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Abstract

Pharmacogenetics, the study of how interindividual genetic differences affect drug response,
does not explain all observed heritable variance in drug response. Epigenetic mechanisms,
such as DNA methylation, and histone acetylation may account for some of the unexplained
variances. Epigenetic mechanisms modulate gene expression and can be suitable drug targets
and can impact the action of nonepigenetic drugs. Pharmacoepigenetics is the field that
studies the relationship between epigenetic variability and drug response. Much of this
research focuses on compounds targeting epigenetic mechanisms, called epigenetic drugs,
which are used to treat cancers, immune disorders, and other diseases. Several studies also
suggest an epigenetic role in classical drug response; however, we know little about this area.
The amount of information correlating epigenetic biomarkers to molecular datasets has
recently expanded due to technological advances, and novel computational approaches have
emerged to better identify and predict epigenetic interactions. We propose that the relation-
ship between epigenetics and classical drug response may be examined using data already
available by (1) finding regions of epigenetic variance, (2) pinpointing key epigenetic bio-
markers within these regions, and (3) mapping these biomarkers to a drug-response pheno-
type. This approach expands on existing knowledge to generate putative pharmacoepigenetic
relationships, which can be tested experimentally. Epigenetic modifications are involved in
disease and drug response. Therefore, understanding how epigenetic drivers impact the
response to classical drugs is important for improving drug design and administration to
better treat disease.

Impact statement

Pharmacoepigenetics studies how epigenetic mechanisms impact disease states, and the
response to drugs. We summarize work in these areas and propose an approach to move the
field forward by using publicly available data to identify pharmacoepigenetic interactions. These
interactions promise an improved understanding of how to deliver more precise personalized
medicine.

Introduction

Variation in genetics can lead to variation in the response to drugs. Pharmacogenetics (PGx) is
the field of research that characterizes this relationship by examining how genetic variation
correlates with pharmacological parameters such as pharmacokinetics and pharmacodynamics.
In PGx, the simplified paradigm for understanding a gene–drug interaction is as follows: first,
recognizing regions of genetic variation, second, identifying key functional changes such as single
nucleotide polymorphisms (SNPs), and insertion and/or deletions (indels), and third, mapping
these onto a drug response phenotype. This process represents a base case PGx scenario.
However, there are cases where individuals have several variant genes of interest, called phar-
macogenes. The effect from each pharmacogene complicates the analysis of how a single gene
variant impacts drug response. PGx studies have been successful in explaining and predicting
differences in drug response (Ross et al., 2012).

Genetic variation typically accounts for approximately 10–30% of observed differences in
individual responses to drugs (Ross et al., 2012). Researchers have proposed that epigenetic
effects, which modify gene expression without altering the genetic code, may also contribute to
variation in drug response (Berger et al., 2009; Gomez and Ingelman-Sundberg, 2009; Kacevska
et al., 2011; Ivanov et al., 2012; Ingelman-Sundberg et al., 2013; Kim et al., 2014; He et al., 2015;
Stefanska and MacEwan, 2015; Cascorbi and Schwab, 2016). Epigenetic mechanisms include
DNAmethylation (DNAm), hydroxymethylation, histone modification, chromatin architecture
changes, and noncoding RNAs (although RNAs are not always considered epigenetic factors)
(Kelly et al., 2010). Epigenetic principles have been extensively studied in recent years, and a
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thorough review of these principles in the context of health and
disease is given by Zhang et al. (2020).

Epigenetic variants have been found near genes and gene regu-
lators, which control the metabolism of drugs, suggesting a role for
epigenetic mechanisms in modulating pharmacokinetics and
pharmacodynamics (Kacevska et al., 2012; He et al., 2015; Shi
et al., 2017). Pharmacoepigenetics, is the field that studies how
epigenetic variability impacts variability in drug response. We
can use a similar approach as with PGx to study this field. First,
we identify variation in epigenetic markers, second, we select key
epigenetic biomarker(s) in regions of variance, and third, we map
these biomarker(s) to a drug response phenotype.

