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The transient shear-induced particle migration of frictional non-Brownian suspensions is
studied using particle-resolved simulations. The numerical method – the fictitious domain
method – is well suited to heterogeneous flows thanks to a frame-invariant formulation of
the subgrid (lubrication) corrections that does not involve the ambient flow (Orsi et al.,
J. Comput. Phys., vol. 474, 2023, 111823). The paper aims to give an accurate quantitative
picture of the mass and momentum balance during the flow. The various assumptions
and local constitutive laws that together form the suspension balance model (SBM)
are thoroughly examined. To this purpose, the various quantities of interest are locally
averaged in space and time, and their profile across the channel is extensively studied, with
specific attention to the time evolution of the different contributions, either hydrodynamic
in nature or from contact interactions, to the shear and normal stresses. The latter, together
with the velocity gradient in the wall-normal direction and the volume fraction profile,
yield the local constitutive laws, which are compared with their counterpart obtained in
homogeneous shear flow. A fair agreement is observed except in a layering area at the
boundaries and at the very centre of the channel. In addition, the main assumption of
the SBM, i.e. the local relation between the hydrodynamic force on the particles and
the particle flux, is meticulously investigated. The hydrodynamic force is found to be
mainly a drag, except in the lower range of the probed volume fractions, where a non-drag
contribution is observed.

Key words: suspensions, Stokesian dynamics, particle/fluid flow

1. Introduction

Understanding the behaviour of non-Brownian suspension flows is of primary importance
in many biological systems and engineering applications. Many experimental, theoretical
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and numerical works have been devoted to this purpose in the past. We refer to recent
reviews for details (Denn & Morris 2014; Guazzelli & Pouliquen 2018; Morris 2020b,
2023; Lemaire et al. 2023). In the first place, the slow behaviour of non-Brownian
suspension in homogeneous shear flow (HSF) is now well documented. Shear stress
as well as normal stress differences have been measured in experiments and numerical
simulations. The corresponding material functions, i.e. relative shear viscosity and
normal stress differences, diverge as the jamming volume fraction φJ is approached. The
shear-induced microstructure is of great importance in this matter, as shown in shear
reversal experiments and simulations (Gadala-Maria & Acrivos 1980; Blanc, Peters &
Lemaire 2011; Lin et al. 2015; Peters et al. 2016), with subtle effects in shear-rotation
experiments (Blanc et al. 2023). We note that the difficult matter of extensional flows
has received much less attention in experiments (Dai & Tanner 2017), simulations (Seto,
Giusteri & Martiniello 2017; Cheal & Ness 2018) and theory (Jenkins, Seto & La Ragione
2021).

In the last two decades, the idea that contact forces between particles play a primary
role has emerged. Friction between particles is now known to strongly increase the shear
viscosity (Seto et al. 2013; Gallier et al. 2014b), mainly by decreasing the jamming volume
fraction (Singh et al. 2018; Chèvremont, Chareyre & Bodiguel 2019; Lobry et al. 2019;
Peerbooms et al. 2024). As the volume fraction approaches φJ , the contribution of the
contact forces to the shear stress is increasingly predominant. This idea has been very
fruitful in explaining the shear-thickening behaviour of non-Brownian suspensions by a
lubricated-to-frictional transition (Mari et al. 2014; Morris 2020a). It has also been shown
that the shear-thinning behaviour of frictional suspensions observed in experiments could
be explained by the decrease of the friction coefficient with increasing interparticle forces
(Chatté et al. 2018; Lobry et al. 2019; Arshad et al. 2021; Le et al. 2023; Lemaire et al.
2023).

Similarly, suspension pressure, and more generally normal stresses, bear both
hydrodynamic and contact origin. In a sheared suspension, the repulsive contacts, which
keep the particles from overlapping, induce a positive pressure in the material, tending
to dilate the particle network, while the (negative) pressure in the suspending liquid –
the pore pressure – resists this dilation, as experiments in rheometric flows have shown
(Deboeuf et al. 2009; Dbouk, Lobry & Lemaire 2013; Garland et al. 2013). This concept
is also connected to the Reynolds dilatancy of very concentrated immersed granular
materials, which must dilate to flow, inducing the same negative fluid pressure, with
important implications on the transient starting flow, for instance in the collapse of a
granular column (Rondon, Pouliquen & Aussillous 2011) or even in simple shear flow
(Marzougui, Chareyre & Chauchat 2015; Athani et al. 2022). In the field of suspension
rheology, this concept has been promoted by pressure-controlled experiments, where
particle pressure is controlled instead of volume fraction, allowing us to probe highly
concentrated suspensions, popularizing a new formulation of the material functions from
the dry granular community: the μ-rheology (Boyer, Guazzelli & Pouliquen 2011). The
latter has also proved to be fruitful in experiments on shear-thickening suspensions
(Clavaud, Metzger & Forterre 2020; Etcheverry, Forterre & Metzger 2023).

In heterogeneous flows, where volume fraction or shear rate are not uniform, particle
migration is observed (Guazzelli & Pouliquen 2018; Morris 2023). Such a behaviour has
been evidenced for a long time in cylindrical Couette flow (Leighton & Acrivos 1987;
Abbott et al. 1991). In such a case, particles migrate towards the external wall, where the
shear rate and shear stress are lower. In pressure-driven flows, particles migrate towards
the centre of the tube, where both shear rate and shear stress vanish (Koh, Hookham &
Leal 1994; Hampton et al. 1997; Lyon & Leal 1998). As shear-induced migration had been
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evidenced, a phenomenological model was proposed, based on diffusion fluxes linearly
related to volume fraction and shear rate gradients (Leighton & Acrivos 1987; Phillips
et al. 1992). This model, which can account for dense particle viscous resuspension as
well (Leighton & Acrivos 1986), has benefited from refinements (Krishnan, Beimfohr &
Leighton 1996), in particular, to account for particle segregation (Shauly, Wachs & Nir
1998; Chun et al. 2019).

Nott & Brady (1994) introduced the suspension balance model (SBM) in their attempt
to get a deeper insight into migration, with particular attention to their Stokesian
Dynamics simulations of a pressure-driven flow. Starting from the fundamental pointwise
momentum balance equation inside the particles, they derive the particle phase momentum
equation, according to which the migration flux is induced by the gradient of the particle
pressure. Accounting for normal stress anisotropy, Morris & Boulay (1999) generalized
the model to curvilinear geometries, thereby allowing prediction of particle migration
in the main rheometric flows. Later, Lhuillier (2009) and Nott, Guazzelli & Pouliquen
(2011) investigated the importance of the various contributions to the particle stress and
the hydrodynamic forces involved in particle transport. The contact force contribution to
the particle stress was identified as the primary driving force for particle migration, with
still open questions concerning supplementary hydrodynamic contributions. Differently
phrased, the interphase force, i.e. the average fluid force applied to the particle phase,
is assumed to be a drag force, proportional to the difference between particle phase
and suspension velocities, with possible supplementary contributions though. This will
be recalled in § 3. We note that the SBM has also been recently extended to bidisperse
suspensions (Howard, Maxey & Gallier 2022).

The SBM predictions have been compared with experimental measurements, mostly in
steady flow after the migration is complete, in the main shear flows used in rheological
studies (Morris & Boulay 1999; Miller & Morris 2006; Snook, Butler & Guazzelli 2016;
Rashedi et al. 2020). The comparison involves the volume fraction and velocity profiles
and requires the constitutive laws for both suspension and particle stresses. The agreement
is generally good, except for the centreline of pressure-driven flows, where the shear rate
vanishes. In that position, the SBM predicts that the jamming volume fraction is reached,
no matter how small the initial volume fraction is, which is not observed in experiments.
Modifications of the stress constitutive laws have been proposed, to account for non-local
effects (Nott & Brady 1994; Mills & Snabre 1995; Miller & Morris 2006), resulting
in finite normal stress at the centreline and a better agreement with experiments (Mills
& Snabre 1995; Miller & Morris 2006). Such non-local laws are physically sound, in
particular, given that the ratio of the system size to the particle size is usually not very
large – often a few tens – in experiments and simulations.

Prediction of the transient profiles requires the hindered settling function as measured
in sedimentation experiments. They are conveniently predicted in wide-gap Couette flow
(Morris & Boulay 1999), but the agreement seems less good in pressure-driven flow
(Snook et al. 2016; Rashedi et al. 2020), or at the cost of a significant modification of
the hindered settling function (Miller & Morris 2006).

We note here that the SBM requires precise knowledge of the stress constitutive laws
and of the hindered settling function to yield velocity and volume fraction profiles in
transient and steady flow. In particular, particle normal stresses are not easily measured
in experiments (Zarraga, Hill & Leighton 2000; Boyer et al. 2011; Dbouk et al. 2013), and
variations are expected due to different contact behaviours (Lobry et al. 2019; Clavaud
et al. 2020). As a consequence, the corresponding constitutive laws are not always
available for interpretation of migration experiments (Miller & Morris 2006; Snook et al.
2016; Rashedi et al. 2020).
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From this perspective, particle-resolved simulations are of primary interest, since they
yield precise knowledge of all relevant quantities at the local scale, including the various
stresses. Among the simple rheometric flows, the pressure-driven channel flow is very
attractive, due to its simplicity and relatively low computational cost. It is, therefore, no
surprise that most of the simulation studies devoted to particle migration deal with channel
flows (Nott & Brady 1994; Yeo & Maxey 2011; Chun et al. 2017, 2019; Di Vaira et al.
2022; Howard et al. 2022, 2023), sometimes considering finite inertia (Hogendoorn et al.
2023), or with the conceptually close case of the Kolmogorov flow (Gillissen & Ness
2020; Bhowmik & Ness 2024). Other studies have considered the influence of gravity,
for instance in bed-load transport (Vowinckel et al. 2021), or inertia (Shajahan et al.
2024).

In the specific case of channel flows, Nott & Brady (1994) defined ad hoc plausible
functions to model the normal stresses, including non-local contribution, and compared
their data from Stokesian dynamics simulations of frictionless particles with computations
of steady flow from the SBM. Morris & Brady (1998) followed the same approach in a
channel flow of dense suspensions, where gravity acts in a direction perpendicular to the
channel. Yeo & Maxey (2011) performed simulations of a channel flow using the force
coupling method (FCM) corrected for lubrication interactions, again with frictionless
particles. They computed particle stress profiles in steady flow once the migration was
completed. They divided the channel into three regions: a wall region near the boundaries;
a core region in the channel centre; and an intermediate region. The transverse normal
stress – in the velocity gradient direction – in the intermediate region was found to be
relatively uniform, consistent with the predictions of the SBM, and the particle pressure
was in good agreement with the constitutive law proposed by Morris & Boulay (1999). In
addition, the viscosity from the shear stress profile in the intermediate region was found to
be well described by standard correlation laws. It should also be noted that they found, for
sufficiently low mean volume fraction φ̄ ≤ 0.3, that the volume fraction at the centre did
not reach the jamming volume fraction, in agreement with experiments from the literature.
In a recent paper, Howard et al. (2023) used their data from particle-resolved simulations
(i.e. FCM) of the channel flow of monodisperse and bidisperse frictionless suspensions
at mean volume fraction φ̄ = 0.4 to feed both physics-informed machine learning and
data-informed operator learning, to predict the development of the particle stress in the
suspension as migration occurs. They observe a good agreement for the monodisperse
suspension between the transient particle flux as measured in the simulations and as
computed from the transient stress using the SBM.

Finally, Gillissen & Ness (2020) studied concentrated frictional suspensions in
heterogeneous flows using the discrete element method in two dimensions. They focused
on the constitutive law for the mean stress. To explain their simulation data, they adapted
a recent model based on a time-varying structure tensor (Gillissen et al. 2019), allowing
the strain rate tensor fluctuations to induce stresses. More specifically, at positions where
the shear rate vanishes, the fluctuations, and the normal stresses as well, do not. The
SBM fed with such a constitutive law predicts a steady volume fraction profile that
shows over- or under-compaction (max(φ) ≷ φJ), depending on the intensity of the
fluctuations. Bhowmik & Ness (2024) performed similar three-dimensional simulations
of frictionless suspensions in the high volume fraction range φ ≥ 0.5. Their data allowed
them to build constitutive laws for the stresses that would involve, in addition to the usual
volume fraction, macroscopic friction coefficient, and viscous number, a supplementary
dimensionless number, Θ , that stands for the dimensionless particle velocity fluctuations.
The predicted profiles from the SBM agree well with the simulation profiles.
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Particle migration in non-Brownian suspensions

In the present article, we perform particle-resolved numerical simulations of
non-Brownian frictional suspensions in channel flow. The purpose of this work is to
extensively characterize particle migration, both in the transient dynamic regime and
steady flow after the migration is complete, from a local perspective, i.e. considering local
space- and time-averaged quantities, and check the main constitutive laws on which the
SBM is based. As will be recalled in the following, the SBM is derived from fundamental
mass and momentum balance equations, and the yielded equations must be supplemented
by various constitutive laws, involving local stress gradients, particle and suspension
velocities, etc. We want to primarily focus on these constitutive laws.

Before getting into this matter, other issues deserve to be addressed. For instance, since
local stress gradients are involved in the considered constitutive law, the numerical method
should keep the usual momentum balance equation for the locally averaged suspension
stresses, which requires that the corresponding laws perfectly hold at the particle scale.
This will be checked. At this point, the choice of the numerical method deserves a few
words. Various efficient numerical methods are available to simulate low Reynolds number
flows of particulate suspensions (see Orsi, Lobry & Peters (2023) and references therein
for an account of them). In the present article, local volume fractions in the wide range
[0.25, 0.65] are considered, so that, in addition to contact interactions, both long-range
and lubrication hydrodynamic interactions should be properly accounted for. In the present
study, we use the fictitious domain method (FDM) supplemented by subgrid (lubrication)
corrections (Gallier et al. 2014a), for which we have recently developed a new formulation
of the subgrid corrections that is well suited to nonlinear flows while preserving the
necessary frame-indifference (Orsi et al. 2023).

