Proceedings of the Edinburgh Mathematical Society (2014) **57**, 619–630 DOI:10.1017/S0013091513000564

ESTIMATES FOR CONVEX INTEGRAL MEANS OF HARMONIC FUNCTIONS

DIMITRIOS BETSAKOS

Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (betsakos@math.auth.gr)

(Received 31 March 2011)

Abstract We prove that if f is an integrable function on the unit sphere S in \mathbb{R}^n , g is its symmetric decreasing rearrangement and u, v are the harmonic extensions of f, g in the unit ball \mathbb{B} , then v has larger convex integral means over each sphere rS, $0 < r < 1$, than u has. We also prove that if u is harmonic in B with $|u| < 1$ and $u(0) = 0$, then the convex integral mean of u on each sphere rS is dominated by that of U , which is the harmonic function with boundary values 1 on the right hemisphere and −1 on the left one.

Keywords: harmonic function; integral means; symmetric decreasing rearrangement; harmonic measure; polarization; Schwarz lemma

2010 Mathematics subject classification: Primary 31B05; 31B15

1. Introduction

Suppose that f is a real-valued integrable function on the unit circle. Let q be the symmetric decreasing rearrangement of f . Denote by u and v the harmonic extensions in the unit disc of f and g; that is, u and v are the Poisson integrals of f and g, respectively. Baernstein [4] proved that, for $0 < r < 1$ and $1 \leqslant p < \infty$,

$$
\int_0^{2\pi} |u(re^{i\theta})|^p \,d\theta \le \int_0^{2\pi} |v(re^{i\theta})|^p \,d\theta. \tag{1.1}
$$

Moreover, Essén and Shea [**11**] showed that the equality holds in (1.1) for some $0 < r < 1$ and some $p > 1$ if and only if there exists a θ_o such that $f(e^{i\theta}) = g(e^{i(\theta + \theta_o)})$ for almost every real θ .

Much earlier, Gabriel [**12**] (see also [**1**]) had proved, with the additional assumption $f \geq 0$, that, for every increasing, convex function $\Phi: [0, \infty) \to [0, \infty)$ and every $r \in (0, 1)$,

$$
\int_0^{2\pi} \Phi(u(re^{i\theta})) \, d\theta \le \int_0^{2\pi} \Phi(v(re^{i\theta})) \, d\theta. \tag{1.2}
$$

We shall prove an extension of these results in higher dimensions. First we need to introduce some notation. We shall denote by S the unit sphere, and by $\mathbb B$ the unit ball in

c 2013 The Edinburgh Mathematical Society 619

 \mathbb{R}^n , $n \geq 2$. Let σ be the surface area measure on S. A point $x \in \mathbb{R}^n$ will also be denoted by $(x_1, x_2,...,x_n)$. We set $e_1 = (1, 0,..., 0)$. For a point $x \in \mathbb{R}^n$, let θ be defined by $\cos \theta = x_1$; that is, $\theta \in [0, \pi]$ is the angle formed at the origin 0 by the x_1 -axis and the ray 0x. Thus, $r = |x|$ and θ are the first two spherical coordinates of x; we shall not use the remaining $n-2$ spherical coordinates. A real function Φ is affine if it has the form $\Phi(t) = at + b$ with real constants a, b.

The cap-symmetric decreasing rearrangement g of $f \in L^1(S)$ is a rearrangement of f such that $g(x)$ depends only on θ and it is a decreasing function of θ . The precise definition will be given in § 2.

Theorem 1.1. Let $f \in L^1(S)$ and let g be the cap-symmetric decreasing re*arrangement of* f*. Let* u *and* v *be the harmonic extensions of* f *and* g *in* B*, respectively. Then, for every* $0 < r < 1$ *and every convex function* $\Phi: \mathbb{R} \to \mathbb{R}$ *,*

$$
\int_{S} \Phi(u(r\zeta))\sigma(\mathrm{d}\zeta) \leqslant \int_{S} \Phi(v(r\zeta))\sigma(\mathrm{d}\zeta). \tag{1.3}
$$

If Φ *is affine, then the equality holds in (1.3) for all* $0 < r < 1$ *. If there is no interval on which* Φ *is affine, then the equality holds in (1.3) for some* $0 < r < 1$ *if and only if* $f = g \circ T \sigma$ -almost everywhere (σ -a.e.) on S for some orthogonal transformation T.

