily contain a terminal object; in particular, a terminal object P(CS) is in general
not representable. We write pt ∈ P(CS) for this terminal object. Of course, if S ∈ CS , then
pt is representable; it is the presheaf represented by S.

Definition 2.15. Say that F ∈ P(CS) is Nisnevich excisive if:

1. F (∅) is contractible and

2. for any Nisnevich square (2.11) in CS , the square

F (X) F (Y )

F (V ) F (U)

is Cartesian.

Write ShvNis(CS) ⊆P(CS) for the subcategory of Nisnevich excisive presheaves of spaces

on CS .

Temporarily, say that F is ‘fixed-point Nisnevich excisive’ if F (∅) ≃ pt and F (Q) is

cartesian for any fixed-point Nisnevich square Q. There is no real need for this extra

terminology, by the following proposition:

Proposition 2.16. Set F ∈ P(CS) and suppose CS satisfies (P′). Then the following are

equivalent:
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1. F is fixed-point Nisnevich excisive.

2. F is Nisnevich excisive.

3. F is a sheaf for the Nisnevich topology.

Proof. If CS satisfies (P′), then the cd-structures fpNis and Nis both satisfy the conditions
of [4, Theorem 3.2.5] – that is, they are complete and regular, in the terminology of [40].

Together with Proposition 2.13, it follows that 1, 2, and 3 are equivalent.

Definition 2.17. Let CS ⊆ SchS be a full subcategory which contains ∅ and satisfies

properties (P) and (H). Say that F ∈ P(CS) is A1-homotopy invariant if for any Y ∈
CS , the projection map π ∶ Y ×A1 → Y induces an equivalence F (Y ) ≃ F (Y ×A1). We
write PA1(CS) ⊆ P(CS) for the full subcategory consisting of the A1-homotopy invariant

presheaves.

The property that a presheaf is Nisnevich excisive is defined by a small set of conditions.

It follows from [28, Section 5.5.4] that the inclusion ShvNis(CS) ⊆ P(CS) is an accessible

localization. Write LNis for the resulting localization endofunctor on P(CS). Moreover,
this localization is left-exact in the sense of [28, Section 6.2.2].

Similarly, the property that a presheaf is A1-homotopy invariant is defined by a small

set of conditions, so that the inclusion PA1(CS) ⊆ P(CS) is also an accessible localization.

Write LA1 for the resulting localization endofunctor. It can be described explicitly by the
formula LA1 ≃ SingA1 , where

SingA1(F )(U) ∶= colim
Δ

(n↦ F (U ×Δn
S)) (2.18)

(for details, see, for instance, [2, Theorem 4.25]). A map f ∶ F1 → F2 in ShvNis(CS) is

a Nisnevich equivalence provided that LNis(f) is an equivalence, and an A1-equivalence
provided that LA1(f) is an equivalence.

Remark 2.19. Say that F ∈ P(CS) is strongly A1-homotopy invariant if for any
projection E → X of a G-affine bundle in CS , the induced map is an equivalence

F (X) ≃F (E). Any X ∈SmG
S is Nisnevich locally affine. This implies that if F is Nisnevich

excisive, then F is strongly A1-invariant if and only if it is A1-homotopy invariant (as
E →X always has local sections in this case) [24, Remark 3.13].

In particular, the motivic localization considered here agrees with the one in [24].

Definition 2.20.

1. Amotivic G-space over S is a Nisnevich excisive andA1-homotopy-invariant presheaf

F ∈ P (SmG
S ).

2. Write SpcG(S) for the ∞-category of motivic G-spaces. The category of based
motivic G-spaces is SpcG● (S) = SpcG(S)pt/.

3. More generally, write Spc(CS) for the ∞-categories of Nisnevich excisive A1-

homotopy-invariant presheaves on CS and Spc●(CS) = Spc(CS)pt/.
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When E is a set of subgroups, closed under conjugacy, we use the notation

SpcG,E(S) ∶= Spc(SmG
S [E])

SpcG,E
● (S) ∶= Spc● (SmG

S [E]) .

The inclusion Spc(CS) ⊆ P(CS) is an accessible localization, and we write

Lmot ∶ P(CS) →P(CS)

for the corresponding localization endofunctor. The motivic localization functor may be

computed by the formula [32, Lemma 3.2.6]

Lmot(F ) = LNis colim
n→∞

(LA1 ○LNis)n (F ). (2.21)

Proposition 2.22. The motivic localization functor Lmot ∶ P(CS) → P(CS) is locally

Cartesian3 and preserves finite products. In particular, colimits in SpcG(CS) are

universal.

Proof. The localization functors LNis, LA1 satisfy these properties, and therefore so does

Lmot using equation (2.21).

We will make use of the notion of the tensor product of presentable ∞-categories as

defined and studied in [29, Section 4.8.1] (see especially [29, Proposition 4.8.1.17]). The

category Spc(CS) is Cartesian monoidal (i.e., it is symmetric monoidal with respect to
the Cartesian product). The symmetric monoidal product on Spc(CS) extends to one on

Spc●(CS) ≃ Spc(CS)⊗S●,

where S● ∶= Spt/ denotes the ∞-category of pointed spaces (see [15, Lemma 3.6] and [29,

Proposition 4.8.2.11]). We write ∧ for the symmetric monoidal product on Spc●(CS).
Sometimes we will need to use the symmetric monoidal product on P●(CS) ∶= P(CS)pt/,
which we denote ∧P to avoid confusion. The symmetric monoidal localization functor

Lmot ∶ P(CS)→ Spc(CS) induces a unique symmetric monoidal localization functor Lmot ∶
P●(CS) → Spc●(CS). In particular, given X,Y ∈ P●(CS), then

Lmot(X)∧Lmot(Y ) ≃ Lmot (X ∧P Y ) .

Given a functor u ∶ C → D, the functor u∗ ∶ P(D) → P(C), defined by precomposition

with u, preserves small limits and colimits, as these are computed objectwise in presheaf

∞-categories [28, Corollary 5.1.2.3], which are presentable ∞-categories [28, Theorem
5.5.1.1]. It follows from [28, Corollary 5.5.2.9] that u∗ admits both a left adjoint u! and

a right adjoint u∗,

P(C) P(D).

u!

u∗

u∗

3A localization endofunctor L ∶ D → D is locally Cartesian if L(A×B X) → A×B L(X) is an
equivalence for any maps A→B, X →B in D, where A,B ∈ L(D) [16, §1].
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A functor u ∶ C →D between small ∞-categories equipped with Grothendieck topologies
is called topologically co-continuous4 if for every Y ∈ C and every covering sieve R on

u(Y ), the sieve u∗R×u∗u!Y Y ↪ Y , consisting of arrows Z → Y such that uZ → uY factors

through R, is a covering sieve on Y.

Lemma 2.23. Let u ∶ C → D be a topologically co-continuous functor between small ∞-

categories equipped with Grothendieck topologies τC and τD, respectively. Then u∗ ∶ P(D)→
P(C) preserves all τD-local equivalences.

Proof. The set of τD-local equivalences in P(D) is the closure under push-outs, small
colimits, and 2-out-of-3 of the set of maps R ↪ X, where R is a covering sieve on

X ∈ D. Since u∗ preserves colimits, it suffices to show that u∗R → u∗X is a τC-local

equivalence. Since colimits are universal in P(C), it suffices to show that u∗R×u∗X Y →Y
is an equivalence for any map Y → u∗X, where Y ∈ C. To see this, note that it is

in fact a covering sieve. Indeed, R ×X uY → uY is a covering sieve, and therefore

u∗(R×X uY )×u∗u!Y Y ≃ u∗R×u∗X Y → Y is covering, since u is co-continuous.

For the remainder of this section,

u ∶ CS ⊆DS (2.24)

is the inclusion between full subcategories of SchGS , both containing ∅ and both satisfying
properties (P) and (H). Main examples of interest to keep in mind are the inclusions

SmG
S [E] ⊆ SmG

S [E ′].

Lemma 2.25. Let u ∶ CS ⊆ DS be as in formula (2.24). Then u is topologically co-

continuous.

Proof. Set X ∈ CS . Since the cd-structure fpNis on each of these categories is complete,

the covering sieves on X and on u(X), in both cases, are exactly those which contain the

sieve generated by a simple covering [40, Section 2]. Property (P) implies that any simple
covering of X in DS is a simple covering in CS . It follows that the pullback u∗R of any

covering sieve R is again a covering sieve.

Proposition 2.26. Let u ∶ CS ⊆DS be as in formula (2.24).

1. The functor u! ∶ P(CS)→P(DS) preserves all Nisnevich and all motivic equivalences.

2. The functor u∗ ∶ P(DS)→P(CS) preserves all Nisnevich and all motivic equivalences.

Proof. Recall that if A is a presentable ∞-category and S is a set of morphisms in A,

then the class of S -local equivalences is the closure of S under push-outs, small colimits,

and 2-out-of-3 (see, e.g., [28, Proposition 5.5.4.15]).
The first statement then follows from the facts that u! preserves colimits and fixed-point

Nisnevich squares and that u! (X ×A1) ≃ u!(X)×A1. The second statement follows from

Lemma 2.23, Lemma 2.25, and the fact that u∗ (X ×A1) ≃ u∗(X)×A1.

4This is called ‘cocontinuous’ in [3, Definition III.2.1]. We follow the terminology in [26] to
avoid confusion with the category theorist’s term ‘cocontinuous functor’.
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Corollary 2.27. Let u ∶ CS ⊆ DS be as before. There are natural equivalences u∗ ○LNis ≃
LNis ○u∗ and u∗ ○Lmot ≃ Lmot ○u∗ of functors P(DS) →P(CS).

The adjoint pairs (u!,u
∗) and (u∗,u∗) extend to adjoint pairs on A1-invariant Nisnevich

sheaves. Overloading notation, we continue to write u!,u
∗,u∗ for the induced functors on

categories of A1-invariant Nisnevich sheaves.

Proposition 2.28. Let u ∶ CS ⊆DS be as in formula (2.24).

1. The restriction functor u∗ ∶ P(DS) → P(CS) preserves A1-invariant Nisnevich

sheaves.

2. The induced functor u∗ ∶ Spc(DS) → Spc(CS) is symmetric monoidal and has a left

adjoint u! and a right adjoint u∗.

3. Similarly, u∗ ∶ Spc●(DS) → Spc●(CS) is symmetric monoidal and has a left and a

right adjoint, which we again denote respectively by u! and u∗.

Moreover, these functors fit into commutative diagrams

P(CS) P(DS)

Spc(CS) Spc(DS)

Spc●(CS) Spc●(DS)

u!

Lmot

u∗

Lmot

u!

(−)+
u∗

(−)+
u!

u∗

and

P(DS) P(CS)

Spc(DS) Spc(CS)

Spc●(DS) Spc●(CS).

u∗

Lmot

u∗

Lmot

u∗

(−)+

u∗

(−)+
u∗

u∗

Proof. Since u! preserves fixed-point Nisnevich squares and u! (X ×A1) ≃ u!(X)×A1, it

follows that u∗ preserves A1-invariant Nisnevich sheaves on CS and thus restricts to a

limit-preserving functor u∗ ∶ Spc(DS)→Spc(CS). As these are categories are presentable,
u∗ has a left adjoint u!. It follows from Proposition 2.26 that u∗ ∶ Spc(DS) → Spc(CS)
preserves colimits. In particular, it has a right adjoint u∗. Note that u∗ is symmetric

monoidal, since it preserves limits and Spc(DS) is Cartesian monoidal.
The functors u∗ and u∗ preserve final objects and so induce adjoint pairs on based

spaces. Since u∗ preserves limits, it has a left adjoint u!. It is straightforward to verify

that these fit into the commutative diagrams displayed.

Remark 2.29. Suppose that CS and DS are also closed under binary products. Then
u! ∶ Spc(CS) → Spc(DS) preserves binary products (the monoidal product on these

categories). However, u! is not in general a symmetric monoidal functor, since it does not

always preserve the unit object pt (because it is not in general representable), but there
is always a canonical map u!(pt) → pt adjoint to the equivalence pt ≃ u∗(pt). Similarly,

u! ∶ Spc●(CS) → Spc●(DS) preserves the smash product, but need not preserve the unit

object S0 ≃ pt∐pt, though again there is a canonical map u! (S0) → S0.
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Proposition 2.30. Let u ∶ CS ⊆DS be as before. The functors

u!,u∗ ∶ Spc(CS) → Spc(DS),
u!,u∗ ∶ Spc●(CS) → Spc●(DS)

are all full and faithful. In particular, if E is a family of subgroups closed under conjugacy

and u ∶ SmG
S [E] ⊆ SmG

S is the inclusion, then u!,u∗ ∶ SpcG,E(S) → SpcG(S) and u!,u∗ ∶
SpcG,E

● (S) → SpcG● (S) are full and faithful.

Proof. First we note that the unit of the adjunction uP! ∶ P(CS) ⇄ P(DS) ∶ u∗ is an

equivalence η ∶ id ≃ u∗uP! , and the counit of u∗ ∶ P(DS) ⇄ P(CS) ∶ u∗ is an equivalence
ε ∶ u∗u∗ ≃ id. Indeed, uP! F and u∗F are respectively computed by the left and right

Kan extensions of F along u, and so uP! F (W ) ≃ colimW→X F (X) and u∗F (W ) ≃
limX→W F (X). Here the indexing categories are respectively the categories of morphisms
W → X and X → W , where X ∈ SmG[E]. In particular, if W ∈ SmG

S [E], these have an

initial respectively terminal object, and so id ≃ u∗uP! and u∗u∗ ≃ id, as claimed.

The counit of u∗ ∶ Spc(DS)⇄Spc(CS) ∶ u∗ is thus an equivalence, as u∗u∗ ≃ id. To show

that the unit of u! ∶ Spc(CS) ⇄ Spc(DS) ∶ u∗ is an equivalence id ≃ u∗u!, we note that
by Corollary 2.27 (and writing ι ∶ SpcG(CS) ⊆ P(CS) for the inclusion) we have u∗u! ≃
u∗Lmotu

P
! ι ≃Lmotu

∗uP! ι ≃Lmotι ≃ id. Thus both of the functors u!,u∗ ∶ Spc(CS)→Spc(DS)
are full and faithful.
The pointed cases follow immediately from these considerations.

Let ι ∶ H ↪ G be a group monomorphism. Let CH
S ⊆ SchHS and CG

S ⊆ SchGS be full
subcategories satisfying (P) and (H), as before. Suppose further that the induction-

restriction adjunction ι! ∶ SchHS ⇄ SchGS ∶ ι∗ restricts to the adjunction

ι! ∶ CH
S ⇄CG

S ∶ ι∗.

Lemma 2.31. Let ι, CG
S , CG

S be as before.

1. The restriction functor ι∗ ∶ P (CG
S ) → P (CH

S ) preserves A1-invariant Nisnevich

sheaves.

2. The induced functor ι∗ ∶ Spc(CG
S ) → Spc(CH

S ) is symmetric monoidal and has a left
adjoint ι! and a right adjoint ι∗.

3. Similarly, ι∗ ∶ Spc● (CG
S ) → Spc● (CH

S ) is symmetric monoidal and has a left and a

right adjoint, which we again denote respectively by ι! and ι∗.

Moreover, these functors fit into commutative diagrams

CH
S CG

S

Spc(CH
S ) Spc(CG

S )

Spc● (CH
S ) Spc● (CG

S )

ι!

ι!

(−)+

ι∗

(−)+
ι!

ι∗

and

CG
S CH

S

Spc(CG
S ) Spc(CH

S )

Spc● (CG
S ) Spc● (CH

S ) .

ι∗

ι∗

(−)+

ι∗

(−)+

ι∗

ι∗
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Proof. The functors i! ∶ CH
S → CG

S , i∗ ∶ CG
S → CH

S both send distinguished squares to
distinguished squares, and ι!(X)×A1 ≅ ι! (X ×A1) and ι∗(X)×A1 ≅ ι∗ (X ×A1). It follows
that ι! ∶ P (CH

S ) → P (CG
S ) and ι∗ ∶ P (CG

S ) → P (CG
S ) preserve all motivic equivalences. It

then follows that these induce functors on the category of motivic spaces as displayed.

Since ι∗ ∶ Spc(CG
S ) → Spc(CG

S ) preserves limits and these categories are Cartesian

monoidal, it follows that ι∗ is symmetric monoidal.
Since ι∗, ι∗ preserve final objects, they induce an adjoint pair on based spaces. Since ι∗

preserves limits, it has a left adjoint ι!. It is straightforward to verify that these fit into

commutative diagrams as displayed.

Let f ∶ T → S be a map in SchGB . Let CG
T ⊆ SchGT and CG

S ⊆ SchGS be full subcategories
satisfying (P) and (H), as before. Suppose that the base change f−1 ∶SchGS →SchGT restricts

to a functor f−1 ∶ CG
S → CG

T . We write f∗ ∶ P (CG
T ) → P (CG

S ) for precomposition with

f−1 – that is, f∗ = (f−1)∗ in the notation from before. The functor f∗ preserves Nisnevich
excisive presheaves and homotopy-invariant presheaves, and thus restricts to a functor

f∗ ∶ Spc(CG
T )→Spc(CG

S ). This functor preserves limits and thus has a left adjoint, which

we write as f∗ ∶ Spc(CG
S ) → Spc(CG

T ). Suppose further that the adjunction u ∶ SchGT ⇄
SchGS ∶ f−1 restricts to an adjunction

u ∶ CG
T ⇄CG

S ∶ f−1.