In addition, the SBM equations can predict the transient and steady volume fraction
and velocity profiles provided that the usual constitutive laws for the stress are given,
which involve the standard material functions such as shear viscosity, normal viscosity
and macroscopic friction coefficient. In the present article, we measure these laws and
material functions at each point of the heterogeneous flow in the channel, and compare
them with their counterpart in HSF, as measured with the same numerical method, which
are also consistent with correlation laws proposed by Badia et al. (2022).

The main features of the FDM are recalled in § 2. Then, the SBM is shortly explained in
§ 3 with particular attention to the main assumptions and necessary constitutive laws, and
the method used for the computation of the various locally averaged quantities is detailed
in § 4. The transient and steady volume fraction and velocity profiles are investigated in § 5.
The local momentum balance equation for the suspension, together with the local stress
constitutive laws, are examined in § 6. Finally, the main hypotheses on which the SBM is
based are investigated in § 7.

2. Numerical method

2.1. The FDM: a summary
The FDM has been detailed in the past (Gallier et al. 2014a), including the specific version
that is used in the present article (Orsi et al. 2023). The main features of the method are
recalled here. In the FDM, the flow of a Newtonian liquid, with dynamic viscosity η and
density ρ, is computed in the whole meshed simulation domain D including the particles.
The particles are rigid spheres with the same density as the liquid. The rigidity of the
particles is enforced using a force density ρλ that acts only in the volume of each particle
Dp. In the present work, inertia is neglected for both fluid and particle dynamics. As a
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consequence, fluid velocity u and pressure P obey modified Stokes equations

∇ · σ + ρλ = 0,

∇ · u = 0,

}
(2.1)

σ = −Pδ + η(∇u + ∇uT), (2.2)

constraining the fluid inside each particle ( p) to undergo rigid body motion,

u(x) = Up + Ωp × (x − xp) for x ∈ Dp, (2.3)

where Up and Ωp are the particle translational and rotational velocities, respectively. In
addition, various boundary conditions for the pressure and the velocity may be applied,
depending on the considered specific flow. They are given in § 2.3 for the channel flow of
interest in the present article.

In the present article, the particles are only subjected to hydrodynamic and contact
forces. Then, Newton’s equations write for each particle ( p),

F h
p + F c

p = 0,

T h
p + T c

p = 0,

}
(2.4)

where F h
p and F c

p, respectively, stand for the hydrodynamic and contact forces exerted on
the particle ( p), and T h

p and T c
p are the corresponding torques. Contact forces and torques

will be briefly described in the next section. Hydrodynamic forces and torques are split
into two contributions. The first part corresponds to the moments that originate in the fluid
flow computed by the solver, and are hereafter denoted by F FDM

p and T FDM
p . These are

computed as follows:

F FDM
p = −ρ

∫
Dp

λ dV,

T FDM
p = −ρ

∫
Dp

(x − xp) × λ dV .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

However, the solver cannot properly compute the flow between particles when their
surfaces are closer than the mesh size. As a consequence, the stress moments applied
to the particles must be corrected using theoretical expressions. The method we follow
in the present article has been fully explained and validated by Orsi et al. (2023). The
generalized particle velocity and subgrid force vectors are, respectively, denoted by U =
(U1, U2, . . . , Ω1, Ω2, . . .) and FSG = (F SG

1 , F SG
2 , . . . , T SG

1 , T SG
2 , . . .). The latter may be

computed from the former using the subgrid resistance matrix RSG
FU ,

FSG = −RSG
FU · U , (2.6)

where the subgrid resistance matrix depends on the fluid viscosity, particle positions and
radii, and it is computed pairwise as the difference between the theoretical two-particle
resistance matrix and its counterpart as measured by the uncorrected FDM solver. Finally,
the total hydrodynamic force and torque read

F h
p = F FDM

p + F SG
p ,

T h
p = T FDM

p + T SG
p .

}
(2.7)

Equation (2.6) deserves several comments. First, unlike the standard subgrid corrections,
no mention of the ambient velocity field is made, meaning that only the particle velocities
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Particle migration in non-Brownian suspensions

are needed to compute the subgrid forces. Such an expression has been fully justified by
Orsi et al. (2023). It stems from the fact that only lubrication flows that involve relative
velocities of particle surfaces are missed by the fluid solver, and consequently have to be
considered for corrections. This formulation is especially well suited to the present flow,
where the velocity profile depends on the solid volume fraction profile, which evolves in
time and is not given in advance. It should also be noted that the same type of corrections
has to be applied for particles close to bounding walls when particle–wall interactions have
to be considered (Orsi et al. 2023).

Equations (2.1)–(2.6) must be solved at each time step. The unknown quantities are the
pressure and velocity fields, (P, u), the force density, ρλ, and the particle velocities, Up
and Ωp. The main issue lies in the determination of the force density that allows proper
accounting for the constraints imposed on the particles, namely particle rigidity – equation
(2.3) – and particle momentum balance – (2.4) together with (2.5)–(2.7). The numerical
method that is followed to solve this problem has been explained in detail by Orsi et al.
(2023). In particular, it has been implemented in the frame of the OpenFOAM toolbox,
which easily allows the solving of (2.1) and (2.2) using high-performance computing
facilities taking advantage of the parallelization.

2.1.1. Suspension rheology: dipole moment
To compute the effective stress in a suspension of solid particles, the first moment of the
hydrodynamic surface stress acting on each particle Dp (Batchelor 1970; Lhuillier 2009;
Nott et al. 2011) is needed,

DFDM
p =

∫
∂Dp

σ · n ⊗ (x − xp) dS

= −ρ

∫
Dp

λ⊗ (x − xp) dV −
(∫

Dp

P dV
)

δ. (2.8)

The second equality is obtained using (2.1) and (2.2) (Orsi et al. 2023).
The antisymmetric part of the force dipole DFDM

p is a tensor whose components are
the components of the hydrodynamic torque T FDM

p exerted on particle ( p), while the
symmetric part is usually called stresslet. The latter is split into the deviatoric stresslet
SFDM

p and the isotropic part sFDM
p /3 δ, where sFDM

p stands for the trace of the force dipole.
As a consequence, the FDM traceless stresslet, stresslet trace and force dipole write as

SFDM
p = −ρ

∫
Dp

{
1
2 [λ⊗ (x − xp) + (x − xp) ⊗ λ] − 1

3λ · (x − xp)δ
}

dV,

sFDM
p = −

∫
Dp

[ρλ · (x − xp) + 3P] dV,

DFDM
p = SFDM

p + sFDM
p

3
δ − 1

2
ε · T FDM

p .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

We note here that a reference has to be defined for the pressure. It has been chosen as the
mean pressure over the whole simulation volume, meaning that

∫
D P dV = 0 at each time

step.
As in the case of force and torque, a subgrid correction must be added to the FDM

stresslet on the particles, which is computed using specific resistance subgrid matrices
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(Orsi et al. 2023). The total hydrodynamic traceless stresslet, stresslet trace and force
dipole are then computed as

Sh
p = SFDM

p + SSG
p ,

sh
p = sFDM

p + sSG
p ,

Dh
p = DFDM

p + DSG
p .

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

2.2. Contact forces
In the present article, contact forces reflect both particle roughness and friction. They are
described in detail in Gallier et al. (2014b), Peters et al. (2016) and Orsi et al. (2023),
and we give here only a short account of them. Contact between particles ( p) and (q)

occurs as soon as the distance between their surfaces is smaller than the roughness height
hr, resulting in elastic forces exerted by particle (q) on particle ( p), both normal (F c,n

pq )

and tangential (F c,t
pq). Sliding is triggered as soon as the tangential force reaches the

value ‖F c,t
pq‖ = μs‖F c,n

pq ‖, where μs stands for the static friction coefficient. In the sliding
regime, the latter relation between normal and tangential forces holds, meaning that no
difference is made here between the static and dynamic friction coefficients. The contact
torques on particles ( p) and (q) read

T c
pq = ap

ap + aq
xpq × F c,t

pq = ap

aq
T c

qp, (2.11)

where ap and aq stand for the particle radii, and xpq = xq − xp is the distance between the
particle centres. Contact forces also induce an additional stresslet which is given for the
contacting particles ( p) and (q) by

Sc
pq = 1

2
ap

ap + aq
(F c

pq ⊗ xpq + xpq ⊗ F c
pq) = ap

aq
Sc

qp. (2.12)

The induced contact force dipole is written for particles ( p) and (q) as follows:

Dc
pq = Sc

pq − 1
2
ε · T c

pq = ap

aq
Dc

qp, (2.13)

where ε stands for the Levi-Civita symbol. The stresslet in (2.12) is not traceless, and its
trace determines the contribution of contact forces to particle pressure. Finally, it should
be noted that the same type of frictional contact force is exerted by the bounding walls on
contacting particles and contributes to the particle force dipole.

2.3. Numerical set-up
We investigate three values of the mean volume fraction φ̄ = [0.3, 0.4, 0.5]. The
suspensions are bidisperse (a2 = 1.4a1, φ1 = φ2 = φ̄/2) to avoid crystallization. Particles
and walls are frictional, with a friction coefficient μs = 0.5 and roughness height hr =
0.005a1. The latter is a value commonly found in experiments with model spherical
particles (Blanc et al. 2011; Tanner & Dai 2016). The particles are initially placed at
random positions in the simulation cell using the same procedure as in Howard et al.
(2023). The size of the simulation cell is (Lx, Ly, Lz) = (40a1, 40a1, 20a1) (figure 1).
The fluid equations are discretized on a fixed Cartesian grid with mesh size 0.2a1.
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Particle migration in non-Brownian suspensions

Ly = 40a1

∇P0

Lz = 20a1

Lx = 40a1

y

z
x

Figure 1. Simulation cell.

The trade-off between precision and computation speed has been discussed in Gallier et al.
(2014a). The flow is driven by a uniform pressure gradient in the negative x direction so
that (2.1) together with (2.2) reads

η�u − ∇p − dP0

dx
ex + ρλ = 0. (2.14)

The plane boundaries normal to the y direction are rigid walls at rest, while the other
boundaries are given periodic conditions, for both the pressure perturbation p and the
velocity u. The particle distribution is made periodic along the same directions. Length,
shear rate, time, velocity and stresses are made dimensionless as follows:

y∗ = y
Ly

, γ̇ ∗ = γ̇

γ̇ 0
, t∗ = γ̇ 0t, u∗ = u

γ̇ 0Ly
, Σ∗ = Σ

ηγ̇ 0
, (2.15a–e)

where ¯̇γ0 is the mean shear rate in a pressure-driven flow of pure liquid,

¯̇γ0 = Ly

4η

∣∣∣∣dP0

dx

∣∣∣∣ . (2.16)

In the following, the required equations are given in dimensional form, for the sake
of physical clarity. The dimensionless equations may be recovered from the dimensional
ones by letting η = 1, Ly = 1, ¯̇γ0 = 1, meaning for instance that dP0/dx = −4. However,
figures display dimensionless quantities, where the superscript (*) has been dropped,
though. All numerical values given in the text also correspond to dimensionless quantities.

As we will see, the actual shear rate in the channel is always lower than ¯̇γ0 due to the
enhanced viscosity induced by the particles. The time step �t – meaning ¯̇γ0�t – is chosen
as �t = 2 × 10−3 for all simulations. An estimation of the mean accumulated strain as felt
by the fluid is classically computed from the mean distance covered by the fluid (Lyon &
Leal 1998; Howard et al. 2022) as

γ̄ (t) = 2
Ly

∫ t

0

[
1
V

∫
D

ux dV
]

dt = 2Lt

Ly
. (2.17)

The simulation parameters are gathered in table 1.
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φ̄ NP γ̄total γ̄steady �γ̄steady �tsteady

0.3 1562 785 380 405 7500
0.4 2083 448 290 158 5000
0.5 2605 171 106 65 5000

Table 1. List of simulation parameters: φ̄, mean volume fraction; Np, number of particles; �t, time step;
γ̄total, total accumulated strain; γ̄steady, accumulated strain at steady flow start; �γ̄steady, accumulated strain
interval for steady averaging; �tsteady, time interval for steady state averaging.

3. The SBM

We consider the flow of suspensions made of rigid particles suspended in an
incompressible liquid. Both materials share the same density, so gravity does not play
any role. No other external force is considered either, and inertia is neglected. At particle
scale, besides hydrodynamic interactions, particles are supposed to interact only due to
contact forces.

The SBM is based on a two-phase flow modelling of the suspension. It is derived by
averaging the point balance equations valid in each material, solid and liquid, and the
resulting equations involve the locally averaged volume fraction, velocities, and stresses for
each phase. Various averaging methods have been proposed (Zhang & Prosperetti 1994;
Jackson 1997), which yield similar equations. In addition, the SBM has been recently
revisited in the case of non-inertial non-Brownian suspensions (Lhuillier 2009; Nott et al.
2011). Following Guazzelli & Pouliquen (2018), the main equations are briefly recalled
below. Regarding the accuracy of the equations for the ratio of the particle size to the bulk
flow length scale, we refer to the recent work by Ozenda (2019). A specific version of the
model developed for bidisperse suspensions has been recently proposed by Howard et al.
(2022). As discussed in the following sections, the radii of the particles in the present
study seem sufficiently close to each other for us to consider the suspension as being
monodisperse. As to the simulation data, a volume-averaging procedure is chosen, which
is detailed in § 4.