For $n = 2$ and $f \ge 0$, Theorem 1.1 implies Gabriel's result (1.2), and for $n = 2$ and $\Phi(t) = |t|^p$, $p \ge 1$, it gives Baernstein's inequality (1.1). The proof of Theorem 1.1, given in § 3, uses a discretization argument, the approach to symmetrization via polarization and properties of harmonic measure.

Our second theorem is motivated by the harmonic Schwarz lemma. Schwarz himself had proved that if u is a harmonic function in the unit disc with $|u| < 1$ and $u(0) = 0$, then, for all z in the unit disc,

$$
|u(z)| \leq \frac{4}{\pi} \tan^{-1}|z|
$$
\n(1.4)

(see [**16**, pp. 189–199, 361–362]). Various extensions of this inequality have been discovered; see [**2**, pp. 123–128], [**10**, p. 77], [**9**], [**6**] and [**15**]. A higher-dimensional extension of (1.4) has been proved in [2, 6, 9]. If u is harmonic in \mathbb{B} with $|u| < 1$ and $u(0) = 0$, then for $x \in \mathbb{B}$,

$$
|u(x)| \leqslant U(|x|e_1),\tag{1.5}
$$

where U is the harmonic extension of the function $F: S \to \mathbb{R}$ with

$$
F(\zeta) = \begin{cases} 1, & \zeta_1 \geq 0, \\ -1, & \zeta_1 < 0. \end{cases}
$$

Moreover, the equality holds in (1.5) for some non-zero $x \in \mathbb{B}$ if and only if $u = U \circ T$ for some orthogonal transformation T.

The function U is extremal for another problem (see [2, 6, 9]): if u is harmonic in \mathbb{B} and $|u| < 1$, then

$$
|\nabla u(0)| \leqslant |\nabla U(0)|,\tag{1.6}
$$

with equality if and only if $u = U \circ T$. We shall now see that U is also extremal for a problem involving integral means.

Theorem 1.2. Let u be harmonic in \mathbb{B} and suppose that $|u| < 1$ and $u(0) = 0$. Then, *for every* $0 < r < 1$ *and every convex function* $\Phi: (-1, 1) \to \mathbb{R}$ *,*

$$
\int_{S} \Phi(u(r\zeta))\sigma(\mathrm{d}\zeta) \leqslant \int_{S} \Phi(U(r\zeta))\sigma(\mathrm{d}\zeta). \tag{1.7}
$$

If Φ *is affine, then (1.7) holds with equality for every* $r \in (0,1)$ *. If there is no interval on which* Φ *is affine, then the equality holds for some* $r \in (0,1)$ *if and only if* $u = U \circ T$ *for some orthogonal transformation* T*.*

Note that, for $n = 2$, U is the real part of the holomorphic function

$$
H(z) = \frac{4}{\pi} \tan^{-1} z
$$

that maps the unit disc conformally onto the strip $\{z: -1 < \text{Re } z < 1\}$. In this case, (1.7) follows from the theory of subordination; see, for example, [**14**, Theorem 2.23]. We shall see in $\S 5$ that (1.7) implies both (1.5) and (1.6) .

The proof of Theorem 1.2 in § 4 uses Baernstein's star function method [**3**,**5**,**13**] and Theorem 1.1.

2. Preparation for the proofs

2.1. A convexity lemma

We shall use the following elementary lemma (cf. [**17**]).

Lemma 2.1. *Let* $a_1, b_1, a_2, b_2 \in \mathbb{R}$ *be such that*

$$
a_2 + b_2 = a_1 + b_1
$$
 and $\max\{a_2, b_2\} < b_1$.

Let $\Phi: \mathbb{R} \to \mathbb{R}$ be a convex function. Then

$$
\Phi(a_2) + \Phi(b_2) \le \Phi(a_1) + \Phi(b_1). \tag{2.1}
$$

The equality holds in (2.1) if and only if Φ *is affine on* [a_1, b_1]*.*

2.2. Harmonic measure

Let E be a Borel set on S . The *harmonic measure* of E is the Poisson integral of the function χ_E . The harmonic measure of E at the point $x \in \mathbb{B}$ will be denoted by $\omega(x, E)$.

