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THE ORDERING OF SPEC R

WILLIAM J. LEWIS AND JACK OHM

Introduction. Let Spec R denote the set of prime ideals of a commutative
ring with identity R, ordered by inclusion; and call a partially ordered set
spectral if it is order isomorphic to Spec R for some R. What are some condi-
tions, necessary or sufficient, for a partially ordered set X to be spectral? The
most desirable answer would be the type of result that would allow one to
stare at the diagram of a given X and then be able to say whether or not X is
spectral. For example, it is known that finite partially ordered sets are spectral
(see 2] or [5]). However, even in the 1-dimensional case a complete characteriza-
tion of spectral sets still seems very far off. On the other hand, the corre-
sponding topological question was completely answered by Hochster in his
remarkable thesis [2], and most of our work here uses Hochster’s topological
characterization as an intermediate step.

We begin in § 2 with two examples. The first shows that the previously known
necessary conditions for a partially ordered set to be spectral are not sufficient
and thus, in a sense, yields a new necessary condition. The second example
shows that the property “‘all finitely generated flat R-modules are projective”
is not determined by the ordering of Spec R (even though it is determined by
the Zariski topology of Spec R [4]). This example involves defining two suitably
distinct order compatible spectral topologies (see § 1 for terminology) on the
same partially ordered set.

In § 3 we enlarge on the construction of the second example to prove that a
partially ordered set X is spectral if it contains an element m such that any
x ¢ X having infinitely many elements below (resp. above) x necessarily lies
above (resp. below) m. Additional, less superficial, sufficient conditions for a
partially ordered set to be spectral are given in § 5, where the basic situation is
related to the first example of § 2. This involves an X which is decomposed into
an upper part X; and a lower part X», e.g. a 1-dimensional X which is written
as the union of its maximal elements and its minimal elements that are not
maximal.

In § 4 we prove that the ordered disjoint union of spectral sets is spectral, a
result which is used later in one of the constructions of § 5.

Finally, § 6 is devoted to describing all the spectral topologies on the simplest
kind of 1-dimensional X, namely a countable, 1-dimensional X with unique
minimal element.
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1. Terminology. A set X may come equipped with a partial ordering & or a
a topology 7. Given (X, @) and x € X, let Gy o(x) = {v € X|y < x} (the
generization of x in X), and let Sy ,(x) = {y € X|y = x} (the specialization of x
in X). More generally, if 7 is a subset of X, Gy ,(V) = {y € X|y £ v for some
v € Vland Sy (V) = {y € X|y = vforsomev ¢ V}. Given (X,.7), we write
clx #{x} for the I -closure of {x} in X. When our notation is clear from the
context, we shall drop the subscripts.

Let X have a topology .7 and a partial ordering 7. We say that.7 is
compatible with € if cl{x} = S(x) for all x € X. Note that.7 is compatible
with @ if and only if

1) S(x) is closed for all x € X, and

i) closed sets are closed under =.

Recall that if R is a ring, the Zariski topology for Spec R is defined by letting
C C Spec R be closed if and only if there exists an ideal A of R such that
C = {p € Spec RJp D A}. Spec R with Zariski topology and inclusion ordering
is an example where the topology and ordering are compatible. We will always
consider Spec R as a topological space with Zariski topology and as an ordered
set with inclusion ordering.

If Y C X, (V, Oly) will denote ¥ with the induced ordering and (V,.9 |y)
will denote ¥ with the subspace topology. 1f.7 and ¢ are compatible, then so
are.7 |y and O|y.

Let (X,.97) be a Ty space. Then X has a partial ordering, O(Z ), induced by
7 by defining ¥ £ v if and only if v € cl{x}. Conversely, let (X, @) be a
partially ordered set. The ordering induces a topology, 7°(), by defining a
subbasis for the closed sets of 7°() to be {S(x)|x € X}. We shall call this
topology the closures of points (COP) topology. The COP topology is Ty and is
compatible with ¢. Another topology is @/-compatible if and only if it is finer
than the COP topology and has its closed sets closed under =. (Recall that.7
is finer than.7 ' if every.7 '-open set is also.7 -open.) Clearly,.7 is compatible
with @ if and only if O(J ) = €. Thus, it is possible to recover the ordering
from a given order compatible topology. Also, if (X,.77) = (X’,.7"), then
(X, 0(9)) = (X', 0(F")). The converse, however, is false; so the ordering
contains less information than the topology. (We use = to denote homeo-
morphism when topological spaces are involved and order isomorphism when
partially ordered sets are involved.)

We define

dim (X, 0) = sup{n|there is a chain xy < x; < ... < x,; %; € X}.
Similarly, if x € X,
ht(x) = sup{n|there isa chainxy < x; < ... < x, = x;x; € X}.

In [2], a space (X,.7) is called spectral if it has the following properties:
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1) X is T.

ii) X is quasi-compact.

iii) The quasi-compact open subsets are closed under finite intersections and
form an open basis.

iv) Every non-empty closed subspace which is irreducible (i.e. not the union
of two proper closed subsets) is the closure of one of its points (i.e. has a
generic point).

