
Can. J. Math., Vol. XXVIII, No. 3, 1976, pp. 820-835 

THE ORDERING OF SPEC R 

WILLIAM J. LEWIS AND JACK OHM 

Introduction. Let Specie denote the set of prime ideals of a commutative 
ring with identity R, ordered by inclusion; and call a partially ordered set 
spectral if it is order isomorphic to Spec R for some R. What are some condi­
tions, necessary or sufficient, for a partially ordered set X to be spectral? The 
most desirable answer would be the type of result that would allow one to 
stare at the diagram of a given X and then be able to say whether or not X is 
spectral. For example, it is known that finite partially ordered sets are spectral 
(see [2] or [5] ). However, even in the 1 -dimensional case a complete characteriza­
tion of spectral sets still seems very far off. On the other hand, the corre­
sponding topological question was completely answered by Hochster in his 
remarkable thesis [2], and most of our work here uses Hochster's topological 
characterization as an intermediate step. 

We begin in § 2 with two examples. The first shows that the previously known 
necessary conditions for a partially ordered set to be spectral are not sufficient 
and thus, in a sense, yields a new necessary condition. The second example 
shows that the property "all finitely generated flat /^-modules are projective" 
is not determined by the ordering of Spec R (even though it is determined by 
theZariski topology of Spec R [4]). This example involves defining two suitably 
distinct order compatible spectral topologies (see § 1 for terminology) on the 
same partially ordered set. 

In § 3 we enlarge on the construction of the second example to prove that a 
partially ordered set X is spectral if it contains an element m such that any 
x £ X having infinitely many elements below (resp. above) x necessarily lies 
above (resp. below) m. Additional, less superficial, sufficient conditions for a 
partially ordered set to be spectral are given in § 5, where the basic situation is 
related to the first example of § 2. This involves an X which is decomposed into 
an upper part X\ and a lower part Xi, e.g. a 1-dimensional X which is written 
as the union of its maximal elements and its minimal elements that are not 
maximal. 

In § 4 we prove that the ordered disjoint union of spectral sets is spectral, a 
result which is used later in one of the constructions of § 5. 

Finally, § 6 is devoted to describing all the spectral topologies on the simplest 
kind of 1-dimensional X, namely a countable, 1-dimensional X with unique 
minimal element. 
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1. T e r m i n o l o g y . A set X may come equipped with a partial ordering 0 or a 
a t o p o l o g y ^ . Given (X, 0) and x G X , let GXAX) = \j € x b ^ x\ (the 
generization of x i n X ) , and letSx,o(x) = {y G X|y ^ x} (the specialization of x 
in X ) . More generally, if V is a subset of X, GXy(9(V) = {y G X |y ^ y for some 
v G F} and5x,(p(F) = {y G X|y ^ y for some v G F} . Given (X,^ 7 ") , we write 
clx,^-{x\ for the ^ - c l o s u r e of {x} in X . When our notation is clear from the 
context, we shall drop the subscripts. 

Let X have a topology 3^ and a partial ordering ^ . We say tha t ^ is 
compatible with ^ if cl{x} = 5(x) for all x G X. Note tha t ^ is compatible 
with 0 if and only if 

i) Six) is closed for all x G X , and 

ii) closed sets are closed under ^ . 

Recall t ha t if R is a ring, the Zariski topology for Spec R is defined by lett ing 
C Ç Spec 7̂  be closed if and only if there exists an ideal 31 of R such tha t 
C = {p G Spec R\p Z) 21}. Spec i? with Zariski topology and inclusion ordering 
is an example where the topology and ordering are compatible. We will always 
consider Spec R as a topological space with Zariski topology and as an ordered 
set with inclusion ordering. 

If Y Ç X, ( F , 0\Y) will denote F with the induced ordering and ( F , ^ 1 F ) 
will denote F with the subspace topology. If $~ and 0 are compatible, then so 
a r e 3 ^ \ Y and 0\Y. 

Let ( X , ^ ) be a TQ space. Then X has a partial ordering, O0 7 " ) , induced by 
37~ by defining x ^ y if and only if y G cl{xj. Conversely, let (X, 0) be a 
partially ordered set. The ordering induces a topology, T(0), by defining a 
subbasis for the closed sets of T(0) to be {S(x)\x G X } . We shall call this 
topology the closures of points (COP) topology. The COP topology is T0 and is 
compatible with 0. Another topology is ^ -compa t ib le if and only if it is finer 
than the COP topology and has its closed sets closed under ^ . (Recall t h a t ^ 7 " 
is finer t r i a n t ' if every J^ ' -open set is a lsoJ^-open. ) Clearly, J7" is compatible 
with 0 if and only if 0{^T) = 0. Thus , it is possible to recover the ordering 
from a given order compatible topology. Also, if (X, JF~) = (X' , 3/~'), then 
(X, 0(3T)) ^ (X' , 0(T')). The converse, however, is false; so the ordering 
contains less information than the topology. (We use = to denote homeo-
morphism when topological spaces are involved and order isomorphism wrhen 
partially ordered sets are involved.) 

We define 

d im(X, 0) = sup{w|there is a chain x0 < x± < . . . < xn; xt G X } . 

Similarly, if x G X , 

h t (x) = sup{w|there is a chain x0 < X\ < . . . < xn = x; xz- G X } . 

In [2], a space (X,37~) is called spectral if it has the following properties: 
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i) X is T0. 
ii) X is quasi-compact. 

iii) T h e quasi-compact open subsets are closed under finite intersections and 
form an open basis. 

iv) Every non-empty closed subspace which is irreducible (i.e. not the union 
of two proper closed subsets) is the closure of one of its points (i.e. has a 
generic point ) . 