Then f∗ ∶ P (CG
S )→P (CG

T ) is precomposition with the forgetful functor u and it preserves

Nisnevich excisive presheaves and homotopy-invariant presheaves. Thus f∗ restricts to a

functor f∗ ∶ Spc(CG
S )→Spc(CG

T ), which is left adjoint to f∗. Also in this case, f∗ preserves

limits and so has a left adjoint f# ∶ Spc(CG
T ) → Spc(CG

S ).
The functors f∗, f∗ preserve final objects and so induce an adjunction f∗ ∶ Spc● (CG

S )⇄
Spc● (CG

T ) ∶ f∗. In the case when the forgetful functor restricts to u ∶ CG
T →CG

S , then there

is an adjunction f# ∶ Spc(CG
T ) ⇄ Spc(CG

S ) ∶ f∗.

Remark 2.32. The adjunctions of Lemma 2.31 admit the following alternate description
in terms of change-of-base functors. There is an equivalence of categories

SchGG×HS

∼�→ SchHS (2.33)

induced by taking the fiber over {e} × S ⊆ G ×H S. Write CG×HS ⊆ SchGG×HS for the

full subcategory corresponding to CH
S under formula (2.33). The restriction functor ι∗

corresponds to pullback along f ∶G×H S → S. Moreover, the equivalence (2.33) induces

an equivalence of motivic spaces

Spc(CG×HS) ≃ Spc(CH
S ),

and under this equivalence the functors i!,i
∗,i∗ are respectively identified with the functors

f#,f
∗,f∗.

2.4. Motivic G-spectra

We recall the construction of categories of motivic G-spectra from [24] and some variants.
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Let C⊗ be a presentably symmetric monoidal ∞-category and X a set of objects in C.
If I = {x1, . . . ,xn} is a finite subset of X, write ⊗I = x1⊗⋯⊗xn. Write

C [X−1] ∶= colim
I⊆X

I finite

C [(⊗I)−1],

where C [x−1] denotes the symmetric monoidal inversion of an object x ∈ C in a presentable

symmetric monoidal ∞-category C [34, §2.1].
Alternatively, one may consider the stabilization in ModC , the ∞-category of C-modules

in PrL,⊗. Recall that if M ∈ModC and x ∈ C, then Stabx(M) is the colimit, in ModC , of

the sequence

M −⊗x��→M −⊗x��→M→⋯ .

More generally, for a set of objects X in C, define

StabX(M) ∶= colim
I⊆X

I finite

Stab⊗I(M).

An object x ∈ C is n-symmetric if the cyclic permutation on x⊗n is homotopic to the

identity. If each x ∈X is n-symmetric for some n ≥ 2, then the canonical map of C [X−1]-
modules is an equivalence

M⊗C C [X−1] ∼�→ StabX(M)

(see [24, Section 6.1] and [34, Corollary 2.22]).

Let E be a finite-rank locally free G-module on S. Write T E ∈ Spc●(S) for the associated
motivic sphere, defined as the Thom space

T E =V(E)/V(E)−z(S),

where z ∶S→V(E) is the zero section. We will also write ΣE for the associated endofunctor

ΣE ≃ T E ∧−.

We will also be interested in stabilizing the categories SpcG,F
● (S), for a family F .

Observe that SpcG,F
● (S) is an SpcG● (S)-module and u! ∶ SpcG,F

● (S)→SpcG● (S) is a map of

SpcG● (S)-modules, since if X ∈SmG
S [F] and Y ∈SmG

S , then X×Y ∈SmG
S [F]. In particular,

even though spheres T E ∈ SpcG● (S) are generally not objects of SpcG,F
● (S), they still

determine endofunctors ΣE ∶ SpcG,F
● (S) → SpcG,F

● (S).
Write SphGB ∶= {T E ∣ E ∈RepGB}, where RepGB is the set of finite-rank G-vector bundles

over B.

Definition 2.34. A subset T ⊆ SphGB is stabilizing if there is some T E ∈ T such that
T E ≃ T ∧T E ′ , for some locally free G-module E ′.

Definition 2.35.

1. Let p ∶ S →B be a G-scheme over B and T ⊆ SphGB a stabilizing subset. Write

SptGT (S) ∶= SpcG● (S)[(p∗T )−1] .
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If T = {T E} consists of a single sphere, we write SptGTE (S) in place of SptGT (S). When

T = SphGB , we simply write

SptG(S) ∶= SptGSphG
B
(S).

2. Let F be a family of subgroups. Define

SptG,F
T (S) ∶= SpcG,F

● (S) ⊗
SpcG● (S)

SptGT (S).

Write

Σ∞T ∶ SpcG,F
● (S) → SptG,F

T (S)

for the stabilization functor. In the case when T = SphGB , we simply write Σ∞. When
no confusion should arise, given X ∈ SpcG,F

● (S) we will write again X for its image in

SptG,F
T (S) instead of Σ∞T X. Given TV ∈ T , p ∶ S → B, E ∈ SptG,F

T (S), and k ∈ Z, we

typically write ΣkVE rather than Σkp∗VE when no confusion should arise.

Proposition 2.36. Set S ∈ SchGB. Then SptG,F
T (S) is a symmetric monoidal stable ∞-

category satisfying the following properties:

1. There is a canonical equivalence of SpcG● (S)-modules

SptG,F
T (S) ≃ StabT (SpcG,F

● (S)) .

2. Given a morphism f ∶ T → S in SchGB, there is an induced adjunction

f∗ ∶ SptG,F
T (S) ⇄ SptG,F

T (T ) ∶ f∗
such that f∗Σ∞T X ≃ Σ∞T f

∗X. Similarly, if f is smooth, then there is an induced

adjunction

f# ∶ SptG,F
T (T ) ⇄ SptG,F

T (S) ∶ f∗

such that f#Σ
∞
T X ≃Σ∞T f#X.

3. The ∞-category SptG,F
T (S) is generated under sifted colimits by the compact objects

Σ−kVΣ∞T X+,

where k ≥ 0, TV ∈ T , p ∶X → S is in SmG
S [F], and X is affine.

4. The family of functors

{p∗ ∶ SptG,F
T (S) → SptG,F

T (X) ∣ p ∶X → S is in SmG
S [F], X affine}

is jointly conservative.

Proof. That SptG,F
T (S) is stable is a consequence of the fact that T is stabilizing and that

T ≃S1∧Gm. It is symmetric monoidal by construction. The arguments for the remaining

points of (1)–(3) are similar to [24, Section 6]. Since SptG,F
T (S) is stable, in order to

establish (4) it suffices to show that E ≃ 0 whenever p∗E ≃ 0 for all p ∶X → S in SmG
S [F]
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with X affine. If TV ∈ T , then since V ∈RepGB , we have Σ−kVΣ∞T X+ ≃ p# (Σ−kV1X). Now,
if p∗E ≃ 0, we have

MapSptG,F
T
(S) (Σ

−kVΣ∞T X+,E) ≃MapSptG,F
T
(X) (Σ

−kV1X,p∗E) ≃ 0.

Given E such that p∗E ≃ 0 for all p ∶X →S in SmG
S [F] with X affine, let CE ⊆ SptG,F

T (S)
be the full subcategory of whose objects are W such that MapSptG,F

T
(S)(W,E) ≃ 0 – that

is, the E -acyclic objects. Then CE is closed under colimits and it contains Σ−kVΣ∞T X+
for any k ≥ 0 and TV ∈ T . Thus by (3), CE = SptG,F

T (S), which implies that E ≃ 0 as
required.

Remark 2.37. Over an affine base, every representation is the quotient of a finite sum
of copies of the regular representation ρG. This implies that for any S,

SptG(S) ≃ SptGTρG (S).

Let N ⊴G be a normal subgroup and π ∶G→G/N the quotient homomorphism. This

induces a function π∗ ∶RepG/NB →RepGB , and we write

N -triv = {T E ∣ E ∈ π∗(RepG/NB )} ⊆ SphGB

for the associated set of ‘N -trivial G-spheres’. This stabilizing set of spheres plays an

important role in later sections.

Lemma 2.38. Let F be a family. The adjunction u!∶ SpcG,F
● (S) ⇄ SpcG● (S) ∶ u∗ of

SpcG● (S)-modules induces an adjoint pair

u! ∶ SptG,F
T (S) ⇄ SptGT (S) ∶ u∗.

Moreover, u∗ is symmetric monoidal and

u! ∶ SptG,F
T (S) ↪ SptGT (S)

is full and faithful with essential image the localizing tensor ideal generated by Σ−nV X+,
where TV ∈ p∗T and X ∈ SmG

S [F].

Proof. That the adjunction (u!,u
∗) of SpcG● (S)-modules induces an adjoint pair on

categories of motivic spectra follows from the description of SptGT (S) and SptG,F(S),
respectively, as StabT (SpcG● (S)) and StabT (SpcG,F

● (S)) (see the discussion preceding

[24]). This also implies that u! is full and faithful, since u!∶SpcG,F
● (S) ↪ SpcG● (S) is, by

Proposition 2.30.

Let C⊗ be a presentably symmetric monoidal ∞-category and E ∈ C an idempotent

object. Recall that this means there is a map e ∶1→E such that id⊗e ∶E ≃E⊗1→E⊗E

and e⊗ id ∶E ≃ 1⊗E →E⊗E are equivalences [29, Definition 4.8.2.1]. Tensoring with E
is a localization functor L =E⊗− ∶M→M on any M∈ModC [29, Proposition 4.8.2.4].

Lemma 2.39. With notation as before,

LM≃ LC⊗CM.
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Proof. An argument similar to [29, Proposition 4.8.2.10] shows that the forgetful

functor ModE(M)→M determines an equivalence of C-modules ModE(M)≃LM. Since

ModE(M) ≃ModE(C)⊗CM by [29, Theorem 4.8.4.6], the lemma follows.

We record the following result which we will use a few times. A similar statement can

be found in [5, Lemma 26].

Lemma 2.40. Let C⊗ be a presentably symmetric monoidal ∞-category and X a set of

objects. Suppose that E ∈ C is an idempotent object. Write L = E⊗− for the associated

symmetric monoidal localization endofunctor. Then there is an equivalence

L(C [X−1]) ≃ (LC)[X−1]

in CAlg(PrL,⊗).

Proof. Both of these categories can be identified with LC⊗C C [X−1].

Next we record the motivic version of the Wirthmüller isomorphism, which is a special

case of the ambidexterity equivalence proved in [24]. If H ≤G is a subgroup and ι is the
inclusion, we sometimes write

G+⋉H X ∶= ι!X.

Proposition 2.41 (Wirthmüller isomorphism [24]). Let ι ∶H ↪G be a group monomor-

phism. Let F , F ′ be families of subgroups of, respectively, H and G such that the induction-

restriction adjunction restricts to ι! ∶ SmH
S [F] ⇄ SmG

S [F ′] ∶ ι−1. Then there is an induced

adjunction

ι! ∶ SptH,F(S) ⇄ SptG,F ′(S) ∶ ι∗,

such that ι!(Σ∞X) ≃ Σ∞(ι!X) and ι∗(Σ∞X) ≃ Σ∞ (ι−1X). Moreover, ι∗ admits a right

adjoint ι∗ and there is an equivalence

ι!
∼�→ i∗.

Proof. The first statements are straightforward. We explain the last statement. Consider

the G-equivariant map f ∶G×H S → S. Then ι!,ι
∗,ι∗ are identified with f#,f

∗,f∗ via the

equivalence SptG,F(G×H S) ≃ SptH,F(S) (see Remark 2.32). Here F is the family of

subgroups of G generated by F .

We have u∗ι′!v! ≃ ι! and u∗ι′∗v! ≃ ι∗, where we write u ∶SmG,F
S ⊆SmG

S and v ∶SmH,F
S ⊆SmH

S

for the inclusions and ι′!,ι
′
∗ ∶ SptH(S) → SptG(S) are the corresponding functors for the

family Fall = F ′. In particular, the general case follows from the case when F =Fall. But

in this case, the Wirthmüller isomorphism is the ambidexterity equivalence [24, Theorem

1.5] for the finite étale morphism f.

2.5. Functoriality

We will make use of the functoriality of the ∞-categories of equivariant motivic spaces

and spectra with respect to the group G, the family of subgroups F , and the base scheme

S. To establish this, it will be convenient to introduce the following notation:
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Definition 2.42.

1. The category SchB of equivariant B-schemes has objects pairs (G,S) consisting of a
finite group G (whose order is invertible in OB) and S ∈SchGB . A morphism (G′,S′)→
(G,S) is a pair (φ,f), where φ ∶G′→G is a homomorphism of groups and f ∶ S′→ S

is a φ-equivariant map of B -schemes.

2. The category SchB[⋅] of equivariant B-schemes and families has objects consisting

of triples (G,F,S), where (G,S) ∈ SchB and F is a family of subgroups of G. A

morphism (G′,F ′,S′) → (G,F,S) is a triple (φ,i,f), where (φ,f) is a morphism in

SchB and i ∶ φ−1F ⊂F ′ is an inclusion of posets.

The inclusion i ∶ φ−1F ⊂ F ′ is unique if it exists. When no confusion should arise, we

write (φ,f) instead of (φ,i,f) for a morphism in SchB[⋅].
We identify SchB with the full subcategory of SchB[⋅] whose objects are triples

of the form (G,Fall,S). The inclusion SchB ⊆ SchB[⋅] is left adjoint to the forgetful

functor.
In this subsection we extend constructions in the previous sections to functors

Spc×,Spc∧● ,Spt⊗ ∶ (SchB[⋅])op →CAlg(PrL),

whose respective values on (G,F,S) are the symmetric monoidal ∞-categories SpcG,F(S),
SpcG,F

● (S), and SptG,F(S), and on morphisms, (φ,i,f)∗ ≃ i!φ
∗f∗.

Lemma 2.43. The categories SchB and SchB[⋅] admit finite products. In particular, they

are Cartesian symmetric monoidal.

Proof. It is straightforward to check that (G,S) × (G′,S′) ≃ (G ×G′,S ×B S′) and

(G,F,S) × (G′,F ′,S′) ≃ (G ×G′,F ×F ′,S ×B S′), where F ×F ′ denotes the family of

subgroups of G×G′ consisting of those subgroups of the form H ×H ′ for H ∈ F and
H ′ ∈ F ′.

Corollary 2.44. The assignment (G,F,S) ↦ SmG
S [F], (φ,i,f) ↦ iφ−1f−1, extends to a

functor

SchB[⋅]op →CAlg(Cat),

the category of commutative algebra objects of Cat with respect to the Cartesian symmetric

monoidal structure (equivalently, the category of symmetric monoidal categories).

Composing with the symmetric monoidal presheaves functor Cat → Cat∞ → PrL, we

obtain a functor

(SchB[⋅])op →CAlg(PrL),

which sends the object (G,F,S) to P (SmG
S [F]) and the morphism (φ,i,f) to

i!φ
∗f∗.
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To obtain the necessary functoriality of equivariant motivic spaces and spectra, we
follow the techniques of [7, Section 6.1]. Recall from there that we have a commutative

diagram of ∞-categories

MCat∞ OCat∞ E

Cat∞ Cat∞ Pos,
Fun(Δ1,−)

in which all squares are Cartesian. Here Pos denotes the ∞-category of (not necessarily

small) posets, the lower right-hand horizontal arrow sends an ∞-category to the poset of

subsets of the set of equivalence classes of objects, and E → Pos is the universal co-
Cartesian fibration, restricted to posets. The ∞-categories OCat∞ and MCat∞ are,

respectively, the ∞-categories of ∞-categories equipped with a collection of equivalence

classes of objects respectively a collection of equivalence classes of arrows.

Lemma 2.45. Set (C,W ) ∈ MCat∞ such that C is presentable and W is of small

generation.

1. The partial adjoint to

Cat∞→MCat∞, C ↦ (C, equivalences),

is defined at (C,W ), and the localization C [W −1] is again presentable.

2. Suppose that C admits a symmetric monoidal structure C⊗ ∈CAlg(Cat∞) and W is
stable under the monoidal product. Then (C,W ) lifts to (C,W )⊗ ∈ CAlg(MCat∞),
and the partial left adjoint to

CAlg(Cat∞) →CAlg(MCat∞), C ↦ (C,equivalences),

is defined at (C,W )⊗.

Proof. The first item follows from [28, Proposition 5.5.4.15, Proposition 5.5.4.20]. It then

follows from [29, Proposition 2.2.1.9] that C [W −1] inherits a monoidal structure such that

C → C [W −1] is monoidal. This implies the second item.

Consider the subfunctor of the composition

(SchB[⋅])op →Cat→Cat∞
P→PrL →Fun(Δ1,Cat∞)

whose value on the object (G,F,S) is the full subcategory

W(G,F,S) ⊂Fun(Δ1,P (SmG
S [F]))

consisting of the motivic equivalences. Since motivic equivalences are stable under the

smash product and are preserved by the functors f∗, φ∗, and i!, the assignments

(G,F,S) ↦ (P (SmG
S [F]),W(G,F,S)), (P● (SmG

S [F]),W(G,F,S))

induce functors

(SchB[⋅])op →MCat∞.
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The images of (P (SmG
S [F]),W(G,F,S)) and (P● (SmG

S [F]),W(G,F,S)) under the partial
left adjoint to

CAlg(Cat∞) →CAlg(MCat∞)

are, respectively, SpcG,F(S) and SpcG,F
● (S).

Write SphGS for the set of spheres {T E}, where E is an equivariant vector bundle over

S. The assignment (G,F,S)↦ SphGS is a presheaf of sets on SchB[⋅]op, which we write as

Sph. Let

T ∶ SchB[⋅]op → Set

be a subpresheaf of Sph, which is closed under the smash product and takes values in

stabilizing sets of spheres – that is, there is some T E ∈ T(G,F,S) such that T E ≃ T ∧T E
′

.