We introduce the term forward pharmacoepigenetics to
describe situations where the existing epigenetic state dictates
response to drugs (Csoka and Szyf, 2009; Cascorbi, 2013). However,
as in PGx, there aremore complex cases where epigenetics and drug
response interact. Drugs can also modulate the epigenetic profile in
a manner we call reverse pharmacoepigenetics, where compounds
target epigenetic mechanisms to alter gene expression (Csoka and
Szyf, 2009; Kelly et al., 2010; Lötsch et al., 2013; Ivanov et al., 2014;
Figure 1). With some drugs, this is a side effect, but a subset of
epigenetic drugs, which wewill refer to as epi-drugs, are designed to
alter epigenetic markers and are used to treat cancers, immune
disorders, and mental health disorders (Peedicayil, 2014; Furtado
et al., 2019; Licht and Bennett, 2021).

Biomarkers, such as methylation patterns, are used to identify
whether an epi-drug will be effective for a specific patient
(Treppendahl et al., 2014; Majchrzak-Celińska and Baer-
Dubowska, 2017). Therefore, much of the literature in the field
of pharmacoepigenetics analyzes biomarkers related to epi-drugs.
One class of biomarker analyses identifies which patient cohorts
respond best to certain epi-drugs (Berdasco and Esteller, 2019;
Incorvaia et al., 2020). Another application seeks biomarkers that
are indicative of epi-drug efficacy against a specific disease
(Cheng et al., 2014; Alag, 2019; Morel et al., 2020). These studies
have generated a large volume of data following advances in
epigenetic sequencing technology (Zhou et al., 2015; Luo et al.,
2020; Boix et al., 2021). The sequencing methods are reviewed in
Cazaly et al. (2019). Computational methods to predict biomark-
ers and patient responses from the available information are
emerging (Cazaly et al., 2019). For example, machine learning
(ML)-based algorithms trained on functionally validated phar-
macogenomic biomarkers joined with clinical measures, pre-
dicted selective serotonin reuptake inhibitor (SSRI) remission
and response in patients with major depressive disorder
(Athreya et al., 2019).

While epi-drug biomarker studies are important for improved
patient diagnosis and treatment, they are not the focus of this
review. Instead, we focus on the relationship between classical drug
response and epigenetic variation (Gomez and Ingelman-
Sundberg, 2009; Cascorbi, 2013; Lauschke et al., 2019). In PGx,
researchers typically identify key SNPs from regions of genetic
variance and map how they relate to the drug response phenotype.
In pharmacoepigenetics, few studies have reported on how epigen-
etic variation relates to classical drug response.We find that (1) epi-
genetic variants can be indicative of disease and are varied
throughout the population, (2) epigenetic variation can be sum-
marized by key biomarkers, which predict diagnosis and prognosis,
and (3) epigenetic variation impacts nonepigenetic drug response.
We also demonstrate how publicly available data can be used to
examine all aspects of the relationship between epigenetic variance
and classical drug response to further our understanding of human
biology and improve our treatment of disease.

Epigenetic variation in disease, drugs, and drug response

Epigenetic variation

Of the epigenetic mechanisms, DNA methylation (DNAm) is the
most studied, and has been implicated in several disease pheno-
types. DNAm at the promoter region of a gene is more likely to
downregulate gene expression, while methylation in the body of the
gene is more likely to increase expression (Jjingo et al., 2012).
Cancers, immune diseases, and diabetic kidney disease are linked
to differential methylation (Husquin et al., 2018; Kato and Natar-
ajan, 2019; Ochoa-Rosales et al., 2020). Mental illnesses including
schizophrenia, bipolar disorder, major depressive disorder, Alzhei-
mer’s, and autism may also be associated with variant methylation
patterns (Tyrka et al., 2012; Cacabelos and Torrellas, 2015; Andari
et al., 2020; Zhou et al., 2021). Based on these data, we focus the
scope of our review on the relationship between DNAm and drug
response. There are relationships between drug response and other
epigenetic mechanisms, which are outlined in Kim et al. (2014), He
et al. (2015), and Cascorbi and Schwab (2016).