Spec R is well known to be spectral. Conversely, in [2] Hochster proves t ha t any 
spectral space is homeomorphic to Spec R for some ring R. We shall also need 
the fact t ha t a closed subset, of a spectral space is spectral in the induced 
topology. We have previously defined a part ial ly ordered set to be spectral if 
it is order isomorphic to Spec R for some R. Obviously, (X, 0) is spectral if 
and only if there exists an order compatible spectral topology. 

A O-dimensional part ial ly ordered set is easily seen to be spectral. (X,^~) is 
spectral a n d ^ ~ is compatible with a O-dimensional ordering of X if and only if 
(X,.9~) is a totally disconnected, compact (i.e. quasi-compact, Hausdorff) 
space. These spaces are called Boolean spaces and the one-point compactifica-
tion of an infinite discrete space is an easy example. If X is countable, (X, J~) 
is a Boolean space if and only if it is homeomorphic to the space of ordinals less 
than or equal to some countable ordinal with interval topology (see [7]). 

2. T w o e x a m p l e s . 

(2.1) Example. We know of three conditions on a part ial ly ordered set X t ha t 
are necessary for X to be order isomorphic to the spectrum of some ring: 

(Kl ) Every totally ordered subset of X has a supremum and an infimum in X. 
(K2) Between any two distinct related elements there are two immediately 

adjacent elements (i.e. if x, y £ X and x < y, then there exist elements 
Xi, yi G X such t ha t x ^ X\ < y\ S y and there does not exist z (: X 
such tha t Xi < z < yi). 

(H) Let y = {S(x)\x e'x\, & = {G(x)\x G X\. If & is a collection of 
subsets of X such tha t .<F C ^ or ^ Ç ^ , then p | {F\F G ^ \ = 0 
implies there is a finite collection of sets from i^~ whose intersection is 
empty . 

In addition, Hochster [2] has proved tha t , given a ring R, there is a ring whose 
prime ideals have exactly the reverse order of the primes of R. T h u s one also 
knows t ha t any necessary condition should also be symmetr ic with respect to 
reversing the order. 

Properties (Kl) and (K2) were discussed by Kaplansky [3], while proper ty 
[H] derives from an example of Hochster given in [5]. Proper ty (H) reflects the 
fact t ha t Spec R is quasi-compact in the Zariski topology and tha t the sets in Sf2 

are necessarily closed sets of Spec R. 
We shall now give an example of a partially ordered set which satisfies (Kl), 
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(K2), and (H) bu t is not spectral, thus showing tha t these conditions are not 
sufficient for a partially ordered set to be spectral. 

Let F be a compact (Hausdorff) space which is not spectral ; for example, the 
closed unit interval will do. Because F is compact, there does not exist a 
properly finer compact topology for F. Let Z = {xc\C Ç Y and C is closed 
in Y], let X — Y\J Z, and order X by specifying tha t if y £ Y, y ^ xc if and 
only if y £ C. Thus , for each closed set C Ç Y we create an element xc and 
"p lace" it below each element of C. The set X is one-dimensional, Y being the 
set of maximal elements and Z the set of minimal elements. Let^ 7 " be any order 
compatible topology for X. Choose C\, C2 proper closed subsets of F such tha t 
Y = d \J C2. Now F = S(xY) n (S(xCl) U S(xC2)), so F is closed in ^ . 
Similarly, if C is any closed subset of F, then C = Yr\S(xc) is also ^ - c l o s e d . 
If j ^ ~ wrere a spectral topology, then the topology 37~\ Y would also be spectral 
and would be finer than the original topology for F. Our choice for F makes this 
impossible, so X is not spectral. 

I t remains to show X satisfies (Kl), (K2), and (H). Because X is one-
dimensional, (Kl) and (K2) are satisfied trivially. Let ^ be a collection of 
subsets of Z such tha t Pi {F\F £ #~] = 0. U^ Q y , note tha t for x ^ y £ X, 
S(x) r\S(y) Q F. Since each F H F i s closed in F a n d H {^H F | F G ^ " } = 0 
the compactness of Fal lows the choice of a finite set of T '̂s whose intersection is 
empty . If J ^ Ç S?, we note tha t xY G G(;y) for each y G F, so there must be an 
F £ ^ and a z ^ Z such tha t T7 = G(z) = {z}. Choose any F' G ^ such tha t 
z (I F' and we have F C\ F' = 0. 

(2.2) Example. The second example involves the property "all finitely 
generated flat i^-modules are projective." Let us say tha t a ring R is A (0) if it 
has this property (the terminology stems from [1]). D. Lazard [4] has shown 
tha t whether or not R is A (0) depends only on the Zariski topology of Spec R. 
We shall give here an example of a partially ordered set having two spectral 
topologies, one of which yields an A (0) ring and the other does not. This 
shows tha t the partial ordering of Spec 7̂  is not sufficient by itself to determine 
whether or not R is A(0). 

First let us review some facts from Lazard 's paper. Let X be a partially 
ordered set. The D-component of an element x G X is defined to be the inter­
section of all sets containing x tha t are closed under ^ and S • Thus y is in the 
D-component of x if and only if there exist elements Xi, . . . , xn G X such t ha t 
x S Xi ^ x2 ^ x3 ^ . . . f§ xn ^ y. Moreover, if $~ is an order compatible 
topology for X, a subset of X is defined to be D-closed if it is closed i n $ ~ and is a 
union of ^ -components . Lazard has proved tha t a ring R has the A (0) proper ty 
if and only if the Z>-closed sets of Spec R are open. Since the D-components 
part i t ion Spec R, it follows tha t R is A (0) whenever Spec R has only finitely 
many D-components each of which is closed. In particular, if R has only 
finitely many minimal primes, then R is A (0). I t is also true, but for a different 
reason, tha t if R has only finitely many maximal ideals, then R is A (0). In any 
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case, it often suffices to merely glance a t the ordering of the prime ideals of R in 
order to conclude t ha t R is A (0). T h e following example, however, shows t ha t 
the A (0) proper ty cannot be characterized in terms of the ordering of Spec R 
alone. 