We obtain a functor

SchB[⋅]op →CAlg(OCat∞),

which on objects is the assignment (G,F,S) ↦ (SpcG,F
● (S),T(G,F,S)). By the following

lemma, we obtain SptG,F
T(G,F,S)

(S) as the image of (SpcG,F
● (S),T(G,F,S)) under the partial

left adjoint of CAlg(Cat∞) →CAlg(OCat∞), C ↦ (C,π0Pic(C)).

Lemma 2.46. Let (C⊗,U) be an object of CAlg(OCat∞) such that C is presentable
symmetric monoidal and U is small. Then the partial adjoint of

CAlg(Cat∞) →CAlg(OCat∞), C ↦ (C,π0Pic(C)),

is defined at (C⊗,U).

Proof. This follows from [24, Section 6.1].

Corollary 2.47. The assignments (G,F,S) ↦ SpcG,F(S) and (G,F,S) ↦ SptG,F(S)
extend to functors Spc ∶ SchB[⋅]op → CAlg(PrL) and Spt ∶ SchB[⋅]op → CAlg(PrL),
respectively.

3. Filtering by isotropy

In this section, we develop techniques to define and analyze filtrations of motivic G-spaces
and spectra by families of isotropy.

3.1. Universal motivic F-spaces

Let F be a family of subgroups. In classical equivariant homotopy theory, there is a G-

space E●F characterized by the property that a G-space X admits a unique mapX →E●F
if all of the stabilizers of X are in F , and no maps from X to E●F otherwise. The G-space
E●F formally exists as a presheaf on SmG

B and hence as a motivic G-space over B, but it

does not have the correct universality property.

Example 3.1. Let G ≠ {e}, B = Spec(k) a field, and let L/k be a finite Galois extension

such that G ⊆ Gal(L/k), and consider Spec(L) as a smooth G-scheme over k via the
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Galois action. Then Spec(L)H = ∅ for all e ≠ H ⊆ G – that is, it has a free G-action.
However, we claim that

MapSpcG(k)(Spec(L),E●G) = ∅.

Indeed,

(E●G)0(Spec(L)) =HomSmG
k
(Spec(L),∐

G

Spec(k)) = ∅,

and so the claim follows, since (E●G)0(Spec(L)) surjects onto π0(MapSpcG(k)(Spec(L),
E●G)) (see, e.g., [32, Corollary 2.3.22, Remark 3.2.5]).

Definition 3.2. Let F be a family of subgroups in G. The universal motivic F-space
over S is the object EFS ∈ P (SmG

S ) whose value on X ∈ SmG
S is

EFS(X) =
⎧⎪⎪⎨⎪⎪⎩

pt, X ∈ SmG
S [F],

∅, else.

When the base S is understood, we simply write EF .

Proposition 3.3. Let F be a family of subgroups in G. The presheaf EF is a motivic
G-space.

Proof. We need to check that EF is Nisnevich excisive and A1-homotopy invariant. From

the definition we have that EF(∅) = pt. Given a Nisnevich square (2.11), the possible

values of

EF(X) EF(U)

EF(Y ) EF(V )

are the squares

∅ ∅

∅ ∅,

∅ ∅

∅ pt,

∅ ∅

pt pt,

∅ pt

∅ pt,

pt pt

pt pt,

which are all Cartesian squares. It follows that EF is Nisnevich excisive. Also, EF is

A1-homotopy invariant, since (X ×SA
1
S)

H =XH ×SH A1
SH .

Totaro [39] and Morel and Voevodsky [32, Section 4.2] constructed a geometric model
for the classifying space of an algebraic group. This is generalized by Hoyois in [23,

Section 2] to construct a geometric model for certain equivariant classifying spaces. Similar

considerations lead to geometric models for the spaces EF .

Definition 3.4. A system of approximations to EFS is a diagram (Ui)i∈I , which is a

subdiagram of a diagram (Vi)i∈I of inclusions of G-equivariant vector bundles over S,

where I is a filtered poset and subject to the following conditions:
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1. Each Ui is in SmS[F], and Ui ⊆ Vi is an open subscheme.

2. For i ∈ I, there exists an element 2i ∈ I with the property that 2i ≥ i and such that

there is an isomorphism V2i ≅Vi⊕Vi of G-vector bundles which identifies the inclusion
Vi ↪ V2i with the inclusion (id,0) ∶ Vi ↪ Vi⊕Vi.

3. Under the isomorphism V2i ≅ Vi⊕Vi, (Ui×Vi)∪(Vi×Ui) ⊆U2i.

4. There is a Nisnevich cover {Tj → S} such that for any affine X in SmG
Tj

[F], there is

an i ∈ I such that (Ui)X →X admits a section.

Example 3.5. Write ρ = ρG. Let Un ⊆VB(nρ) be the open invariant subscheme

Un ∶=V(nρ)∖ ⋃
H∈co(F)

V(nρ)H .

The inclusions V(nρ) ⊆V((n+1)ρ) induce maps Un →Un+1.

Set f ∶ S → B in SchGB . Then (f∗Un)n∈N is a system of approximations to EFS .

Conditions (1)–(3) are clear. To check the last condition, we may assume that B and

S are affine (since S is equivariant locally affine). Let X ∈ SmG
S [F] be affine. Then for

n sufficiently large, there is an equivariant closed immersion of B -schemes X ↪V(nρ).
For any H /∈ F , we have X ∩(V(nρ)H = ∅, which means that X →V(nρ) factors to give

a map X →Un over B. This defines the desired section X → f∗Un.

Example 3.6. Let N ⊴ G be a normal subgroup. The family F[N] consists of all
subgroups not containing N. Write W ∶= ρG/ρG/N for the quotient representation (where

ρG/N is viewed as a G-representation via the quotient homomorphism G → G/N). Let

Un = VS(nW )∖ {0}. This defines a system of approximations to EF[N]S . Conditions
(1)–(3) of the definition are clear. As in the previous example, to check the last condition
it suffices to assume that B and S are affine. Let X ∈ SmG

S [F[N]] be affine. Then for

n large enough, there is an equivariant closed immersion of B -schemes X ↪ VB(nρG).
The preimage of 0 under the projection p ∶V(nρG) →V(nW ) is V(nρG/N). Since N is

not contained in any stablizer of X, we have X ∩VB (nρG/N) = ∅, which implies that

restriction of p to X factors through Un. This defines the desired section X →Un.

If (Ui)i∈I is a system of approximations to EFS , define

U∞ ∶= colim
I

Ui ∈ SpcG(S).

Proposition 3.7. Let F be a family of subgroups in G and (Ui)i∈I be a system of

approximations to EFS. Then there is an equivalence

U∞
≃�→EFS

in SpcG(S).

Proof. To prove the result, it suffices to work Nisnevich locally on S, and so we

may assume that S = Tj in the last condition of Definition 3.4. For each i, there is a
unique map Ui →EF which induces the unique map U∞ →EF . It suffices to show that

SingA1(U∞)(X)→ SingA1(EF)(X) is an equivalence for any affine X in SmG
S . Both sides

are empty if X /∈ SmG
S [F], so we just need to show that SingA1(U∞)(X) is contractible
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for any affine X in SmG
S [F]. By assumption, there is a section of U∞×S X →X, and so

the result follows from [23, Lemma 2.6].

Proposition 3.8. Let F be a family of subgroups and let f ∶ S′ → S be a morphism in

SchGB. Then

f∗(EFS) ≃EFS′ .

Proof. This follows from Proposition 3.7, together with Example 3.5.

Write i ∶ SmG
S [F] ⊆ SmG

S for the inclusion of categories.

Proposition 3.9. There is a canonical equivalence of endofunctors

i!i
∗ ≃EF ×− ∶ SpcG(S) → SpcG(S)

and

i!i
∗ ≃EF+∧− ∶ SpcG● (S) → SpcG● (S).

Proof. We treat the unbased case; the based case then follows. Set X ∈ SpcG(S). We

have (i∗X)(W ) ≃X(W ) for W ∈ SmG
S [F]. In particular, the projection EF → pt induces

the equivalences i∗(EF ×X) ≃ i∗(X) and thus

i!i
∗(EF ×−) ∼�→ i!i

∗(−).

Now EF is equivalent to colimiUi, where Ui ∈ SmG
S [F]. If W ∈ SmG

S , then each Ui×W is
in SmG

S [F]. It follows that if X is any object of SpcG(S), then, writing X as a colimit of

objects of SmG
S , we see that EF ×X ≃ i!(E) for some E ∈ SpcG,F(S). In particular, since

η ∶ id ≃ i∗i! is an equivalence by Proposition 2.30, we have i!η ∶ i!(E) ≃ i!i
∗i!(E). From the

triangle identity for the unit and counit, we have that εi! ∶ i!i∗(i!(E)) ≃ i!(E) is also an
equivalence. It follows that we have equivalences

EF ×− ≃ i!i
∗(EF ×−) ≃ i!i

∗.

Corollary 3.10. Let F be a family of subgroups.

1. The essential images of EF ×− and EF+ ∧− are, respectively, the subcategories
SpcG,F(S) ⊆ SpcG(S) and SpcG,F

● (S) ⊆ SpcG● (S).
2. The projection EF ×X → X is an equivalence for X ∈ SpcG(S) if and only if X ≃

i!(X ′) for some X ′ ∈ SpcG,F(S).
3. The projection EF+∧Y →Y is an equivalence for Y ∈SpcG● (S) if and only if Y ≃ i! (Ỹ )

for some Ỹ ∈ SpcG,F
● (S).

4. The canonical maps are equivalences

MapSpcG(S)(EF ×X,X ′) ≃MapSpcG(S)(EF ×X,EF ×X ′)
MapSpcG● (S)(EF+∧Y ,Y ′) ≃MapSpcG● (S) (EF+∧Y ,EF+∧Y ′) .
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Recall that i! ∶ SptG,F
T (S) → SptGT (S) is full and faithful with essential image the

localizing tensor ideal generated by T −E ⊗X+, where X ∈ SmG
S [F] and T E ∈ T (see

Lemma 2.38).

Proposition 3.11. There is an equivalence of colocalization endofunctors

EF+⊗− ≃ i!i
∗ ∶ SptGT (S) → SptGT (S).

In particular, there are natural equivalences

i!i
∗ ≃ i!i

∗(1S)⊗ id

and

i∗i
∗ ≃ FSptG

T
(S) (EF+,id) .

Proof. The first statements follow from Proposition 3.9. The last statement follows from

the natural equivalences

MapSptG
T
(S)(X,i∗i

∗Y ) ≃MapSptG
T
(S)(i!i∗X,Y ) ≃MapSptG

T
(S) (EF+⊗X,Y ) .

3.2. Filtrations by adjacent families

We recall the definition of adjacent families.

Definition 3.12. Let F ⊆F ′ be an inclusion of families of subgroups of G.

1. We say that F and F ′ are adjacent if there is a subgroup H ≤G such that F ′∖F =
{(H)}.

2. If N ⊴ G is a normal subgroup, say that F and F ′ are N-adjacent if there is a

subgroup H ≤N such that F ′ ∖F = {K ≤G ∣ (K ∩N) = (H)} (where as before, (A)
denotes the G-conjugacy class of a subgroup A).

3. Say that F and F ′ are N-adjacent at H ≤N if the families are N -adjacent and F ′∖F
is the set of subgroups K ≤G such that (K ∩N) = (H).

Of course, if N =G then N -adjacent families are exactly adjacent families. Since G is

finite, one can always find a filtration

∅ =F−1 ⊆ F0 ⊆ F1 ⊆⋯ ⊆Fn = Fall,

such that each pair Fi ⊆Fi+1 is N -adjacent. For example, one can be produced as follows.

Define the sequence of families

{e} =FilG0 ⊂FilG1 ⊂⋯ ⊂FilGi ⊂⋯ ⊂FilGN = Fall

by setting Fil0 = {e} and inductively defining FilGi by

FilGi ∶= {H ≤G ∣ each proper subgroup K <H is in FilGi−1} .
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(Since G is finite, this sequence terminates at a finite stage.) Each FilGi is a family. More

generally, define

FilN⊴Gi ∶= {K ≤G ∣K ∩N ∈ FilNi } .

The families just defined are not adjacent, but FilN⊴Gi ∖ FilN⊴Gi−1 is a finite union

of conjugacy classes. Let {(Hi)} be the set of these conjugacy classes. Then the

families

FilN⊴Gi−1 ⊆FilN⊴Gi−1 ∪{(H1)} ⊆FilN⊴Gi−1 ∪{(H1),(H2)} ⊆⋯ ⊆FilN⊴Gi

are all N -adjacent.

In any case, a filtration ∅ ⊆F0 ⊆ F1 ⊆⋯ ⊆Fall gives rise to a filtration

∗→EF0+∧X →EF1+∧X →⋯→EFn+∧X ≃X (3.13)

of an object X ∈ C whenever C is an SpcG● (S)-module, for example, SptG(S).
To use this filtration, we need to analyze the filtration quotients, which we do in

Proposition 3.27 and Proposition 4.12.

3.3. Universal spaces for pairs

Definition 3.14. Let F ⊆F ′ be a subfamily. Define the based motivic G-space E(F ′,F)
so that it sits in the cofiber sequence

EF+→EF ′+→E(F ′,F).

If F ′ = Fall, define ẼF ∶=E(Fall,F).

Note that E(F ′,∅) ≃E(F ′)+. At the other extreme, since EFall ≃ pt, the space ẼF sits

in the cofiber sequence

EF+→ S0 → ẼF (3.15)

in SpcG● (S).

Proposition 3.16. Let F ⊆F ′ be a subfamily. There is a canonical equivalence E(F ′,F)≃
ẼF ∧EF ′+. In particular, ẼF ∧EF+ ≃ pt.

Proof. This follows from the commutative diagram

EF+ EF ′+ E(F ′,F)

(EF ×EF ′)+ (EFall×EF ′)+ ẼF ∧EF ′+

∼ ∼

induced by inclusions of families, in which the rows are each cofiber sequence and the left

and middle vertical arrows are equivalences.

Corollary 3.17. Set X ∈ SpcG● (S). The map X → ẼF ∧X induced by S0 → ẼF induces
an equivalence

MapSpcG● (S) (ẼF ∧X,ẼF ∧Y ) ≃MapSpcG● (S) (X,ẼF ∧Y ) .
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Proof. This follows from the previous proposition, Corollary 3.10, and the fiber sequence
Map(ẼF ∧X,ẼF ∧Y )→Map(X,ẼF ∧Y )→Map(EF+∧X,ẼF ∧Y ). Alternatively, sim-

ply note that EF+ ⊗ − is a colocalization and ẼF ⊗ − is a localization endofunctor.

Lemma 3.18. Let F ⊆ F ′ be an inclusion of families and E a family such that E ∩F =
E ∩F ′. Then the map S0 → ẼE induces an equivalence of based motivic G-spaces

E(F ′,F) ∼�→E(F ′,F)∧ ẼE .

Proof. Smashing EE+ with the defining cofiber sequence for E(F ′,F) yields the cofiber

sequence

EF+∧EE+
f�→EF ′+∧EE+→E(F ′,F)∧EE+.

Smashing E(F ′,F) with the defining cofiber sequence for ẼE yields the cofiber sequence

E(F ′,F)∧EE+→E(F ′,F) i�→E(F ′,F)∧ ẼE .

By the hypothesis and Proposition 3.21, f is an equivalence, and so E(F ′,F)∧EE+ is

contractible. This implies that i is an equivalence.

To continue the analysis, we pass to the ∞-categorical stabilization – that is, S1-spectra

– of the various categories of motivic G-spaces. We write

SptG,E
S1 (S) ∶= Stab(SpcG,E

● (S)) .

Recall that SptG,E
S1 (S) can be identified with the category of A1-invariant Nisnevich

sheaves of spectra. We write MapC(X,Y ) for the spectrum of maps in a stable

∞-category C.
Let u ∶ CS ⊆DS be as in formula (2.24). Then we have induced functors

SptS1(CS) SptS1(DS).

u!

u∗

u∗

Since u∗ ∶ P(DS) → P(CS) is a symmetric monoidal left adjoint, it follows that

SptS1(DS) → SptS1(CS) is as well. Since u!,u∗ ∶ P(CS) → P(DS) are full and faithful

by Proposition 2.30, it follows that u!,u∗ ∶ SptS1(CS) → SptS1(DS) are as well.
We introduce a minor technical condition on pairs F ⊆F ′ over S, which we sometimes

require:

Condition 3.19. Set F ⊆F ′. Suppose there is a normal subgroup N ⊴G such that:

1. N and the elements of (F ′∩F[N])∖F act trivially on S and

2. F ⊆F ′∩F[N].

We will say that F satisfies this condition if the pair F ⊆Fall satisfies the condition.
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Remark 3.20. The pair F ⊆ F ′ satisfies Condition 3.19 in the following two important
cases, which cover all of the cases relevant to this paper:

1. The base S has trivial action (in which case we take G =N).

2. The normal subgroup N acts trivially on S and F =F ′∩F[N].

Proposition 3.21. Let F ⊆F ′ be a subfamily satisfying Condition 3.19, E =F ′∖F , and
u ∶ SmG

S [E] ⊆ SmG
S be the inclusion. Let f ∶X1 →X2 be a map in SptGS1(S). Suppose that

S has trivial action. Then the following are equivalent:

1. The map f∗ ∶X1(W ) →X2(W ) is an equivalence, for any W ∈ SmG
S [E].

2. The u∗(f) ∶ u∗(X1) → u∗(X2) is an equivalence in SptG,E
S1 (S).

3. The map

E(F ′,F)⊗X1 →E(F ′,F)⊗X2

is an equivalence in SptGS1(S).