Epigenetic variation relevant to disease can vary across ethnici-
ties. Nielsen et al. (2010) found that DNA methylation of the
l-opioid receptor gene (OPRM1) promoter region varied across
African American, Hispanic, and Caucasian ethnic groups. This
was done in the context of a heroin addiction study, and in addition
to higher methylation levels in former heroin addicts compared to
controls, and there was a significant difference across ethnicities in
both users and control subjects. Epigenetic polymorphisms of the

Figure 1. (a) Forward case of pharmacoepigenetics where basal DNAm influences drug response. Preexisting DNAm markers (Me) in the promoter region of the gene can down-
regulate gene expression. This decreases the amount of gene product available for interactionwith a drug. Since theDNAmaffects the drug response phenotype, we call this forward
pharmacoepigenetics. (b) Reverse casewhere drug changesDNAmand this in turn affects response phenotype. Here the drug is altering themethylation status of the gene promoter
region, which leads to changes in downstream gene expression. Since the drug is affecting the DNAm, we call this reverse pharmacoepigenetics. In this scenario methylation at the
promoter region downregulates gene expression, but this is not always the case. Created with BioRender.com.
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gene CYP2D6 are present among Chinese Tibetan, Mongolian,
Uygur, and Han populations (Qi et al., 2020). CYP2D6 is important
for susceptibility to cardiovascular disease and drug metabolism.
These studies demonstrate that methylation patterns vary across
different populations in genes relevant to disease phenotype and
drug response.

Key epigenetic biomarkers predict diagnosis and prognosis

For diseases with an epigenetic component, it is useful to identify
key biomarkers representing differential epigenetic states associ-
ated with disease diagnosis, prognosis, and treatment efficacy.
Duruisseaux et al. (2018) identified key DNAm biomarkers that
were predictive of response to anti-programmed death 1 (anti-PD-
1) treatment in nonsmall-cell lung cancer patients. In an epilepsy
study, a methylation signature defined temporal lobe epilepsy and
predicted drug resistance in patients (Xiao et al., 2020).

Computational models can aid in identifying epigenetic bio-
markers, which correlate to disease. For example, three ML pro-
grams were trained on the sequence of DNAwith CG repeats (CpG
sites). Researchers used these three programs (a complexity-
optimized classifier, a decision tree, and a miRNA expression-
based decision tree) to predict paclitaxel-sensitive and resistant
breast cancer tumors (Bomane et al., 2019). ML programs have
also used drug similarity data and cancer cell similarity matrices to
predict the sensitivity of various cancer cell lines to novel drugs. The
performance of this ML prediction model using DNAm was com-
parable to that of experimentally based information from oncogene
mutation and gene expression data (Yuan et al., 2020). These
studies demonstrate that biomarkers represent epigenetic variance
in a manner, which can be used to predict disease phenotype,
prognosis, and treatment efficacy.

Epigenetic variation impacts nonepigenetic drug response

Epigenetic profiles vary in the population, are associated with
several diseases, and can be represented by biomarkers to identify
and predict disease phenotypes. Epigenetic alterations can also
influence the response to nonepigenetic drugs. For example,
methylation patterns in patients with Fragile X syndrome correlate
with a differential response to a mGluR5 antagonist, which may
alleviate some symptoms of the disorder (Jacquemont et al., 2011).
In another hereditary disease, hyperhomocysteinemia, there is a
consistent association between methylation levels of Betaine–
Homocysteine S-Methyltransferase and folate therapy efficacy
(Li et al., 2019).

Differences in methylation status correlate with the presence
and severity of several mental health disorders. Methylation status
also impacts response to anti-psychotic treatment (Swathy et al.,
2018). One example of this relationship is that DNA methylation
status in the interleukin-11 gene predicts clinical response to anti-
depressants (Powell et al., 2013). Another study done on the
Chinese Han population found that response to the anti-psychotic
risperidone could be explained by both SNPs in key genes and CpG
islands in the promoter or gene coding regions of those genes (Shi
et al., 2017). Specifically, examining methylation in CYP3A4,
CYP2D6, ABCB1, HTR2A, and DRD2 genes revealed seven signifi-
cant CpG sites within the promoter or coding regions of these
genes. Zhou et al. (2021) expand on the correlative relationship
between DNAm profiles and clinical response to antipsychotic
drugs in a retrospective study.