Each material, solid and liquid, is incompressible, but the corresponding phases are not,
due to the variation of the particle volume fraction φ. As a consequence of the constant
density of particles and liquid, the mass conservation equation of each material yields the
volume balance equation for each phase,

∂φ

∂t
+ ∇ · (φup) = 0, (3.1)

∂(1 − φ)

∂t
+ ∇ · ((1 − φ)uf ) = 0, (3.2)

where up and uf , respectively, stand for the velocity of the particle and fluid phase. The
suspension volume balance equation follows from (3.1) and (3.2), reflecting the overall
incompressibility of the suspension:

us = φup + (1 − φ)uf , (3.3)

∇ · us = 0. (3.4)

Averaging the point momentum balance equation over each phase, solid or liquid, yields
the corresponding phase momentum balance equation. In the solid phase, the following
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Particle migration in non-Brownian suspensions

equation is obtained:

∇ · Σc + n〈 f h〉p = 0, (3.5)

where n〈 f h〉p is the interphase hydrodynamic force, i.e. the density of hydrodynamic force
exerted on the particles, and Σc is the particle phase stress, which is induced by contact
forces between particles. It is computed as a density of force dipole moment,

Σc = n〈Dc〉p. (3.6)

It is worth noting that the contact stress is related to the contact force density exerted on
the particles according to (3.7). The reader is referred to Irving & Kirkwood (1950) or
more recently to Nott et al. (2011) for a derivation,

∇ · Σc = n〈 f c〉p, (3.7)

which, together with (3.5), yields another form of the particle phase momentum equation,

n〈 f c〉p + n〈 f h〉p = 0. (3.8)

From the last equation, it is thus clear that, as highlighted by Lhuillier (2009) and Nott
et al. (2011), the particle phase momentum equation, (3.5), reflects nothing but the balance
of the forces exerted on each particle, in agreement with (2.4). Averaging the momentum
balance equation over the liquid phase yields the following equation:

∇ · Σ f − n〈 f h〉p = 0, (3.9)

where the fluid phase stress tensor is computed as

Σ f = −(1 − φ)〈P〉 f δ + η(∇us + ∇uᵀ
s ) + n〈Dh〉p, (3.10)

with 〈P〉 f the mean pressure in the liquid. Equations (3.5) and (3.9) yield the averaged
momentum equation for the suspension,

Σ = Σ f + Σc, (3.11)

∇ · Σ = 0. (3.12)

It is common in suspension rheology to consider as independent equations (3.1), (3.4),
(3.5) and (3.12), i.e. to focus on the suspension flow as a continuous media and on the
evolution of the particle phase concentration. In addition, to solve the mentioned equations,
constitutive laws must be assumed that allow connecting the various stresses and force
densities to the unknown fields, i.e. the volume fraction, φ, the velocity of the suspension
phase, us, and the velocity of the particle phase, up.

Regarding the stress tensors, Σ and Σc, they are usually written as functions of the local
suspension velocity gradient tensor, ∇us, and of the local volume fraction φ. In the case
of general velocity gradient tensor and/or time-dependent flow, the expression of the stress
tensor is quite involved, and is still partly an open question (Miller, Singh & Morris 2009;
Gillissen et al. 2019; Badia et al. 2022). In the present paper, we focus on the case of a
nearly steady shear flow. In such a flow, the expression of the stress tensors as a function
of the local strain rate tensor E = (∇us + ∇uᵀ

s )/2 and volume fraction is quite standard
(Guazzelli & Pouliquen 2018; Badia et al. 2022), even though the local nature of the
relationship may be questioned (Miller & Morris 2006). The standard material functions
are recalled in § 4.2 and possible non-local effects are discussed in § 6.2.
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Finally, the interphase hydrodynamic force n〈 f h〉p must be given a constitutive
expression. In the present paper, the suspension is neutrally buoyant, so gravity forces are
not accounted for, and no buoyancy force is contained in n〈 f h〉p. Lhuillier (2009) and Nott
et al. (2011) proposed that the interphase force may be split into the interphase drag and a
non-drag part. The former is proportional to the drag velocity, and is given for particles of
radius a,

n〈 f h〉drag
p = − 9η

2a2
φ

f (φ)
(up − us), (3.13)

where the hindered settling function is often written after Richardson & Zaki (1954) as

f (φ) = (1 − φ)n, (3.14)

with n ≈ 5. Regarding the non-drag part, some constitutive relations have been proposed
(Lhuillier 2009), but none have been demonstrated, either in experiments or in simulations.
Anyway, (3.13), together with (3.8), yields an expression for the slip velocity up − us,

up − us = 2a2

9η

f (φ)

φ
(∇ · Σc + n〈 f h〉non-drag

p ). (3.15)

Equation (3.15) together with (3.1) accounts for particle migration. Finally, the equations
for the unknown fields, us and φ, are gathered for the sake of clarity,

∇ · Σ = 0, (3.16)

∇ · us = 0, (3.17)

∂φ

∂t
+ ∇ · (φus) + ∇ ·

[
2a2

9η
f (φ)(∇ · Σc + n〈 f h〉non-drag

p )

]
= 0. (3.18)

From the previous equations, and leaving aside the non-drag hydrodynamic force, the
transverse particle flux is driven by the contact force density ∇ · Σc, whose transverse
component should vanish in steady flow when migration is complete.

The SBM is thus based on several equations that connect various local quantities. Most
of them are derived using theoretical averaging from general conservation laws. Among
them, some may seem quite obvious, e.g. (3.1) and (3.2), while some result from a Taylor
expansion, with the ratio a1/Ly as a small parameter, e.g. (3.7). The latter nevertheless
needs checking, and not only to get rid of implementation errors. Besides the validity
of the mentioned expansion, which is connected to the small value of a1/Ly, it should
be stressed that the FDM solver does not tackle fluid flow past real rigid particles, but
only fluid with additional force density, which especially accounts for interaction forces,
some of them supplement the flow solver to take into account small scale flow between
particles. It is possible to build a specific SBM from these first-principle equations
((2.1)–(2.13)) using the same averaging procedure. However, we follow in the present
article a simpler approach, which consists of checking that the general SBM conveniently
applies, to validate both a sufficient scale separation, i.e. the condition a1/Ly � 1, and the
numerical model provided by the FDM. This will be achieved for instance in § 6.1 for the
local momentum balance and in § 7.2 for the relation between force densities and stress
gradients.

Other relations, namely the constitutive laws mentioned above, are of primary interest,
starting from the standard material functions that connect stresses to velocity gradient and
particle volume fraction, e.g. the relative shear viscosity function. Such material functions
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Particle migration in non-Brownian suspensions

y = Ly/2

y = 0

y = –Ly/2

yn
�y = a1

Figure 2. The various quantities are averaged over each position bin, either over the whole slice volume, only
over the particle volume or over the liquid volume.

are well known for a simple shear flow, and will be recalled in § 4.2. Whether they are
still applied in a pressure-driven flow, i.e. with non-uniform velocity gradient and volume
fraction, will be examined too, partly as a validation of the numerical model, in § 6.2.
Finally, and most importantly, the relation that connects the solid phase flux to the contact
stress divergence (or equivalently the contact force density), deserves to be examined at
the local scale. This is the purpose of § 7.3.

4. Local rheological quantities

4.1. Local averaging
The procedure yielding the various locally averaged quantities is explained here. To this
purpose, we follow the general method proposed by Yeo & Maxey (2011). It is formally
different from the method developed by Jackson (1997), which is based on the convolution
of the point quantities with some weighting function. However, we checked that both
methods yield very similar quantities, provided that the width of the weighting function is
conveniently chosen.

Due to the periodicity of the system in the x and z directions, the only relevant coordinate
for the averaged quantities is y, and the variation with the former coordinates is averaged
out. In addition, we are not interested in variation with y at a scale significantly smaller
than the radius a1. As a consequence, the simulation volume is split into slices, �y = a1 in
width, and the various quantities are averaged over each slice, which results in a sampled
version of their averaged counterpart (figure 2).

The various quantities may be grouped into different classes according to the way they
are computed. First, the suspension velocity is computed as

us( yn) = 1
LxLz�y

∫ yn+�y/2

yn−�y/2

∫∫
u(x) dx dz dy, (4.1)

where u(x) is the velocity field from the solver and the surface integral is computed over a
plane at constant y. Then, some solid phase quantities result from averaging only over the
particle volume. This is the case of the averaged solid volume fraction, which is computed
from the particle positions and radii according to

φ( yn) = 1
LxLz�y

∫ yn+�y/2

yn−�y/2

∫∫ ∑
p

χp(x) dx dz dy, (4.2)
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where χp(x) is the indicator function of particle p, equal to 1 inside the particle and 0
outside. Similarly, the particle phase velocity is computed as

φ( yn)up( yn) = 1
LxLz�y

∫ yn+�y/2

yn−�y/2

∫∫ ∑
p

Upχp(x) dx dz dy. (4.3)

We note here that each point inside a particle is assumed to move at the particle centre
velocity Up, meaning that the particle angular velocity is not accounted for in the definition
of up. We also considered another definition for the particle velocity field, where Up
is replaced by the true velocity Up + Ωp × (x − xp). It turned out that the computed
quantities were nearly identical, except for a small discrepancy in the vicinity of the
bounding walls, where particle layering occurs (Orsi et al. 2023). Eventually, we kept the
expression in (4.3) since its implementation is easier and its computation faster. It should
be finally noted from the latter equation that φ( yn)up( yn) is the solid volume flux density,
averaged over a slice, consistent with the solid volume balance equation (3.1).

The fluid phase pressure is computed similarly, except that the volume integration is
performed over the volume outside the particles,

[1 − φ( yn)]〈P〉 f ( yn) = 1
LxLz�y

∫ yn+�y/2

yn−�y/2

∫∫
P(x)[1 − χp(x)] dx dz dy. (4.4)

The general particle phase averaged quantity, n〈Y〉p, has the meaning of the volume
density of a quantity Yp defined for each particle ( p), and n is the number density of
particles. For instance, n〈 f h〉p is the hydrodynamic force density exerted on the particles
and is computed from the hydrodynamic force on each particle F h

p. In principle, such a
quantity should be computed as the volume average of superimposed Dirac-type functions∑

p Ypδ(x − xp). To get a smoother averaged quantity, and since we are not interested
in variations at a very small scale, the density Ypδ(x − xp) is smeared over the particle
volume, so that

n〈Y〉p( yn) = 1
LxLz�y

∫ yn+�y/2

yn−�y/2

∫∫ ∑
p

Yp
4
3πa3

p
χp(x) dy dx dz. (4.5)

Equation (4.5) holds for the hydrodynamic and contact forces, and force dipole densities,
n〈 f i〉p and n〈Di〉p of interest in (3.5)–(3.10).

Finally, the contribution of the external pressure P0 = (dP0/dx)x to the stress needs to
be tackled separately, since it does not depend on the y coordinate, but instead, its gradient
is directed along the x direction. The contribution of P0 cannot be directly computed
using the integrals above, since its gradient would be averaged out in the process – see
for instance (4.4). However, it cannot be overlooked, since it drives the flow, and has to
be accounted for in the stress balance. In more detail, the pressure is only involved in
two terms in the expression of the fluid stress tensor, (3.10), namely the fluid pressure
(1 − φ)〈P〉 f δ and the hydrodynamic force dipole trace n〈sFDM〉p/3δ (2.9). Inspection
of (2.9), (4.4) and (4.5) shows that the sum of the two contributions involves the local
average of P0 over the suspension and therefore yields approximately −P0δ, which is
quite intuitive. The latter term is thus simply added to the fluid phase stress, while the
fluid pressure and the hydrodynamic force dipole are computed from the perturbation
pressure p only. It should also be noted that the hydrodynamic force exerted on the particles
originating in the applied pressure P0 is inherently accounted for in (2.5).
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4.2. Material functions
The standard material functions in shear flow are locally measured at each position in the
channel. First, the suspension stress is computed from (3.6), (3.10) and (3.11):

Σ = Σ f + Σc = −dP0

dx
xδ − (1 − φ)〈p〉 f δ

+ η∂yus
x(ex ⊗ ey + ey ⊗ ex) + n〈Dh〉p + n〈Dc〉p, (4.6)

where the last term is the contact contribution to the stress Σc, while the remaining
terms compose the fluid (or hydrodynamic) stress. We note here that, when considering
the tangential (xy) component of the total stress, it is only needed to take into account
the symmetric part of the force dipole densities since the antisymmetric part of the
hydrodynamic and contact dipoles cancel each other out exactly due to the lack of angular
inertia, which is written in (2.4). In addition, we checked that the antisymmetric part
of each locally averaged dipole density, either fluid or contact in nature, is very small
compared with the corresponding symmetric part.

As shown in § 5.2, the shear rate may be computed indifferently from the particle or
suspension velocity profiles,

γ̇ = |∂yus
x| ≈ |∂yup

x |. (4.7)

In rate-independent suspensions in HSF, all stresses are proportional to each other and
the shear rate γ̇ , so that the material functions are defined as the ratio of the relevant
stresses, and only depend on the volume fraction. The reduced suspension viscosity and
normal stress differences are defined as usual,

ηS = Σxy

η∂yus
x

= 1 + n〈Sh
xy〉p + n〈Sc

xy〉p

η∂yus
x

, (4.8)

N̂1 = Σxx − Σyy

|Σxy| , N̂2 = Σyy − Σzz

|Σxy| , (4.9a,b)

and the reduced contact tangential and normal stresses write as

Σ̂c
12 = Σc

xy

|Σxy| , Σ̂c
11 = Σc

xx

|Σxy| , Σ̂c
22 = Σc

yy

|Σxy| , Σ̂c
33 = Σc

zz

|Σxy| , (4.10a–d)

where Σc
ij = n〈Sc

ij〉p.
An alternative description, namely the μ(J) rheology, is now standard (Boyer et al.