Spec R is well known to be spectral. Conversely, in [2] Hochster proves that any
spectral space is homeomorphic to Spec R for some ring R. We shall also need
the fact that a closed subset of a spectral space is spectral in the induced
topology. We have previously defined a partially ordered set to be spectral if
it is order isomorphic to Spec R for some R. Obviously, (X, ) is spectral if
and only if there exists an order compatible spectral topology.

A 0-dimensional partially ordered set is easily seen to be spectral. (X, ) is
spectral and.7 is compatible with a 0-dimensional ordering of X if and only if
(X,77) is a totally disconnected, compact (i.e. quasi-compact, Hausdorff)
space. These spaces are called Boolean spaces and the one-point compactifica-
tion of an infinite discrete space is an easy example. If X is countable, (X, ")
is a Boolean space if and only if it is homeomorphic to the space of ordinals less
than or equal to some countable ordinal with interval topology (see [7]).

2. Two examples.

(2.1) Example. We know of three conditions on a partially ordered set X that
are necessary for X to be order isomorphic to the spectrum of some ring:

(K1) Every totally ordered subset of X has a supremum and aninfimum in X.

(K2) Between any two distinct related elements there are two immediately
adjacent elements (i.e. if x,y € X and x < y, then there exist elements
x1, y1 € X such that x = x; < y; £ y and there does not exist z € X
such that x; < 2z < vy).

(H) Let & = {S(x)|x € X}, 9 = {G(x)|x € X|. If % is a collection of
subsets of X such that-# C % or% C %, then N{F|F C %} =0
implies there is a finite collection of sets from % whose intersection is
empty.

In addition, Hochster [2] has proved that, given a ring R, there is a ring whose
prime ideals have exactly the reverse order of the primes of R. Thus one also
knows that any necessary condition should also be symmetric with respect to
reversing the order.

Properties (K1) and (K2) were discussed by Kaplansky [3], while property
[H] derives from an example of Hochster given in [5]. Property (H) reflects the
fact that Spec R is quasi-compact in the Zariski topology and that the sets in &
are necessarily closed sets of Spec R.

We shall now give an example of a partially ordered set which satisfies (K1),
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(K2), and (H) but is not spectral, thus showing that these conditions are not
sufficient for a partially ordered set to be spectral.

Let ¥V be a compact (Hausdorff) space which is not spectral; for example, the
closed unit interval will do. Because Y is compact, there does not exist a
properly finer compact topology for V. Let Z = {x¢/C € ¥ and C is closed
in V},let X = VU Z, and order X by specifying thatif y € ¥,y = x if and
only if y € C. Thus, for each closed set C C ¥ we create an element x, and
“place” it below each element of C. The set X is one-dimensional, ¥ being the
set of maximal elements and Z the set of minimal elements. Let.7 be any order
compatible topology for X. Choose Ci, C. proper closed subsets of ¥ such that
V==0CWUZC,. Now ¥V =S(xy) N\ (S(xe,) Y S(xe,)), so ¥ is closed in 7.
Similarly, if Cis any closed subset of ¥, then C = YMN\.S(x) is also.7 -closed.
If 7~ were a spectral topology, then the topology .7 |y would also be spectral
and would be finer than the original topology for Y. Our choice for ¥ makes this
impossible, so X is not spectral.

It remains to show X satisfies (K1), (K2), and (H). Because X is one-
dimensional, (K1) and (K2) are satisfied trivially. Let % be a collection of
subsets of X such that N {F|F € # | = 0. f # C ¥, notethatforx #y € X,
Sx) N S(y) € V. Sinceeach FN Yisclosedin Yand N{FN\Y|F & F} =0
the compactness of ¥ allows the choice of a finite set of /’s whose intersection is
empty. If # C %, wenote that xy € G(y) foreachy € ¥, so there must be an
F €% andaz € Zsuch that F = G(z) = {z}. Choose any F' € ¥ such that
z ¢ F’ and we have FM\ F' = @.

(2.2) Example. The second example involves the property ‘“‘all finitely
generated flat R-modules are projective.” Let us say that a ring R is 4 (0) if it
has this property (the terminology stems from [1]). D. Lazard [4] has shown
that whether or not R is 4 (0) depends only on the Zariski topology of Spec R.
We shall give here an example of a partially ordered set having two spectral
topologies, one of which yields an 4 (0) ring and the other does not. This
shows that the partial ordering of Spec R is not sufficient by itself to determine
whether or not R is 4 (0).

First let us review some facts from Lazard’s paper. Let X be a partially
ordered set. The D-component of an element x € X is defined to be the inter-
section of all sets containing x that are closed under = and =. Thus y is in the
D-component of x if and only if there exist elements xy, . . ., x, € X such that
x £ x, = %0 £ x3 = ... = x, = v. Moreover, if 7 is an order compatible
topology for X, a subset of X is defined to be D-closed if it is closed in.7 and is a
union of D-components. Lazard has proved that a ring R has the 4 (0) property
if and only if the D-closed sets of Spec R are open. Since the D-components
partition Spec R, it follows that R is 4 (0) whenever Spec R has only finitely
many D-components each of which is closed. In particular, if R has only
finitely many minimal primes, then R is 4 (0). It is also true, but for a different
reason, that if R has only finitely many maximal ideals, then R is 4 (0). In any
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case, it often suffices to merely glance at the ordering of the prime ideals of R in
order to conclude that R is 4 (0). The following example, however, shows that
the 4 (0) property cannot be characterized in terms of the ordering of Spec R
alone.