Most of the genes identified in these studies are involved in drug
metabolism. Absorption, distribution, metabolism, and excretion
(ADME) genes often vary in expression level. This variation
impacts drug pharmacokinetics. Cytochrome P450 (CYP) genes
are ADME genes and there is evidence that some unexplained
variance in their level of function is attributable to methylation
(Kacevska et al., 2012; Shi et al., 2017; Xiong et al., 2022). Poly-
morphisms in CYP450 and another gene, ABCB1, and their
respective DNA methylation statuses significantly altered risk for
steroid-induced osteonecrosis in the femoral head in Chinese
populations (Huang et al., 2020). Moreover, methylation of ABCB1
also had a significant effect on aspirin resistance in Chinese ische-
mic stroke patients (Xu and Wang, 2022). Furthermore, methyla-
tion of CYP1A1 was shown to modulate stable warfarin dosage in
Chinese patients (He et al., 2021).

CYP3A4 is another cytochrome P450 familymember that exhib-
its high interindividual variation in hepatic expression. Much of the
variability in CYP3A4 remains unexplained. However, there exist
highly variable CpGmethylation sites in adult livers, which corres-
pond to important CYP3A4 transcription factor binding sites at the
proximal promoter. This suggests that the variance in the expres-
sion of CYP3A4 in adult livers may be due to methylation of the
proximal promoter region (Kacevska et al., 2012).

Epigenetic and pharmacogenomic resources

Several publicly available resources provide useful epigenetic and
pharmacogenomic information. These resources derive from ini-
tiatives to aggregate molecular association studies to create data
resources that are publicly available (The GTEX Consortium, 2020;
Min et al., 2021; Battram et al., 2022; Ruiz-Arenas et al., 2022; Xiong
et al., 2022). We focus on DNAm as an epigenetic marker for which
putative pharmacoepigenetic relationships can be elucidated using
available data.

The Genetics of DNAMethylation Consortium (GoDMC) is an
international collaboration that aggregated data from >30,000
study participants to provide associations between genetic variants
and DNAm sites in the general population known (Min et al.,
2021). Epigenome-wide association studies (EWAS) characterize
the association between DNAm and phenotypic outcomes such as
aging and smoking, but also pharmacogenomic (PGx) outcomes.
Over 2,500 such studies are hosted on the EWAS catalog (Battram
et al., 2022), and the EWASAtlas (Xiong et al., 2022), and the GTEx
project (The GTEX Consortium, 2020). To further elucidate the
pathway from DNAm to phenotype, association studies between
methylation and gene expression can provide insightful informa-
tion (Ruiz-Arenas et al., 2022), as do omics quantitative trait loci
(QTL) data (The GTEX Consortium, 2020). In Table 1, we present
publicly available resources that provide summary statistics of these
molecular associations that could help identify causal pathways in
the context of pharmacoepigenetics as subsequently discussed for
the anti-psychotic compound clozapine (section “Synthesizing
available pharmacoepigenetic data to investigate pharmacoepige-
netic interactions”).

In section “Synthesizing available pharmacoepigenetic data to
investigate pharmacoepigenetic interactions,” we illustrate the use
of these resources to examine the epigenetics of clozapine. There are
several relevant resources. dMEM, or the database of Epigenetic
Modifiers, maintains the genomic information of about 167 epigen-
etic cancer target modifiers and proteins including DNAm and
histone modification and microRNAs (Singh Nanda et al., 2016).
Consortia such as NIH Roadmap Epigenomics and the
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Encyclopedia of DNA Elements (ENCODE) provide data portals
containing thousands of sequencing-based genome-wide epigen-
etic datasets (Fingerman et al., 2011; Luo et al., 2020). Another
epigenetic resource, Epimap, combines 10,000 epigenomic maps
across 800 samples, which annotate chromatin states, high-
resolution enhancers, enhancer modules, upstream regulators,
and downstream target genes (Boix et al., 2021).

Genome browsers such as the Washington University Epigen-
ome Browser, offer a visualization platform that integrates consor-
tia data for browsing and downloading (Zhou et al., 2015). The
UCSC genome browser offers a GTEx track, which allows users to
examine epigenetic variation and gene expression in a variety of
human tissues (Kent et al., 2002; Navarro Gonzalez et al., 2021).