L e t Z = {mx\i = 0, 1, 2, . . . , oo } \J {p5\j = 1, 2, . . . , oo }, and order X by 
defining pj g wy._], m/dj < oo and pm ^ mœ (see Figure 1 below). 

mu m\ m 2 nit m.\ m,,„ 

P{ Pi P, Pi P~ 
FIGURE 1 

X has exactly two ^ -componen t s , namely Dœ = {mœ, pœ] and X\Dœ. 
For any m Ç X, let C(m) be the topology for X having closed sets 
i) finite sets closed under ^ ; and 

ii) sets containing m and closed under §:. 
I t is immediate tha t C(m) is a r 0 , order compatible, quasi-compact topology for 
which closed irreducible sets have generic points. Moreover, thecofinite (i.e. finite 
complement) sets containing m and closed under ^ , together with the finite 
sets not containing m and closed under ^ , form a basis of quasi-compact open 
sets which is closed under finite intersections. Thus , (X, C(m)) is a spectral 
vSpace. 

The Z^-component Dœ is closed in the C{m) topology for any choice of m, and 
hence (X, C(m)) has the proper ty t h a t D-closed sets are open if and only if Dœ 

is open. But D œ is open if and only if m G DQ. Thus , by choosing rings with 
Spec isomorphic to (X, C(wo)) and (X, C (w œ ) ) , we get one ring which has the 
A (0) proper ty and another which does not, yet both rings have Spec order 
isomorphic to X. 

T h e example above is the simplest available in t h a t it is one-dimensional 
and has only two ^ -componen t s , for a 0-dimensional spectral space is A (0), i.e. 
has the proper ty t ha t ZJ-closed sets are open, if and only if the space is finite. 

3. T h e C(m) t opo logy . In this section we generalize the topology given in 
Example 2.2 to an arbi t rary part ial ly ordered set. Given a part ial ly ordered set 
X we choose an element m Ç X. We define a topology, called the C(m) 
topology, by choosing the following collection of sets as a basis for the closed 
sets of the topology: 

i) finite sets not containing m and closed under ^ (including 0) , and 
ii) cofinite sets containing m and closed under ^ (including X). 

(3.1) LEMMA. Let X be a partially ordered set and let m Ç X. The C(m) 
topology is compatible with the order of X if and only if the following conditions hold: 

a) if x £ X and {y\y ^ x] is infinite, then x rg m; and 
b) if x G X and {y\y ^ x\ is infinite, then x ^ m. 
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Proof. For all x $ m, cl{x} = {y\y ^ x] if and only if condition a) holds. 
Similarly, for all x ^ m, c\{x] — {y\y ^ x) if and only if condition b) holds. 

(3.2) T H E O R E M . Let X be a partially ordered set with the C(m) topology for some 
m G X. If the topology is compatible with the order of X, then X with the C{m) 
topology is a spectral space. 

Proof. Since the topology is compatible with the order, X is T0. X is quasi-
compact since any open set containing m is cofinite. Corresponding to the 
closed basis for the topology, we have the following open basis: 

i) cofinite sets containing m and closed under ^ ; and 
ii) finite sets not containing m and closed under ^ . 

Clearly these sets must be quasi-compact, and they are closed under finite 
intersections. Now let F be a closed irreducible set in X. If every element 
of F is ^ m , then either V = cljm}, or F is finite and a generic point is easy to 
find; so we may assume V contains an x | m. Since {y\y ^ x] is finite, we may 
choose x to be a minimal element of V. Then cl{x} and X\{y\y S x} are closed 
sets whose union contains V. Since x G V and V is irreducible, we get 
V = d{x}. 

As a special case of Theorem 3.2 we have the following generalization of the 
fact t ha t any finite partially ordered set is spectral. 

(3.3) COROLLARY. If X is a partially ordered set with the property that 
S(x) W G{x) is finite for all x (z X, then X is spectral. 

4. Ordered d i s jo in t u n i o n s . If a partially ordered set X is the disjoint 
union of partially ordered sets {Xa}, we shall say tha t X is the ordered disjoint 
union of the Xa's if 

x ^xy if and only if there is an a such tha t x, y G Xa and x ^ j j . 

Let A be an indexing set containing an element o, and let A' = A\o. 
Suppose we are given a collection of rings {R\\\ G A} such t ha t each R\, X G A', 
is an R0-algebra via a homomorphism cj)\ : R0 -^> R\; and let R be the subring 
of IIxeA R\ defined by 

(r\) G R if and only if cj)\(r0) = rx for all bu t a finite number of X G A'. 

Let us now examine Spec R. For each a G A let Aa = {(ax) G R\aa = 0}. 
T h e Aa are ideals of R; and if a, fi G A with a ^ /3 and a ^ o, then 
(0, 0, . . . , 0, la, 0, . . .) G A0 and ( 1 , 1 , . . . , 1, 0«, 1, . . .) G Aa. I t follows tha t 
A$ + Aa = R. Let P be any prime ideal of R such tha t P ^ A0. Choose 
z = (a\) G A0\P. Then ax = 0 for all bu t a finite number of X G A', say 
au . . . j an. T h u s zAai- . . . • ̂ 4an = 0. As z G P , it follows tha t Aai Ç P for 
some « j . Next note tha t R/Aa == P a , a: G A, since ^4a is the kernel of the projec­
tion homomorphism onto Ra. Thus , if Xa = {P G Spec P | P 3 ^4a}, then Xa is 
order isomorphic to Spec Ra. I t follows tha t Spec R is the ordered disjoint union 
of the sets Xa, OL G A, where Xa is order isomorphic to Spec Ra. 
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A p p l i c a t i o n s . 

(4.1) T H E O R E M . Let {AX|A Ç A} be a collection of spectral partially ordered sets. 
Let X be the ordered disjoint union of the A x . Then there is a ring R such that 
Spec R ^ X. 