Proof. The first two items are immediately equivalent.
To see that (3) implies (2), we have u∗(E(F ′,F)⊗X) ≃ u∗(E(F ′,F))⊗u∗(X) and it is

straightforward that u∗(E(F ′,F)) ≃ S0 in SptG,E
S1 (S).

Now we show that (2) implies (3). First, we assume that all elements of E act trivially

on S. Filter the inclusion F ⊆F ′ by adjacent families and consider the resulting sequence

EF+ =EF0+→EF1+→EF2+→⋯→EFn−1+→EFn+ =EF ′+.

An inductive argument shows that it suffices to establish that

E(Fr,Fr−1)⊗X1 →E(Fr,Fr−1)⊗X2

is an equivalence for 1 ≤ i ≤ n. Thus, we may assume that F ′,F are adjacent and say that

F ′∖F = {(H)} and H acts trivially on S.

By Proposition 3.9 and Proposition 3.16, in order to show that the map displayed here
is an equivalence, it suffices to show that

MapSptG
S1(S)

(W+,ẼF ⊗f)

is an equivalence for any p ∶W →S in SmG
S [F ′], with W affine. From the gluing sequence

[24, Proposition 5.2], we have the cofiber sequence

W (F)+→W+→ p#i∗ (WF
+ )

in SptGS1(S), where i ∶WF ⊆W is the inclusion (see Notation 2.7). By Proposition 3.16

we have

MapSptG
S1(S)

(−,ẼF ⊗f) ≃MapSptG
S1(S)

(ẼF ⊗−,ẼF ⊗f) .

We have ẼF⊗W (F)+ ≃pt, using Corollary 3.10 and Proposition 3.16, and so we conclude

that

MapSptG
S1(S)

(p#i∗ (WF
+ ),ẼF ⊗f) ≃MapSptG

S1(S)
(W+,ẼF ⊗f) .
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The canonical map G×N(H)W
H →WF is an isomorphism. Indeed, it suffices to check

that WH ∩W gHg−1 = ∅ if H ≠ gHg−1. Now, if w ∈WH ∩W gHg−1 , then Stab(w) contains

both of these subgroups. But since Stab(w) ∈ F ′ and (H) is a maximal element of this
poset, we have that H = Stab(w) = gHg−1. In particular, WF is smooth over S, since

WH →S is smooth. It follows from purity [24, Proposition 5.7] that p#i∗W
F ≃Th(Ni). We

show that if V →WF is an equivariant vector bundle, then MapSptG
S1(S)

(Th(V ),ẼF ⊗f)
is an equivalence. For this, we may assume that H is normal and in particular that

WF =WH . Indeed, we have Th(V ) ≃G+⋉NH Th(V ∣WH ), so via the induction-restriction

adjunction we can replace G by NH and F,F ′ by F∣NH , F ′∣NH , if necessary. Since G is
linearly reductive, we can write V ≅ V ′⊕V H . Since (V ′)H = 0, all stabilizers of V ′ ∖{0}
are in F and so ẼF ⊗V ′∖{0}+ ≃ ∗, which implies that

ẼF ⊗Th(V ′) ≃ ẼF ⊗WF
+ .

Now it follows that

MapSptG
S1(S)

(Th(V ),ẼF ⊗f) ≃MapSptG
S1(S)

(Th(V ′)⊗Th(V H),ẼF ⊗f)

≃MapSptG
S1(S)

(WF
+ ⊗Th(V H),ẼF ⊗f)

≃MapSptG,E

S1 (S)
(WF

+ ⊗Th(V H),u∗ (ẼF ⊗f))

≃MapSptG,E

S1 (S)
(WF

+ ⊗Th(V H),u∗(f)),

which is an equivalence, as needed.

Next we consider the case when F = F ′ ∩F[N], where N is a normal subgroup of
G which acts trivially on S. Again we consider p ∶ W → S in SmG

S [F ′] and the cofiber

sequence

W (F[N])+→W+→ p#i∗ (WN
+ )

in SptGS1(S), where now i ∶WN ⊆W is the inclusion. Since W (F[N])+ ∈ SmG
S [F] we have

that ẼF ⊗W (F[N])+ ≃ pt, and we conclude that

MapSptG
S1(S)

(p#i∗ (WN
+ ),ẼF ⊗f) ≃MapSptG

S1(S)
(W+,ẼF ⊗f) .

Since N acts trivially on S, WN →S is again smooth, and so we have p#i∗W
N ≃Th(Ni).

A similar argument as in the previous paragraph shows that

MapSptG
S1(S)

(Th(Ni),ẼF ⊗f)

is an equivalence.

Now we consider the general case. Let N be the normal subgroup as in Condition 3.19
and consider the inclusions F ⊆F ′′ ⊆F ′, where we write F ′′ =F ′∩F[N]. From the cofiber

sequence

E(F ′′,F)→E(F ′,F)→E(F ′,F ′′),
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we see that it suffices to show that E(F ′′,F)⊗f and E(F ′,F ′′)⊗f are both equivalences.

The case F ′′ ⊆ F ′ is covered by the previous paragraph, and since all elements of F ′′∖F
act trivially on S, this case is covered by the first.

Corollary 3.22. Let F ⊆ F ′ be a subfamily which satisfies Condition 3.19. Write E =
F ′∖F , and u ∶ SmG

S [E] ⊆ SmG
S the inclusion. Then the map

E(F ′,F)⊗u!u
∗X →E(F ′,F)⊗X

is an equivalence for any X ∈ SptGS1(S).

Proof. By Proposition 3.21, it suffices to show that u∗ε ∶ u∗(u!u
∗X) → u∗(X) is an

equivalence. This follows from the triangle identity for the unit and counit, since the
unit η ∶ id ≃ u∗u! is an equivalence, as u! is full and faithful.

3.4. Localization at a cofamily

Proposition 3.23. Let F be a family of subgroups which satisfies Condition 3.19 and

write j ∶ SmG
S [co(F)] ⊆ SmG

S for the inclusion. Then the natural equivalence j∗ (ẼF ⊗−) ≃
j∗ induces an equivalence of localization endofunctors

ẼF ⊗− ≃ j∗j
∗ ∶ SptGS1(S) → SptGS1(S).

Proof. We have natural equivalences

Map(W,j∗j
∗X) ≃Map(j∗W,j∗X)

≃Map(j!j∗W,ẼF ⊗X)
≃Map(ẼF ⊗j!j

∗W,ẼF ⊗X)
≃Map(ẼF ⊗W,ẼF ⊗X)
≃Map(W,ẼF ⊗X),

where the second follows by adjunction and the equivalence j∗X ≃ j∗ (ẼF ⊗X), the fourth
from Corollary 3.22, and the third and fifth from Corollary 3.17.

Write Lco(F)SptGT (S) for the essential image of ẼF ∧− ∶ SptGT (S) → SptGT (S). Since
EF+∧− is a colocalization endofunctor, ẼF∧− is a localization endofunctor. In particular,
ẼF is an idempotent object of SptGT (S) [29, Proposition 4.8.2.4], and so SptGT (S) →
Lco(F)SptGT (S) is a symmetric monoidal localization.

We will abuse notation and terminology slightly by saying that a stabilizing set of
spheres {T E ∈ SpcG● (S)} is in SpcG,co(F)

● (S) if it is in the essential image of j!. Suppose

that T ⊆ SphGB is a set of spheres such that p∗T is in SpcG,co(F)
● (S). In this case, we can

stabilize SpcG,co(F)
● (S) with respect to T and we define

SptG,co(F)
T (S) ∶= SpcG,co(F)

● (S)[(p∗T )−1] .

Equivalently, SptG,co(F)
T (S) ≃ SptG,co(F)

S1 (S)[(p∗T )−1].
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Proposition 3.24. Let F be a family which satisifies Condition 3.19 and write j ∶
SmG

S [co(F)] ⊆ SmG
S for the inclusion.

1. The functor j! ∶ SptG,co(F)
S1 (S) → SptGS1(S) is symmetric monoidal.

2. There is an equivalence j∗ ≃ ẼF ∧ j!. Moreover, j∗ induces a symmetric monoidal
equivalence j∗ ∶ Spt

G,co(F)
S1 (S) → Lco(F)SptGS1(S).

Proof. Note that S ∈ SmG
S [co(F)], so that j! preserves terminal objects. That it is

symmetric monoidal then follows from the fact that j preserves products. Since j! is
a fully faithful left adjoint, the unit map id → j∗j! is an equivalence. Precomposing

j! with the equivalence ẼF ∧ (−) ≃ j∗j
∗ of Proposition 3.23, we obtain equivalences

ẼF ∧j!(−) ≃ j∗j
∗j! ≃ j∗ and consequently a commutative diagram

SptG,co(F)
S1 (S) SptGS1(S)

Lco(F)SptGS1(S).

j!

j∗
ẼF∧−

In particular, the functor j∗ ∶ Spt
G,co(F)
S1 (S)→Lco(F)SptGS1(S) is a composite of symmetric

monoidal functors, hence symmetric monoidal itself. It is fully faithful, since the composite

functor SptG,co(F)
S1 (S)→Lco(F)SptGS1(S) ⊆ SptGS1(S) (also denoted j∗) is fully faithful, by

Proposition 2.30. To see that j∗ is also essential surjective, suppose X ∈ SptGS1(S) and

consider j∗X ∈SptG,co(F)
S1 (S). By the previous equivalence ẼF∧j!(−)≃ j∗ and Proposition

3.23, we see that

ẼF ∧j!j∗X ≃ ẼF ∧X,

since both are equivalent to j∗j
∗X. Thus j∗ ∶ SptGS1(S)→SptG,co(F)

S1 (S) is an equivalence

of symmetric monoidal ∞-categories.

Proposition 3.25. Let F be a family which satisifies Condition 3.19 and write j ∶
SmG

S [co(F)] ⊆ SmG
S for the inclusion. Suppose that p∗T is in SpcG,co(F)

● (S).

1. j! induces a symmetric monoidal functor j! ∶ SptG,co(F)
T (S) → SptGT (S).

2. ẼF ∧j! induces a symmetric monoidal equivalence

ẼF ∧j! ∶ SptG,co(F)
T (S) → Lco(F)SptGT (S).

Proof. Since j! is a symmetric monoidal left adjoint, it induces a symmetric monoidal

functor on p∗T -stabilizations.

By Proposition 3.24, the induced map

SptG,co(F)
T (S) ≃ SptG,co(F)

S1 (S)[p∗T −1] → (Lco(F)SptGS1(S))[p∗T −1]

is an equivalence in CAlg(PrL,⊗). The result now follows from the equivalence from

Lemma 2.40:

(Lco(F)SptGS1(S))[p∗T −1] ≃ Lco(F) (SptGS1(S))[p∗T −1] .
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3.5. Adjacent pairs

Lemma 3.26. Suppose that F ⊆ F ′ is N-adjacent at H and that H acts trivially on S.

Set X ∈ SmG
S [F ′∖F]. Then the canonical map

f ∶G×NGH XH →X

is an isomorphism.

Proof. The map f is identified with the map ∐[g]∈G/NG(H)X
gHg−1 →X induced by the

inclusions XgHg−1 ⊆X. We show that the induced map fs on the fiber over any s ∈S, is an
isomorphism. By [18, Corollary 17.9.5], this implies that f is an isomorphism, as it is a map

between smooth (in particular flat) finitely presented S -schemes. The stabilizer Stab(x)
of any x ∈Xs contains a subgroup conjugate to H, which implies that ∐XgHg−1

s →Xs is

surjective. On the other hand, the closed subschemes XgHg−1

s ⊆Xs are pairwise disjoint,

since all stabilizers of Xs are in {K ≤ G ∣ (K ∩N) = (H)}. Indeed, if Stab(x) contains
both H and gHg−1, Stab(x)∩N contains both of these subgroups, which means that

H = gHg−1. Thus ∐XgHg−1

s →Xs is a bijective, closed immersion. Since these are smooth

over Spec(k(s)), in particular reduced, the map fs is an isomorphism.

Let H ≤ N be a subgroup. Then WNH is a normal subgroup of WGH, and we will

often write WH = WGH/WNH for the quotient of Weyl groups. We will often write

EWNH(WGH) instead of EF(WNH) for the universal WNH-free motivic WGH-motivic
space, in order to emphasize the ambient group, where F(WNH) is the family of

subgroups {K ≤WGH ∣K ∩WNH = {e}}.

Proposition 3.27. Suppose that F ⊆ F ′ is N-adjacent at H. Then the following are
true:

1. (G×NGH EWNH(WGH))+∧E(F ′,F) ∼�→E(F ′,F) is an equivalence in SptGS1(S).
2. E(F ′,F)∣NGH

∼�→ ẼF[H]∧E(F ′,F)∣NGH in SptNGH
S1 (S).

Proof. It suffices to prove these equivalences in the case S =B; the general case follows
by applying f∗, where f ∶ S →B is the structure map. For the first item, by Proposition

3.21 it suffices to show that the projection

p ∶ (G×NGH EWNH(WGH))+→ S0

induces equivalences MapSpcG(B)(X,p), for any X ∈ SmG
B [F ′∖F]. But for such an X we

have, by Lemma 3.26, that X ≅G×NGH XH , so we have

MapSptG
S1(B)

(X+, (G×NGH EWNH(WGH))+)

≃MapSptNGH

S1 (B) (X
H
+ , (G×NGH EWNH(WGH))+)

≃MapSptWGH

S1 (B)(X
H
+ , (G×NGH EWNH(WGH))H+ )

≃MapSptWGH

S1 (B)(X
H
+ , (S0)H)
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≃MapSptNGH

S1 (B) (X
H
+ ,S

0)

≃MapSptG
S1(B)

((G×NGH XH)
+ ,S

0) .

For the second item, we have that FNGH[H]∩F ′∣NGH =FNGH[H]∩F∣NGH , and so this

follows from Lemma 3.18.

4. Fixed-point functors

We define fixed-point functors on motivic spaces and spectra. Throughout this section,

N ⊴G is a normal subgroup, and we write π ∶G→G/N for the quotient homomorphism.
Unless noted otherwise, we assume that N acts trivially on S.

4.1. Fixed-point motivic spaces

We begin by extending the adjunction

π−1 ∶ SmG/N
S ⇄ SmG

S ∶ (−)N

to motivic G-spaces. Note that π−1 is full and faithful and induces an equivalence

Sm
G/N
S ≃ SmG

S [co(F[N])] ⊆ SmG
S (4.1)

with the subcategory of smooth G-schemes over S on which N acts trivially.

The functor π∗ in the following propositions is the N -fixed-point functor on motivic
G-spaces. In keeping with standard notation, we sometimes write

(−)N ∶= π∗.

Proposition 4.2. The functor π−1 ∶ SmG/N
S → SmG

S induces adjoint pairs of functors

π∗ ∶ SpcG/N(S) ⇄ SpcG(S) ∶ π∗
π∗ ∶ SpcG/N● (S) ⇄ SpcG● (S) ∶ π∗

such that the following diagrams commute:

Sm
G/N
S SmG

S

SpcG/N(S) SpcG(S)

SpcG/N● (S) SpcG● (S)

π−1

π∗

(−)+ (−)+

π∗

and

SmG
S Sm

G/N
S

SpcG(S) SpcG/N(S)

SpcG● (S) SpcG/N● (S).

(−)N

π∗

(−)+ (−)+

π∗

Moreover, π∗ and π∗ are symmetric monoidal, and π∗ preserves colimits.

Proof. Nisnevich topologies correspond under the equivalence (4.1), so the adjunction

can be obtained as a special case of Proposition 2.28, where we set π∗ ∶= (π−1)
!
and

π∗ ∶= (π−1)∗. The remaining claims about π∗ and π∗ are straightforward.
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4.2. Fixed-point spectra

We view G/N -equivariant vector bundles on S as G-equivariant vector bundles via the

quotient homomorphism π ∶ G → G/N . Given a stabilizing subset T ⊆ Sph
G/N
B , we have

the stabilizing subset

π∗T = {Tπ∗E ∣ T E ∈ T } ⊆ SphGB,

which for simplicity we usually write again as T . We call a G-sphere of the form π∗ (T E)
an N-trivial G-sphere. Recall also that we write N -triv = π∗(SphG/NB ).

Proposition 4.3. Let T ⊆ Sph
G/N
B be a stabilizing set of spheres. There is an adjoint

pair of symmetric monoidal functors

π∗ ∶ SptG/NT (S) ⇄ SptGT (S) ∶ π∗

such that π∗ (Σ∞T Y ) ≃Σ∞T (Y N) for Y ∈ SpcG● (S).

Proof. The adjoint pair is the stabilization of the adjoint pair in Proposition 4.2, using

π∗ (X⊗T E) ≃ π∗(X)⊗Tπ∗E and (Y ⊗Tπ∗E)
N

≃ Y N ⊗T E .

That the fixed-point functor in this proposition commutes with stabilization is a
consequence of the fact that we have only stabilized with respect to a set of N -trivial

spheres. In general, fixed-point functors do not commute with stabilization; rather, this

is a key feature of the geometric fixed-points functor, defined later.

Lemma 4.4. Set T ⊆ Sph
G/N
B . The equivalence (4.1) induces inverse equivalences

π̃∗ ∶ SptG/NT (S) ≃ SptG,co(F[N])
T (S) ∶ π̃∗

which fit into commutative diagrams

SptG/NT (S) SptG,co(F[N])
T (S)

SptGT (S)

π̃∗

π∗
j!

and

SptG,co(F[N])
T (S), SptG/NT (S).