Aside from databases examining epigenetic markers, there are
databases that provide drug-response information. The
PharmGKB provides curated drug label annotations, clinical guide-
line annotations, FDA annotations, genetic variant annotations,
curated pathways, and annotations for hundreds of drugs (Whirl-
Carrillo et al., 2021). DGIdb (Drug–Gene Interaction database)
provides information on drug–gene interactions and druggable
genes from publications, databases, and other web-based sources
(Freshour et al., 2021). DrugBank offers chemical, pharmacological,
and pharmaceutical data with comprehensive drug target informa-
tion (Wishart et al., 2018). Additionally, the human enhancer drug
database (HEDD) integrates epigenetic drug datasets obtained
from laboratory experiments and manually curated information.
HEDD incorporates five kinds of datasets: (1) drug, (2) target,
(3) disease, (4) high-throughput, and (5) complex datasets
(Qi et al., 2016). Pharmacogenomic variation nomenclature is

standardized within the PharmVar consortium as a centralized
pharmacogene variation data and pharmacogenomic nomencla-
ture repository (Gaedigk et al., 2021).

Synthesizing available pharmacoepigenetic data to
investigate pharmacoepigenetic interactions

Clozapine is commonly prescribed for schizophrenia. There is a
wealth of information, which can be assembled about it from
existing epigenetic and PGx resources. We illustrate how pharma-
coepigenetic mechanisms can be hypothesized by integrating dif-
ferent datasets (Figure 2 and Table 1).

Clozapine has high interindividual differences in plasma cloza-
pine concentration at a given dose and the risk of serious adverse
drug reactions (ADR) at high concentrations can make its use
challenging (Molden, 2021). A recent PGx genome-wide associ-
ation study (GWAS) (N = 2,989) identified a single genetic variant
(rs2472297) associated with plasma clozapine concentration
located between CYP1A1 and CYP1A2 (interaction 1, Figure 2).

Consulting the GoDMC methylation QTL (mQTL) resource,
we associated this SNP to three CpG sites, two (cg13570656,
cg17852385) located in the proximity of the transcription start
site of CYP1A1 and one in the CYP1A2 intron 5–6 (cg01359532;
interaction 2). To the best of our knowledge, no epigenome-wide
association study (EWAS) on clozapine plasma concentration
has been reported, which could relate methylation status to
observed interindividual concentrations (interaction 3). Previ-
ous studies provided evidence for inverse correlations between
DNAm and CYP1A2 mRNA levels in liver (Ghotbi et al., 2009;

Table 1. Public resources with quantitative molecular interaction information that directly or indirectly involve DNAm

Interaction Interaction entities

Alternative
interaction
Name Resources

Resources –
References Clozapine example

Clozapine
example –
References

1 Genetic variant – PGx
outcome

PGx GWAS GWAS Catalog
PGRN-RIKEN

Buniello et al., 2019 rs2472297 C > T clozapine plasma
concentration (P = 4.35 � 10�10)

Pardiñas et al.,
2019

2 Genetic variant –
methylation status

mQTL GoDMC Min et al., 2021 rs2472297 C > T cg13570656
(P = 4.73 � 10–32); cg17852385
(P = 7.79 � 10–32); cg01359532
(P = 5.03 � 10�75)

Min et al., 2021

3 Methylation status –
PGx outcome

EWAS EWAS Catalog
EWAS Atlas
EWASdb

Battram et al., 2022;
Xiong et al., 2022;
Liu et al., 2018

NA NA

4 Methylation status –
gene expression

eQTM Helix Project
Human Kidney
meQTL Atlas

Ruiz-Arenas et al.,
2022; Liu et al., 2022

Liver: cg14503537-CYP1A2
(P = 1.2 � 10�3);
Blood/Liver cg13570656 – CYP1A1 (n.s.);
cg13570656 – CYP1A2 (n.s.);
cg17852385 – CYP1A1 (n.s.);
cg17852385 – CYP1A2 (n.s.);
cg01359532 – CYP1A1 (n.s.);
cg01359532 – CYP1A2 (n.s.)