Proof. Choose one element o £ A, and let A' = A\o. Use [2, Theorem 6] to 
choose a ring R0 such tha t Spec R0 ~ X0. Let <^fbe a maximal ideal of R0 and 
k = Rol-.Jt. Again using [2], for each A Ç M we can choose a ring R\ such t ha t 
Spec R\ = A x and Rx is a ^-algebra. Thus , we have composite ring homo-
morphisms 4>\ : R0 —> & —+R\, X £ A'. T h e theorem now follows from the 
above remarks. 

We can also use the above construction to improve a theorem of Lewis [5], 
who proved tha t any tree X satisfying (Kl) and (K2) and having a unique 
minimal element is of the form Spec R, where R is a Bezout domain. (Here a 
partial ly ordered set X is a tree if for each x ^ I , G(x) is total ly ordered ; and a 
ring is called Bezout if every finitely generated ideal is principal.) 

(4.2) T H E O R E M . A partially ordered set X is a tree satisfying (Kl) and (K2) 

(if and) only if X = Spec R for some Bezout ring R. 

Proof. For any Bezout ring R, Spec R is well known to be a t ree; so let us 
assume A is a tree satisfying ( K l ) and (K2) . If x, y are two distinct minimal 
elements of X, then S(x) Oi S(y) = 0. Thus , A can be writ ten as the ordered 
disjoint union of trees Ax, X £ A, where each A x has a unique minimal element. 
As A satisfies ( K l ) and (K2) , so does each A x . Pick an element o G A, let 
A' = A\o, and use [5, Theorem 3.1] to choose a Bezout domain R0 such tha t Spec 
R0 = X0. Now let K be the quot ient field of R0. Again use Theorem 3.1 of [5] 
as well as Ohm's proof of Jaffard's theorem [6, page 589] to choose R\ for each 
X G A/ such tha t Spec R\ ~ A x and K C Rx. Thus , for X £ A', we have 
composite ring homomorphisms c/>x : R0 —> K —» R\. T h e construction a t the 
s tar t of this section provides a ring R such tha t Spec 7̂  = A . 

I t remains to show tha t R is Bezout. L e t s 1 = (ax1), . . . }z
n = (a\n) G R. Then , 

since R0 is Bezout, there is a y0 Ç R0 such tha t y0R0 = (a0
1
1 . . . , a0

n)R0. 
For all bu t a finite number of X £ A'', </>x(a/) = ax ' for all i = 1, 2, . . . , n. At 
each of the non-exceptional coordinates let ^x = <t>(y0), and note t ha t the 
equations expressing the equali ty y0R0 = («o1, • • • » (hn)R0 hold for each such 
X when </>x is applied. Let Ai, . . . , \ r £ Ar be the coordinates for which ;yx has 
not been chosen. Now choose ^Xl, . . . , yXt so t ha t yxjRxt = (d\l

1, - . . , a\/l)RXl 

for i = 1, . . . ,t.lî y = (yt), then clearly 3/ G i£ and yR = (z\ . . . , zn)R. 

(4.3) Remarks on the topology 6»/Spec i£. Let us now go back and examine the 
topology of Spec R, where R is the ring constructed a t the beginning of this sec­
tion. We have seen tha t Spec R = U Xa, where Xa = {P G Spec i ? |P 3 Aa\. 
T h u s the A a are closed disjoint subspaces of Spec R ; so it follows tha t any closed 
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set C of Spec R is a disjoint union of closed sets, C = U Ca, where Ca = C Pi Xa. 
Conversely, what sets of the form U Ca are closed in Spec R? 

This question seems difficult to answer in general ; so let us answer it in the 
situation used in proving Theorem 4.1 above, namely, the homomorphisms 
</>x, X G A', are of the type <t>\ : R0 -"-> R0/^ —> R\y w h e r e ^ i is a fixed maximal 
ideal of R0. We claim tha t if C is closed in Spec R, then either 

i ) ^ # G C0, (the Ca, a G A', may be arbi t rary closed subsets of the Xa), or 
ii) ^éé G C0 and Ca = 0 for all bu t a finite number of a £ A'. 

To see this, we shall use the fact t ha t the sets of the form 

V(z) = {P G Spec R\z G P} 

for z = (ax) G -ft are a basis for the closed sets of Spec R. We first describe the 
possible V(z). 

i) If z = (a\) and a0 G ^ , then C0 = F/20(a0) is a closed subset of X0 

c o n t a i n i n g - ^ . Moreover, 0x(ao) = ax = 0 for all bu t a finite number of 
X G A', so C\ = X\ for these X. For a t most a finite number of X G A', 
«x ^ 4>x(a0), so for these coordinates Cx = VRx(ax). 

ii) If a0 G J(, then J( ^ C0\ and since ax = <l>\(a0) is a unit for all bu t a 
finite number of X G A', Cx = 0 for all but a finite number of X G A'. 

By intersecting sets of the above type, one thus verifies the claim. 

Note tha t there is a similarity between this topology on Spec R and the 
topology described in § 3. 

In connection with (4.1) we would like to raise the following: 

(4.4) Question. If X is the ordered disjoint union of partially ordered sets 
X\, X G A, and if X is spectral, then are the ATX also spectral? 

5. C o n s t r u c t i n g spectral topo log ies . Let X be a partially ordered set 
tha t is the disjoint union of two proper subsets Xi and X2, where X\ is closed 
under ^ in X. Let Xi and X2 be given the induced order from X. Note t ha t 
here, in contrast with the ordered disjoint union in § 4, we can have an element 
of X2 less than an element of X\. Suppose tha t for i = 1, 2, Xt has an order 
compatible topology S7~\ which is also compatible with the order of X in the 
sense tha t Sx(x) C\ Xt is closed in Xu for all x £ X. (This places an additional 
restriction on Xt, but not on X2 . ) With these assumptions, we define a topology 
&~ for X by: 

C C I is ^"-closed if and only if 
a) C = C\ \J C2, Ci closed in Xif and 
b) C is closed under §: in X. 