SptG(S)

π̃∗

j! π∗

Proof. Nisnevich topologies correspond under the equivalence (4.1), so that π∗ ∶
SpcG/N● (S) ≃ SpcG,co(F[N])

● (S) is an equivalence of symmetric monoidal ∞-categories
with inverse π∗. The first statement follows. The commutativity of the displayed diagrams

is straightforward to check.

Let T ⊆ SphGB be a stabilizing set of G-spheres and T N = {T EN ∣ T E ∈ T } be the

associated stabilizing set of G/N -spheres. Continuing to overload notation, we simply

write π∗ ∶ SptG/NT N (S) → SptGT (S) again for composite

SptG/NT N (S) ι∗�→SptG/NT (S) π∗�→SptGT (S).
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Since π∗ preserves colimits, we obtain the fixed-points adjunction

π∗ ∶ SptG/NT N (S) ⇄ SptGT (S) ∶ π∗.

The stabilizing set of spheres T does not appear in the notation for the fixed-points
functor π∗. We usually consider stabilization with respect to all spheres, and will always

make the domain of π∗ explicit in other cases. When T = SphGB , in keeping with standard

notation, we will sometimes write

(−)N ∶= π∗.

We also have not made reference to the base scheme in the notation. We show in

the next section, after proving the Adams isomorphism, that the fixed-points functor is
compatible with the various change-of-base functors in motivic homotopy.

4.3. Geometric fixed points

Recall that F[N] ∶= {H ≤G ∣N /⊆H} and that we write

Lco(F[N])SptGT (S) ⊆ SptGT (S)

for the essential image of the endofunctor ẼF[N]⊗− ∶ SptGT (S) → SptGT (S). Write W =
ρG/ρG/N . By Example 3.6, we have

ẼF[N] ≃ colim
n

TnW . (4.5)

Lemma 4.6. The map S0 → TW induces an equivalence

ẼF[N] ≃ TW ⊗ ẼF[N]

in SpcG● (S).

Proof. This follows from formula (4.5), together with the fact that the cyclic permutation

acts as the identity on TW ∧TW ∧TW [24, Lemma 6.3].

Proposition 4.7. The stabilization functor SptGN-triv(S) → SptG(S) induces an equiva-
lence

Lco(F[N])SptGN-triv(S) ∼�→ Lco(F[N])SptG(S)

of symmetric monoidal stable ∞-categories.

Proof. Write L =Lco(F[N]). We make use of the equivalences SptG
T

ρG/N (S) ≃ SptGN-triv(S)
and SptGTρG (S) ≃ SptG(S) and the equivalence (4.5). Since T ρG = T ρG/N ⊗TW , we have

an equivalence

SptG(S) ≃ SptGN-triv(S)[(TW )−1],

and under this equivalence, LSptG(S) ≃ (LSptGN-triv(S))[(TW )−1] by Lemma 2.40. But

it follows from Lemma 4.6 that ΣW is an autoequivalence of LSptGN-triv(S), and therefore
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the stabilization induces an equivalence

LSptGN-triv(S) ≃ (LSptGN-triv(S))[(TW )−1] .

The result follows, since (LSptGN-triv(S))[(TW )−1] ≃ L(SptGN-triv(S)[(TW )−1]).

Write ψ for the composite

SptG/N(S) π∗�→SptGN-triv(S) → SptG(S) → Lco(F[N])SptG(S).

Proposition 4.8. The functor ψ ∶ SptG/N(S) → Lco(F[N])SptG(S) is an equivalence of

symmetric monoidal stable ∞-categories.

Proof. By Proposition 4.7, this composite is equivalent to

SptG/N(S) π∗�→SptGN-triv(S) ẼF[N]⊗−�����→ Lco(F[N])SptGN-triv(S),

which is an equivalence by Lemma 4.4 and Proposition 3.25.

Definition 4.9. Let N ⊴ G be a normal subgroup. The motivic geometric fixed-points
functor

(−)ΦN ∶ SptG(S) → SptG/N(S)

is the composite SptG(S) → Lco(F[N])SptG(S) ψ−1��→SptG/N(S).

Proposition 4.10. The functor (−)ΦN ∶ SptG(S) → SptG/N(S) satisfies the following

properties:

1. It is a symmetric monoidal left adjoint; moreover, its right adjoint ẼF[N]⊗π∗ is
full and faithful.

2. There is a natural equivalence (Σ∞X)ΦN ≃Σ∞ (XN) for X ∈ SpcG● (S).

3. (−)ΦN ≃ (ẼF[N]⊗−)N .

4. There is a natural transformation (−)N → (−)ΦN .

5. There is a natural equivalence ẼF[N]⊗Y ≃ ẼF[N]⊗Y ΦN for Y ∈ SptG(S).

Proof. This is an easy consequence of the foregoing results.

In §6.2 and §6.4, we show that fixed points commute with arbitrary base change. We
note here the easier fact that geometric fixed points commute with arbitrary base change.

Proposition 4.11. Let p ∶ T → S be a map in Sch
G/N
B . There is a natural equivalence

p∗ (Y ΦN) ≃ (p∗Y )ΦN .
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Proof. Since p∗ẼF[N]S ≃ ẼF[N]T , we have a commutative diagram

SptG/N(S) SptG(S) Lco(F[N])SptG(S)

SptG/N(T ) SptG(T ) Lco(F[N])SptG(T ),

π∗

p∗ p∗ p∗

π∗

so that p∗ψ ≃ ψp∗, which implies the result.

Recall that for a subgroup H ≤ N , we write WH = WGH/WNH for the quotient of

Weyl groups. We also write EWNH(WGH) for the universal WNH-free WGH-motivic

space (also denoted EF(WNH)). See §3.2 for a recollection of N -adjacency.

Proposition 4.12. Suppose that F ⊆F ′ is N-adjacent at the subgroup H ≤N . Then for
X ∈ SptG(S), there is a natural equivalence

(E(F ′,F)⊗X)N ≃G/N+⋉WH (EWNH(WGH)+⊗XΦH)WNH
.

Proof. Consider the commutative diagram of group homomorphisms

NGH G

WGH W G/N.

λ

π′ π

π′′ λ

There is a natural equivalence π∗λ! ≃ λ!π
′′
∗π
′
∗, since both are seen to be right adjoint to

the restriction along NGH →G/N . By Proposition 3.27, the canonical maps

λ! (EWNH(WGH)+⊗λ∗(E(F ′,F)⊗X)) E(F ′,F)⊗X

λ! (EWNH(WGH)+⊗ ẼF[H]⊗λ∗(E(F ′,F)⊗X))

∼

∼

are equivalences. Applying π∗, the result follows from the equivalence given and the fact

that (−)Φ is symmetric monoidal.

4.4. Homotopy fixed points and the Tate construction

Homotopy fixed points together with the Tate spectrum, introduced in [17], play critical

roles in computations and applications of equivariant homotopy theory. Using the
constructions we have already reviewed, it is straightforward to define the motivic version

of these functors and establish the analogue of the Tate diagram for G =Cp.

Definition 4.13. Set X ∈ SptG(S) and N ≤G a normal subgroup.

1. The motivic homotopy fixed-point spectrum of X is

XhN ∶= π∗i∗i
∗(X) ≃ F (EF(N)+,X)N ,

where i ∶ SmG,N-free
S ⊆ SmG

S is the inclusion.

https://doi.org/10.1017/S1474748021000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000372


1220 D. Gepner and J. Heller

2. The motivic Tate spectrum of X is

XtN ∶= (ẼF(N)∧F (EF(N)+,X))N .

Proposition 4.14 (motivic Tate diagram). Suppose that p is invertible on B. Set X ∈
SptCp(B). There is a natural push-out square

XCp XΦCp

XhCp XtCp

in Spt(B).

Proof. Consider the following commutative diagram with exact rows:

(ECp+∧X)Cp XCp (ẼCp∧X)Cp

(ECp+∧F (ECp+,X))Cp F (ECp+,X)Cp (ẼCp∧F (ECp+,X))Cp
.

∼

The proposition follows by noting that the left vertical map is an equivalence. To see

this, note that by Proposition 3.11, the mapX →F (ECp+,X) is identified with the natural
transformation i!i

∗η ∶ i!i∗→ i!i
∗i∗i

∗, where η is the unit id→ i∗i
∗ of the adjunction. Since

i! is full and faithful, so is i∗. In particular, the counit i∗i∗ → id is an equivalence. That

i!i
∗η is an equivalence now follows from the triangle identity.

5. Quotient spectra

As in the previous section, we let N ⊴ G be a normal subgroup and π ∶ G → G/N the
quotient homomorphism. It turns out (as in classical equivariant homotopy) that the

functor π∗ ∶ SptG/N(S)→SptG(S) does not have a left adjoint, except in the trivial case

when G = {e}. It does, however, have a partial left adjoint, constructed in this section,
defined on the full subcategory of N -free G-spectra.

5.1. Stabilization of free objects

We write SptG,N-free
T (S) ∶= SptG,F(N)

T (S). In this section, we show that the stabilization

λ∗ ∶ SptG,N-free
N-triv (S) → SptG,N-free(S)

is an equivalence of stable ∞-categories. We are grateful to Tom Bachmann for suggestions

which streamlined the argument we originally gave here.

Recall that the quotient functor induces an equivalence of categories (−)/N ∶ SmG
S ≃

Sm
G/N
S/N if N acts freely on S. Under this equivalence, Nisnevich topologies correspond, so

we obtain an equivalence of symmetric monoidal ∞-categories

SpcG● (S) ∼�→SpcG/N● (S/N).
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Lastly, stabilizing with respect to Sph
G/N
S/N , we obtain an equivalence of symmetric

monoidal ∞-categories

π! ∶ SptGN-triv(S) ∼�→SptG/N(S/N).

Lemma 5.1. If N acts freely on S, then λ∗ ∶ SptG,N-free
N-triv (S) → SptG,N-free(S) is an

equivalence.

Proof. It suffices to see that if E → S is an equivariant vector bundle on S, then TE

is invertible in SptG,N-free
N-triv (S) ≃ SptGN-triv(S). Under the equivalence π! ∶ SptGN-triv(S) ≃

SptG/N(S/N) of symmetric monoidal ∞-categories, we have that π! (TE) ≃ TE/N , where
E/N → S/N is the quotient, which is a G/N -equivariant vector bundle. In particular,

TE/N is invertible, so the result follows.

Theorem 5.2. Let N ⊴G be a normal subgroup. The stabilization functor

λ∗ ∶ SptG,N-free
N-triv (S) → SptG,N-free(S)

is an equivalence of stable ∞-categories.

Proof. Write λ∗ for the right adjoint of λ
∗. We first show that id→λ∗λ

∗ is an equivalence

– that is, λ∗ is fully faithful. By Proposition 2.36 it suffices to check that p∗→ p∗λ∗λ
∗ is an

equivalence for any p ∶X →S in SmG,N-free
S (indeed, the family of such p∗ is conservative).

But λ∗ commutes with p∗, and since p is smooth, so does λ∗. Therefore this transformation
is identified with p∗ → λ∗λ

∗p∗, and since X is N -free, λ∗λ
∗p∗ ≃ p∗ by Lemma 5.1, as

required.

To see that λ∗ is essentially surjective, by Proposition 2.36 it suffices to show that
T −V ⊗X+ is in the image of λ∗, where TV ∈ SphGB and p ∶ X → S is in SmG,N-free

S . But

T −V ⊗X+ ≃ p#p
∗ (T −V), and by Lemma 5.1 we have that p∗ (T −V) is in the essential

image of λ∗; since λ∗ and p# commute, we are done.

Remark 5.3. It follows that when S has N -free action, there is an induced equivalence
of symmetric monoidal ∞-categories

π! ∶ SptG(S) ≃ SptG/N(S/N).

Let p ∶ X → S be a map. The exceptional push-forward on N -free G-spectra p! ∶
SptG,N-free(X) → SptG,N-free(S) can be defined as the composite

i∗p!i
′
! ∶ SptG,N-free(X) ↪ SptG(X) → SptG(S) → SptG,N-free(S).

If p is smooth, then p! ≃ p#Σ
−Ωf , where Ωf is the sheaf of differentials of X over S.

Corollary 5.4. The stable ∞-category SptG,N-free(S) is generated under colimits by any

of the following sets:

1. Σ−kρG/N p#1X , where k ≥ 0 and p ∶X → S is in SmG,N-free
S with X affine.

2. Σ−kρG/N p!1X , where k ≥ 0 and p ∶X → S is in SmG,N-free
S with X affine.
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3. Σ−kρG/N i∗q∗1X , where k ≥ 0 and q ∶X → S is in SchGS with q projective.

4. Σ−kρG/N q∗1X , where k ≥ 0 and q ∶X → S is in SchG,N-free
S .

Proof. The objects in (1) are generators of SptG,N-free
N-triv (S), by Proposition 2.36.

If X is affine, then there is a surjection p∗(nρG) → Ωp for some n > 0. Let E be the

kernel of this map. Then in SptG,N-free(X) we have an equivalence TΩp ∧T E ≃ TnρG/N .

Let r ∶V(E) →X be the projection. We then have

ΣnρG/N (p○r)! (1V(E)) ≃ p#1X .

Therefore the generators in (1) are contained in the category generated under colimits by

the objects in (2).

Next, we check that the set in (2) is contained in the the category generated under
colimits by the objects Σ−kρG/N i∗q∗1X of (3).

Let p ∶ Y → S be in SmG,N-free
S . Since p is G-quasi-projective, there is an equivariant

compactification

Y Y Z

S,

u

p
f

t

g

where f is an equivariant projective morphism, u is an invariant open, and t is an invariant
closed complement. From the gluing sequence, using the fact that f,g are proper, we

obtain an exact sequence in SptG(S) of the form

Σ−kρG/N p!1Y →Σ−kρG/N f∗1Y →Σ−kρG/N g∗1Z .

Applying i∗ finishes the third case.
Write EF(N) ≃ colimnUn, where Un ∈ SmG,N-free

S . Now (4) follows by noting that if

q ∶X →S is projective, then i!i
∗q∗(1X) is the colimit of qn∗ (1X×Un

), where qn ∶X ×Un →
S.

5.2. Quotient functors

Proposition 5.5. Let N ⊴G be a normal subgroup which acts trivially on S.

1. There are colimit-preserving functors

(−)/N ∶ SpcG,N-free(S) → SpcG/N(S/N)
(−)/N ∶ SpcG,N-free

● (S) → SpcG/N● (S/N)
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such that the following diagram commutes:

SmG,N-free
S Sm

G/N
S/N

SpcG,N-free(S) SpcG/N(S/N)

SpcG,N-free
● (S) SpcG/N● (S/N).

(−)/N

(−)/N

(−)+ (−)+

(−)/N

2. The functor (−)/N satisfies a projection formula (X × π∗Y )/N ≃ (X/N) × Y for

X ∈ SpcG,N-free(S) and Y ∈ SpcG/N(S/N). Similarly, if A,B are based, then (A∧
π∗B)/N ≃ (A/N)∧B.

Proof. Write q ∶ SmG
S → Sm

G/N
S/N for the quotient functor, q(W ) = W /N . Since q sends

Nisnevich squares in SmG,N-free
S to Nisnevich squares in Sm

G/N
S and

q(W ×A1) ≅ q(W )×A1,

the functor q∗ ∶ P (SmG/N
S/N ) → P (SmG

S ) defined by precomposition restricts to a functor

q∗ ∶ SpcG/N(S/N) → SpcG,N-free(S). Since q∗ preserves limits, it admits a left adjoint

(−)/N ∶ SpcG,N-free(S) → SpcG/N(S/N)

with the stated properties. Similarly, since q∗ preserves the terminal object, it induces a

limit-preserving functor q∗ ∶ SpcG/N● (S/N) → SpcG,N-free
● (S) on based spaces and there-

fore admits a left adjoint (−)/N ∶ SpcG,N-free
● (S) → SpcG/N● (S/N). The last statement

follows from Proposition 2.2.

If X ∈ SmG
S does not have free action, the scheme X/G need not be smooth. It is still

possible to define a quotient functor on motivic G-spaces. However, this functor does not
stabilize to give a quotient functor on all of SptG(S).

Proposition 5.6. Let N ⊴G be a normal subgroup which acts trivially on S.

1. There is a colimit-preserving functor

π! ∶ SptG,N-free(S) → SptG/N(S/N)

such that the following diagram commutes:

SmG,N-free
S Sm

G/N
S/N

SptG,N-free(S) SptG/N(S/N).

π!

π!

The right adjoint of π! is the composite i∗π∗, where i ∶ SmG,N-free
S ⊆ SmG

S is the

inclusion.

https://doi.org/10.1017/S1474748021000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000372


1224 D. Gepner and J. Heller

2. The functor π! satisfies a projection formula. That is, if X ∈ SptG,N-free(S) and

Y ∈ SptG/N(S/N), then π!(X⊗π∗Y ) ≃ π!(X)⊗Y .

Proof. If V → S is a G/N -equivariant vector bundle, we have (ΣV X)/N ≃ ΣV X/N by

Proposition 5.5. It follows that (−)/N extends to a colimit-preserving functor

π! ∶ SptG,N-free
N-triv (S) → SptG/N(S).

The first statement then follows from Theorem 5.2, and the second statement from

Proposition 5.5.

6. The motivic Adams isomorphism

In classical homotopy, the Adams isomorphism identifies the N -fixed points of an N -free
G-spectrum X with the quotient of X by the N -action. This equivalence was established

by Adams for N =G in [1, Theorem 5.3] and generalized in [27, Theorem II.7.1]. A recent

modern take on this, in terms of orthogonal spectra, appears in [33]. In this section, we
establish a version for N -free motivic G-spectra.