Bonder et al.,
2014; Ruiz-
Arenas et al.,
2022

5 Genetic variant – omics
levels

Expression
QTL
Protein
QTL
Metabolite
QTL

GTEx Portal
OMICSCIENCE

The GTEx
Consortium, 2020;
Lotta et al., 2021

rs2472297
C > T – CYP1A1 (n.s.)
rs2472297
C > T – CYP1A2 (n.s)

The GTEx
Consortium,
2020

Note: Resources to query interaction information (1–5) as displayed in Figure 2 are outlined for genetic variants, PGx outcome (e.g., differential drug response, ADR), DNAm at CpG sites, gene
expression, and omics levels. Each interaction involves two of these entities and to facilitate navigation, we explicitly name them (i.e., genetic variant – DNAm level) while also mentioning the
common name of the intended analysis (i.e., mQTL). Information about the rs2472297-CYP1A1/CYP1A2 – clozapine example is provided when available. This list of resources is not exhaustive as
we focused on large databases with user-friendly interfaces. As such, references supporting the clozapine examples also stem from other resources.
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Bonder et al., 2014), among which is an inverse correlation between
the intronic cg14503537 and CYP1A2 (interaction 4) (Bonder et al.,
2014). However, no significant correlation between any of the pre-
viously listed mQTL CpG sites and CYP1A1/CYP1A2 was found in
either liver or blood (Bonder et al., 2014; Ruiz-Arenas et al., 2022).
Likewise, no expression QTL (eQTL) data involving these two genes
was reported for rs2472297 in the GTEx project (interaction 5) (The
GTEX Consortium, 2020).

While the data may suggest a relationship between rs2472297
and clozapine concentration through DNAm, the information is
too sparse to exclude horizontal pleiotropy (i.e., the SNP affecting
DNAm and clozapine concentration independently). However,
DNAm may be a consequence of the lower gene expression due
to the proximal SNP. Given the absence of a genetic association
with expression levels, further studies would be necessary to cor-
roborate this hypothetical mechanism. Even this simple example
with clozapine demonstrates the complex space of possible direct
and indirect pathways, including forward and reverse directional-
ities, and warrants caution when integrating and interpreting
molecular associations.

Synthesizing available pharmacoepigenetic data to
investigate the DNAm landscape of CYP genes

CYPs play amajor role in themetabolism of a large fraction of drugs
and have notable variance in their expression, explained by both
genetic and nongenetic factors. Studies previously discussed

(section “Epigenetic variation impacts nonepigenetic drug
response”) identify methylation near CYP promoter regions as a
possible cause for differential drug response. We searched the
GoDMC database to assess the DNAm landscape in 10 major
CYP genes involved in drug metabolism (Min et al., 2021).

GoDMC provides cis and trans-mQTL information based on
the analysis of 420,509 DNAm sites. We restricted our search to
DNAm sites located 50kB up- and downstream of the CYP gene of
interest and downloaded available data including the average
DNAm level of these sites in the general population, mQTLs in
cis influencing their DNAm levels, the minor allele frequency
(MAF) of these mQTLs, and the estimated heritability of DNAm
levels based on cis-mQTLs. In Table 2, we summarized this infor-
mation. The full query results can be found in Supplementary
Table S1.

DNAm levels in CYP genes range from 1.8% up to 97.9%. As a
comparison, genome-wide DNAm levels are reported on average
52% across the ~420,000 testedCpG sites. However, only 21%of the
CpG sites are in transcription factor-binding regions (Min et al.,
2021). Across the CYP genes, the frequency and location of DNAm
siteswith respect to the transcript exons are gene-specific (Figure 3).
Seven out of the 10 assessed genes (CYP1A1, CYP2B6, CYP2C19,
CYP2D6, CYP3A4, CYP3A5, and CYP4F2) have at least oneDNAm
site in the promoter region whereas only intronic and/or exonic
DNAm sites were observed for CYP1A2 and CYP2C9.