Let X = {myi=0,1,2,...,0} U {p;j=1,2,...,00}, and order X by
defining p; < m;_;, m;if j < 0 and p,, < m,, (see Figure 1 below).

My My o My ny n.,,

b P Py p, .

FIGURE 1

X has exactly two D-components, namely D_ = {m_, p.} and X\D..

For any m € X, let C(m) be the topology for X having closed sets

1) finite sets closed under = ; and

i) sets containing m and closed under =.

It is immediate that C(m) isa 1, order compatible, quasi-compact topology for
which closed irreducible sets have generic points. Moreover, the cofinite (i.e. finite
complement) sets containing m and closed under =, together with the finite
sets not containing m and closed under =<, form a basis of quasi-compact open
sets which is closed under finite intersections. Thus, (X, C(m)) is a spectral
space.

The D-component D is closed in the C(m) topology for any choice of m, and
hence (X, C(m)) has the property that D-closed sets are open if and only if D
is open. But D is open if and only if m ¢ D,. Thus, by choosing rings with
Spec isomorphic to (X, C(mg)) and (X, C(m,)), we get one ring which has the
A(0) property and another which does not, yet both rings have Spec order
isomorphic to X.

The example above is the simplest available in that it is one-dimensional
and has only two D-components, for a O-dimensional spectral space is 4 (0), i.e.
has the property that D-closed sets are open, if and only if the space is finite.

3. The C(m) topology. In this section we generalize the topology given in
Example 2.2 to an arbitrary partially ordered set. Given a partially ordered set
X we choose an element m € X. We define a topology, called the C(m)
topology, by choosing the following collection of sets as a basis for the closed
sets of the topology:

1) finite sets not containing m and closed under = (including @), and

i) cofinite sets containing m and closed under = (including X).

(3.1) LEmma. Let X be a partially ordered set and let m € X. The C(m)
topology is compatible with the order of X if and only if the following conditions hold:

a) if x € X and {y|y = x} is infinite, then x = m; and

b)if x € X and {y|y < x| is infinite, then x = m.
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Proof. For all x £ m, cl{x} = {y|y = x} if and only if condition a) holds.
Similarly, for all x < m, cl{x} = {y|y = x} if and only if condition b) holds.

(3.2) THEOREM. Let X be a partially ordered set with the C(m) topology for some
m € X. If the topology is compatible with the order of X, then X with the C(m)
topology is a spectral space.

Proof. Since the topology is compatible with the order, X is Ty. X is quasi-
compact since any open set containing m is cofinite. Corresponding to the
closed basis for the topology, we have the following open basis:

i) cofinite sets containing m and closed under = ; and

ii) finite sets not containing m and closed under <.

Clearly these sets must be quasi-compact, and they are closed under finite
intersections. Now let V be a closed irreducible set in X. If every element
of Vis =m, then either V = cl{m}, or V is finite and a generic point is easy to
find; so we may assume V contains an x % m. Since {y|y < x} is finite, we may
choose x to be a minimal element of V. Then cl{x} and X\{y|y £ x} are closed
sets whose union contains V. Since x € V and V is irreducible, we get
V = cl{x}.

As a special case of Theorem 3.2 we have the following generalization of the
fact that any finite partially ordered set is spectral.

(3.3) CoroLLARY. If X is a partially ordered set with the property that
S(x) \J G(x) is finite for all x € X, then X s spectral.

4. Ordered disjoint unions. If a partially ordered set X is the disjoint
union of partially ordered sets {X,}, we shall say that X is the ordered disjoint
union of the X,’s if

x <xy if and only if there is an « such that x, y € X, and x Zx,y.

Let A be an indexing set containing an element o, and let A’ = A\o.
Suppose we are given a collection of rings { R[N € A} such that each Ry, N € A/,
is an R,-algebra via a homomorphism ¢, : R, — R,; and let R be the subring

of H)\EA R\ defined by
(rn) € R if and only if ¢\(r,) = 7, for all but a finite number of A € A’

Let us now examine Spec R. For each a € A let 4, = {(a&\) € R|a, = 0}.
The A4, are ideals of R; and if «, 8 € A with a # 8 and « # o, then
0,0,...,0,1,,0,...) € 4dgand (1,1,...,1,0, 1,...) € A, It follows that
A 4+ A, = R. Let P be any prime ideal of R such that P 2 4, Choose
z = (an) € A,\P. Then ay = 0 for all but a finite number of X\ € A’, say
ai, ..., Thus 24, ... A, = 0. As z ¢ P, it follows that 4,;, C P for
some a;. Next note that R/A4, = R,,a € A, since 4, is the kernel of the projec-
tion homomorphism onto R,. Thus, if X, = {P € Spec R|P D A4,}, then X, is
order isomorphic to Spec R,. It follows that Spec R is the ordered disjoint union
of the sets X,, a € A, where X, is order isomorphic to Spec R,.
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Applications.