For the remainder of this section, any reference to X, X\, and AT2 assumes the 
situation described above. Once topologies £/~i and J^~2 are defined, or assumed 
to exist, the topology $~ is defined in the manner above. 

(5.1) Observations. 
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a) ^ i n d u c e s the topology J ^ on X u i = 1, 2, and X\ is closed in J7". Also, 3T 

is order compatible and hence 7V 

b) If Xi is quasi-compact in the J^P topology, i — 1, 2, then X is quasi-
compact . 

Proof. Suppose C\ Ca = 0 where Ca = Ca
l U C«2, Ca* closed in Xt. Then 

0 = O (G,1 U Ca
2) 2 (PI G,1) U (O Ca

2) implies n C - B and pi C«2 = 0. 
As each X^ is quasi-compact, there exist ai, . . . , a, such tha t Cai

l Pi . . . O 
C V = 0 for i = 1, 2. Obviously, Cai H . . . P Ca, = 0. 

b ' ) If 5 i is a quasi-compact subset of (Xi, ^~i), then Gx(»Si) is quasi-
compact in (X,^). 

Proof. Begin with an open cover of Gx(Si) and choose a finite subset t ha t 
covers 5i . Because J^~-open sets are closed under ^ , this finite subset covers 
GX(S1). 

c) If C Q X is an irreducible closed set, then C P X2 is either the empty set 
or it is an irreducible closed subset of X2. 

Proof. Let C = G U C2, C* closed in ATZ-, and suppose C2 F^ 0. If C2 is not 
irreducible in X2, then write C2 = A VJ B, where A, B are proper closed subsets 
of X2. I t follows t ha t C = ( d U i ) U ( d U 5 ) with ( d W 4 ) , ( G U B) 
closed in X. This contradicts the fact t ha t C is irreducible in X. 

d) If every irreducible closed set of {Xu^i), i = 1,2, has a generic point, 
then every irreducible closed set of (X, 3/ ) does also. 

Proof. Let C be an irreducible closed set of X. If C P X2 = 0, then C is an 
irreducible closed set of X\; and then the generic point for C in X\ is also a 
generic point for C in X . On the other hand, if C P A 2 ^ 0, then by c) , 
C P X 2 is an irreducible closed set in A 2 and hence has a generic point x in X 2 . 
But then C = ( C H J i ) U 5 Y ( x ) implies C = <Sx(x) by the irreducibility of C 
in X. Thus , x is a generic point for C in X . 

e) If ^ is an open basis for 3r
i, i = 1, 2, then let «^ - {G*(t / i ) W 

t / 2 | t /*€ ^ z a n d Gx(Ui) U t/2 is ^ - o p e n } . If for each non-empty tA £ ^ \ a n d 
for each ^ Y o p e n set IT2 such tha t W2 3 Gx(Ui) P A 2 , there is a t/2 Ç ^ 2 

such tha t £/2 ÇZ W2 and t/2 U (Gx(Ui) P X 2 ) i s ^ Y o p e n , then 38 is an open 
basis for JT~. 

Proof. Any open set in Â  is of the form W = W\ U IT2 where P ^ i s J^Vopen , 
i = 1, 2. If 3/ G I^i, choose Z7i Ç ^ 1 such t ha t y ^ ^ Ç W le W is closed 
under fg, so Gx(Ui) P X 2 Ç W2. Our assumption in e) provides a t / 2 6 ^ 2 
such tha t t/2 ÇZ p^2 and ( G x ( t / i ) P X 2 ) U t/2 is open in X2. T h u s y Ç G x ( t / i ) 
U t/2 Ç W and G x ( t A ) W t/2 G 3B. For 3; G W2 | choose t/2 G ^ 2 such tha t 
y £ U2 Q W2. Now the choice Ui = 0 gives t/2 G Se. 
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We shall use 5.1 (e) in three places. In the proof of Theorem 5.2, if W = 
Wi U W2 and Wi ^ 0, we will have W2 = X2. In the proof of Theorem 5.3, if 
W\ 7e 0, we will be able to say W2 £ SS\\ and in the proof of Theorem 5.8 
every Gx(Ui) will be open in X. 

We shall now prove some theorems which give sufficient conditions for the 
topology^7" to be spectral. 

(5.2) T H E O R E M . Suppose ( X i , 5 " i ) is spectral, and suppose (X2,^~2) satisfies 
the axioms for a spectral space, with the exception that X2 need not be quasi-compact. 
If there is a p £ Xx such that x2 < p ^ Xifor all Xi £ X u i = 1,2, then (X,37~) 
is spectral. 

Proof In view of 5.1 (a), 5.1 (b') f and 5.1 (d), we need only verify t ha t J*7" has 
a basis of quasi-compact open sets which is closed under finite intersections. 
For SS x and 312 we choose the quasi-compact open sets of ST \ and Sf 2. If 
U\ 9^ 0 is quasi-compact open in Xi, then X2 Ç Gx(Ui). Thus the basis SS 
defined in 5.1(e) is an open basis. By 5.1 (b ' ) , Gx(Ui) is quasi-compact if U\ is 
quasi-compact. Thus the sets in SS are quasi-compact. T h a t Se is closed under 
finite intersections follows from the fact tha t sets in SS are either of the form U2, 
where U2 g SS 2, or Ui U X2, where Ux £ ^ i and p G £/i. 

(5.3) T H E O R E M . Suppose ( X i , ^ ) w spectral and that there is an m £ X2 such 
that 

a) m rg 3^/or a// y G Xu and 
b) i / y (z X2 has infinitely many elements of X2 below (resp. above) y, then 

y ^ m {resp. y S ni). 
Then X is spectral. 