We focused on CYP-DNAm sites that are under genetic control
with heritability ranging from <0.1% up to 97%. Genetic variants

Figure 2. Combining molecular interaction resources can detect putative causal mechanisms that determine differential drug responses because of DNAm. We show interactions
between genetic variants (SNPs), methylation status at CpG sites, drug response, expression levels, and other omics measures. In interaction 1, we report the association between
the reduction in clozapine concentration and theminor allele of rs2472297 (Pardiñas et al., 2019). In interaction 2, we present the CpG sites in vicinity of the CYP1A1 andCYP1A2 genes
whose methylation levels are under the genetic influence of rs2472297 (GoDMC mQTL study). This suggests that epigenetic mechanisms may affect clozapine concentration.
Interaction 3 indicates the association results that could be expected from an EWAS on clozapine concentration, however, such data is currently not available for this compound.
Interaction 4 represents the link between methylation and expression levels (eQTM) that could support the role of CYP1A1 or CYP1A2 as mediators in this hypothetical epigenetic
mechanism. Interaction 5 represents genetic associations to omics data such as mRNA expression, protein levels, and metabolite levels, which could further provide mechanistic
insights and elucidate downstream effects of methylation on clozapine concentration through other omics layers. This figure is accompanied by Table 1 with public resources to
query quantitative information corresponding to these interactions. Themolecularmechanismdepicted here is based on the significant effect of rs2472297 on clozapinemetabolite
plasma concentration (Pardiñas et al., 2019). As outlined above, support for other interactions is often missing and we detail the degree of evidence in Table 1.
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influencing these DNAm levels were found to be both rare
(MAF < 5%) and very common (MAF > 40%). GoDMC shows that
genetic variants influence 45% of the assessed DNAm sites. This
suggests that CYP genes could harbor additional DNAm sites likely
to be under environmental control. The DNAm data we are pre-
senting here was derived from whole blood in European partici-
pants and differences in the liver, the most relevant tissue for CYP
enzymes, as well as population-specific differences, are expected.
While further research is needed to attribute DNAm sites to PGx
effects and determine whether epigenetic marks are functional
intermediates or consequences of differential gene activity, this
qualitative assessment may help prioritizing candidate genes to
conduct further research. For example, CYP2D6 metabolizes sev-
eral common drugs and is polymorphic in epigenetic profiles in
some populations (Qi et al., 2020). Understanding the epigenetic
landscape of the gene, including which genes are under genetic
control may allow scientists to better prioritize which of these sites
to pursue with biological experiments.

Challenges in pharmacoepigenetics

Our current understanding of pharmacoepigenetics paired with
available resources can generate hypotheses about interactions
between epigenetics and classical nonepigenetic drug response.
However, some of the information necessary to reconstruct or
predict pharmacoepigenetic relationships is not yet available, as
seen in the clozapine example.

Challenges in the field go beyond unavailable data. Epigenetic
mechanisms are important for cancer progression, yet, studying
pharmacoepigenetics in the context of cancer is challenging. In
cancer cells, it is difficult to identify population-level genetic or
epigenetic differences because the cancer epigenome is different
from the host’s somatic epigenome and cancer cells are rapidly
evolving. Furthermore, in the setting of active treatment, it is
challenging to track which markers are basal to the patient tissue,
are cancer-specific, or are a result of a pharmacological action. The
tissue-specificity of epigenetic signals also means that obtaining
disease-relevant samples from patients via blood draw is often not

possible, limiting the current clinical applications of epigenetic
profiles. Nevertheless, epigenetics marks affect cancer drug
response and prognosis. Therefore, understanding these relation-
ships remains an important area of research that is difficult to
examine at the population and epigenome level of analysis.

Establishing causal relationships between changes in epigenetic
state and a given phenotype is not only challenging in cancer.
Environmental factors, disease states, and drugs can affect epigen-
etic markers, and likewise, marker levels may alter drug response
and disease prognosis. Additionally, epigenetic states are dynamic
and change throughout an individual’s lifetime. As such, determin-
ing the cause and consequence of observed associations between
epigenetic markers, medical conditions, and drug responses is not
always straight-forward. In some cases, twin studies are used to
determine causality, but much remains to be uncovered regarding
the directionality of the relationship between epigenetics and drug
response (Bell and Spector, 2012).