(4.1) TuroreM. Let { X\|N € A} be a collection of spectral partially ordered sets.
Let X be the ordered disjoint union of the Xx. Then there is a ring R such that
Spec R =~ X.

Proof. Choose one element o € A, and let A’ = A\o. Use (2, Theorem 6] to
choose a ring R, such that Spec R, = X,. Let .# be a maximal ideal of R, and
k = R,/ #. Again using [2], for each X € A’ we can choose a ring Ry such that
Spec Ry = X and R, is a k-algebra. Thus, we have composite ring homo-
morphisms ¢, : R, =k — Ry, N € A’. The theorem now follows from the
above remarks.

We can also use the above construction to improve a theorem of Lewis [5],
who proved that any tree X satislying (K1) and (K2) and having a unique
minimal element is of the form Spec R, where R is a Bezout domain. (Herea
partially ordered set X is a trec if for each x € X, G(x) is totally ordered; and a
ring is called Bezout if every finitely generated ideal is principal.)

(4.2) TuEOREM. A particlly ordered set X 1s a tree satisfying (K1) and (K2)
(if and) only if X = Spec R for some Besout ring R.

Proof. For any Bezout ring R, Spec R is well known to be a tree; so let us
assume X is a tree satisfying (K1) and (K2). If x, y are two distinct minimal
elements of X, then S(x) M S(y) = @. Thus, X can be written as the ordered
disjoint union of trees Xy, N € A, where each X, has a unique minimal element.
As X satisfies (K1) and (K2), so does each X,. Pick an element o € A, let
A’ = A\o, and use [5, Theorem 3.1] to choose a Bezout domain R, such that Spec
R, =~ X,. Now let K be the quotient field of R,. Again use Theorem 3.1 of [5]
as well as Ohm'’s proof of Jaffard’s theorem [6, page 589] to choose R\ for each
N € A’ such that Spec Ry = X, and K € R,. Thus, for A € A/, we have
composite ring homomorphisms ¢, : R, — K — R,. The construction at the
start of this section provides a ring R such that Spec R = X.

It remains to show that R is Bezout. Let z! = (x)!),...,2" = («y*) € R. Then,
since R, is Bezout, there is a y, € R, such that y,R, = (¢!, ..., «,*)R,.
For all but a finite number of X\ € A/, 5 (¢,)) = ex? forall 7 = 1,2, ..., #n. At
each of the non-exceptional coordinates let y» = ¢(v,), and note that the
equations expressing the equality v,R, = (4}, ..., a,”)R, hold for each such
N when ¢, is applied. Let Ay, ..., X\, € A’ be the coordinates for which y, has
not been chosen. Now choose yy,, . . ., m, so that y; Ry, = (anY - .., ax,) Ry,
fori=1,...,t 1ty = (y,), thenclearly y € Rand yR = (2, ..., s")R.

(4.3) Remarks on the topology of Spec R. Let us now go back and examine the
topology of Spec R, where R is the ring constructed at the beginning of this sec-
tion. We have seen that Spec R = U X, where X, = {P € Spec R|P D A.}.
Thus the X, are closed disjoint subspaces of Spec R ; so it follows that any closed
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set C of Spec R is a disjoint union of closed sets, C = \U C,, where C, = CM X,.
Conversely, what sets of the form U C, are closed in Spec R?

This question seems difficult to answer in general; so let us answer it in the
situation used in proving Theorem 4.1 above, namely, the homomorphisms
o, N € A, are of the type ¢y @ R, = R,/# — Ry, where . # is a fixed maximal
ideal of R,. We claim that if C is closed in Spec R, then either

i) M € C,, (the C,, « € A, may be arbitrary closed subsets of the X,), or

ii) A4 ¢ C,and C, = 0 for all but a finite number of a € A’

To see this, we shall use the fact that the sets of the form

V(z) = {P € Spec R|z € P}

for z = (an) € R are a basis for the closed sets of Spec R. We first describe the
possible V (z).
i) If 2z = (a«n) and a, € A, then C, = Vg, (a,) is a closed subset of X,
containing .#. Moreover, ¢, (a,) = ax = 0 for all but a finite number of
N € A, so G = X, for these \. For at most a finite number of N\ € A/,
an # ¢ (a,), so for these coordinates Cx = Vg, (a,).
i) If a, ¢ A, then # ¢ C,; and since «y = ¢r(a,) is a unit for all but a
finite number of N\ € A’, C\ = 0 for all but a finite number of X\ € A’.
By intersecting sets of the above type, one thus verifies the claim.
Note that there is a similarity between this topology on Spec R and the
topology described in § 3.
In connection with (4.1) we would like to raise the following:

(4.4) Question. 1f X is the ordered disjoint union of partially ordered sets
X, A € A, and if X is spectral, then are the X, also spectral?

5. Constructing spectral topologies. L.et X be a partially ordered set
that is the disjoint union of two proper subsets X; and X,, where X; is closed
under = in X. Let X; and X» be given the induced order from X. Note that
here, in contrast with the ordered disjoint union in § 4, we can have an element
of X, less than an element of X,. Suppose that for < = 1, 2, X, has an order
compatible topology .7 ; which is also compatible with the order of X in the
sense that Sy (x) M X, is closed in X ;, for all x ¢ X. (This places an additional
restriction on Xy, but not on X,.) With these assumptions, we define a topology
9 for X by:

C C X is.7 -closed if and only if
a) C = C;\J (Cy, C;closed in X, and
b) C is closed under = in X.