2011; Guazzelli & Pouliquen 2018), where the material functions depend on the viscous
number J:

J = ηγ̇

Σc
yy

, φ = φ(J), μ = Σxy

Σc
yy

= 1

Σ̂c
22

= μ(J). (4.11a,b)

5. Volume fraction and velocity profiles

5.1. Transient particle migration
We focus first on the transient flow during which the volume fraction and velocity profiles
develop. Figure 3 displays the time evolution of the volume fraction at various positions
in the channel for the mean volume fraction φ̄ = 0.4. The particle migration towards
the channel centre is evidenced. Steady-state is reached approximately at time t ≈ 1000,
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Figure 3. Time evolution of the volume fraction at different y-positions in the channel for φ̄ = 0.4. Averaging
for steady flow starts from the vertical red line.

corresponding to the mean accumulated strain γ̄ ≈ 134, except at the centre of the channel,
where long-time migration is slower and a steady state seems to be reached at t ≈ 2000
(γ̄ ≈ 291). The same data are used to plot the evolution of the volume fraction profile
over time in figure 4(a). Each profile results from an averaging over the time interval
�t = 100, which is enough to get rid of part of the statistical fluctuations. This interval is
extended up to �t = 1000 for the steady state profile. The resulting profiles are reasonably
smooth, except in the vicinity of the bounding walls, where layering occurs as expected,
even though the suspension is bidisperse (Howard et al. 2022, 2023). We note that layering
is not completely apparent due to our loose sampling. However, we clearly evidenced it
in a previous article (Orsi et al. 2023), where it was shown to extend over around 3a1
at φ̄ = 0.45. The corresponding particle velocity profiles are displayed in figure 4(b). A
parabolic profile typical of a uniform viscosity field classically turns into a more blunted
profile due to the viscosity variations that reflect the enhanced volume fraction at the
channel centre. A significant wall slip is also evidenced, which originates in the mentioned
layering. Such a wall slip has often been observed in experiments (Jana, Kapoor & Acrivos
1995; Sarabian et al. 2019) or in simulations of monodisperse (Yeo & Maxey 2011; Gallier
et al. 2014b, 2016) and bidisperse (Howard et al. 2022; Orsi et al. 2023; Peerbooms et al.
2024) suspensions. We checked that the particle and suspension instantaneous velocity
profiles are very close to each other, with a somewhat larger discrepancy in the layering
area, as also shown at steady flow in § 5.2.

In addition to the variation of the overall particle volume fraction, the spatial distribution
of the small and large particles is computed. Figure 5 displays the time evolution of the
volume fraction of small and large particles. A running average has been performed with
a kernel of width �T = 20 to decrease the amplitude of the fast fluctuations. The small
particle volume fraction approximately follows the evolution of the mean volume fraction,
although at a slower rate. The variation of the large particle volume fraction is somewhat
more complicated, with a faster variation at a small time, and long-time reorganization.
On the whole, it seems that the latter is not complete at the end of the simulation.
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Figure 4. Volume fraction and velocity profiles during particle migration for φ̄ = 0.4. The vertical dashed
lines indicate the volume boundaries.
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Figure 5. Small (φ1) and large (φ2) particles volume fraction as a function of time. Same simulation and
legend as in figure 3. Upper scale is typical accumulated strain (2.17). High-frequency fluctuations have been
averaged out using a simple running average (�T = 20) to enhance readability. Same positions in the channel
as in figure 3.

To get a clearer understanding of the evolution of both populations, the transient volume
fraction profiles of the small and large particles are displayed in figure 6, both at the
beginning (figure 6a,b) and at the end (figure 6c,d) of the simulation. At the beginning,
a faster migration of the large particles takes place towards the channel centre, compared
with the small particles, resulting in a peak of the large particle volume fraction at the
centre, together with dips at the base of the peak. At larger time, reorganization of the
particles occurs, with a deepening of the dips in the large particle volume fractions,
together with the building of secondary peaks at the same position in the small particle
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Figure 6. Evolution with time of the small (a,c) and large (b,d) particle volume fraction profiles at the
beginning (a,b) and at the end (c,d) of the simulations. φ̄ = 0.4. Vertical dashed lines are boundary positions.

volume fraction. It should be noted that during the time interval [900, 3000], the overall
volume fraction profile only weakly evolves, mostly at the centre of the channel (figure 4).

This is in qualitative agreement with the simulations of bidisperse suspensions, 0.3 in
volume fraction, by Chun et al. (2019) who showed that particle segregation is much slower
than the overall particle migration, except for a peak of the large particle volume fraction
at the channel centre. We stress again that long-time particle reorganization seems to affect
only weakly the total solid volume fraction and flow velocity profiles (figure 4). The time
and accumulated strain for steady averaging are given in table 1 for each simulation.

5.2. Steady profiles
In the present section, we focus on the steady volume fraction and velocity profiles.
Figure 7 displays the steady volume fraction profiles for all three values of the mean
volume fraction φ̄, together with the specific volume fraction profile for the large and
small particles. The jamming volume fraction φJ = 0.592 deduced from simulations of
homogeneous bidisperse suspensions in simple shear flow (§ 4) is also displayed. In the
less concentrated case φ̄ = 0.3, the volume fraction at the channel centre does not reach
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Figure 7. (a–c) Total volume fraction (φ), large (φ2) and small (φ1) particles volume fraction profiles at a
steady flow. (d–f ) Ratio of the large particles to overall solid volume fraction. Here (a,d) φ̄ = 0.3; (b,e) φ̄ = 0.4;
(c, f ) φ̄ = 0.5.

φJ , in agreement with several experimental (Lyon & Leal 1998; Rashedi et al. 2020)
and numerical (Yeo & Maxey 2011; Chun et al. 2019; Howard et al. 2022) studies. This
is, however, in contrast to SBM predictions, according to which the volume fraction φJ

is reached at the channel centre whatever the mean volume fraction φ̄. Turning to the
distribution of the large and small particles (φ2 and φ1, respectively), both migrate towards
the centre, with approximately uniform composition φ2/φ ≈ 0.5 except at the bounding
walls where only small particles are found. An explanation for the latter behaviour has
been proposed by Howard et al. (2022) based on interactions between large and small
particles close to a wall.

The simulations at larger mean volume fraction φ̄ are somewhat different from the
previous case. The overall volume fraction exceeds φJ at the channel centre (the ‘plug’),
over a width significantly larger than the particle size: at φ̄ = 0.5, the volume fraction
reaches 0.65 and exceeds φJ = 0.592 over 10a1. Such a feature has been evidenced
by Oh et al. (2015) in their experiments on migration in non-Brownian suspensions of
monodisperse particles in a pipe flow. They show that, for a large enough mean volume
fraction, the volume fraction at the centreline of the tube levels off to a value close to the
random close packing fraction φrcp ≈ 0.64. We note here that this value of the volume
fraction is also known from simulation (Gallier et al. 2014b; Mari et al. 2014; Singh
et al. 2018; Chèvremont et al. 2019) to be approximately the suspension jamming volume
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Figure 8. Nearly steady total volume fraction profile (φ), large (φ2) and small (φ1) particles volume fraction
profiles. Frictionless particles μs = 0. Symbols are short time average from FDM simulations. Lines are FCM
simulations by Howard (2018). Vertical dashed lines are boundary positions.

fraction when frictionless particles are considered. Regarding the local composition of the
suspension, the large particle volume fraction presents a peak at the channel centre, as
expected, but also two dips at a distance from the centre around 5a1. The small particles
migrate towards the centre too, although with a peak at the positions of the previously
mentioned dips. Leaving aside the layering area at the bounding wall, we note that the
proportion of large particles φ2/φ varies over a quite wide range [0.35, 0.74]. Despite
these variations, the overall volume fraction smoothly varies over the channel width.

The relative volume fraction profile at φ̄ = 0.4 is in qualitative agreement with the data
computed by Howard et al. (2022) for frictionless particles using the FCM, with slightly
different ratio a2/a1 though, which parameter they show to have a clear influence on
segregation. We note that the dips in the large particle volume fraction profile are less
pronounced in their data. To check the influence of friction, we also performed a single
simulation for frictionless particles, and we compare in figure 8 the volume fraction profile
with data by Howard (2018), for the same ratio a2/a1 = 1.4 and mean volume fraction
φ̄ = 0.4

We checked that the total volume fraction has approximately reached steady state at
the observed total strain γ̄ = 325, while the small and large particle concentration is still
somewhat evolving. The agreement is very good. In particular, the marked dips in the
large volume fraction profile observed close to the centre plane for frictional particles
are significantly weaker for frictionless particles. Slight discrepancies may be observed,
though, mainly in the total volume fraction profile. This may be explained by the larger
system size that Howard (2018) and Howard et al. (2022) consider, namely Ly = 56a1. We
note that in both simulations, the volume fraction remains lower than the jamming volume
fraction for frictionless particles, i.e. φ

μs=0
J ≈ 0.64–0.65 (Mari et al. 2014; Gallier, Peters

& Lobry 2018), even at the channel centre. This latter feature highlights the influence
of friction, which increases the contact contribution to the stress (Gallier et al. 2014b;
Peerbooms et al. 2024), thereby enhancing particle migration, as implied by (3.15).
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Figure 9. (a–c) Particle (up
x) and suspension (us

x) velocity profiles at a steady flow. (d–f ) Profile of the relative
difference between suspension and particle velocity. Same φ̄ as in figure 7.

Back to frictional particles, figure 9 displays the particle and suspension axial velocity
profiles, together with their relative difference. As already mentioned, the velocity profiles
are blunted compared with the parabolic profile observed in a homogeneous Newtonian
liquid. This is all the more the case as a larger value of φ̄ is considered. It is also clear that
the suspension and particle velocities are very close to each other, except in the layering
area at the boundaries, where the difference grows while oscillating as the boundary is
approached (the corresponding points are out of the scale in figure 9d–f ).

In particular, there is no significant difference between the shear rate as computed either
from one or the other velocity profiles, except in the layering area. This is clearly illustrated
in figure 10, where the shear rate profiles from the time-averaged velocity gradients over
the steady flow duration, are displayed. The shear rate varies over two or three orders of
magnitude, quite smoothly over the whole channel, except in the vicinity of the bounding
walls, due to particle layering, and also at the channel centre, the latter only in the case of
the largest mean volume fraction φ̄ = 0.5. It should be stressed that the reliability of the
shear-rate measurement is of importance since it is involved in the local determination of
the constitutive laws. In particular, the time-averaged velocity gradient is expected to be
exactly zero at the very centre of the channel and to be very small in the vicinity of the
centreline. The relevance of such a small shear rate will now be addressed.

To gain some qualitative insight into this matter, the standard deviation of the velocity
gradient is computed and compared with the average velocity gradient. In more detail, the
velocity gradient profile is computed at each time step during the steady flow according
to (4.1), yielding the time-averaged velocity gradient ∂yus

x and the standard deviation
σ(∂yus

x) profiles. The ratio of the latter to the former is displayed in figure 11 for all
three values of the mean volume fraction φ̄. In the region of the flow where this ratio
is larger than typically unity, the fluctuations of the shear rate profile are sufficiently
intense for the instantaneous shear rate to change sign frequently. In this case, the flow

998 A16-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.609


M. Orsi, L. Lobry, E. Lemaire and F. Peters

–20 –10 0 10 20
y/a1

–0.50 –0.25 0 0.25 0.50
y

10–5

10–4

10–3

10–2

γ
.

10–1

100

10–5

10–4

10–3

10–2

10–1

100

10–5

10–4

10–3

10–2

10–1

100

∂yup
x

∂yus
x

–20 –10 0 10 20
y/a1

–0.50 –0.25 0 0.25 0.50
y

–20 –10 0 10 20
y/a1

–0.50 –0.25 0 0.25 0.50
y

(b)(a) (c)

Figure 10. Shear rate profiles from the particle and suspension velocity profiles. Same values of φ̄ as in
figure 7.
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Figure 11. Relative standard deviation of the suspension velocity gradient: (a) φ̄ = 0.3; (b) φ̄ = 0.4;
(c) φ̄ = 0.5.

behaviour may differ significantly from a steady simple shear flow, yielding quite a
different microstructure. While such large fluctuations are limited to a narrow region close
to the centreline, typically 3 − 4a1 in width, at φ̄ = 0.4, they occur over a 10a1-wide
region at φ̄ = 0.5. In both cases, the high fluctuations area also corresponds to the plug
region where the volume fraction exceeds the jamming volume fraction as computed
in a HSF, suggesting that the suspension is jammed. In the same line, the computed
accumulated strain during steady state in that region is smaller than unity. At φ̄ = 0.3, the
relative standard deviation is always lower than unity, consistent with the largest observed
volume fraction (≈0.5) lower than φJ .

It is worth noting that the velocity gradient fluctuations computed from the particle
velocity field (not displayed) do not differ from the suspension velocity gradient
fluctuations.

6. Local stress constitutive laws

6.1. Momentum balance in steady flow
Before the local constitutive laws are addressed, the mechanical consistency of the
numerical model will be checked. In the following section, the momentum balance for the
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Figure 12. (a) Steady tangential stress profile, together with contributions detailed in (6.1).
(b) Corresponding force densities. φ̄ = 0.4.

suspension, i.e. (3.12) together with (4.6), is examined, in both the velocity and velocity
gradient directions.

6.1.1. Tangential stress Σxy
The x-component of (3.12) is written as

−dP0

dx
+ ∂y(η∂yus

x + n〈Sh
xy〉p + n〈Sc

xy〉p) = 0. (6.1)

The first term is the imposed pressure gradient. The second and third terms constitute,
respectively, the hydrodynamic contribution of the pure fluid and of the particles to the
stress, while the last term is the contact force contribution. Equation (3.12) classically
reflects that the tangential stress is driven by the pressure gradient. Its validity will be
checked at steady flow in the following.

The total steady dimensionless shear stress profile is displayed in figure 12(a), together
with the contact and hydrodynamic contributions, for the mean volume fraction φ̄ = 0.4.
The theoretical shear stress (dP0/dx)y (i.e. 4y in dimensionless form) computed from
the imposed pressure gradient using (6.1) is also displayed. Except in the layering area,
a very good agreement is found between the total shear stress profile and its theoretical
expression, including symmetry and cancelling at the channel centre, reflecting the
symmetry of the averaged stress boundary conditions. The momentum balance equation
may also be examined in its direct, (6.1), and not integrated form in figure 12(b),
where the force densities (i.e. the stress gradients) have been computed using numerical
differentiation. The uniform tangential stress gradient again reflects the good local
behaviour of the FDM numerical model.