To navigate these complexities and disentangle observed asso-
ciations, causal inference methods such as Mendelian randomiza-
tion (MR) techniques can consolidate forward or reverse causality
(Porcu et al., 2021a). MR makes use of genetic instrumental vari-
ables and has been successful in identifying putative causal rela-
tionships between gene expression and complex traits using eQTL
and GWAS. Analogous application to mQTL data can reveal
DNAm-to-trait and even DNAm-to-gene expression-to-trait path-
ways (Sadler et al., 2022; Figure 1). Equivalently, MR can be used to
test whether altered methylation levels are responsible for observed
PGx effects by leveraging PGx GWAS (Auwerx et al., 2022). While
EWASs of the PGx phenotype of interest can provide evidence of
putative mechanisms, these results should be interpreted with
caution considering the challenges associated with determining
causality. Indeed, it was found that observed DNAm-to-trait and
gene expression-to-trait correlations were more likely to arise due
to reverse causality (i.e., trait-induced) (Min et al., 2021; Porcu et al.,
2021a).

As more population-level epigenetic data emerges, there is an
opportunity to elucidate potential pharmacoepigenetic interactions
from publicly available data by (1) identifying pharmacogenes with
unexplained variability, (2) locating key epigenetic biomarkers near

Table 2. Summary of DNAm variation for 10 CYP genes

CYP gene Chromosome Number of DNAm sites Mean DNAm level (min–max) mQTL MAF (min–max) cis-heritability (min–max)

CYP1A1 15 14 0.036–0.816 0.020–0.438 0.001–0.106

CYP1A2 15 23 0.036–0.979 0.012–0.438 0.001–0.595

CYP2B6 19 3 0.380–0.842 0.016–0.427 0.006–0.319

CYP2C19 10 3 0.686–0.832 0.010–0.422 0.018–0.102

CYP2C8 10 1 0.756 0.130 0.010

CYP2C9 10 1 0.756 0.130 0.010

CYP2D6 22 20 0.018–0.902 0.015–0.484 0.002–0.337

CYP3A4 7 2 0.707–0.752 0.024–0.035 0.010–0.062

CYP3A5 7 12 0.022–0.903 0.010–0.316 0.002–0.324

CYP4F2 19 13 0.106–0.874 0.009–0.492 0.003–0.965

Note: For each gene, we include the chromosome, number of DNAm sites found 50 kB up- and downstream the gene boundaries, minimum and maximummean DNAm levels, maximum mQTL
minor allele frequency (MAF), and the minimum and maximum DNAm cis-heritability values. The mean DNAm level indicates the average methylation status of a given DNAm site in the studied
population. TheMAF corresponds to theMAF of the topmQTL (mQTLmost significantly associatedwith that DNAm site) and the DNAm cis-heritability is the extent of DNAmvariation explained by
genetic variation in proximity of the genewhichwe derived by summing up the explained variance of independent cis-mQTLs. Only DNAm sites available in the GoDMC resource (whole blood) are
reported with the study population being of European ancestry. Full query results with detailed mQTL association information can be found in Supplementary Table S1.
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the gene or regulatory region, and (3) referencing epigenetic data-
bases to hypothesize relationships (such as those outlined in
Figure 1) between biomarkers like DNAm and phenotypes such
as drug response. It will be critical to validate such predicted

interactions via biological and clinical experiments to generate a
deeper understanding of epigenetic effects and drug response.
While there is a great deal of information already available, more
is required to fully examine pharmacoepigenetic influences on drug

Figure 3. Visualization of DNAm profiles for 10 CYP genes. This data was generated from public resources to demonstrate the wealth of epigenetic information available about
important drugmetabolism genes. Each box represents one CYP gene with the name and strand orientation. The exon/intron architecture is outlined and aligned to the position on
their respective chromosomes. DNAm sites are drawn above (gray bars with yellow dots) relative to their location on the gene together with their average DNAm level (green bars).
The height of the left black bar indicates a DNAm level of 1 (i.e., 100%methylated). DNAm sites very close to each other may appear as a single bar and for visualization purposes,
DNAm sites distant to the gene body were omitted. DNAm site positions and DNAm level information are from the GoDMC resource (whole blood).
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response. Additional pharmacoepigenetic studies on classical
nonepigenetic drugs both in vitro and with patient populations
would help address these gaps. Employing novel computational
approaches to identify or predict pharmacoepigenetic relationships
paired with biological validation allows us to fully materialize the
promise of pharmacoepigenetics as a powerful tool for understand-
ing biological mechanisms and developing effective interventions.
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