2.3. Polarization

We define the *polarization* with respect to the $(n-1)$ -dimensional plane $\Pi = \{x : x_1 =$ 0}. For $A \subset S$, we denote by \hat{A} the reflection of A in Π , i.e.

$$
\hat{A} = \{ (x_1, x_2, \dots, x_n) \colon (-x_1, x_2, \dots, x_n) \in A \}.
$$

We shall also use the notation $\hat{x} = (-x_1, x_2, \ldots, x_n), A_+ = \{x \in A : x_1 > 0\}, A_- = \{x \in A\}$ A: $x_1 < 0$.

Let $E \subset S$. We divide E into three disjoint sets: the symmetric part $E_{sym} = E \cap \hat{E}$, the right non-symmetric part $E_r = E_+\setminus E_{sym}$ and the left non-symmetric part $E_l = E_-\setminus E_{sym}$. The polarization of E with respect to Π is the set

$$
E^{\Pi} = E_{\text{sym}} \cup E_{\text{r}} \cup \hat{E}_{\text{l}}.
$$

It follows from symmetry and the maximum principle that, for every Borel set $E \subset S$,

$$
\omega(x, E) + \omega(\hat{x}, E) = \omega(x, E^{II}) + \omega(\hat{x}, E^{II}), \quad x \in \mathbb{B},
$$
\n(2.2)

and

$$
\max\{\omega(x,E),\omega(\hat{x},E),\omega(\hat{x},E^{\Pi})\} \leq \omega(x,E^{\Pi}), \quad x \in \mathbb{B}_{+}.
$$
 (2.3)

The polarization of a function $f: S \to \mathbb{R}$ with respect to Π is the function $f^{\Pi}: S \to \mathbb{R}$ given by

$$
f^{II}(x) = \begin{cases} \max\{f(x), f(\hat{x})\}, & x \in S_+ \cup \Pi, \\ \min\{f(x), f(\hat{x})\}, & x \in S_-. \end{cases}
$$

Note that $(\chi_E)^{\Pi} = \chi_{(E^{\Pi})}$.

In a similar way, we define the polarization E^H of $E\subset S$ and the polarization f^H of a function f with respect to any oriented plane H passing through the origin.

2.4. Cap-symmetric decreasing rearrangement

We give here the definition of the cap-symmetric decreasing rearrangement q of a function $f \in L^1(S)$. The function $g: S \to \mathbb{R}$ depends only on θ , is decreasing as θ increases from 0 to π and has the same distribution function as f: for all $t \in \mathbb{R}$,

$$
\sigma(\{x \in S : g(x) > t\}) = \sigma(\{x \in S : f(x) > t\}).
$$

These conditions determine g uniquely, except for sets of σ -measure zero. The function g may be expressed by the formula

$$
g(\theta) = \inf\{t \colon \sigma(\{x \colon f(x) > t\}) \leq \sigma(C(\theta))\}, \quad \theta \in [0, \pi].
$$

Here and below, $C(\theta_o)$ is the spherical cap on S centred at e_1 given by $C(\theta_o) = \{x \in$ $S: 0 \leq \theta < \theta_o$.

3. Proof of Theorem 1.1

Let $f \in L^1(S)$ and let q be the cap-symmetric decreasing rearrangement of f. Let u and v be the harmonic extensions in $\mathbb B$ of f and q, respectively. Suppose first that f is a simple function taking a finite number of values

$$
a_1 > a_2 > \cdots > a_k.
$$

Then f has the representation

$$
f = \sum_{j=1}^{k} a_j \chi_{A_j}
$$
 with $A_j = \{x \in S : f(x) = a_j\}.$

We modify the above representation of f as follows. Set

$$
E_1 = A_1,
$$

\n
$$
E_2 = A_1 \cup A_2,
$$

\n
$$
\vdots
$$

\n
$$
E_{k-1} = A_1 \cup \dots \cup A_{k-1},
$$

\n
$$
E_k = A_1 \cup A_2 \cup \dots \cup A_k = S
$$

and

$$
c_1 = a_1 - a_2
$$
, $c_2 = a_2 - a_3$, ..., $c_{k-1} = a_{k-1} - a_k$, $c_k = a_k$.