For the remainder of this section, any reference to X, X, and X, assumes the
situation described above. Once topologies.7 ;and.7 ;are defined, or assumed
to exist, the topology 7 is defined in the manner above.

(5.1) Observations.
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a).7 induces the topology.7 ;on X, ¢ = 1,2, and X is closed in.7 . Also, .7~
is order compatible and hence T.

b) If X, is quasi-compact in the .7 ; topology, 7 = 1, 2, then X is quasi-
compact.

Proof. Suppose N C, = B where C, = C,}'\J G2, G, closed in X, Then
0=N(CGLY G DN GYHVY (N G implies N Gt = Band N G2 = 0.
As each X, is quasi-compact, there exist ay, . . ., a, such that C,,* M ... M
Co,' = 0 for i =1, 2. Obviously, C,;, M ... N Cy, = 0.

b’) If S, is a quasi-compact subset of (X, 1), then Gx(S:) is quasi-
compact in (X,7).

Proof. Begin with an open cover of Gx(S:) and choose a finite subset that

covers S;. Because .7 -open sets are closed under <, this finite subset covers
Gx(Sh).

c) If C € X is an irreducible closed set, then C M\ X is either the empty set
or it is an irreducible closed subset of X,.

Proof. Let C = C1\J Gy, C; closed in X ;, and suppose Cy # 0. If C; is not
irreducible in X, then write Co = A \J B, where A, B are proper closed subsets
of X,. It follows that C = (C;\U 4) U (C,\U B) with (C; U 4), (C,\J B)
closed in X. This contradicts the fact that C is irreducible in X.

d) If every irreducible closed set of (X;,.9,), 1 = 1, 2, has a generic point,
then every irreducible closed set of (X,.77) does also.

Proof. Let C be an irreducible closed set of X. If C /M X, = @, then Cis an
irreducible closed set of X;; and then the generic point for C in X, is also a
generic point for C in X. On the other hand, if C/M X, £ 0, then by c¢),
C M X, is an irreducible closed set in X, and hence has a generic point x in Xo.
But then C = (C M X;) U Sy(x) implies C = Sy (x) by the irreducibility of C
in X. Thus, « is a generic point for C in X.

e) If &, is an open basis for .7 ,, i = 1, 2, then let ¥ = {G(U,) U
Us|U; € B and Gy (U,) \J U, is.9 -open}. If for each non-empty U, € %, and
for each .7 s-open set W, such that Wy, D Gy (U;) M X, thereis a Us € s
such that Us C Wyand U, \J (Gx(U;) N X,) is.J s-open, then % is an open
basis for 7 .

Proof. Any open set in X is of the form W = W, \U W, where W;is.7 ;-open,
i=1,2 If y € Wy, choose U; € &, such that y € U, € W,. W is closed
under <, s0 Gy (U;) M Xy € We. Our assumption in e) provides a U, € &,
such that Us € W and (Gx(U,) M X2) U Usisopenin X, Thusy € Gy (U,)
U Uy, € Wand Ge(U)\J U, € &. For y € Ws, choose Uy € &, such that
y € Uy € W, Now the choice U; = 0 gives U, ¢ &.
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We shall use 5.1 (e) in three places. In the proof of Theorem 5.2, if W =
Wy \U Wyand Wy # 0, we will have W, = X,. In the proof of Theorem 5.3, if
W, # 0, we will be able to say Wy € %,; and in the proof of Theorem 5.8
every Gx(U;) will be open in X.

We shall now prove some theorems which give sufficient conditions for the
topology.Z~ to be spectral.

(5.2) THEOREM. Suppose (X1,7 1) 1s spectral, and suppose (Xq,.7 ) satisfies
the axtoms for a spectral space, with the exception that X » need not be quasi-compact.
If thereis ap € Xy such that xo < p < xyforallx; € X, 1 = 1,2, then (X,.97)
s spectral.

Proof Inview of 5.1(a), 5.1(b’), and 5.1(d), we need only verify that.7 has
a basis of quasi-compact open sets which is closed under finite intersections.
For #, and %, we choose the quasi-compact open sets of .7 ; and .7 ,. If
U, # 0 is quasi-compact open in X, then Xy C Gx(U,). Thus the basis &
defined in 5.1(e) is an open basis. By 5.1(b"), Gx(U,) is quasi-compact if U, is
quasi-compact. Thus the sets in & are quasi-compact. That & is closed under
finite intersections follows from the fact that sets in & are either of the form Us,
where Uy € H,, or Uy \J X, where U, € H,andp € U,.

(5.3) THEOREM. Suppose (X1, 1) is spectral and that there is an m € X, such
that
a)ym = yforally € Xy, and
b) if v € X2 has infinitely many elements of X below (resp. above) vy, then
y = m (resp.y < m).
Then X 1s spectral.