6.1. The Adams transformation

For the remainder of this section we suppose that S has trivial N -action and we let

π ∶G→G/N denote the quotient homomorphism. As before, we write i ∶ SmG,N-free
S ⊆ SmG

S

for the inclusion. The Adams isomorphism is a comparison of the two functors

π!,π∗i! ∶ SptG,N-free(S) → SptG/N(S).

We first construct a comparison transformation τ ∶ π! → π∗i!. Consider the following
Cartesian square of surjective homomorphisms:

G×G/N G G

G G/N.

pr1

pr2 π

π

(6.1)

Write G′ =G×G/N G and N ′ = ker(pr2). Observe that if X ∈ SmG,N-free
S , then pr∗1X is in

SmG′,N ′-free
S . We have a commutative diagram

SptG,N-free(S) SptG(S)

SptG′,N ′-free(S) SptG′(S)

i!

j∗pr∗1i! pr∗1

j!

of colimit-preserving functors, where j ∶ SmG′,N ′-free
S ⊆ SmG′

S is the inclusion.
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Proposition 6.2. With notation as before, the following diagram commutes:

SptG,N-free(S) SptG′,N ′-free(S)

SptG/N(S) SptG(S).

π!

j∗pr∗1i!

pr2!

π∗

Proof. We have a transformation ν ∶ pr2!j∗pr∗1i! → π∗π!, defined as the composite

pr2!j
∗pr∗1i! → pr2!j

∗pr∗1i!i
∗π∗π! → pr2!j

∗pr∗2π
∗π! → π∗π!,

where the first arrow is induced by the unit of the adjunction (π!,i
∗π∗) and the last

by the counit of (pr2!,j∗pr∗2). To check that this is an equivalence, by Corollary 5.4 it

suffices to check that ν is an equivalence on Σ−ρG/NX+, where X ∈ SmG,N-free
S . Via the

projection formula in Proposition 5.6, we see that νΣ−ρG/N X+
is identified with Σ−ρG/N νX+ ,

and so it suffices to check that ν is an equivalence on X+. But this case follows from the
isomorphism of G-schemes (pr−11 X)/N ′ ≅ π−1(X/N).

Remark 6.3. It is sometimes convenient to write again pr∗1 for j∗pr∗1i!, so that the

equivalence π∗π! ≃ pr2!j
∗pr∗1i! can be expressed compactly as

π∗π! ≃ pr2!pr
∗
1.

Since pr∗1 takes N -free spectra to ker(pr2)-free spectra, this is only a minor overloading

of notation, and no confusion should arise.

We obtain a transformation

τ̂ ∶ π∗π! → i! (6.4)

via

π∗π! ≃ pr2!j
∗pr∗1i! → pr2!j

∗Δ!Δ
∗pr∗1i! ≃ i!,

where Δ ∶ G ↪ G ×G/N G is the diagonal and we use the fact that Δ! ≃ Δ∗ by the

Wirthmüller isomorphism (Proposition 2.41).

Definition 6.5. The Adams transformation

τ ∶ π! → π∗i!

is the transformation induced by adjunction from τ̂ ∶ π∗π! → i!, just constructed.

In a certain sense, the Adams transformation is ‘smashing’, as made precise in the next
proposition. First note that there is a canonical transformation

π∗i!i
∗(1S)⊗ id→ π∗i!i

∗π∗ (6.6)

between endofunctors of SptG/N(S) obtained as the adjoint of

π∗π∗i!i
∗(1S)⊗π∗→ i!i

∗(1S)⊗π∗π! ≃ i!i
∗π∗.
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Since i!i
∗ ≃ i!i

∗(1S) ⊗ id ≃ 1EF(N) ⊗ id by Proposition 3.11, transformation (6.6) can

equivalently be written as π∗ (1EF(N))⊗ id→ π∗ (1EF(N)⊗π∗).
Proposition 6.7. Set X ∈ SptG,N-free(S). The diagram

π!X π∗i!X π∗i!i
∗π∗π!X

π!i
∗(1S)⊗π!X π∗i!i

∗(1S)⊗π!X

τ

τ⊗id

commutes, where the left vertical map is obtained from the oplax monoidality of π!, the

right one is formula (6.6), and the top right horizontal arrow comes from the unit of the

adjunction (π!,i
∗π∗).

Proof. Consider the following diagram:

π∗π!X π∗π!i
∗(1S)⊗π∗π!X

pr2!j
∗pr∗1i!X pr2!j

∗pr∗1i!i
∗(1S)⊗pr2!j

∗pr∗1i!X

pr2!j
∗Δ!Δ

∗pr∗1i!X pr2!j
∗Δ!Δ

∗pr∗1i!i
∗(1S)⊗pr2!j

∗pr∗1i!X

i!X i!i
∗(1S)⊗pr2!j

∗pr∗1i!X

i!i
∗π∗π!X i!i

∗(1S)⊗π∗π!X.

τ̂

τ̂i∗1S
⊗id

∼ ∼

∼ ≃

∼

∼

The functors π∗,pr∗1,j
∗ are symmetric monoidal, i! is nonunital symmetric monoidal,

and i∗(1S) = 1EF(N) is the unit of SptG,N-free(S). It is straightforward to check that

the top square commutes. Using the natural equivalence Δ!Δ
∗ ≃ Δ!Δ

∗(1S)⊗ id, it is

straightforward to check that the remaining squares commute. This implies the result by
adjointness.

6.2. Changing the base

Our next goal is to verify that the Adams transformation τ is compatible with the various

change-of-base functors in motivic homotopy. First, however, we recall some basic facts

about manipulating natural transformations and adjunctions that we will use.
Let

A B

C D

f∗

g∗ k∗
φ

h∗
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be a diagram of ∞-categories, where φ ∶ k∗f∗→h∗g∗ is a natural transformation. Suppose
that f∗, h∗ admit respective left adjoints f! and h!. The left mate of φ is a natural

transformation

A B

C D.

g∗ k∗

f!

h!

φL

Explicitly, φL ∶ h!k
∗→ g∗f! is defined to be the composite

h!k
∗→ h!k

∗f∗f!
φ�→ h!h

∗g∗f! → g∗f!.

Similarly, if g∗,k∗ admit respective right adjoints g∗ and k∗, then the right mate of φ
is a transformation

A B

C D.

f∗

φRg∗

h∗

k∗

Explicitly, φR ∶ f∗g∗→ k∗h
∗ is defined to be the composite

f∗g∗→ k∗k
∗f∗g∗

φ�→ k∗h
∗g∗g∗→ k∗h

∗.

If ψ and φ are natural transformations, then ψ ≃ φL if and only if φ ≃ ψR.

Lemma 6.8. Suppose we are given a diagram of ∞-categories

A B

C D,

f∗

g∗ k∗
φ

h∗

where f∗,h∗ have left adjoints and g∗,k∗ have right adjoints. Then φL is an equivalence

if and only if φR is an equivalence.

Proof. This is a straightforward check.

Remark 6.9. It often happens that φ is invertible. Care should be taken to not confuse

the mates of φ with those of φ−1 (assuming all requisite adjoints exist). For example,
it is not the case the mates of φ are equivalences exactly when the mates of φ−1 are

equivalences.

We will need to know that units and counits of adjunctions are compatible across

equivalences induced by mates.

Lemma 6.10. Let L ∶ C ⇄ D ∶R and L′ ∶ C′ ⇄ D′ ∶R′ be two adjoint pairs and F ∶ C → C′
and G ∶ D →D′ be functors. Let φ ∶ FR→R′G and ψ ∶L′F →GL be mates. Write η, ε for
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the unit and counit of (L,R) and η′,ε′ for the unit and counit of (L′,R′). Then for X ∈D,

Y ∈ C, the diagrams

L′R′GX L′FRX GLRX

GX
ε′G

ψRL′φ

Gε

and

FY

FRLY R′GLY R′L′FY.

η′FFη

φL R′ψ

commute.

Proof. The first claim follows from the commutativity of the diagram

L′FRX L′FRLRX L′R′GLRX GLRX

L′FRX L′R′GX GX,

L′FηR

id

L′φLR

L′FRε L′R′Gε

ε′GLR

Gε

L′φ ε′G

since the top composite is ψR. The second claim follows from the commutativity of the

diagram

R′L′FY R′L′FRLY R′L′R′GLY R′GLY

FY FRLY R′GLY ,

R′LFη R′L′φL εGL

η′F

Fη

η′FRL

φL
id

η′R′GL

where the top composite is R′ψ.

Let p ∶ T → S be a map in SchGB , on which N acts trivially. Write π ∶G→G/N for the

quotient. We will use i to denote both the inclusion SmG,N-free
S ⊆ SmG

S and the inclusion

SmG,N-free
T ⊆ SmG

T . Fix equivalences

α ∶ π∗p∗ ∼�→ p∗π∗

and

γ ∶ i!p∗ ≃ p∗i!.

The right mate of α is a transformation αR ∶ p∗π∗→ π∗p
∗. We write ν for the right mate

of αR,

ν = (αR)R ∶ π∗p∗
∼�→ p∗π∗,

which is an equivalence α ≃ (αR)L by Lemma 6.8, since α ≃ (αR)L is an equivalence. Write

ν′ = ν (γ−1)
R
, which is an equivalence

ν′ ∶ π∗i!p∗
∼�→ p∗π∗i!.
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We have an equivalence

α−1γR ∶ p∗i∗π∗ ≃ i∗π∗p∗.

Write β = (α−1γR)
L
for the left mate of α−1γR. Then β is an equivalence

β ∶ π!p
∗ ≃ p∗π!,

and we write φ = (β−1)
R
, which is a transformation

φ ∶ π!p∗→ p∗π!.

If p is smooth, then α has a left mate αL ∶ p#π∗
∼�→ π∗p#, which is an equivalence. It

follows that αR is an equivalence by Lemma 6.8. In Corollary 6.37 we see that αR is more
generally an equivalence even when p is not smooth. Write

α ∶ p#π∗→ π∗p#

for the left mate of α−1R ∶ π∗p∗ ≃ p∗π∗ and

αγ ∶ p#π∗i! → π∗i!p#

for the left mate of α−1R γ.

For the next lemmas it is convenient to fix some further exchange transformations. Set

κi ∶ pr∗i p∗ ≃ p∗pr∗i and λ ∶ j∗p∗ ≃ p∗j∗. Set ν = ((λκ2)−1)L ∶ pr2!p∗ ≃ p∗pr2!.

We use the following basic consequence of the fact that SptG,F(S) is the value of a
functor SchB[⋅]op. Let f ∶ T → S be a scheme map and φ ∶G→K a homomorphism. The

exchange φ∗f∗ ≃ f∗φ∗ expresses the fact that (id,f)(φ,id) and (φ,id)(id,f) are both equal

to (φ,f). In particular, these exchanges can be chosen compatibly. That is, if φ ∶G→K
and ψ ∶K →H are homomorphisms, then the diagram

φ∗ψ∗f∗ φ∗f∗ψ∗ f∗φ∗ψ∗

(ψφ)∗f∗ f∗(ψφ)∗

∼

∼

∼

∼

∼

commutes, and similarly for a composite of scheme maps.

Lemma 6.11. Set X ∈ SptG,N-free(S). The following diagram commutes:

π∗π!p
∗X p∗π∗π!X

i!p
∗X p∗i!X.

αβ
∼

τ̂p∗ p∗τ̂

∼
γ

https://doi.org/10.1017/S1474748021000372 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000372


1230 D. Gepner and J. Heller

Proof. We have to see that each rectangle of the following diagram commutes:

π∗π!p
∗X π∗p∗π!X p∗π∗π!X

pr2!j
∗pr∗1i!p

∗X pr2!j
∗p∗pr∗1i!X p∗pr2!j

∗pr∗1i!X

pr2!j
∗Δ!Δ

∗pr∗1i!p
∗X pr2!j

∗Δ!Δ
∗p∗pr∗1i!X p∗pr2!j

∗Δ!Δ
∗p∗pr∗1i!X

i!p
∗ p∗i!.

β α

κ1γ

∼

νλ

∼

≃ ≃

γ

To see that the top rectangle commutes, consider the following diagram:

pr2!j
∗pr∗1i!p

∗X pr2!j
∗pr∗1p

∗i!X p∗pr2!j
∗pr∗1i!X

pr2!j
∗pr∗1i!i

∗π∗π!p
∗X pr2!j

∗pr∗1i!p
∗i∗π∗π!X pr2!j

∗pr∗1p
∗i!i

∗π∗π!X

pr2!j
∗pr∗2π

∗π!p
∗X pr2!j

∗pr∗2p
∗π∗π!X p∗pr2!j

∗pr∗2π
∗π!X

π∗π!p
∗X p∗π∗π!X.

The outer composites of this diagram yield the diagram of the lemma, and a straight-

forward inspection suffices to see that most of the pieces of this diagram commute. The

remaining pieces involve moving p∗ either across the unit for the adjunction (π!,i
∗π∗)

or across the counit for the adjunction (pr2!,j∗pr∗2). In either case, that this results in a

commutative diagram follows from Lemma 6.10, since the pairs of exchange equivalences

π!p
∗ ≃ p∗π!, p

∗i∗π∗ ≃ i∗π∗p∗ and pr2!p
∗ ≃ p∗pr2!, p

∗j∗pr∗2 ≃ j∗pr∗2p
∗ are mates.

The argument for the commutativity of the remaining squares is similar.

Proposition 6.12. Set X ∈ SptG,N-free(S). The diagram

π!p
∗X p∗π!X

π∗i!p
∗X p∗π∗i!X

β

τp∗ p∗τ

γ−1αR

commutes.
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Proof. To see this, consider the diagram

π∗π!p
∗X π∗p∗π!X p∗π∗π!X

π∗π∗i!p
∗X π∗p∗π∗i!X p∗π∗π∗i!X.

i!p
∗X p∗i!X.

π∗β

π∗τp∗ π∗p∗τ

α
∼

p∗π∗τ

α
∼

π∗γ−1αR

∼

By adjointness, it suffices to see that the top-left square commutes. The right square
commutes, and the lower rectangle commutes by Lemma 6.10, so it suffices to see that

the outer diagram commutes. This follows from Lemma 6.11.

Proposition 6.13. Set Y ∈ SptG,N-free(T ). The following diagram commutes:

p#π!Y π!p#Y

p#π∗i!Y π∗i!p#Y.

p#τ

βL

τp#

γα

Proof. The diagram of the lemma is the composite of the squares

p#π!Y p#π!p
∗p#Y p#p

∗π!p#Y π!p#Y

p#π∗i!Y p#π∗i!p
∗p#Y p#p

∗π∗i!p#Y π∗i!p#Y.

p#τ p#τp∗p#

β

p#p∗τp# τp#

(γαR)−1

The first and the third square commute by functoriality. The second square commutes

by Proposition 6.12.

Proposition 6.14. Set Y ∈ SptG,N-free(T ). The following diagram commutes:

π!p∗Y p∗π!Y

π∗i!p∗Y p∗π∗i!Y.

τp∗

φ
∼

p∗τ

ν′

∼

Proof. Consider the following diagram. By adjointness, we need to see that the combined

top rectangles commute:

π!p
∗p∗Y p∗π!p∗Y p∗p∗π!Y π!Y

p∗π∗i!p∗Y p∗p∗π∗i!Y π∗i!Y.

π∗i!p
∗p∗Y

β
∼

τp∗p∗

p∗φ

p∗τp∗

επ!

p∗p∗τ τ

γ−1αR

ν′

∼
επ∗i!

π∗i!ε
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Here ε is the counit of the adjunction (p∗,p∗). The left triangle commutes by Proposition

6.12, the bottom triangle commutes by Lemma 6.10, and the top composite is equivalent
to π!ε, also by Lemma 6.10. It follows that the outer diagram commutes, and since β is

an equivalence, the combined rectangles commute as desired.

Lemma 6.15. Let f ∶ T → S be a map in SchGB. The diagram

SptG,N-free(T ) SptG(T )

SptG,N-free(S) SptG(S)

f∗

i!

f∗

i!

commutes.

Proof. The functor f∗ ∶ SptG,N-free(T ) → SptG,N-free(S) may be computed as the

composite

SptG,N-free(T ) i!�→SptG(T ) f∗�→SptG(S) i∗�→SptG,N-free(S).

By Corollary 6.32, we have i!i
∗ ≃ i!i∗(1)⊗− and i!i

∗(1) ≃ colimnUn, where Un is dualizable

over S. Therefore,

i!i
∗f∗i! ≃ colim

n
F (D(Un),f∗i!) ≃ f∗F (f∗D(Un),i!)

≃ colim
n

f∗F (Df∗Un,i!)

≃ f∗ colim
n

f∗Un⊗ i!

≃ f∗(i!i∗(1)⊗ i!)
≃ f∗i!,

where we use the fact that f∗i!i
∗(1) ≃ i!i

∗(1) by Proposition 3.8, since i!i
∗(1) ≃EF(N).

6.3. τ is an equivalence

In this subsection, we show that the Adams transformation τ is an equivalence. By

Corollary 5.4, it suffices to show that τ is an equivalence on Σ−kρG/N q#1X , where q ∶X →S

is in SmG,N-free
S , which in turn would follow by showing that τ is an equivalence on all

q#1X . Unfortunately, we do not know how to show this directly. Instead, our strategy is to

first show that it is an equivalence on those q#1X which are dualizable. This immediately

implies that τ is an equivalence on the subcategory of SptG,N-free(S) generated under
colimits by (N -trivial desuspensions of) such q#1X . Of course, this is only a proper

subcategory of SptG,N-free(S), unless S is the spectrum of a field of characteristic 0.