The quantitative relation between material functions and volume fraction will be
addressed in detail in § 6.2. However, figure 12 allows qualitative inspection of the
relative importance of the different contributions. The ratio of the contact contribution
to the total shear stress increases with the volume fraction, and the contact contribution
exceeds the hydrodynamic contribution when the volume fraction exceeds approximately
0.42, as expected from the usual constitutive laws in HSF (§ 6.2). We also note that the
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Figure 13. Total stress profile (a) together with fluid (b) and contact (c) contributions, at the beginning of the
simulation and during steady flow: φ̄ = 0.4.

force density from the hydrodynamic shear stress exceeds the contact force density for
|y∗| ≥ 0.11, i.e. for φ ≤ 0.5.

Finally, the same curves as in figure 12 may be drawn for the other values of φ̄. They are
displayed in Appendix A (figures 28 and 29), with the same features as described above. It
should be noted that the same general behaviour is observed during the transient migration,
whether instantaneous quantities are considered, or short-time averaging is performed,
with more intense fluctuations, though.

6.1.2. Normal stress Σyy
The y-component of (3.12) is written as

∂yΣyy = ∂yΣ
f

yy + ∂yΣ
c
yy = 0. (6.2)

The total yy component of the total stress is expected to be uniform, meaning that
the variation of the fluid stress should compensate for the variation of the contact
contribution. This behaviour is observed in figure 13(a), except in the layering area
close to the walls, both at the beginning of the simulation and during steady flow, when
migration is complete. Uniformity of the total stress is especially striking when the solid
volume fraction is homogeneous as the simulation starts, since both the fluid and solid
contributions are strongly non-uniform, in agreement with the SBM according to which
the particles are pushed towards the channel centre due to the divergence of the contact
stress, (3.15).

When particle migration is complete, both the fluid and contact contributions are
uniform, in agreement with the SBM, except at the channel centre, where a weak stress
gradient persists. The latter is not predicted by the SBM. However, the fluid and contact
contributions still counterbalance each other.

Again, the corresponding curves for φ̄ = 0.3 and 0.5 are displayed in Appendix A.2
(figures 30 and 31). The total stress is uniform as well for both volume fraction values.
However, in the case of the lower mean volume fraction, φ̄ = 0.3, the contact and fluid
stresses are slightly non-uniform after the migration is finished. This will be discussed in
§ 7.
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6.2. Local constitutive laws
The goal of the present section is to determine to what extent the main constitutive laws
evidenced in HSF simulations still locally hold in the pressure-driven flow. To keep the
noise level low, all needed quantities are averaged over the steady flow duration. The main
results displayed here will be discussed in § 6.3. Also displayed are the correlation laws
for the normal stress differences and for the reduced contact stresses by Badia et al. (2022)
which were fitted onto particle resolved simulations of bidisperse suspensions for the same
friction coefficient μs = 0.5. We note that such correlation laws, with slightly different
numerical coefficients, were recently found to satisfactorily describe simulated quantities
for various values of the friction coefficients (Peerbooms et al. 2024). Before turning to
the material functions, the measurement resolution is briefly discussed.

6.2.1. Spatial sampling and resolution
At this point, the choice of the spatial sampling period together with the measurement
resolution deserve a few words. From a purely numerical point of view, the smallest length
scale that we can probe is the solver mesh size, which is 0.2a1. However, as explained
in § 4.1, the averaging process for the quantities that are computed from particle-related
quantities, e.g. the contact force density from the contact forces exerted on each particle,
involve two different steps. Each particle quantity, denoted by Yp in (4.5), is computed
as a volume integral over the particle volume, and then evenly spread over the particle
volume before the local averaging is performed, (4.5). As a consequence, the averaging
procedure itself introduces a correlation length equal to the particle radius, and it seems
not relevant to probe the quantities at a shorter length scale. There are some exceptions to
this general rule, since some quantities do not suffer from this limitation. For instance, if
the particle layering near the wall is to be studied, the volume fraction profile at smaller
scale is indeed relevant (Yeo & Maxey 2010; Gallier et al. 2016; Howard et al. 2022).
However, such a study is not the primary goal of the present paper, and hence we chose a1
as the smallest relevant spatial sampling period �y.

The resolution of the measurement is then a matter of statistical fluctuations, whose
intensity are expected to decrease with the spatial averaging size (i.e. Lx × Lz) and the
time averaging duration. The precise determination of the statistical error in transient flow
did not seem feasible to us, at least at a reasonable computation cost, since it would imply
repeating each run (several weeks using 128 cores) approximately 10 times. However, in
steady flow, standard techniques are available that allow us to determine quite precisely
the standard error (Allen & Tildesley 2017). For the sake of figure clarity, the error bars
are not included in the main text figures, but are displayed in the corresponding figures in
Appendix B. Finally, we checked that choosing �y = 2a1 would not significantly change
the measured material functions.

6.2.2. Shear viscosity
The steady relative viscosity is computed from the time-averaged shear stress and the
time-averaged suspension velocity gradient ηS = Σxy/(η∂yus

x) at each position in the
channel. It is displayed as a function of the solid volume fraction φ for φ̄ = 0.4 in
figure 14(a), together with the corresponding data from HSF simulations (Orsi et al.
2023). The agreement is very good in an intermediate region, not too close to the wall
or the centreline. Discrepancies are evidenced in the vicinity of the bounding walls (low
volume fraction), where layering occurs, and in a central area (high volume fraction),
approximately 9a1 in width. The data for which reasonable agreement is empirically found

998 A16-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.609


M. Orsi, L. Lobry, E. Lemaire and F. Peters

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
φ

101

102

101

102

ηS

Whole channel
4.5 ≤ | y/a1 | ≤ 13.5
Homog. shear flow

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
φ

φ̄ = 0.3, 3.5 ≤ | y/a1 | ≤ 13.5
φ̄ = 0.4, 4.5 ≤ | y/a1 | ≤ 13.5
φ̄ = 0.5, 7.5 ≤ | y/a1 | ≤ 13.5

(b)(a)

Figure 14. Viscosity as a function of local volume fraction. Here (a) φ̄ = 0.4. (b) All simulations. Here
(•, blue) φ̄ = 0.3, (�, orange) φ̄ = 0.4, (�, green) φ̄ = 0.5. Black symbols are HSF simulations; plain line
is (6.3) with φJ = 0.592 and α = 0.8.

are highlighted in figure 14(a). The corresponding region is denoted by ‘the intermediate
area’ in the following. The same procedure is repeated for the other simulations. The local
viscosity data over the whole channel are displayed for all values of φ̄ in Appendix B.1
(figure 32), and the data from the intermediate region are gathered in figure 14(b), showing
again very good agreement over a wide volume fraction range 0.27 ≤ φ ≤ 0.55. Also
displayed is the Maron–Pierce correlation law, which has been fitted onto the data from
HSF simulations,

ηS = α

(1 − φ/φJ)2 , (6.3)

yielding the jamming volume fraction φJ = 0.592.
We note (Appendix B.1, figure 32) that in the central region, for all simulations, the

computed reduced viscosity is below its counterpart in HSF. In addition, no divergence
is observed at the channel centre, which is allowed by the simultaneous vanishing of the
shear stress and the shear rate. Finally, ηS seems to be defined in the ‘jammed’ phase where
φ > φJ . However, as mentioned previously, the computed shear rate suffers from very high
fluctuations in that region, making the reliability of its averaged value questionable.

For the sake of completeness, the various relative contributions to the viscosity, or
equivalently the relative contributions to the shear stress, are displayed in figure 15 for the
intermediate region. The relative hydrodynamic contribution to the viscosity is split into
the pure fluid contribution equal to unity, the particle solver and subgrid contributions,
denoted, respectively, by ηFDM and ηSG:

ηS = 1 + n〈SFDM
xy 〉p + n〈SSG

xy 〉p + n〈Sc
xy〉p

η 〈∂yus
x〉

= 1 + ηFDM + ηSG + ηc. (6.4)

The data are in excellent agreement with those from HSF simulations. The relative
contribution of the contact forces to the viscosity, i.e. Σ̂c

12 (4.10), is displayed for the three
values of φ̄ in figure 35 (Appendix B.3). It turns out that in the central area, where the usual
expression for the viscosity does not hold, the relative contact contribution is smaller than
expected. This feature, together with the low value of the computed relative viscosity in
the same region, suggests that the force microstructure is significantly different compared
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Figure 15. Relative contributions to the shear viscosity in the intermediate region: (a) contact and
hydrodynamic contributions; (b) FDM contribution; (c) subgrid contribution; (d) pure fluid contribution. Same
colour code as in figure 14(b).

with what prevails in HSF. It should be noted that this behaviour is not limited to the region
where φ > φJ .

6.2.3. Normal stress differences
The reduced first (N̂1) and second (N̂2) normal stress differences in the intermediate
region are displayed in figure 16. The data from the pressure-driven flow simulations
are in reasonable agreement with the HSF data, although over a narrower position range
compared with the shear viscosity. We note that, for φ̄ = 0.3 and 0.4 the discrepancy
starts at the same position as the volume fraction gradient significantly increases, which
corresponds, for φ̄ = 0.4, to the position where the small particle volume fraction exceeds
its counterpart for the large particles. However, a significant discrepancy is observed over
the whole channel at φ = 0.5 for the first normal stress difference. Regarding the central
region (Appendix B.2, figure 33), we also note that the values of the first normal stress
difference largely differ from the HSF correlation, including its sign, which again suggests
a different microstructure in this area.

998 A16-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.609


M. Orsi, L. Lobry, E. Lemaire and F. Peters

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

N̂1 N̂2

0.2 0.3 0.4 0.5 0.6

φ

0.2 0.3 0.4 0.5 0.6

φ

(b)(a)

Figure 16. Reduced normal stress differences in the intermediate region. Same colour code as in figure 14(b).
Plain line is correlation law by Badia et al. (2022).
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Figure 17. Reduced contact normal stresses in the intermediate region. Same colour code as in figure 14(b).
Plain line is correlation law by Badia et al. (2022).

6.2.4. Contact normal stresses
The present section is devoted to the constitutive laws that define contact normal
stresses. Since the latter, especially Σ̂c

22 in the present case, are involved in the particle
transverse velocity, (3.15), and consequently in the solid volume transport equation,
(3.18), it is worth checking that the laws deduced from HSF simulations still hold in
the present pressure-driven flow. All three contact stresses are displayed in figure 17 for
all simulations, in the volume fraction range that corresponds to the intermediate region
of each run. Again, a good agreement with HSF simulations is observed, although the
reduced normal stresses as computed here are slightly larger than the HSF data.

In the central region, the HSF constitutive laws for the contact normal stresses hold
better compared with the shear viscosity (Appendix B.4, figures 36–38). Even though at
the centre of the channel, where the tangential stress vanishes, the reduced contact stresses
diverge, consistent with the non-vanishing contact normal stresses at this position, it is,
however, striking that at φ̄ = 0.3, the discrepancy is only noticeable for |y| ≤ a1 or only
for φ ≥ φJ in the two most concentrated cases.
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Figure 18. Macroscopic friction coefficient μ (a) and volume fraction (b) as a function of viscous number J
in the intermediate region. Same colour code as in figure 14(b). Plain line is correlation by Badia et al. (2022),
dashed line is correlation by Boyer et al. (2011)

6.2.5. The μ(J) rheology
Finally, the μ-rheology (Boyer et al. 2011) is computed. The macroscopic friction
coefficient μ = Σxy/Σ

c
yy and volume fraction are displayed as a function of the viscous

number J = ηγ̇ /Σc
yy in figure 18(a,b), respectively, together with the HSF results. A good

agreement is found in the intermediate region for both quantities. Several correlation
laws are available in the literature. In the present paper, we compare our simulation data
with the experimental laws by Boyer et al. (2011) and to the correlation laws fitted on
our own earlier simulations for a microscopic friction coefficient μs = 0.5 (Badia et al.
2022). We note that recent numerical studies extensively investigated the influence of
the friction coefficient μs on these correlation laws (Chèvremont et al. 2019; Peerbooms
et al. 2024). The displayed correlation laws deserve a few words. The correlation laws
by Badia et al. (2022) have been fitted onto data concerning moderately concentrated to
concentrated suspensions (φ ≤ 0.56) at μs = 0.5, which explains why they are close to
the HSF data, in particular the macroscopic friction coefficient μ, for the whole range
of viscous number J ∈ [2.10−3, 2]. However, the limit of μ for vanishing J may not
be considered, since it was not confirmed by simulation data. On the other hand, the
experimental correlation laws by Boyer et al. (2011) were tuned for small values of J
(� 0.2) and thus may not perfectly fit the high J range (d’Ambrosio, Blanc & Lemaire
2023).

In the central region, the macroscopic friction coefficient μ is lower than its counterpart
in HSF, as displayed in Appendix B.5 (figures 39 and 40). This may be qualitatively
checked in figures 12 and 13, where the shear stress Σxy and the shear rate γ̇ vanish at
the channel centre, while the contact stress Σc

yy does not, meaning that μ goes to zero at
vanishing J, while it is expected to level off to a value close to 0.3 in HSF (Boyer et al.
2011; Gallier et al. 2014b). In the same region, the local volume fraction is larger than
predicted by the HSF law.