Proof. Let 9 5 be the C(m)-topology for Xs. We proved in Theorem 3.2 that
(X2, 9 5) is spectral. The definition of the C(m)-topology also shows that any
open set of 7, which contains m is quasi-compact. Again, let 4, and %, be
the quasi-compact open sets of .7 ; and.7 5. Using 5.1(a), (b), (d), and (e), we
have X is spectral if the basis & is closed under finite intersections. In this
situation & can also be described as { U; \JU Us| U is quasi-compact open in.7 ;
and U; \U U, is closed under <}. It follows that & is closed under finite inter-
sections.

(5.4) Applications.

a) In terms of a 1-dimensional partially ordered set X, one can apply
Theorem 5.3 as follows. Write X = X; U X, where X; = {ht 1 elements of X}
and X, = {ht 0 elements of X}. Theorem 5.3 asserts that if there is a spectral
topology for X; which includes all sets of the form Sy (x) N X, x € X, among
its closed sets, and if there is an m € X, such that m lies below every element
of X,, then X is spectral. In Example 2.1, we constructed a set of this type
which was not spectral precisely because no spectral topology for X; could
include the sets Sy (x) M X as closed sets.
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b) Begin with a partially ordered set X; and a collection & of non-empty
subsets of X; such that X; € €. Defineaset Xy = {x¢|C € €}. Form a larger
set X = ¢ (X,) = X, U X;and order X by specifying thatif y € X1,y 2 x¢
if and only if ¥ € C. In addition, we preserve any order relations that may exist
in X;.

THEOREM. Let .7 1 be an order compatible topology for the pariially ordered set
X1. Then (X1, 1) s spectral and every set in € is T 1-closed if and only if there
exists an order compatible spectral topology I for X = € (X.) such that
T \x, =7 1 and X, 1s T ~closed.

Proof. (=) Apply Theorem 5.3.
(<) Xy is closed and (X,.9) is spectral; hence I ; = .7 |y, is spectral. The
rest of the assertion is immediate.

(5.5) Example. The = direction of the above theorem is false without the
initial assumption that X; € %. For,let X; = {y1, ys, ...}, X2 = {x1, %o, . . .}
and X = X, U X,, with the order on X defined by

x; < v,;if and only if j = 7.
Then X = % (X:) where € = {{yi}, {y1, ¥2}, {31, ¥2, ¥3}, . . .}. (See Figure 2.)

Vi Vo V3

X1 Xo X3
FIGURE 2

This is just the example of Flochster given in [5] with the order reversed. Since
MN:G(y;) = B, property (H) fails and X is not spectral. However, X is spectral,
and in fact, the C(y,)-topology (see § 3) is spectral and contains every set in &
among the closed sets.

(5.6) Example. The above example leads to another that shows how the
ordering of a spectral set can influence an algebraic property of any corre-
sponding ring. Let X be the set defined above and define an ordering on
X' = X U {m} by requiring that, in addition to the ordering of X, m < x for
all x € X. It is easily verified that the COP topology for X’ is spectral, since in
this topology all closed sets # X' are finite.

Since X' is spectral and has a unique minimal element, there exists a domain
D such that Spec D =~ X’. However, X itself is not spectral and thus cannot be
a closed subset of X’; so it follows that the intersection of the non-zero primes
of Spec D must be (0). Thus, in this case the ordering of Spec D implies a very
concrete algebraic property of D.

To carry this a bit further, consider what happens when the ordering of X’ is
reversed. Then any ring R such that Spec R is this new X’ has a unique
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maximal prime .# such that.# is the union of the non-maximal primes, be-
cause the set of non-maximal primes cannot be spectral.

(5.7) We shall now describe a second set of conditions which enable us to
define topologies 71 and .7, in such a way that (X, .7 ) will be spectral.
Define an equivalence relation on X, as follows:

Forx,x" € X, x ~ «' if and only if Gx(x) N X, = Gx(x') N X,

(i.e. the elements in X, below x coincide with the elements in X, below x').
Similarly, define an equivalence relation on X, by:

Forx,x' € Xo, o ~«"if and only if Sy (x) N X1 = Sy (&) N X,.

We will denote the equivalence class of x € X by [x].
Consider the following conditions on the order of X:
i) Fort=1,2if x,x’ € X;and x < «/, then x ~ &/, and
ii) For each x € X,, there exist y;,...,y, € X; such that Sy(x) N\ X, =
U j=1 [¥,;]; and similarly, for each x € X, there exist yy,...,v, € X,
such that Gy (x) N X, = Ul [v,].
Note that (5.7.1) implies that for i = 1, 2, X, is the ordered disjoint union of
the equivalence classes in X ;. For each x € X, we give [x] the order induced
from X.

(5.8) THEOREM. [f X = X \U X, satisfies (5.7(1) and (ii)) and for each x € X,
[x] is spectral, then X 1is spectral.

Proof. Let us assume that we begin with a spectral topology for each [x],
x € X. We can define an order compatible spectral topology .7 ; for X, in the
manner of (4.3). Fix an element m € X, and define a set C C X, to be I ;-
closed if and only if C M [x] is closed in [x] for all x € X, and either

i)m € C, or

ii) m ¢ Cand CM [x] = @ for all but a finite number of equivalence classes

in X;.