However, since 1EF(N) has dualizable skeleta by Corollary 6.32, we can at least conclude
that

τ ∶ π!1EF(N)→ π∗1EF(N)
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is an equivalence. This now allows us to define an inverse τ−1 using Proposition 6.7 and
conclude that τ is an equivalence in general.

Lemma 6.16. Set E ∈ SptG,N-free(S) and suppose that i!E is dualizable. Then E is also

dualizable, and i!FSptG,N-free(S)(E,D) ≃ FSptG(S)(i!E,i!D).
In particular, the dual of E, regarded as an object of SptG,N-free(S), agrees via i! with

the dual of E, regarded as an object of SptG(S).

Proof. The first claim follows formally from the facts that E ≃ i∗i!E and that i∗ is a

symmetric monoidal functor. The second claim follows by applying i! to the equivalence

i∗FSptG(S)(i!E,i!D) ≃ FSptG,N-free(S)(E,D)

and by the fact that i!i
∗ ≃ i!i

∗(1S) ⊗ id (see Proposition 3.11), together with the
commutative square

i!i
∗1S ⊗DS(i!E)⊗ i!D i!i

∗1S ⊗F (i!E,i!D)

DS(i!E)⊗ i!D F (i!E,i!D),

∼

∼

∼

where the vertical maps are induced by the projection i!i
∗(1S) → 1S and the left-hand

vertical map is an equivalence, since i!i
∗1S ⊗ i!D → i!D is an equivalence.

The last statement follows because FSptG(S)(i!E,1S) ≃ FSptG(S)(i!E,i!(i∗1S)).

Lemma 6.17. Let p ∶ Y → S be a smooth equivariant map. For any E ∈ SptG(Y ), the

diagram

DS (p#E)⊗S p#E 1S

p# (p∗DS (p#E)⊗Y E)

ev

ev′

∼

commutes, where the vertical equivalence is the projection formula and the diagonal map

is the composite

p# (p∗DS (p#E)⊗Y E)→ p# (DY (p∗p#E)⊗Y E)→ p#(DY (E)⊗Y E)
p#ev
���→ p#1Y ≃ p#p

∗1S → 1S

of the canonical map followed by maps induced by the unit and counit of the adjunction

(p#,p∗), respectively.

Proof. The composite of the vertical and horizontal map is adjoint to the composite map
in the diagram

p∗DS (p#E)⊗Y E p∗ (DS (p#E)⊗Y p#E) p∗1S ≃ 1Y

p∗DY (p#E)⊗Y p∗p#E DY (p∗p#E)⊗Y p∗p#E,

∼ ev
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where the left diagonal is induced by the unit of the adjunction (p#,p∗) and the square

commutes by Lemma 6.10 (with F = p∗ =G,R = F (p#E,−), and R′ = F (p∗p#E,0)).
Applying p# everywhere, we obtain the commutative diagram

p# (p∗DS (p#E)⊗Y E) p# (p∗DS (p#E)⊗Y p∗p#E)

p# (DY (p∗p#E)⊗Y E) p# (DY (p∗p#E)⊗Y p∗p#E) p#p
∗1S 1S,

p#(DY (E)⊗E)

where the lower piece commutes for formal reasons: given a map ϕ ∶ M → N in any
symmetric monoidal category, the induced diagram

D(N)⊗M D(M)⊗M

D(N)⊗N 1

D(ϕ)⊗idM

idD(N)⊗ϕ

commutes. This proves the claim.

Let q ∶X →S be an object in SmG,N-free
S and write X =X/N , f ∶X →X, for the quotient.

Since N acts trivially on S, the structure map factors through the quotient and we have

the diagram

X X

S

f

q
p (6.18)

in SmG
S , where f is finite étale. Our first goal is to establish Theorem 6.25, which says

that when q#1X is dualizable, its dual is computed as π!DS (q#1X).
We define a candidate evaluation map

ε ∶ π!DS (p#f#1X)⊗S p#1X → 1S (6.19)

as follows:

π!DS (p#f#1X)⊗S p#1X

∼�→ p#p
∗π!DS (p#f#1X)

→ p#π!DX (p∗p#f#1X)
→ p#π!f#1X ≃ p#1X

→ 1S .

Here the first equivalence is the projection formula, the second arrow is the equivalence
p∗π! ≃ π!p

∗ together with the exchange p∗DS →DXp∗, the third arrow is induced by the

unit of the adjunction (p#,p∗) together with the equivalence DX (f#1X) ≃ f#1X , and

the last arrow is induced by the counit of the adjunction (p#,p∗).
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Remark 6.20. The adjoint of ε is the map

e ∶ π!DS (q#1X) →DS (p#1X) . (6.21)

The map e can also be described as the adjoint of the map

e′ ∶DS (q#1X) → π∗DS (p#1X),

which is the dual of the composite p#1X → p#f∗f
∗1X ≃ p#f#1X .

Note that the evaluation map for q#1X factors canonically as

DS (q#1X)⊗S q#1X → i!1EF(N)→ 1S,

where 1EF(N) ∈ SptG,N-free(S) is the unit.

Lemma 6.22. The following diagram commutes:

π! (DS (q#1X)⊗S q#1X) π!1EF(N)

π! (DS (q#1X))⊗S p#1X 1S .
ε

Proof. The left vertical map comes from the oplax monoidality of π!. It may also be

described as the map induced by p#f#1X → p#1X together with the equivalence

π! (DS (p#f#1X)⊗S p#1X) ≃ π!DS (p#f#1X)⊗S p#1X .

Consider the diagram

p#π! (p∗D(q#1X)⊗X f#1X) p#π! (D(f#1X)⊗X f#1X) p#1X 1S,

p#π! (p∗D(q#1X)⊗X 1X) p#π! (D(f#1X)⊗X 1X)

where the top and bottom horizontal arrows of the square are the composite of the

exchange p∗DS → DXp∗ with the map induced by the unit of the adjunction (p#,p∗).
Via Lemma 6.17 and the equivalences π!p# ≃ p#π!, we see that the top row is identified

with the composite of the top horizontal and right vertical arrows in the diagram of

the lemma. The composite around the lower part of this diagram is identified with the

composite of the left vertical and bottom horizontal arrows of the diagram in the lemma.
That this diagram commutes follows from the next lemma together with the equivalence

DX (f#1X) ≃ f#1X .

Lemma 6.23. The following diagram commutes:

f#1X ⊗
X
f#1X f#1X,

f#1X ⊗
X
1X

∼
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where the horizontal map is the projection formula f#1X ⊗
X
f#1X ≃ f#f

∗f#1X followed

by the counit (using the ambidexterity equivalence f# ≃ f∗).

Proof. Let pi ∶ X ×X X → X be the projection to the ith factor and Δ ∶ X → X ×X X

the diagonal. Under the ambidexterity equivalence f# ≃ f∗, the counit of the adjunction

(f∗,f∗) is the arrow f∗f# → id, defined as the composite

f∗f# ≃ p2#p
∗
1 → p2#Δ∗Δ

∗p∗1 ≃ p2#Δ∗ ≃ id

(see [24, Theorem 6.9]). In particular, together with the equivalence f#p2# ≃ f#p1#,

we see that the morphism f#f
∗f#1X → f#1X in SptG● (X) can be represented by the

projection

f# (X ×X X)
+→ f#

(X ×X X)
+

(X ×X X ∖Δ(X))+
≃ f#X+,

where X ×X X is an X -scheme via the first coordinate. The lemma follows from the

commutativity of the diagram where the rows are the cofiber sequences in SpcG● (X)
associated to the closed immersions Δ(X) ⊆X ×X X and Δ(f) ⊆X ×X X, the diagonal,
and the graph of f, respectively:

(X ×X X ∖Δ(X))+ (X ×X X)
+ X+

(X ×X X ∖Δ(f))+ (X ×X X)
+ X+.

p1

∼

Now we suppose that q#1X is dualizable in SptG,N-free and G is isomorphic to a

semidirect product of N and G/N . We define a ‘coevaluation’

η ∶ 1S → p#1X ⊗S π!DS (p#f#1X) (6.24)

as follows. Since G is isomorphic to a semidirect product of G/N and N, there is a map

1S → π!1EF(N) which splits the canonical map π!1EF(N) → 1S , obtained by taking the

N -quotient of the (unstable) map N ′+ → 1EF(N), where N ′ is the G-set G/(G/N). Now,
since q#1X is dualizable in SptG(S), it is dualizable in SptG,N-free(S) by Lemma 6.16,
and the duals in both categories agree under the standard inclusion. This means we have

a coevaluation map

coev ∶ 1EF(N)→ p#f#1X ⊗SDS (p#f#1X) .

Now, η is defined as the composite

1S → π!1EF(N)
π!coev���→ π! (p#1X ⊗SDS (p#f#1X))
→ p#1X ⊗S π!DS (p#f#1X) .

Theorem 6.25. Let q ∶X → S be an object of SmG,N-free
S and f ∶X →X, p ∶X → S as in

diagram (6.18). Suppose that q#1X ∈ SptG(S) is dualizable. Then p#1X is dualizable in
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SptG/N(S) and formula (6.21) is an equivalence

π!DS (q#1X) ∼�→DS (π!q#1X) .

Proof. First we explain why it suffices to assume that G is a semidirect product of N and
G/N . Suppose that the result is true in this case. Given an arbitrary G and N, and letting

X be a dualizable N -free smooth G-scheme over S, consider the Cartesian square (6.1).

Since X is dualizable over S, as a smooth G-scheme, the ker(pr2)-free G×G/N G-scheme

pr∗1X is dualizable over S. Since G×G/N G is a semidirect product of G and ker(pr2), our
hypothesis implies that the composite is an equivalence

pr2!pr
∗
1DS (q#1X) ∼�→ pr2!DS (pr∗1q#1X) e�→DS (pr2!pr∗1q#1X),

where we again write e for an instance of formula (6.21) for the group G×G/N G and

we use the fact that pr∗1DS (q#1X) ≃DS (pr∗1q#1X), since q#1X is dualizable and pr∗1 is

symmetric monoidal. We claim that this implies that p#1X is dualizable in SptG/N(S).
Indeed, pr2!pr

∗
1q#X ≃π∗π!q#1X is dualizable in SptG(S) and therefore ΦN (π∗π!q#1X) ≃

π!q#1X ≃ p#1X is dualizable in SptG/N(S), as ΦN is symmetric monoidal. In this case,

ε and η are evaluation and coevaluation maps for the duality pairing.
The diagram

π∗π!DS (q#1X) π∗DS (π!q#1X) DS (π∗π!q#1X)

pr2!pr
∗
1DS (q#1X) pr2!DS (pr∗1q#1X) DS (pr2!pr∗1q#1X)

π∗e ∼

∼∼

∼ e
∼

(6.26)

commutes. This follows by adjointness from the commutativity of the diagram

π∗π!DS (q#1X)⊗π∗π!q#1X 1S,

pr2!pr
∗
1DS (q#1X)⊗pr2!pr

∗
1q#1S

∼

where the the horizontal and diagonal arrows come from formula (6.19). We thus find
that

π∗π!DS (q#1X) π∗e��→ π∗DS (π!q#1X)

is an equivalence. The functor π∗ is conservative, since ΦN ○π∗ ≃ id (see Proposition 4.10).

It follows that e is an equivalence.
It remains to establish the result under that assumption that G is a semidirect product.

We show that in this case the evaluation and coevaluation maps (6.19) and (6.24) satisfy

the triangle identities. To compactify notation, we write X = p#f#1X , X = p#1X , 1 =1S ,
and 1EF = 1EF(N). We have to check that the following two composites are the identity:

X⊗1
id⊗η��→X⊗π!D(X)⊗X

ε⊗id��→ 1⊗X

1⊗π!D(X) η⊗id��→ π!D(X)⊗X⊗π!D(X) id⊗ε��→ π!D(X)⊗1.
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To establish the first identity we observe that we have a commutative diagram

X⊗1 X⊗π!D(X)⊗X 1⊗X

X⊗π!1EF X⊗π!(D(X)⊗X) π!(X⊗D(X))⊗X π!1EF ⊗X

π!(X⊗1EF) π!(X⊗D(X)⊗X) π!(1EF ⊗X),

id⊗η ε⊗id

id⊗π!(coev)

π!(id⊗coev)

id

π!(ev⊗id)

id

in which X ≃X⊗1EF and the upper right-hand square commutes by Lemma 6.22. The

second identity is established by a similar diagram.

The following well-known result is purely categorical, and applies to our particular

functor π∗, as π∗ is symmetric monoidal by Proposition 4.3 and satisfies the projection

formula of Proposition 5.6. See [14] for detailed derivations of these results in the 1-

categorical context. In the ∞-categorical context, the natural transformations are derived
via adjunction in exactly the same way, and whether or not a natural transformation is a

natural equivalence is a property of the induced natural transformation between homotopy

1-categories.

Lemma 6.27. Let π∗ ∶ C → D be a symmetric monoidal functor of closed symmet-

ric monoidal ∞-categories which admits both a left adjoint π! and a right adjoint
π∗ and satisfies the following projection formula: For all objects Y ∈ C and Z ∈ D,

the map

π!(Z⊗π∗Y ) → (π!Z)⊗Y ,

induced by the unit map Z → π∗π!Z, is an equivalence. Then π∗ is closed symmetric
monoidal; that is, the map

π∗FC(Y ,X) → FD(π∗Y ,π∗X),

induced by the evaluation Y ⊗FC(Y ,X) →X, is an equivalence.

Proof. Let Z be an object of D. We have a commutative square

Map(Z,π∗F (Y ,X) Map(Z,F (π∗Y ,π∗X)

Map((π!Z)⊗Y ,X) Map(π!(Z⊗π∗Y ),X),

in which the vertical maps are equivalences by adjunction. But the bottom horizontal

map is induced by the equivalence π!(Z⊗π∗Y ) → (π!Z)⊗Y , so the top horizontal map
is an equivalence as well. Since Z is arbitrary, the result follows.

Corollary 6.28. For any given object X of C, there is a canonical equivalence of

functors

F (π!(−),X) ≃ π∗F (−,π∗X)∶Dop →C.
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In particular, specializing to the case in which X is the unit of C, we obtain an equivalence
Dπ!

∼�→ π∗D.

Proof. The adjoint of the composite natural transformation of functors

π∗FC(π!(−),X) → FD(π∗π!(−),π∗X) → FD(−,π∗X)

is the desired natural transformation

FC(π!(−),X) → π∗FD(−,π∗X).

Let Z be any object of C. This transformation is an equivalence if and only if it is an

equivalence upon evaluation at any object Y of D. We have equivalences

Map(Z,F (π!Y ,X)) ≃Map(Z⊗π!Y ,X)

and

Map(Z,π∗F (Y ,π∗X)) ≃Map(π∗Z⊗Y ,π∗X) ≃Map(π!(π∗Z⊗Y ),X).

Hence the result follows from the projection formula π!(π∗Z⊗Y ) ≃Z⊗π!Y .

We now return to the special case of our particular symmetric monoidal functor π∗,

and we write h ∶DSπ!
∼�→ π∗DS for the canonical equivalence of Corollary 6.28.

Proposition 6.29. Let q ∶ X → S be an object of SmG,N-free
S such that that q#1X ∈

SptG(S) is dualizable. The diagram

DSDS (π!q#1X) DS (π!DS (q#1X)) π∗DSDS (q#1X)

π!q#1X π∗q#1X

D(e)
∼ ∼

h

τ

∼can ∼ π∗can

commutes, where e is the map from Remark 6.20.

Proof.WriteD =DS andX = q#1X . The commutativity of the diagram of the proposition

is equivalent, by adjointness, to that of

π∗DD(π!X) π∗π∗DD(X) DD(X)

π∗π!X X,

π∗hD(e) ε

τ̂

π∗can can
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where ε ∶ π∗π∗ → id is the counit. The outer composite of this diagram agrees
with the outer composite of the following diagram, which we will show to be

commutative:

π∗DD(π!X) π∗D(π!D(X)) DD(X)

π∗π!X D(π∗D(X)) D(π∗π!D(X))

DD(π∗π!X) D(pr2!pr∗1D(X)) D(pr2!Δ!Δ
∗pr∗1D(X))

D(pr2!Δ!Δ
∗D(pr∗1X))

DD(pr2!pr∗1X) D(pr2!D(pr∗1X)) D(pr2!D(Δ!Δ
∗pr∗1X))

DD(pr2!Δ!Δ
∗pr∗1X)

pr2!pr
∗
1X pr2!Δ!Δ

∗pr∗1X X.

De

π∗D→Dπ∗

εh

π∗D→Dπ∗ 4π∗can

can

De

3

D(id→π∗π!)

D(π∗D→Dπ∗)

Dβ

D(pr∗1D→Dpr∗1)

De

φ

D(pr∗1D→Dpr∗1)

φ

Dβ

5

Dγ2

De

can

φ

∼

can

∼

∼

1

Here, pri and Δ are as in §6.1, φ ∶ id→Δ!Δ
∗ arises from the Wirthmüller isomorphism

Δ! ≃ Δ∗ together with the unit id → Δ∗Δ
∗, β ∶ Δ!Δ

∗ → id is the counit, and we

identify π∗π!X ≃ pr2!π
∗
1X as in Remark 6.3. The map γ is induced by the composite of

exchanges

Δ!D
ψ�→DΔ∗ and DΔ∗

ψR��→Δ∗D

as follows. First, the exchange ψ is the equivalence fitting in the commutative
diagram

Δ!D DΔ∗

Δ∗D DΔ!,

∼

ψ

∼

∼

where the vertical equivalences are the Wirthmüller isomorphism and the bottom one is

the standard equivalence. In particular, ψ is an equivalence. The exchange ψR is its right

mate and ψR is an equivalence on dualizable objects, so in particular ψR applied to X is
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invertible. By Lemma 6.10, the diagram

DΔ!Δ
∗q#1X DΔ∗Δ

∗q#1X Δ!DΔ∗q#1X Δ!Δ
∗Dq#1X

Dq#1X

γ

∼

D(unit)

ψ ψR

counitD
(6.30)

commutes, where γ is by definition the upper horizontal composite. This implies that the

subdiagram marked 2 in the large diagram of this proof commutes.