Proof. L e t S ^ 2 be the C{m)-topology for X2. We proved in Theorem 3.2 tha t 
{X2,ST2) is spectral. T h e definition of the C(m)-topology also shows tha t any 
open set of ST ^ which contains m is quasi-compact. Again, let SS\ and SS 2 be 
the quasi-compact open sets oiS^i and J^~2. Using 5.1(a), (b), (d), and (e), we 
have X is spectral if the basis SS is closed under finite intersections. In this 
si tuation SS can also be described as { U\ W U2\ Ut is quasi-compact open mS^ t 

and Ui W U2 is closed under ^ }. I t follows tha t SS is closed under finite inter­
sections. 

(5.4) Applications. 
a) In terms of a 1-dimensional partially ordered set X, one can apply 

Theorem 5.3 as follows. Wri te X — X\ U X2l where X\ = {ht 1 elements of X\ 
and X2 = {ht 0 elements of X}. Theorem 5.3 asserts tha t if there is a spectral 
topology for X\ which includes all sets of the form Sx(x) C\ Xiy x 6 X, among 
its closed sets, and if there is an m £ X2 such tha t m lies below every element 
of Xi, then X is spectral. In Example 2.1, we constructed a set of this type 
which was not spectral precisely because no spectral topology for Xi could 
include the sets Sx(x) H X\ as closed sets. 
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b) Begin with a partially ordered set Xi and a collection tyf of non-empty 
subsets of Xi such t ha t Xi G fâ. Define a set X2 = {xc\C G ^ f } . Form a larger 
set X = & (Xi) = I i U I 2 and order X by specifying t ha t if y G X i , y ^ xc 

if and only if y G C. In addit ion, we preserve any order relations t ha t may exist 

i n X i . 

T H E O R E M . Let^~i be an order compatible topology for the partially ordered set 
X\. Then {X\,3/~ \) is spectral and every set in 9f is$~\-closed if and only if there 
exists an order compatible spectral topology £T for X = ^(Xi) such that 
^~\xi = $~\ and Xi is ^-closed. 

Proof. (=>) Apply Theorem 5.3. 
(*=) Xi is closed and (X,^7") is spectral ; hence $~\ = $~\x\ is spectral. T h e 

rest of the assertion is immediate. 

(5.o) Example. T h e => direction of the above theorem is false wi thout the 
initial assumption tha t X1 G të. For, let X\ = {yi, y2, . . . } , X2 = {xi, x2, . . .} 
and X = I i U I 2 , with the order on X defined by 

Xj < yt\{ and only if j ^ i. 

T h e n X = ^ ( 1 0 where ^ = {{yi\, {ylf y 2}, {ylf y2f 3/3}, . . . } . (See Figure 2.) 

3^1 3̂ 2 ^ 3 

x 1 x 2 x 3 

FIGURE 2 

This is jus t the example of Hochster given in [5] with the order reversed. Since 
C\iG(yi) = 0, proper ty (H) fails and X is not spectral. Mowever, Xx is spectral, 
and in fact, the C(y\)-topology (see § 3) is spectral and contains every set in ^ 
among the closed sets. 

(5.6) Example. The above example leads to another t h a t shows how the 
ordering of a spectral set can influence an algebraic proper ty of any corre­
sponding ring. Let X be the set defined above and define an ordering on 
X' = X U [m\ by requiring tha t , in addit ion to the ordering of X, m < x for 
all x G X. It is easily verified t ha t the COP topology for X' is spectral, since in 
this topology all closed sets ^ X' are finite. 

Since X' is spectral and has a unique minimal element, there exists a domain 
D such t h a t Spec D = X'. However, X itself is not spectral and thus cannot be 
a closed subset of X''; so it follows t ha t the intersection of the non-zero primes 
of Spec D must be (0). Thus , in this case the ordering of Spec D implies a very 
concrete algebraic proper ty of D. 

T o carry this a bit further, consider what happens when the ordering of X' is 
reversed. Then any ring R such t ha t Spec R is this new X' has a unique 
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maximal prime ^ # such tha t <Jt is the union of the non-maximal primes, be­
cause the set of non-maximal primes cannot be spectral. 

(5.7) We shall now describe a second set of conditions which enable us to 
define topologies 3f\ and 37~\ in such a way tha t (X, 3?~) will be spectral. 
Define an equivalence relation on X\ as follows: 

For x, x' G Xi, x ~ x' if and only if Gx(x) P\ X2 = Gx(x
f) H X2 

(i.e. the elements in X2 below x coincide with the elements in X2 below xr). 
Similarly, define an equivalence relation on X2 by: 

For x, x' G X2, x ~ x' if and only if Sx{x) C\ Xi = Sx(x
f) H X\. 

We will denote the equivalence class of x G X by [x\. 
Consider the following conditions on the order of X: 
i) For i = 1, 2, if x, x' G X\ and x < xf, then x ~ xf, and 

ii) For each x G X2, there exist yu . . . , yt G X\ such tha t Sx{x) H I i = 
U;=i [yj]\ and similarly, for each x G ^ i , there exist yi, . . . , yt G X 2 

such tha t G x (x ) H X 2 = Uj=i [ y j . 
Note t ha t (5.7.i) implies t ha t for i = 1, 2, Xt is the ordered disjoint union of 
the equivalence classes in Xt. For each x G X, we give [x] the order induced 
from X. 

(5.8) T H E O R E M . IfX=X1KJX2 satisfies (5.7(i) and (ii)) and for each x£ X, 
[x] is spectral, then X is spectral. 