If m is maximal, this is the spectral topology described in § 4. It is easy to
check that for any m this gives a spectral topology for X;. Now if x € X, then
Sx(x) M X, is a finite union of equivalence classes and is therefore.7 ;-closed.
Thus.7 ; is compatible with the order of X in the sense described at the start
of § 5.

Now define an order compatible topology (usually not spectral).7 ; on X, by

C C X,is.9 s-closed if and only if C M [x] is closed in [x], for all x € Xo.

The topology on each [x] C X, is spectral; so we can choose a quasi-compact
open basis for.7 » using finite unions of sets each of which is a quasi-compact
open subset of some [x]. This basis is closed under finite intersections. Note that
an irreducible closed subset of X» must be contained in some [x], and thus has a
generic point.

Let.7 be the topology for X defined as before. By (5.1.a),.7 is T\, and by
(5.1.d), .7 has the generic point property. If each x € X, is less than some
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element of X, then we use (5.1.b’) to show X is quasi-compact. On the other
hand, if thereisanx € Xysuch that Sy(x) N X; = 0, then X = Gx(X,) U [x].
Since [x] is closed in X, it is quasi-compact in X by the assumption that it is
spectral. Since Gy (X,) is also quasi-compact, by (5.1.b’), it follows that X is
quasi-compact.

It remains to verify that.7 has a basis of quasi-compact open sets which is
closed under finite intersections. Let & be all sets of the form Gy (U,) \JU Us,
where U, is a quasi-compact open set in X ;. First note thatif x € Gx(U;) M X,
then [x] € Gx(U,). It follows that Gy (U,) isZ -open, because Gx (U;) M X, is
a union of equivalence classes of X, and hence is open in X,. Any.7 -open cover
for U, covers Gx(U:), so U, quasi-compact implies Gx(U;) is quasi-compact.
If Us,is a quasi-compact open set in X, then it is also a quasi-compact.J -open
set. Thus, & consists of quasi-compact open sets. By 5.1.e, & is then a quasi-
compact open basis for.7 .

Now % is closed under finite unions; so to show it is closed under finite
intersections, it suffices to show that an intersection of two elements of & is a
finite union of elements of Z. Let Gx(U;) U U, and Gy (U,") U U, be two
elements of Z.

First consider U, M Uy'. As U,, Uy’ are quasi-compact open in.7 3 as well as
7", so is their intersection. Next consider Gy (U,) N Uy (Gx(U,") N U, is, of
course, similar). To be quasi-compact in the .7, topology, U,’ must be con-
tained in a finite union of equivalence classes. Letussay Uy = W, U ... UW,,
W ; quasi-compact open and W, C [x;] forsome x; € Xo. If W,; N Gx(U:) # 0,
then W; C [x,] € Gx(U,).Thus, Gx(U) N\ U, = U {W|W,; CGx(U))} € &.

Finally, consider Gx(U:) N Gx(U,). Note that Gx(U,) N Gx(U)) =
Gx(Ur N UY) Y (Ua {[yallye € X3,y and [32] © (Gx(Ur) M Gx(U)\
Gx (UM UyY)}. 1t will suffice to show that this collection of [y,]’s is finite,
since then their union is a quasi-compact open set in the.7 , topology. Con-
sider, therefore, two cases:

i) m ¢ Uy M Uy (where m is the defining point for the .7 ; topology). We
assume m ¢ U,; so U; quasi-compact implies U; is covered by a finite number
of equivalence classes, say [x1], ..., [x,], where x; € X,. Thus, Gx(U;) N
X, € UL (Gx(x:) M X,). But each Gy(x;) N X, is a finite union of equi-
valence classes. Thus the [y.]'s are chosen from a finite set.

ii) m € Uy M Uy. From the definition of .7 ; we see that all but a finite
number of equivalence classes of X are contained in U; M U,'. Thus, as in i)
above, the [y.]'s will be chosen from a finite set of equivalence classes.

Our main object in proving the above theorem is to obtain the following
corollary. However, we feel that the generality of the setting makes the pieces
of the proof fit better than would be the case if we merely proved the corollary
directly.

(5.9) CoroLLARY. Let X be a 1-dimensional partially ordered set, let X, be the
ht 1 elements and X s be the ht O elements. If for every x € Xq, Sx(x) M X115 a

https://doi.org/10.4153/CJM-1976-079-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-079-2

ORDERING 833

Sfinite union of equivalence classes and for every x € X, Gx(x) M X. 1s a finite
unton of equivalence classes, then X 1s spectral.

Proof. We have assumed (5.7.ii), and (5.7.1) is trivially satisfied. Moreover,
each [x] is O-dimensional ; and as we noted in § 1, such sets are spectral.

A special case of the above corollary that deserves emphasis is the following:

(5.10) CorOLLARY. Let X be a 1-dimensional partially ordered set, let X, be the
ht 1 elements and X be the ht O elements. If for all x € X, Sx(x) N Sx(y) = 0
for all but finitely many v € X, and for all x € X1, Gx(x) M Gx(y) = @ for all
but finitely many vy € X1, then X 1s spectral.

In pushing this kind of investigation further, one might try next the follow-
ing question: If X is a 1-dimensional partially ordered set such that for all
x#vyeX,Sx)NS(y) and G(x) M G(y) are finite, is X spectral?