This is to be compared with the numerical study of highly concentrated frictionless
non-Brownian suspensions by Bhowmik & Ness (2024), who use Kolmogorov flow
to induce non-homogeneous shear rate and particle migration. They also observe
discrepancies between HSF constitutive laws at positions where the shear rate vanishes
or is small. More specifically, the macroscopic friction coefficient μ decreases towards
zero as the viscous number decreases, as in the present work.
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6.3. Discussion
The previous sections allowed evidence of an intermediate region where the HSF
constitutive laws reasonably hold, in agreement with the simulations of frictionless particle
suspensions by Yeo & Maxey (2011), meaning that all data from this intermediate
region in all simulations collapse onto the HSF curve. This may be surprising, given
the significant particle segregation occurring. It is indeed well known that the viscosity
of bidisperse suspensions depends on the particle size ratio a2/a1 and volume fraction
ratio φ2/φ, mainly due to the effect of these parameters on the jamming volume fraction
(Chang & Powell 1994). Pednekar, Chun & Morris (2018) performed extensive simulations
of concentrated non-Brownian bidisperse suspensions in the range 2 ≤ a2/a1 ≤ 4 and
0 ≤ φ2/φ ≤ 1, and with interparticle friction coefficient μs = 0.2. They confirmed that
the jamming volume fraction reaches a maximum around φ2/φ = 0.6, corresponding to
a minimum of the viscosity for a given value of φ. To extrapolate their results to the
suspensions of interest here (μs = 0.5, a2/a1 = 1.4), and following Howard et al. (2022),
we estimate the jamming volume fraction using

φJ = φmono
J

[
1 + 1.5

(
1 − a1/a2

1 + a1/a2

)3/2 (
φ2

φ

)3/2
φ1

φ

]
, (6.5)

which we found in qualitative agreement with the data by Pednekar et al. (2018) and
also with the proposed empirical expression of the packing fraction as a function of
the moments of the size distribution by Desmond & Weeks (2014). In the present case,
the monodisperse jamming volume fraction φmono

J = 0.582 is estimated from φJ(φ2/φ =
0.5) = 0.592 (§ 6.2.2). For the observed large particle volume fraction range 0.35 ≤
φ2/φ ≤ 0.70, the absolute variation of φJ is expected to keep under 0.003. The observed
segregation is thus expected to have a negligible effect on the data displayed in figure 14(b).
More generally, it was previously noted that, despite segregation, the total volume fraction
varies smoothly over the channel, except in the vicinity of the bounding walls. In addition,
even though the distribution of small and large particles is not symmetric with respect to
the channel centre plane, the overall volume fraction and velocity profiles are. In the same
line, the simulations by Howard et al. (2022) of frictionless bidisperse suspensions with
a1/a2 = 0.7 showed that the steady solid volume fraction profile only weakly depends
on the initial value of φ2/φ, suggesting that overall particle migration develops quite
independently of segregation, at least for a size ratio a1/a2 close to unity. A possible
explanation of this behaviour is the fact that, as evidenced by Howard et al. (2022), the
stresses developing in a bidisperse suspension weakly depend on the composition φ2/φ.

We also note that in the intermediate region identified as the positions where HSF
constitutive laws hold for the shear viscosity, the reduced first normal stress difference, N̂1,
and to a lesser extent N̂2, display significant discrepancies. We do not exactly understand
the origin of this behaviour. It seems to be correlated to a stiffening of the volume fraction
profile, which is more or less concomitant to the dips in the large particle volume fractions.
However, it is well known that the first normal stress difference is a subtle quantity,
with quite low values, and which is expected to depend on the exact flow conditions and
suspension microstructure to a greater extent compared with the shear viscosity or contact
normal stresses.

Outside this intermediate area, the simulations allowed evidence of two regions where
HSF constitutive laws do not hold, i.e. the layering area close to the boundaries, and the
central region where the shear rate and shear stress go to zero. The former belongs to
the general issue of wall effects. In agreement with earlier studies from the literature, we
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observe both particle layering and large particle depletion at the walls (Yeo & Maxey 2011;
Chun et al. 2019; Howard et al. 2022), and alterations of the bulk HSF stress constitutive
laws are indeed expected (Gallier et al. 2016; Peerbooms et al. 2024). We will not address
this specific issue. We also note that an explanation of the depletion of the large particle
has been recently proposed by Howard et al. (2022).

In the central region, two features deserve to be highlighted. It is first striking that
the volume fraction may exceed the jamming volume fraction φJ for φ̄ ≥ 0.4. In the
corresponding part of the flow, the mean computed shear rate is not zero but the large
fluctuations, together with the low accumulated strain during steady flow make this
estimation questionable, suggesting that the suspension is nearly jammed, even though
fluctuations allow particle reorganization leading to φ ≥ φJ .

In addition, the constitutive laws as measured in HSF do not hold, meaning in particular
that for each material function as computed from the various simulations in the central
region, the data does not collapse onto a single curve when displayed as a function of
the volume fraction. This behaviour is generally not limited to the plug region where
φ ≥ φJ . Leaving aside the very centre of the channel, the shear viscosity is smaller, the
relative contribution of the contact forces to the shear stress Σ̂c

12 is smaller, while the
relative contact normal stresses Σ̂c

ii follow the usual HSF law. In the frame of the μ(J)

representation, this region corresponds to a lower μ than expected from HSF. At the
very centre of the channel, the discrepancy is even more pronounced, since the contact
normal stresses remain finite while the shear stress vanishes, leading to the divergence of
the reduced normal stresses Σ̂c

ii(φ) (Appendix B.4, figures 36–38), or equivalently faster
vanishing of μ(J) at low J (Appendix B.5, figures 39 and 40).

As mentioned in the introduction, the pressure-driven flow of suspensions at the vicinity
of the centre of the channel or the pipe has raised questions for a long time, in an attempt to
understand particle migration (Nott & Brady 1994; Mills & Snabre 1995; Morris & Boulay
1999; Miller & Morris 2006), and more generally stress constitutive laws (Gillissen & Ness
2020; Bhowmik & Ness 2024). The fact that the shear rate and shear stress vanish at the
centre results in a strong relative variation of these quantities at the scale of a particle
radius. It is most easily understood in the case of the shear stress, whose averaged value
depends linearly on the y-position from the channel centre plane, so that its variation at the
scale of a particle may be estimated as �Σxy/Σxy ∼ a1/y. As a consequence, non-local
effects are expected to play a significant role at this position of the flow, all the more when
normal stresses (or contact pressure) are involved, since for instance in steady shear, they
are compressive whatever the sign of the shear stress, and as a consequence may not vanish
as the shear stress fluctuates around zero. In the past, such effects have been included in
the constitutive law for the normal stresses in different ways, either considering granular
temperature contribution to the stress (Nott & Brady 1994), space-averaged stresses (Mills
& Snabre 1995; Morris & Boulay 1999) or adding a small non-local positive shear rate for
the computation of the normal stresses (Miller & Morris 2006). More recently, fluctuations
have been explicitly included in a model, where the whole stress tensor depends on both
the local shear-induced microstructure and the local shear-rate tensor (Gillissen & Ness
2020). The idea is that the fluctuations of the shear rate tensor contribute to the mean
compressive shear rate, and as a result to the compressive normal stresses, even though
the mean shear rate and shear stress vanish. The model shows qualitative agreement with
particle scale simulations, predicting in particular limJ→0 μ(J) = 0. In the same line,
it has been proposed that a new dimensionless number accounting for particle velocity
fluctuations be included in the steady flow stress law, in addition to the usual viscous
number J (Bhowmik & Ness 2024).

998 A16-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.609


M. Orsi, L. Lobry, E. Lemaire and F. Peters

In the present paper, we do not want to go too deep into the fluctuations at the particle
scale, but we leave it instead for a future study. In § 5.2, we considered the fluctuations
of the shear rate profile, i.e. a quantity that has already been averaged over the x and
z directions. As previously mentioned, the positions for which φ ≥ φJ correspond to
large values of the velocity gradient fluctuations σ(∂yus

x) ≥ |∂yus
x| and low values of the

accumulated strain during the shear flow, suggesting a quasijammed suspension. As shown
in figures 11 and 36–38 (Appendix B.4), those positions also correspond to most of the
points where the values of the reduced contact normal stresses Σ̂c

ii are significantly larger
than predicted in HSF, the latter being approximately defined by σ(∂yus

x) ≥ 0.5| �∂yus
x|.

Except for this ‘jammed’ region, the central area, where the HSF laws do not hold, is
only a few particle radii wide, corresponding to large volume fraction variation. These
features naturally point to non-local effects, where the stresses also depend on the volume
fraction and shear rate at a distance from the considered position. We finally note that
experiments (Guasto, Ross & Gollub 2010) and simulations (Yeo & Maxey 2011) have
evidenced long-range correlated motion at the centre of the channel that strengthens the
hypothesis of non-local behaviour.

7. Investigation of the SBM hypothesis

As recalled in § 3, the main assumption of the SBM is (3.13), which connects the
hydrodynamic force density applied to the particles to their transverse velocity, or
equivalently to the solid flux density, as written in the present flow geometry:

up
y − us

y = 2a2

9η

f (φ)

φ
∂yΣ

c
yy. (7.1)

Before this issue is tackled in § 7.3, the transverse velocity will be examined in the
following section, and the relation between the various force densities of interest and the
gradient of the relevant stresses will be evidenced in § 7.2. Unless otherwise stated, every
quantity is time-averaged over �t = 200 corresponding to a typical averaged strain γ̄ ∼
10–50, depending on the mean volume fraction φ̄.

7.1. Transverse velocity
The transverse particle velocity relative to the suspension, which is related to the particle
volume flux density (4.3), is displayed in figure 19 at various times during the transient
flow. It is directed towards the channel centre, with a higher intensity at the start of the flow,
and as expected vanishes as the steady state is reached. Its magnitude is very low compared
with the amplitude of the main flow velocity, at most 0.1 %. We checked that us

y, which
is computed from the solver velocity, is nearly zero, e.g. at φ̄ = 0.4 around 2 × 10−6, in
agreement with the incompressibility of the flow that is stated in (3.4). We checked that
the fluctuations of the transverse particle velocity averaged over the whole steady flow
duration are significantly larger than this residual transverse suspension velocity.

7.2. Various force densities exerted on the particle phase
As recalled by Lhuillier (2009), the momentum balance equation for the particle phase,
(3.5), is equivalent to (3.8). The latter does not need checking, since it directly originates
from the single particle momentum balance equation (2.4), which was double-checked
during the validation of the simulation code. However, other relations, such as the relation
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Figure 19. Transverse particle relative velocity, φ̄ = 0.4. Averaging time is �t = 200.

between the contact force density and the divergence of the contact stress (3.7), deserve
a closer look. In the following, the various force densities at play are displayed, and their
relations to the relevant stress gradients are evidenced.

7.2.1. Contact force density
According to the SBM, particle migration is driven by the contact force density n〈f c

y 〉p,
which is counterbalanced by the hydrodynamic drag force, yielding the particle volume
flux. The former should also be equal to the divergence of the contact stress, ∂yΣ

c
yy (3.7),

according to a theoretical analysis for pairwise interaction forces between particles (Irving
& Kirkwood 1950; Jackson 1997). Equation (3.7) is expected to hold provided that the
length scale defining the variation of averaged quantities is sufficiently large compared
with the particle radius. It will be now examined. The contact force density along the
y direction is displayed in figure 20 for all simulations at the beginning of the flow and
during steady flow after the migration is complete, together with the divergence of the
contact stress along the same direction. The latter is computed from the contact stress by
numerical differentiation (central difference). A very good agreement is observed, except
in the layering region though, which discrepancy may be easily understood, given that all
averaged quantities strongly vary at the particle scale in that region (Howard et al. 2022;
Orsi et al. 2023). We stress that the force density and contact stress are independently
computed, the former from the total contact force exerted on each particle, and the latter
from the total contact stresslet. In addition, only two instants are considered here for the
sake of figure clarity, but we checked that (3.7) holds at any time.

As expected, the contact force density pushes the particles towards the channel centre
at the beginning of the simulation, and approximately vanishes at the end of transient
migration, at least in the intermediate region. In the central region, two force peaks remain
after migration is complete at φ̄ = 0.3 and φ̄ = 0.4, which correspond to the dip observed
in the contact stress profile, as already mentioned in § 6.1.2. At φ̄ = 0.3, a small force
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Figure 20. Transverse contact force density and its counterpart from the contact stress: solid symbol,
t ∈ [0, 200]; open symbol, steady flow (averaging time in table 1); (a) φ̄ = 0.3; (b) φ̄ = 0.4; (c) φ̄ = 0.5.

density also remains in the intermediate region after migration completion, which does
not induce any net particle volume flux. This will be discussed in the following.

7.2.2. Hydrodynamic force density
The hydrodynamic force density n〈f h

y 〉p is exactly the opposite of the contact force density,
due to the absence of inertia in the motion of each particle, (2.4). In addition, (3.9), which
connects the hydrodynamic force density exerted on the particles to the divergence of the
fluid stress in the y direction, may be understood as the consequence of (3.7), (3.8), (3.11)
and (3.12), which have already been shown to apply. However, inspection of the various
contributions of the normal stress Σ

f
yy is instructive. Equations (2.10), (2.9) and (4.6) yield

Σ f
yy = −(1 − φ)〈p〉 f + n

〈
SFDM

yy + sFDM

3

〉
p
+ n

〈
SSG

yy + sSG

3

〉
p

= −(1 − φ)〈p〉 f + ΣFDM
yy + ΣSG

yy , (7.2)

where ΣFDM
yy is computed from the force density λ and pressure perturbation p inside the

particles (2.9). The external pressure P0 has been omitted, since it does not depend on y.
Here ΣFDM

yy is displayed in figure 21 together with the contributions appearing in (7.2) for
φ̄ = 0.4.