Proof. Let us assume tha t we begin with a spectral topology for each [x], 
x £ X. We can define an order compatible spectral topology J^"i for X\ in the 
manner of (4.3). Fix an element m G X\, and define a set C Ç X\ to b e ^ " i -
closed if and only if C C\ [x] is closed in [x] for all x £ Xï} and either 

i) m G C, or 
ii) m $ C and C H [x] = 0 for all bu t a finite number of equivalence classes 

i n Z i . 
If m is maximal, this is the spectral topology described in § 4. I t is easy to 
check t ha t for any m this gives a spectral topology for X\. Now if x G X2, then 
Sx(x) Pi X i is a finite union of equivalence classes and is therefore J^i-closed. 
Thus ^"i is compatible with the order of X in the sense described a t the s tar t 
of § 5. 

Now define an order compatible topology (usually not spectral) 3T 2 on X2 by 

C C X2 isJ7~2-closed if and only if C H [x] is closed in [x], for all x G X2. 

The topology on each [x] C X2 is spectral ; so we can choose a quasi-compact 
open basis for^~ 2 using finite unions of sets each of which is a quasi-compact 
open subset of some [x]. This basis is closed under finite intersections. Note t ha t 
an irreducible closed subset of X2 must be contained in some [x], and thus has a 
generic point. 

Let ci?7" be the topology for X defined as before. By ( o . l . a ) , ^ " is To, and by 
(5.1.d), i*7" has the generic point property. If each x G X2 is less than some 
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element of X1} then we use (5 .Lb ' ) to show X is quasi-compact. On the other 
hand, if there is an x £ X2 such t h a t 5 x ( x ) H Xx = 0, t h e n X = Gx(Xi)U [x). 
Since [x] is closed in X, it is quasi-compact in X by the assumption t h a t it is 
spectral. Since GX{X\) is also quasi-compact, by (o . l .b ' ) , it follows t ha t X is 
quasi-compact. 

I t remains to verify t h a t ^ " has a basis of quasi-compact open sets which is 
closed under finite intersections. Let 38 be all sets of the form Gx(Ui) U £/2, 
where [/* is a quasi-compact open set in Xt. Firs t note t h a t if x Ç G x ( U \ ) C\ X2, 
then [x] Ç Gx(Ui). I t follows t ha t Gx(Ui) i s^~-open, because GX(U\) C\ X2 is 
a union of equivalence classes of X 2 and hence is open in X2. Any J^ -open cover 
for U\ covers Gx(Ui), so U\ quasi-compact implies GX(U\) is quasi-compact . 
If U2 is a quasi-compact open set in X2, then it is also a quas i -compac t^" -open 
set. Thus , «a? consists of quasi-compact open sets. By 5.1.e, 38 is then a quasi-
compact open basis for S7~. 

Now 38 is closed under finite unions; so to show it is closed under finite 
intersections, it suffices to show tha t an intersection of two elements of Se is a 
finite union of elements of 38. Let GX(U\) U U2 and GX(U\) U £/2' be two 
elements of ^ . 

Firs t consider t/2 P\ U2 . As £/2, LV are quasi-compact open in ^ 2 as well as 
^ , so is their intersection. Next consider Gx(Ui) P\ U2'(Gx(Ui) P\ £/2 is, of 
course, similar). T o be quasi-compact in the ^"2 topology, [72' mus t be con­
tained in a finite union of equivalence classes. Let us say U2 = W\ U . . . U Wt, 
Wj quasi-compact open and Wj Ç [XJ] for some Xj £ ^ 2 . If W,- P Gx(Ui) ^ 0, 
then W, C [*,] Ç G x ( L A ) . T h u s , G x ( c / i ) n W = U ( ^ | ^ Ç G i ( W | G ^ . 

Finally, consider G^(i7i) C\ Gx(Ui'). Note t ha t G x ( t f i ) Pi G ^ W ) = 
G ^ t A n L V ) W (U« {QyJb« e X2} and [ y j C (GX(£A) n G x ( £ / / ) ) \ 
Gx(UiC\ U\)). I t will suffice to show tha t this collection of QyJ's is finite, 
since then their union is a quasi-compact open set in the 3/~2 topology. Con­
sider, therefore, two cases: 

i) m d UiC\ U\ (where m is the defining point for the J ^ i topology). We 
assume m (? U\\ so U\ quasi-compact implies JJ\ is covered by a finite number 
of equivalence classes, say [xi], . . . , [xt], where xt £ X\. T h u s , Gx(U\) C\ 
X2 Ç U/=i (Gx(Xi) P\ X 2 ) . But each Gx(xt) r\ X2 is a finite union of equi­
valence classes. T h u s the QyJ's are chosen from a finite set. 

ii) m G £/i P LY. From the definition of J ^ i we see t h a t all bu t a finite 
number of equivalence classes of X\ are contained in U\ C\ £ / / . Thus , as in i) 
above, the [ya]'s will be chosen from a finite set of equivalence classes. 

Our main object in proving the above theorem is to obtain the following 
corollary. However, we feel t ha t the generali ty of the setting makes the pieces 
of the proof fit be t ter than would be the case if we merely proved the corollary 
directly. 

(5.9) COROLLARY. Let X be a 1-dimensional partially ordered set, let Xi be the 
ht 1 elements and X2 be the h t 0 elements. If for every x £ X2, Sx(x) P\ Xi is a 
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finite union of equivalence classes and for every x £ X\, Gx(x) ^ X2 is a finite 

union of equivalence classes, then X is spectral. 

Proof. We have assumed (5.7.ii), and (5.7.i) is trivially satisfied. Moreover, 
each [x] is O-dimensional; and as we noted in § 1, such sets are spectral. 

A special case of the above corollary tha t deserves emphasis is the following: 

(5.10) COROLLARY. Let X be a 1 -dimensional partially ordered set, let X± be the 
ht 1 elements and X2 be the h t 0 elements. If for all x Ç X2, Sx(x) H Sx(y) = 0 
for all but finitely many y £ X2, and for all x Ç Xi, Gx{x) C^ Gx(y) = $ for all 
but finitely many y £ Xi, then X is spectral. 