6. The spectral topologies on a countable 1-dimensional partially
ordered set with unique minimal element. For some partially ordered
sets there is only one order compatible spectral topology. For example, a finite
partially ordered set is always spectral, and the COP topology is the only
possible order compatible spectral topology. A totally ordered set is spectral if
and only if it has properties (K1) and (K2) [5, Theorem 3.1}, and since every
closed set is irreducible, the COP topology is again the only order compatible
spectral topology. On the other hand, an order compatible topology for a
0-dimensional set is spectral if and only if it is Boolean. As we said in § 1, for
countable sets these topologies have been characterized by Pierce in [7].

Let ¥ be a 0-dimensional setandlet X = ¥ \U {6}, wheire§ < yforally € V.
We assume that YV is infinite, since the COP topology is the only order com-
patible spectral topology if Y is finite. With the additional assumption that ¥V
is countable, we will be able to describe all order compatible spectral topologies
for X (using, of course, Pierce’s description of countable Boolean spaces); but
for the moment, we can avoid assuming Y is countable. There are two cases to
consider, depending on whether ¥ is or is not a closed subset of X in a given
spectral topology. Consider first the spectral topologies for X for which Y is
closed.

(6.1) THEOREM. There is a one to one correspondence between Boolean topologies
on Y and order compatible spectral topologies on X for which Y is a closed subset.

Proof. If Y is closed in a spectral topology for X, then YV is spectral, hence
Boolean, when given the induced topology. Conversely, if ¥ has a Boolean
topology, define C C X to be closed if and only if C = X or Cis a closed subset
of Y. Obviously, this is a spectral topology.

We now want to consider spectral topologies for X where Y is not a closed
subset of X. Suppose Y is written as the ordered disjoint union of subsets
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Yy, N € A, where A is an infinite set. For each Y, choose a T topology .7 .
An order compatible topology for ¥ is obtained by defining

a) C C VYisclosed if and only if C = Y or
C=0G,Y...UCG,, G, aclosed subsetof V),

and an order compatible topology for X is obtained by defining
b) C C X is closed if and only if C = X or C is a proper closed subset of V.

Thus, Y is not a closed subset of X, and one can easily verify that X is spectral
if each Y, is spectral (Boolean). In this situation, Y satisfies all the necessary
properties for being spectral, except that Y is irreducible but does not have a
generic point.

Now let ¥ be countable, and let.7” be an order compatible spectral topology
for X for which Y is not a closed set. We will show that.Z arises in the manner
above. Obviously, .7 arises from .7 |y by way of b) above. Also, any proper
closed subset of ¥ is Boolean.

It remains to see that ¥ can be written as a disjoint union of closed subsets
Y\, N € A, such that the topology of ¥ can be built from the induced topologies
on the Y, using a). Note that V is T, quasi-compact, irreducible, and has a
basis of quasi-compact open sets which is closed under finite intersections. Our
task is completed by the following two lemmas.

(6.2) LEmMMA. Suppose YV is T4, quasi-compact, irreducible, and has a quasi-
compact open basis. Then ¥ = \UToy YV, where this is a disjoint union and Y\Y,
s quasi-compact open for all 1.

Proof. Order Y (i.e., let ¥ = {v1, 2, ...}). Choose a quasi-compact open set
U, such that vy, € U, y1 ¢ Uy. Let YV, = Y\U;. We have vy, € V; and
Y\Y, = U, Viisclosed, so it is quasi-compact. Cover Y, with quasi-compact
open sets that miss y,, and take a finite subcover. Since a finite union of quasi-
compact open sets is quasi-compact open, we can choose a quasi-compact open
set Us such that ¥, C Us, and yo ¢ U, Let Vo = Y\Us. We have y» € V),
Y\Vy = Us,and V1 N\ ¥V, = 0. Note that ¥ ¢ ¥, \U V,since Yis irreducible.
Let v, be the first y;, ¢ V1 U Vo As V1 U Viyis closed, we can choose a quasi-
compact open set Uj such that Vi \U ¥V, C Us,and yy, ¢ U, Let V3 = Y\ Us,
and we have vy, € V;, Y\V; = U;, and Yy, V,, V; are pairwise disjoint.
V irreducible now gives ¥V # V¥, U V, U V. Repeating this process, we in-
ductively define the V.

(6.3) LEMMA. Suppose ¥V = Uy Yy, wherethis is a disjoint union and Y\'Y,
s quasi-compact open for all 1, and that every proper closed subset of Y is Booleun.
Then a) is satisfied.

Proof. Since every YV, is closed in ¥, the implication < is immediate.
Suppose then C 3 V is closed in Y. Then C = U C;, where C;, = CN Y, is
closed in V. We must show C; = @ for all but a finite number of 7. Now Y\ Y,
is quasi-compact open in YV, so CM (Y\Y,) is quasi-compact open in the
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relative topology for C. But Cis a Boolean space; hence C M (¥\Y;) must also
be closed in C. Since this set is the complement of C; in C, C; is open in C.
Thus {C;} is an open cover of C by pairwise disjoint sets. As C is quasi-compact,
C; = @ for all but a finite number of 1.

Remark. Different partitions for Y can still yield the same spectral space X.
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