Next, to see that 1 commutes, we need to see that the diagram

pr2!D(Δ!Δ
∗pr∗2q#1X) D(pr2!Δ!Δ

∗pr∗2q#1X)

pr2!Δ!Δ
∗pr∗2D(q#1X) D(q#1X)

e

∼

γ′ ∼

commutes, where γ′ is the composite of γ with the exchange pr∗1D → Dpr∗1. Using
Remark 6.20 and the fact that Δ!Δ

∗pr∗1q#1X ≃ m#1G′/G×X , where m ∶ G′/G×X → S

is the G′-equivariant structure map, we see that the arrow e ∶ pr2!D(Δ!Δ
∗pr∗1q#1X) →

D(pr2!Δ!Δ
∗pr∗1q#1X) is obtained as the adjoint of the map

D(Δ!Δ
∗pr∗1q#1X) ≃D(Δ∗Δ∗pr∗2q#1X) D(unit)����→D(pr∗2q#1X) ≃ pr∗2D(q#1X) .

It now follows, using diagram (6.30), that this diagram, and hence 1 , commutes.

That 3 commutes follows from the commutativity of the diagram

W π∗π!W

pr2!Δ!Δ
∗pr∗1W pr2!pr

∗
1W

∼

β

∼

for W ∈ SptG,N-free(S). This commutativity can be checked for W the suspension
spectrum of a smooth N -free G-scheme over S, which is straightforward to verify. Using

Lemma 6.10, we see that subdiagram 4 commutes. That subdiagram 5 commutes
follows by applying D to diagram (6.26). The remaining subdiagrams are easily seen to

commute.

Next, we verify that EF[N]+ is a colimit of dualizable spectra. Let F be a family. If

X ∈ SmG
B , recall that we write

XF = ∪H∈co(F)X
H and X(F) =X ∖XF .

Write f ∶X →B and g ∶X(F)→B for the structure maps.

Lemma 6.31. Suppose that f#(1X) is dualizable in SptG(B). Then g#(1X(F)) is

dualizable.
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Proof. Filter the inclusion F ⊆ Fall by adjacent families F = F0 ⊆ F1 ⊆ Fn = Fall. Write
αi ∶X(Fi) ⊆X and βi ∶X(Fi)Fi−1 ⊆X(Fi) for the inclusions and write fi ∶X(Fi)→B for

the induced structure map. From the gluing sequence, we obtain exact sequences

fi# (1X(Fi)) → fi+1# (1X(Fi+1)) → fi+1#βi+1∗(1X(Fi+1)Fi ) .

Let Hi ≤ G be a subgroup such that Fi+1 ∖ Fi = {(Hi)}. Then since X(Fi+1)Fi is
concentrated at (Hi), we have that X(Fi+1)Fi ≅G×NHi

X(Fi+1)Hi by Lemma 3.26. We

then have that

fi+1#(βi+1)∗(1X(Fi+1)Fi ) ≃G+∧NHi
(f ′Hi

)
#
(1X(Fi+1)Hi ),

where f ′Hi
∶X(Fi+1)Hi →B is the structure map.

Now suppose that fi+1# (1X(Fi+1)) is dualizable. It follows that (f ′Hi
)
#
(1X(Fi+1)Hi )

is also dualizable, since this is obtained by applying the geometric fixed-points functor.

Therefore fi+1#(βi+1)∗(1X(Fi+1)Fi ) is dualizable and we conclude that fi# (1X(Fi)) is

dualizable as well. Since we have assumed that f#(1X) = fn# (1X(Fn)) is dualizable, the

result follows by (finite) induction.

Corollary 6.32. Set S ∈ SchGB. Given a family F , 1EF ∈ SptG(S) can be expressed as

1EF ≃ colim
n∈N

qn#1Un
,

where qn ∶Un → S is in SmG
S [F] and qn#1Un

is dualizable in SptG(S).

Proof. It suffices to show this when S =B. Use the previous lemma together with the

presentation of Example 3.5.

Corollary 6.33. Suppose that q#1X ∈ SptG(S) is dualizable, where q ∶X →S is an object

of SmG,N-free
S . Then the Adams transformation is an equivalence

τ ∶ π!q#1X
∼�→ π∗i!q#1X .

In particular,

τ ∶ π!1EF(N)
∼�→ π∗i!1EF(N).

Proof. The first statement is immediate from the Proposition 6.29. The second statement

then follows, using Corollary 6.32.

Next we will define a transformation

ν ∶ π∗i! → π!,

which we will show is inverse to τ . We begin with the following observation. Recall that

there is a transformation π∗i!i
∗(1S)⊗ id→ π∗i!i

∗π∗ (see formula (6.6)).

Lemma 6.34. The map (6.6) is an equivalence.
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Proof. Set Y ∈ SptG/N(S) and write EF(N) ≃ colimnUn, with qn#1Un
dualizable over S

(see Corollary 6.32). Then map (6.6) evaluated on Y is the colimit of the transformations

π∗ (qn#1Un
)⊗Y → π∗ (qn#1Un

⊗π∗Y ) .

We see that each of these transformations is an equivalence since, each fits into the
commutative diagram

π∗ (DD(qn#1Un
)⊗π∗Y ) π∗F (D(qn#1Un

),π∗Y ) F (π!D(qn#1Un
),Y )

π∗DD(qn#1Un
)⊗Y π!qn#1Un

⊗Y F (D(π!qn#1Un
),Y ) .

∼ ∼

∼ ∼

∼

Now define υ ∶ π∗i! → π! as the composite

π∗i!
unit��→ π∗i!i

∗π∗π! ≃ π∗(i!i∗(1S)⊗π∗π!)
∼�→ π∗(i!i∗(1S))⊗π!

τ−1��→ π!i
∗(1S)⊗π! → π!.

Lemma 6.35. The composite π!
τ�→ π∗i!

υ�→ π! is an equivalence.

Proof. The composite υτ agrees with the composite around the following diagram

π! π∗i! π∗i!i
∗π∗π! π!

π!i
∗(1S)⊗π! π∗i!i

∗(1S)⊗π! π!i
∗(1S)⊗π!.

τ

∼

τ⊗id
∼

τ−1⊗id

∼

We are now in a position to prove that the Adams transformation τ ∶π! →π∗i!, as defined

in Definition 6.5, is an equivalence. Recall that τ is obtained via adjunction from the

natural transformation (6.4), where i! ∶ SptG,N-free(S)→SptG(S) is the inclusion functor,
π! ∶ SptG,N-free(S) → SptG/N(S) is the quotient functor, and π∗ ∶ SptG(S) → SptG/N(S)
is the fixed-point functor.

Theorem 6.36 (Adams isomorphism). The Adams transformation τ ∶ π! → π∗i! is an
equivalence.

Proof. By Corollary 5.4, it suffices to show that τ is an equivalence on Σ−Vq∗1X , where

V is an N -trivial representation and q ∶X → S is an N -free (not necessarily smooth) G-
scheme over S. Write f ∶ X → X for the quotient and p ∶ X → S for the induced map.

Consider the diagram

π!p∗f∗1X π∗i!p∗f∗1X π!p∗f∗1X

p∗π!f∗1X p∗π∗i!f∗1X p∗π!f∗1X .

τ υ

∼υ′

τ
∼

υ
∼
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The left-hand square commutes by Proposition 6.14 and Lemma 6.15, and the right-hand
square commutes by a similar argument. Both horizontal composites are equivalences by

Lemma 6.35, and therefore the outer vertical arrows are equivalences, as the middle one

is. Finally, τ ∶π!f∗1X →π∗i!f∗1X is an equivalence by Corollary 6.33 (since f#1X ≃ f∗1X ,
by ambidexterity [24], as f is finite étale).

6.4. Applications

In this section, we present a few applications of the Adams isomorphism.

Let BG denote the classifying stack of the group G and and f ∶ BG → B(G/N) the

resulting proper map of stacks. We have an equivalence Spt(BG) ≃SptG(S), and from this
perspective the fixed-point functor π∗ becomes identified with the push-forward functor

f∗. The following base-change results are an instance of the proper and the smooth proper

base-change formula, but with the curious feature that f is not a representable morphism.
These do not follow immediately from the six-functor formalism in [24], precisely because

f is not representable.

We use the names for exchange morphisms given in the first part of the previous

subsection.

Corollary 6.37 (proper base change). Let p ∶ T → S be a morphism in Sch
G/N
B . The

exchange

αR ∶ p∗π∗→ π∗p
∗

is an equivalence.

Proof. Choose a filtration ∅ =F−1 =F0 ⊆F1 ⊆⋯ ⊆Fn =Fall such that each pair Fi ⊆Fi+1

is N -adjacent (see §3.2). This gives rise to the filtration of X ∈ SptG(S),
∗ ≃EF−1+⊗X →EF0+⊗X →⋯→EFn−1+⊗X →EFn+⊗X ≃X.

It thus suffices to check that αR is an equivalence on each filtration quotient E(Fi+1,Fi)⊗
X. Suppose that F ⊆F ′ is N -adjacent at H ≤N . By Proposition 4.12, we find that

p∗π∗(E(F ′,F)⊗X) ≃ p∗(G/N+⋉W (EF(WNH)+⊗XΦH)WNH)

≃G/N+⋉W p∗((EF(WNH)+⊗XΦH)WNH)

≃G/N+⋉W ((p∗ (EF(WNH)+⊗XΦH))WNH)

≃G/N+⋉W ((EF(WNH)+⊗(p∗X)ΦH)WNH)

≃ π∗p
∗(E(F ′,F)⊗X).

Here, the third equivalence follows from Theorem 6.36 and Proposition 6.12, since
EF(WNH)+⊗XΦH is WNH-free. The fourth follows from Proposition 4.11.

Corollary 6.38 (smooth proper base change). Let p ∶ T → S be a smooth morphism in

Sch
G/N
B . The exchange

α ∶ p#π∗→ π∗p#

is an equivalence.
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Proof. This is similar to the proof of the proper base change.

Corollary 6.39 (projection formula). Set S ∈ SchG/NB . There is a canonical equivalence

π∗(X)⊗Y ≃ π∗(X⊗π∗(Y ))

for X ∈ SptG(S) and Y ∈ SptG/N(S).

Proof. Consider the map π∗(X)⊗Y → π∗(X⊗π∗(Y )) adjoint to the map

π∗(π∗(X)⊗Y ) ≃ π∗π∗(X)⊗π∗Y →X⊗π∗Y ,

where the equivalence follows from the symmetric monoidality of π∗ and the map is given
by tensoring the the counit π∗π∗X →X with π∗Y .

Let F ⊆F ′ be an N -adjacent pair of families, say at H ≤N . Then by Proposition 4.12,

(E(F ′,F)⊗X)N ≃G/N+⋉W ((EF(WNH)+⊗XΦH)WNH) .

Under this equivalence, the transformation is identified with G/N+ ⋉W − applied to the

transformation

(EF(WNH)+⊗XΦ)WNH ⊗Y →(EF(WNH)+⊗ΦHX⊗π∗Y )WNH
.

That this is an equivalence follows from the commutativity of the diagram

π!W ⊗V π!(W ⊗π∗V )

π∗W ⊗V π∗(W ⊗π∗V ),
τ⊗id τ

where W ∈ SptG,N-free(S), V ∈ SptG/N(S); the commutativity can be checked by an

argument similar to ones from before – for example, in Proposition 6.7.
The general case follows by choosing a filtration ∅ =F−1 = F0 ⊆ F1 ⊆⋯ ⊆ Fn = Fall such

that each pair Fi ⊆ Fi+1 is N -adjacent and considering the induced filtration EFi ⊗X

on X.

7. Splitting motivic G-spectra à la tom Dieck

Throughout this section, N ⊴ G is a normal subgroup and we assume that N acts trivially

on S.

For a subgroup H ≤N , we write WH =WGH/WNH for the quotient of Weil groups.
Let F(WNH) be the family of subgroups {K ≤WGH ∣K ∩WNH = {e}}. As before, we

write EWNH(WGH) =EF(WNH) for the universal WNH-free WGH-motivic space, to

emphasize the ambient group.
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Definition 7.1. Let X be a motivic G-spectrum and H ≤G a subgroup. A splitting of
X at H is a map

XH XΦH

fH

in SptWGH(S) which splits the canonical map XH → XΦH . An N-splitting of X is a

choice of splitting of X at each subgroup H ≤N .

Example 7.2.

1. Set Y ∈ SpcG● (S). The suspension spectrum Σ∞Y has a canonical splitting at any

subgroup H ≤ G, defined as follows. Write π ∶ NGH → WGH for the quotient. The
counit of the adjunction π∗ ⊣ (−)H on based motivic NGH-spaces yields the map

π∗ (Y H) → Y of spaces and thus a map of NGH-spectra π∗Σ∞ (Y H) → Σ∞Y . Its

adjoint is the map

Σ∞ (Y H) → (Σ∞Y )H .

By Proposition 4.10, this induces the desired splitting.

2. If X ∈ SptG/N(S), then φ∗(X) is split.

3. If X and Y are split at H, then X ⊗Y is canonically split via the composition

(X⊗Y )ΦH ≃XΦH ⊗Y ΦH →XH ⊗Y H → (X⊗Y )H .

Write i ∶ SmG,N-free
S ⊆ SmG

S for the inclusion.

Definition 7.3. The motivic homotopy orbit point spectrum of X is

XhN ∶= π∗i!i
∗(X) ≃ (EF(N)+∧X)/N.

Let X be an N -split motivic G-spectrum. Let H ≤N be a subgroup and consider the

composition, where for notational brevity, we write simply EH =EWNH(WGH). Define

the map ΘX,H as the following composite, where the maps are explained later:

G/N+⋉WH (XΦH)
hWNH

≃G/N+⋉WH (EH+⊗XΦH)WNH

≃G/N+⋉WH ((EH+⊗X)ΦH)
WNH

(fH)∗���→G/N+⋉WH ((EH+⊗X)H)
WNH

≃ ((G+⋉NGH EH+)⊗X)N

�→XN .

The map fH is the splitting of X at H, and the last map is induced by the projection

G+⋉NGH EH+ ≃ (G×NHGEH)+→ S0.

The first equivalence comes from the Adams isomorphism. The second comes from

the monoidality of geometric fixed points and the fact that H acts trivially on

EF(WNH)+. The fourth map, which is an equivalence, comes from a canonical exchange
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of functors (see the proof of Proposition 4.12) together with the projection formula for

induction restriction. Note that this map depends only on the G-conjugacy class of the

subgroup H.
Now define the map of motivic G/N -spectra

ΘX ∶ ⊕
(H)

G/N+⋉WH (XΦH)
hWNH

→XN ,

where the index is over the set of G-conjugacy classes of subgroups of N, to be the sum
over the maps ΘX,H defined before. The map ΘX is natural with respect to maps of

N -split spectra which are compatible with splitting.

Theorem 7.4 (motivic tom Dieck splitting). Let X ∈ SptG(S) be an N-split motivic
G-spectrum. The map

ΘX ∶ ⊕
(H)

G/N+⋉WH (XΦH)
hWNH

→XN

is an equivalence of motivic G/N -spectra. In particular, for integers a and b there is a

canonical isomorphism

πG
a,b(1B) ≅ ⊕

(H)
πa,b (BWH+) .

Proof. Since G is finite, there is a sequence of families

∅ =F−1 ⊆ F0 ⊆ F1 ⊆⋯ ⊆Fn = Fall

such that each pair Fi ⊆ Fi+1 is N -adjacent (see §3.2). This gives rise to the filtration of
the identity functor

∗ ≃EF−1+⊗−→EF0+⊗−→⋯→EFn−1+⊗→EFn+⊗− ≃ id.

It thus suffices to show that ΘX⊗E(F ′,F) is an equivalence whenever F ⊆ F ′ is an N -

adjacent pair.
But if F ⊆ F ′ is N -adjacent at H ≤N , then all summands of the domain of Θ vanish

except the summand corresponding to the conjugacy class (H), and ΘX⊗EF(F ′,F) is an

equivalence by Proposition 4.12.

Remark 7.5. Let FinG denote the category of finite G-sets. It is not difficult to see that
the functor c ∶FinG → SmG

B , defined by A↦∐AB, induces a functor c∗ ∶ SptG →SptG(B),
which is colimit preserving and symmetric monoidal. Segal [36] showed that πG

0 (1) ≅A(G)
is the Burnside ring, and so we obtain a canonical ring map c∗ ∶A(G)→πG

0,0(1B). We also
have a canonical ring map π∗ ∶ π0,0(1B)→πG

0,0(1B) induced by the projection π ∶G→{e}.
We thus obtain a ring map

A(G)⊗π0,0(1B) → πG
0,0(1B).

Using the splitting theorem and the fact that πG
0,0(BWH+) ≅ π0,0(BWH)⊕π0,0(1B), we

see that this is an injective ring map.

When B = Spec(k) is the spectrum of a perfect field, Morel [31] showed that π0,0(1k) ≅
GW (k) is the Grothendieck–Witt ring of symmetric bilinear forms. We thus have in this
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case a canonical (injective) ring map

A(G)⊗GW (k) → πG
0,0(1k).

This map is in general not surjective, since π0,0(BWH) is in general nonzero [30].
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