As already mentioned, at the beginning of the flow, a strong fluid stress gradient
is observed, which reflects the hydrodynamic hindering force applied to the particles
against their motion. Most of the stress gradient originates in the fluid solver contribution
−(1 − φ)〈p〉 f + ΣFDM

yy , meaning that the subgrid corrections have very weak effects on
this stress component, unlike the tangential stress (figure 15). It should also be noted
that the fluid pressure contribution −(1 − φ)〈p〉 f results in approximately half the total
stress gradient, which highlights the important effect of such a pore pressure, and more
generally of the fluid flow, in the migration dynamics (see Guazzelli & Pouliquen (2018)
and references therein). After the migration is complete, the remaining total stress gradient
is very weak, and the intensities of the various contributions are similar, except at the
channel centre, where the residual stress gradient is the strongest, and mostly originates in
the solver contribution.
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Figure 21. Contributions to the fluid normal stress Σ
f

yy: (a) time-averaged stress t ∈ [0, 200]; (b) steady
profiles t ∈ [2000, 3000]; φ̄ = 0.4.

The same trends may be observed for the other values of the mean volume fraction
φ̄ (Appendix C, figures 41 and 42), with slight variations. At φ̄ = 0.3, the subgrid
contributions are relatively higher, while the opposite occurs at φ̄ = 0.5. We also note
that in the latter case, the fluid stress is uniform in the central region as well, consistent
with the same behaviour exhibited by the contact stress.

7.3. Relation between transverse particle flux and hydrodynamic force density
The main hypothesis of the SBM is the relation between the hydrodynamic force density
applied to the particle phase and the transverse velocity of the particles relative to
the suspension. In more detail, as already mentioned, it is usually assumed that the
hydrodynamic force density applied on the particle phase is a drag force, meaning that
the transverse relative velocity up

y − us
y is proportional to the hydrodynamic force density

(7.1). The usually assumed lack of a non-drag contribution in the hydrodynamic force
deserves to be checked, which we intend to do now. For the sake of clarity, the transient
migration and the steady flow will be separately examined in the following sections.

7.3.1. Transient flow
The transverse relative velocity up

y − us
y is displayed in figure 22 as a function of

the modified hydrodynamic force 2ā2/9η × f (φ)/φ × n〈f h
y 〉p. All data, e.g. up

y , us
y, φ,

etc., result from time-averaging at a particular y-position in the channel over the time
�taveraging = 200. In addition, only the data from the intermediate region are displayed.
Each colour corresponds to an instant during the transient flow. The mean radius has been
arbitrarily chosen as ā = (a1 + a2)/2 = 1.2a1, and the exponent in the expression of the
hindered settling function, (3.14), has been chosen as n = 4.8 since this particular value
seems to allow best overall agreement for the whole set of simulations.

For all simulations, the transverse velocity obeys (3.13) with reasonable accuracy,
especially for φ̄ = 0.4 and φ̄ = 0.5. In the case φ̄ = 0.3, and to a lesser extent φ̄ = 0.4,
a significant discrepancy is observed. It turns out that, at large times, the velocity goes
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Figure 22. Transverse relative particle velocity as a function of hydrodynamic hindering force during transient
flow: φ̄ = 0.3 (a); φ̄ = 0.4 (b); φ̄ = 0.5 (c). See symbol colours online. Data from the intermediate region only.
Plain line is theoretical relation (3.13).

faster towards zero than predicted from the driving force using (3.13). In other words, at
the end of the transient flow, a force remains with no particle velocity, equivalent to a small
non-drag force. This will be confirmed in the next section, which is dedicated to the steady
flow.

Since some stress constitutive laws were shown not to hold in an extended region at the
centre of the channel, this particular area deserves specific attention. Figure 23 displays
the same quantities as in figure 22, computed from the data in the central region of the
channel. Both the velocity and the modified driving force are lower than in the intermediate
region, and the data suffer from more noise. However, the same general behaviour as in
the intermediate region is observed, which deserves several comments. First, at φ̄ = 0.5,
the drag law is valid during the whole transient flow, while the volume fraction exceeds
φJ from t = 600. This suggests that the relation between flux and force is very robust,
and hardly depends on the actual suspension microstructure, which is not too surprising,
given that Richardson and Zaki correlation primarily applies in particle sedimentation,
and is now shown to be valid in shear flow as well. This may be understood given that no
long-range order is expected in a sheared suspension, but only preferential orientation
of contacting pairs (Blanc et al. 2013), at least for volume fractions not too close to
the jamming point. As a consequence, the permeability of such a sheared suspension is
expected to be close to that of a random suspension. Second, it should be noted that, at a
large time, the force peaks at φ̄ = 0.3 and φ̄ = 0.4, which constitute most of the central
region, contributing to the non-drag force. This will be confirmed in the next section.

7.3.2. Steady flow
It has been noted in § 6.1.2 that at steady flow the contact and fluid stresses were both
uniform across the channel at φ̄ = 0.5, but a gradient of these quantities was observed
in the central region in the other cases, and even in the intermediate region at φ̄ = 0.3.
In other words, a finite hydrodynamic force density may occur at some position in the
channel while no particle transverse velocity is observed, at odds with the prediction of
the standard SBM.

This is well illustrated in figure 24, where the same quantities as in the previous section
are displayed for φ̄ = 0.3 and φ̄ = 0.4. The data at each position in the central and
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Figure 23. Transverse relative particle velocity as a function of hydrodynamic hindering force during transient
flow: (a) φ̄ = 0.3; (b) φ̄ = 0.4; (c) φ̄ = 0.5. See symbol colours online. Data from the central region only. Plain
line is theoretical relation (3.13).

intermediate regions are averaged over the time interval at the end of the simulation,
during which the variations of the volume fraction and velocity profiles seem to be
insignificant. The specific time interval is quoted in table 1 for each run. The error bars
are computed from the standard deviation of each time-averaged quantity, e.g. the particle
velocity up

y( y) at the y-position in the channel, which is estimated using standard methods
(Allen & Tildesley 2017; Orsi et al. 2023). In the case of the lowest mean volume fraction
φ̄ = 0.3, a small but significant force density persists, while the relative particle velocity
vanishes. The data from positions in the central region are highlighted in figure 24, and
contribute to this force density. Such a residual force density may be interpreted as a
non-drag contribution to the hydrodynamic force. However, it should be noted that in
our case, this contribution is quite small compared with the overall force intensity at the
beginning of the simulation. At φ̄ = 0.4, the same trend may be observed, less intense and
slightly shadowed by noise. Regarding the velocity that does not appear to vanish exactly
in figure 24, it should be kept in mind that the spurious suspension y-velocity from the
solver (§ 7.1) is of the order 2 × 10−6, comparable in magnitude to the velocity displayed
in figure 19, and smaller than its standard deviation. Thus, the small remaining velocity
seems irrelevant.

Nott et al. (2011) argued that the non-drag contribution to the hydrodynamic force could
originate in pairwise interaction forces, which would be written as the divergence of stress,
the latter built from the particle pair interaction forces in the same way as the contact stress
is built from the contact forces ((2.12), (2.13) and (3.6)). The latter relation holds in the
case of the subgrid forces, since, from the particular expression of the subgrid resistance
matrix (Orsi et al. 2023), it is possible to show that the subgrid stresslet applied on a
particle pair is simply the first moment of the subgrid forces on this particle pair, so that

∇ · ΣSG = n〈 f SG〉p, (7.3)

which we have checked in the same way as (3.7) (§ 7.2.1). It is therefore tempting
to identify the non-drag force to this pairwise subgrid force, meaning that the drag
force density would be the remaining force from the solver n〈 f h〉drag

p ≈ n〈 f FDM〉p while
the ‘driving’ force would originate in the short scale pairwise forces n〈 f c + f SG〉p.
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Figure 24. Transverse relative particle velocity as a function of hydrodynamic hindering force during steady
flow. Data from the intermediate and central regions. The latter is highlighted (�). Plain line is theoretical
relation from (3.13).

This identification cannot have more than a qualitative scope, since the separation between
subgrid and solver forces (and stresslets) depends on the computational mesh size. To
test this conjecture, the relation between the steady velocity and the steady solver force
density is displayed in figure 25. At φ̄ = 0.3 most of the points are gathered significantly
closer to the frame origin than in figure 24, meaning that the solver force density is
approximately zero as expected, which seems to confirm the identification of the pairwise
subgrid lubrication forces as the source of a non-drag hydrodynamic force. The data
from the central region lie further from the theoretical curve, showing that the proposed
explanation for the non-drag force seems to fail in this area. At φ̄ = 0.4, the same argument
approximately holds, but the difference between solver and total hydrodynamic forces is
less important, due to the weaker relative contribution of the subgrid forces to the normal
stress for the considered volume fraction range, as the comparison between figures 21 and
41 (Appendix C) shows. We also note that at φ̄ = 0.5, where the probed volume fraction
range is higher, the subgrid forces are relatively even weaker (Appendix C, figure 42),
meaning that the non-drag force is approximately zero. Surprisingly, this is also true in the
central region, which may be related to the high volume fraction φ ≥ φJ .

Finally, as mentioned in § 5.1, while the overall migration is complete during what
we call the steady flow, segregation is not, and particle reorganization is still occurring.
However, we do not present extensive curves for the segregation dynamics since the data
suffers a larger amount of noise, possibly due to the smaller number of particles that
constitute each population.

7.4. The SBM migration predictions
For the sake of completeness, the predictions of the SBM are now shortly compared with
the simulation data. The governing equations are recalled in Appendix D. They are based
on (3.16)–(3.18), without any non-drag force. In addition, to prevent the volume fraction
from exceeding the jamming volume fraction, the particle flux is forced to vanish as φJ
is reached (Snook et al. 2016; Badia et al. 2022). This procedure allows carrying out the
computations, but obviously cannot account for the large volume fraction observed at the
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Figure 25. Transverse relative particle velocity as a function of solver hydrodynamic hindering force during
steady flow. Data from the intermediate and central regions. The latter is highlighted (�). Plain line is
theoretical relation from (3.13).

channel centre in the simulations. A specific modelling would be required for this purpose,
which we keep for a future study.

The predictions of the SBM are compared with the simulation data in figures 26 and
27 for the mean volume fraction φ̄ = 0.4 and their counterparts for φ̄ = 0.3 and φ̄ = 0.5
are displayed in Appendix D.2. The profiles from the SBM have been obtained at a high
spatial sampling rate (i.e. �y = 0.2a1) and then resampled down to the simulation profiles
rate (i.e. �y = a1) in the same spirit as the averaging procedure in (4.2). This results in
the spreading of the central peak, whose initial growth rate is decreased with respect to the
raw profiles. Thanks to this procedure, no peak narrower than a particle radius is observed,
in agreement with physical intuition.

A fair agreement is found between the simulation data and the SBM predictions, despite
significant fluctuations in the former, due to the finite size of the simulation volume. This
reflects the good agreement of the simulation data and the main constitutive laws involved
in the SBM, at least in the intermediate region. A point-to-point comparison is not easy
due to the quite significant volume fraction dispersion at γ̄ = 0 that is sometimes observed,
reflecting the mentioned fluctuations. For instance, in the case φ̄ = 0.4 (figure 27), φ(γ̄ =
0) extends over the range [0.39, 0.45]. In addition, in the layering area at the boundaries,
the volume fraction and the velocity profiles do not match to the SBM prediction, since
the main stress constitutive laws are not fulfilled, and the simulated coarse-grained volume
fraction is smaller than predicted, as usually observed. In the central region, again, the
volume fraction from the simulations either exceeds the jamming volume fraction (φ̄ = 0.4
and 0.5), or does not reach it (φ̄ = 0.3), which has implications on the volume fraction –
and velocity – profiles over the whole channel, making the detailed comparison difficult.
On the other hand, the SBM predicts a very fine peak at the channel centre that develops
very quickly. Such a peak, when it is narrower than the particle size, may not have a
clear signification. The resampling procedure that was adopted aims at smoothing out
this feature, but does not manage to do so in the most concentrated case (Appendix D.2,
figure 45a,b), where the volume fraction at the channel centre as predicted by the SBM
evolves faster than measured in the simulation.
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Figure 26. Evolution of the (a,b) volume fraction and (c,d) suspension velocity profiles as a function of the
mean accumulated strain γ̄ ; φ̄ = 0.4. The profiles are averaged over a strain interval equal to half the strain
sampling period: (a,c) FDM data; (b,d) SBM predictions.
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Figure 27. Evolution of (a) volume fraction and (b) suspension velocity as a function of mean accumulated
strain at various positions in the channel; φ̄ = 0.4. A running average has been applied to the data to get rid of
the high-frequency fluctuations. Plain line is FDM data and the dashed line is SBM predictions.
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Despite these issues, the overall migration dynamics are satisfactorily predicted by
the SBM in the intermediate region between the layering area and the channel centre.
However, we stress that such comparison yields far less precise information than the
local computation of constitutive laws presented before, since the volume fraction and
the velocity at a given position are affected by their counterpart at each position in the
channel and for all earlier times.

8. Conclusion

In this article, the FDM has been used to simulate the pressure-driven channel flow of
non-Brownian suspensions to test, in the particular case of this heterogeneous flow, the
validity of various equations and constitutive laws which together form the SBM. Three
different values of the mean volume fraction φ̄ ∈ [0.3, 0.4, 0.5] have been investigated.
All quantities, e.g. the volume fraction, various velocities and stresses, have been defined
as space and time locally averaged variables. Migration is evidenced, together with
significant segregation. Despite the latter, the volume fraction varies smoothly across the
channel, except for a layering area close to the bounding walls.

As a preliminary check, the usual momentum balance equations for the homogenized
suspension have been shown to accurately hold over the whole channel, except close to
the bounding walls, where all quantities strongly vary at the particle scale, due to particle
layering. This good mechanical behaviour allows us to tackle the rest of the study with
confidence.

Leaving aside the layering area, two regions in the flow may be defined, based on
the observed rheological laws: an intermediate region between the layering area and the
channel centre, where the rheological quantities mostly obey the usual constitutive laws,
and a central region, where some discrepancies are observed, pointing to the need for some
additional investigations. These two regions have already been evidenced in the past (Yeo
& Maxey 2011).