In pushing this kind of investigation further, one might t ry next the follow­
ing question: If X is a 1-dimensional partially ordered set such tha t for all 
x 7e- y £ X, S(x) r\ S (y) and G(x) P\ G (y) are finite, is X spectral? 

6. T h e spectral topo log ies o n a c o u n t a b l e 1 -d imens iona l part ia l ly 
ordered se t w i t h u n i q u e m i n i m a l e l e m e n t . For some partially ordered 
sets there is only one order compatible spectral topology. For example, a finite 
partially ordered set is always spectral, and the COP topology is the only 
possible order compatible spectral topology. A totally ordered set is spectral if 
and only if it has properties (Kl) and (K2) [5, Theorem 3.1], and since every 
closed set is irreducible, the COP topology is again the only order compatible 
spectral topology. On the other hand, an order compatible topology for a 
O-dimensional set is spectral if and only if it is Boolean. As we said in § 1, for 
countable sets these topologies have been characterized by Pierce in [7]. 

Let F be a O-dimensional set and let X = Y U {6}, where 6 ^ y for all y £ Y. 
We assume tha t Y is infinite, since the COP topology is the only order com­
patible spectral topology if Y is finite. With the additional assumption tha t Y 
is countable, we will be able to describe all order compatible spectral topologies 
for X (using, of course, Pierce's description of countable Boolean spaces) ; bu t 
for the moment , we can avoid assuming Y is countable. There are two cases to 
consider, depending on whether Y is or is not a closed subset of X in a given 
spectral topology. Consider first the spectral topologies for X for which Y is 
closed. 

(6.1) T H E O R E M . There is a one to one correspondence between Boolean topologies 
on Y and order compatible spectral topologies on X for which Y is a closed subset. 

Proof. If Y is closed in a spectral topology for X, then Y is spectral, hence 
Boolean, when given the induced topology. Conversely, if Y has a Boolean 
topology, define C ÇZ X to be closed if and only if C = X or C is a closed subset 
of Y. Obviously, this is a spectral topology. 

We now want to consider spectral topologies for X where Y is not a closed 
subset of X. Suppose Y is writ ten as the ordered disjoint union of subsets 
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Y\y X G A, where À is an infinite set. For each Y\, choose a 7 \ topology ^~\. 
An order compatible topology for Y is obtained by defining 

a) C Ç Y is closed if and only if C = Y or 
C — C\Y U . . . \J C\t, C\i a closed subset of Y\{, 

and an order compatible topology for X is obtained by defining 

b) C Ç X is closed if and only if C = X or C is a proper closed subset of Y. 

Thus , Y is not a closed subset of X, and one can easily verify t h a t X is spectral 
if each Ya is spectral (Boolean). In this si tuation, F satisfies all the necessary 
properties for being spectral, except t ha t Y is irreducible bu t does not have a 
generic point. 

Now let Y be countable, and let J^~ be an order compatible spectral topology 
for X for which Y is not a closed set. We will show t h a t ^ ~ arises in the manner 
above. Obviously, 3/~ arises from 3f\Y by way of b) above. Also, any proper 
closed subset of Y is Boolean. 

I t remains to see t ha t Y can be writ ten as a disjoint union of closed subsets 
Y\, X G A, such tha t the topology of F can be built from the induced topologies 
on the Y\ using a ) . Note t h a t F is 7 \ , quasi-compact, irreducible, and has a 
basis of quasi-compact open sets which is closed under finite intersections. Our 
task is completed by the following two lemmas. 

(6.2) LEMMA. Suppose Y is 7 \ , quasi-compact, irreducible, and has a quasi-
compact open basis. Then Y = UT=i Yt, where this is a disjoint union and Y\Yt 

is quasi-compact open for all i. 

Proof. Order F (i.e., let F = {yx, y2, . . . } ) . Choose a quasi-compact open set 
Ui such tha t y2 G Uu yi G Ux. Let Yx = Y\Ui. We have yx G Y1 and 
F \ F i = U\. Y\ is closed, so it is quasi-compact. Cover Y\ with quasi-compact 
open sets t ha t miss y2, and take a finite subcover. Since a finite union of quasi-
compact open sets is quasi-compact open, we can choose a quasi-compact open 
set U2 such t ha t Yx C U2} and y2 G U2. Let F 2 = Y\U2. We have y2 G F2 , 
Y\Y2 = U2, and Y1 P\ F 2 = 0. Note t ha t F ^ Fx U F 2 since F i s irreducible. 
Let yu be the first yt & Fi U F2 . As Fi U F 2 is closed, we can choose a quasi-
compact open set U% such t ha t Yx \J F 2 C c73, and ^z-3 G £/3- Let F 3 = F \£ / 3 , 
and we have ^ i 3 G F3 , F \ F 3 = Î/3, and Fi, F2 , F 3 are pairwise disjoint. 
F irreducible now gives F ^ Fi U F 2 U F3 . Repeat ing this process, we in­
ductively define the Yt. 

(6.3) LEMMA. Suppose Y = U?=i Fz-, where this is a disjoint union and Y\ Yt 

is quasi-compact open for all i, and that every proper closed subset of Y is Boolean. 
Then a) is satisfied. 

Proof. Since every Yt is closed in F, the implication <= is immediate . 
Suppose then C ^ F is closed in F. Then C = U Cit where Ct = C C\ Yt is 
closed in Yt. We must show Ct = 0 for all bu t a finite number of i. Now F \ F ^ 
is quasi-compact open in F, so C H (Y\Yt) is quasi-compact open in the 
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relative topology for C. But C is a Boolean space; hence C n ( F\F*) must also 
be closed in C. Since this set is the complement of Ct in C, C* is open in C. 
Thus {Ct} is an open cover of C by pairwise disjoint sets. As C is quasi-compact, 
Ct = 0 for all but a finite number of i. 

Remark. Different partitions for F can still yield the same spectral space X. 
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