In the intermediate region, the stresses have been shown to obey the same constitutive
laws as in HSF. We stress that the material functions have been measured using the same
numerical method in HSF and channel flow. The local relative shear viscosity and the
reduced normal stresses depend on the local volume fraction, or equivalently the local
volume fraction and macroscopic friction coefficient μ only depend on the local viscous
number J. The quite significant particle segregation is shown to have limited influence on
the constitutive laws, in agreement with previous studies from the literature.

The force densities of interest have also been examined. The contact force density,
or equivalently the divergence of the contact stress, pushes the particles towards the
centre of the channel, while the hydrodynamic force density hinders this motion. In this
particular type of flow, where no external force is applied to the particles in addition to
the contact and hydrodynamic forces, the hydrodynamic force density is the divergence of
the hydrodynamic stress ∂yΣ

h
yy. We note that this relation between force density and stress

divergence holds over the whole channel. The hydrodynamic stress mostly originates in
the fluid solver contribution at the beginning of migration, with a large contribution to the
fluid pressure. This feature contributes to highlighting the importance of the pore pressure
in the momentum balance of the particle phase (Guazzelli & Pouliquen 2018), and more
generally in the transient transport of particles (Marzougui et al. 2015).

Finally, the relation between the hydrodynamic force density applied to the particles and
the particle flux density has been evidenced as well. The hydrodynamic force density obeys
the Richardson and Zaki correlation with very good accuracy. However, discrepancies
occur in the low volume fraction range, where the force density remains finite while the
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particle flux vanishes at steady flow. This weak non-drag force might originate in the
lubrication forces between close particles, as proposed in the literature (Nott et al. 2011).

In the central region, some observed flow features strongly contrast with the usual
HSF behaviour. The first important result is that the local volume fraction may exceed
the jamming volume fraction φJ as computed from HSF simulations, and reach 0.65, i.e.
approximately the random close packing fraction, over a central width that is significantly
larger than the particle radius, at least in the case of the largest mean volume fraction. This
is in agreement with experimental measurements from the literature (Oh et al. 2015). In
such a plug region, the suspension is not completely frozen, and a relative motion of the
particles is observed, together with a very slow shear. However, the shear rate fluctuations
are larger than the mean shear rate, suggesting that the particle motion differs from that
observed in a standard shear flow.

Regarding the stress constitutive laws, discrepancies are observed in the central region
and are not limited to the area where φ exceeds φJ . The relative shear viscosity ηS is
smaller than expected, as is the reduced contact shear stress Σ̂c

xy, while the reduced contact
normal stresses are approximately unchanged, except at the very centre of the channel
(y < a1) or where φ ≥ φJ . Regarding the μ(J) rheology, μ is lower than expected in the
central region and goes to zero instead of the usual finite value (≈ 0.3) as J goes to zero.
The suspension microstructure is thus expected to be quite different from the usual HSF
shear-induced microstructure. The observed larger shear rate fluctuations in this region
support the idea of a non-local contribution to the stress, involving for instance the velocity
fluctuations (Gillissen & Ness 2020; Bhowmik & Ness 2024). This issue deserves specific
work, and we leave it to future studies.

As to the relation between particle flux and hydrodynamic force density, a stronger
non-drag force is observed in the central region, which mostly originates in the solver
contribution, and seems not to be connected with short-range lubrication forces.

Finally, the FDM has proven to be a powerful and reliable tool for the simulation of
moderately to highly concentrated suspensions in heterogeneous flows. In the particular
case of a pressure-driven flow, it allowed to locally probe the relevant constitutive laws
that define the various stresses and to address the transverse particle flux responsible for
migration. In the future, it should help shed light on other issues involving heterogeneous
flows, such as particle resuspension.
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Particle migration in non-Brownian suspensions

Appendix A. Stress profiles

A.1. Tangential stress profiles
The tangeantial stress profiles for the values of the mean volume fraction φ = 0.3 and 0.5
are displayed in figures 28 and 29.
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Figure 28. (a) Steady tangential stress profile, together with contributions detailed in (6.1).
(b) Corresponding force densities; φ̄ = 0.3.

−20 −10 0 10 20 −20 −10 0 10 20

y/a1 y/a1

−0.50 −0.25 0 0.25 0.50

y
−0.50 −0.25 0 0.25 0.50

y

−2

−1

0

1

2

Σxy

−6

−5

−4

−3

−2

−1

0

1

2

∂
yΣ

xy

(b)(a)

Σxy
Σc

xy

Σ f
xy

η∂yus
x

(dP0/dx) y

Figure 29. (a) Steady tangential stress profile, together with contributions detailed in (6.1).
(b) Corresponding force densities; φ̄ = 0.5.
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A.2. Normal stress profiles
The normal stress profiles for the values of the mean volume fraction φ = 0.3 and 0.5 are
displayed in figures 30 and 31.
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Figure 30. Total stress profile (a) together with fluid (b) and contact (c) contributions, at the beginning of the
simulation and during steady flow; φ̄ = 0.3.
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Figure 31. Total stress profile (a) together with fluid (b) and contact (c) contributions, at the beginning of the
simulation and during steady flow; φ̄ = 0.5.

Appendix B. Material functions

B.1. Shear viscosity
The shear viscosity is displayed as a function of the volume fraction for all 3 values of the
mean volume fraction in figure 32.

998 A16-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.609


Particle migration in non-Brownian suspensions

0.2 0.4 0.6

φ

100

101

102

103

104

100

101

102

103

104

100

101

102

103

104

ηS

3.5 ≤ |y/a1| ≤ 13.5
Homog. shear flow
Whole channel

4.5 ≤ |y/a1| ≤ 13.5
Homog. shear flow
Whole channel

0.2 0.3 0.4 0.5 0.6

φ
0.2 0.3 0.4 0.5 0.6

φ

7.5 ≤ |y/a1| ≤ 13.5
Homog. shear flow
Whole channel

(b)(a) (c)

Figure 32. Shear viscosity as a function of local volume fraction: (a) φ̄ = 0.3; (b) φ̄ = 0.4; (c) φ̄ = 0.5.
Plain line is (6.3) with φJ = 0.592 and α = 0.8.

B.2. Normal stress differences
The normal stress differences (4.9a,b) are displayed as a function of the volume fraction
for all 3 values of the mean volume fraction in figures 33 and 34.
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Figure 33. First normal stress difference as a function of local volume fraction: (a) φ̄ = 0.3; (b) φ̄ = 0.4;
(c) φ̄ = 0.5. Plain line is correlation law by Badia et al. (2022).
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Figure 34. Second normal stress difference as a function of local volume fraction: (a) φ̄ = 0.3; (b) φ̄ = 0.4;
(c) φ̄ = 0.5. Plain line is correlation law by Badia et al. (2022).
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B.3. Reduced contact shear stress
The reduced contact shear stress (4.10a) is displayed as a function of the volume fraction
for all 3 values of the mean volume fraction in figure 35.
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Figure 35. Reduced contact shear stress as a function of local volume fraction: (a) φ̄ = 0.3; (b) φ̄ = 0.4;
(c) φ̄ = 0.5. Plain line is correlation law by Badia et al. (2022).

B.4. Reduced contact normal stresses
The reduced contact normal stresses (4.10b–d) are displayed as a function of the volume
fraction for all 3 values of the mean volume fraction in figures 36 to 38.
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Figure 36. Reduced contact first normal stress as a function of local volume fraction: (a) φ̄ = 0.3;
(b) φ̄ = 0.4; (c) φ̄ = 0.5. Plain line is correlation law by Badia et al. (2022).
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Figure 37. Reduced contact second normal stress as a function of local volume fraction: (a) φ̄ = 0.3;
(b) φ̄ = 0.4; (c) φ̄ = 0.5. Plain line is correlation law by Badia et al. (2022).
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Figure 38. Reduced contact third normal stress as a function of local volume fraction: (a) φ̄ = 0.3;
(b) φ̄ = 0.4; (c) φ̄ = 0.5. Plain line is correlation law by Badia et al. (2022).

B.5. The μ(J) rheology
The flow curve μ(J) and φ(J) (4.11a,b) are displayed for all 3 values of the mean volume
fraction in figures 39 and 40.
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Figure 39. Local macroscopic friction coefficient μ as a function of local viscous number J. Plain line is
correlation by Badia et al. (2022). Dashed line is correlation by Boyer et al. (2011).

998 A16-47

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.609


M. Orsi, L. Lobry, E. Lemaire and F. Peters

10−5 10−3 10−1 101

J
10−5 10−3 10−1 101

J
10−5 10−3 10−1 101

J

10−1

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

10−1

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

10−1

2 × 10−1

3 × 10−1

4 × 10−1

6 × 10−1

φ

Homog. shear flow
Whole channel

Homog. shear flow
Whole channel

Homog. shear flow
Whole channel

(b)(a) (c)

3.5 ≤ |y/a1| ≤ 13.5 4.5 ≤ |y/a1| ≤ 13.5 7.5 ≤ |y/a1| ≤ 13.5

Figure 40. Local volume fraction φ as a function of local viscous number J. Plain line is correlation by Badia
et al. (2022). Dashed line is correlation by Boyer et al. (2011).

Appendix C. Contributions to the fluid normal stress

Figures 41 and 42 display the contributions to the fluid normal stress �
f
22 (3.10) at the

beginning of the simulation run (a) and in steady flow (b) for the values of the mean
volume fraction φ = 0.3 and 0.5.
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Figure 41. Contributions to the fluid normal stress Σ
f

22 (a) time-averaged stress t ∈ [0, 200]. (b) Steady
profiles t ∈ [1500, 3000]; φ̄ = 0.3.
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Figure 42. Contributions to the fluid normal stress Σ
f

22 (a) time-averaged stress t ∈ [0, 200]. (b) Steady
profiles t ∈ [2400, 3000]; φ̄ = 0.5.

Appendix D. Transient SBM predictions

D.1. Governing equations
In the present section, the equations of the SBM are solved during the same transient plane
pressure-driven flow as in the simulations. Due to the imposed constant pressure gradient
in the x direction ∇P0 = dP0/dxex together with the periodic boundary conditions applied
in the x and z directions, the suspension velocity and volume fraction only depend on
y-coordinate and time t:

us = u( y, t)ex,

φ = φ( y, t).

}
(D1)

The general transient governing equations, (3.16)–(3.18), have been derived in the
Supplementary material section in Orsi et al. (2023). They are shortly recalled here.
The non-drag hydrodynamic forces are neglected, and the following equations have to
be solved:

Σxy = ηηS(φ)
∂u
∂y

= dP0

dx
y, (D2a)

∂φ

∂t
+ 2ā2

9η

∂

∂y

(
f (φ)

∂

∂y

(∣∣∣∣dP0

dx

∣∣∣∣ |y|Σ̂c
22

))
= 0, (D2b)

where the total tangential stress and the normal contact stress in the y direction have been
written according to (4.8) and (4.10), i.e.

Σxy = ηS(φ)η
∂u
∂y

, (D3a)

Σc
yy = |Σxy|Σ̂c

22(φ). (D3b)
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The relative shear viscosity has been fitted onto the HSF simulation data from the
present article, (6.3),

ηs = α(
1 − φ

φJ

)2 , (D4)

with α = 0.8031 and φJ = 0.592. As to the normal contact stress function, we use the
correlation laws from Badia et al. (2022), which has been shown to satisfactorily fit to the
present HSF simulations, and to the pressure driven flow simulations in the intermediate
region,

Σ̂c
22(φ) = d1

(
φ

φJ

)d2
(

e1 + e2
φ

φJ
+ e3

(
φ

φJ

)2
)

, (D5)

with d1 = −2.4247, d2 = 4.128, e1 = 2.1446, e2 = −2.7234 and e3 = 1.5759.
Finally, the hindered settling function is given the expression that was found to well

describe the simulation data, (3.14) with n = 4.8,

f (φ) = (1 − φ)4.8. (D6)

Boundary conditions are applied at the wall, i.e. a no-slip condition for the velocity, and
a vanishing flux condition for the mass balance equation,

uy=±Ly/2 = 0, (D7a)

Jy=±Ly/2 = f (φ)
∂

∂y

(∣∣∣∣dP0

dx

∣∣∣∣ |y|Σ̂c
22

)
= 0. (D7b)

The expression of the flux in (D7b) deserves a few words. As noted, many times
(Miller & Morris 2006; Snook et al. 2016; Badia et al. 2022), it cannot prevent the
volume fraction exceeding the jamming volume fraction at the channel centre plane. It
is possible to circumvent this difficulty by arbitrarily forcing the flux to vanish as the
jamming volume fraction is reached, allowing us to carry out the computation. Obviously,
this expedient does not yield a volume fraction larger than the jamming volume fraction,
and the computation does not agree with the simulations in that aspect. Specific modelling
should be developed to this purpose, which we find out of the scope of the present study.

Equations (D2a) and (D2b) are made dimensionless in the same way as in § 2.3:

∂u
∂y

= −4
y

ηS(φ)
, (D8)

∂φ

∂t
+ 8

9
ā2 ∂

∂y

(
f (φ)

∂

∂y
(|y|Σ̂c

22)

)
= 0, (D9)

where all quantities are now dimensionless.

D.2. The SBM predictions
The SBM predictions for the suspension volume fraction and velocity from the equations
above are compared with the results from the FDM computations in the figures below, for
the values of the mean volume fraction φ = 0.3 (figures 43 and 44) and φ = 0.5 (figures 45
and 46).
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Figure 43. Evolution of the (a,b) volume fraction and (c,d) suspension velocity profiles as a function of the
mean accumulated strain γ̄ ; φ̄ = 0.3. The profiles are averaged over a strain interval equal to half the strain
sampling period: (a,c) FDM data; (b,d) SBM predictions.
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strain at various positions in the channel; φ̄ = 0.3. A running average has been applied to the data in order to
get rid of the high frequency fluctuations. Plain line is FDM data; dashed line is SBM predictions.
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