Then

$$
f = \sum_{j=1}^{k} c_j \chi_{E_j}.
$$

Moreover, for the polarization f^{Π} of f with respect to the hyperplane Π , we have

$$
f^{\Pi} = \sum_{j=1}^{k} c_j \chi_{E_j^{\Pi}}.
$$

Let h be the harmonic extension of f^H in B. Then

$$
u(x) = \sum_{j=1}^{k} c_j \omega(x, E_j)
$$
 and $h(x) = \sum_{j=1}^{k} c_j \omega(x, E_j^{\Pi}).$

It follows from (2.2) and (2.3) that

$$
u(x) + u(\hat{x}) = h(x) + h(\hat{x}), \quad x \in \mathbb{B},
$$
 (3.1)

and

$$
\max\{u(x), u(\hat{x}), h(\hat{x})\} \leqslant h(x), \quad x \in \mathbb{B}_+.
$$
\n(3.2)

By a standard approximation argument, (3.1) and (3.2) continue to hold for general $f \in L^1(S)$.

Lemma 2.1 and (3.1) imply that, for every convex Φ ,

$$
\Phi(u(x)) + \Phi(u(\hat{x})) \le \Phi(h(x)) + \Phi(h(\hat{x})), \quad x \in \mathbb{B}, \tag{3.3}
$$

which yields

$$
\int_{S} \Phi(u(r\zeta))\sigma(\mathrm{d}\zeta) \leq \int_{S} \Phi(h(r\zeta))\sigma(\mathrm{d}\zeta), \quad 0 < r < 1.
$$
\n(3.4)

By another approximation argument (involving the approximation of symmetrization by a sequence of polarizations with respect to suitable hyperplanes passing through the origin [**7**]), (3.4) implies

$$
\int_{S} \Phi(u(r\zeta))\sigma(\mathrm{d}\zeta) \leqslant \int_{S} \Phi(v(r\zeta))\sigma(\mathrm{d}\zeta), \quad 0 < r < 1. \tag{3.5}
$$

Thus, (1.3) is proved.

(We note here that [**7**] treats the case of Steiner symmetrization, not the cap symmetrization that we use here. However, the arguments of [**7**, § 6] can be slightly modified to prove the corresponding results for cap symmetrization.)

We prove now the equality statement of Theorem 1.1. If Φ is affine, then the equality holds in (3.3) for every $x \in \mathbb{B}$ and therefore the equality holds in (3.4) for every $r \in (0, 1)$. Suppose there is no interval on which Φ is affine.

Claim 3.1. *The equality holds in (3.3) for some* $x_o \in \mathbb{B} \setminus \Pi$ *if and only if either* $f(\zeta) = f^{\Pi}(\zeta)$ for σ -almost every $\zeta \in S$ or $f(\zeta) = f^{\Pi}(\hat{\zeta})$ for σ -almost every $\zeta \in S$.

Proof of Claim 3.1. If $f(\zeta) = f^{\Pi}(\zeta)$ for σ -almost every $\zeta \in S$ (or if $f(\zeta) = f^{\Pi}(\hat{\zeta})$ for σ -almost every $\zeta \in S$), then $u(x) = h(x)$ in B (or $u(x) = h(\hat{x})$ in B) and (3.3) holds with equality for every $x \in \mathbb{B}$. Suppose conversely that we have the equality in (3.3) for some $x_o \in \mathbb{B} \setminus \Pi$. By (3.1), (3.2) and Lemma 2.1, either

$$
u(x_o) = h(x_o)
$$
 and $u(\hat{x}_o) = h(\hat{x}_o)$

or

$$
u(x_o) = h(\hat{x}_o) \quad \text{and} \quad u(\hat{x}_o) = h(x_o).
$$

Suppose that $u(x_o) = h(x_o)$ and $u(\hat{x}_o) = h(\hat{x}_o)$ and $x_o \in \mathbb{B}_+$. By (3.2), $u \leq h$ in \mathbb{B}_+ . By the maximum principle, $u = h$ in \mathbb{B}_+ and, by the identity principle for harmonic functions, $u = h$ in B. In all other cases, we conclude similarly that either $u(x) = h(x)$ for every $x \in \mathbb{B}$ or $u(x) = h(\hat{x})$ for every $x \in \mathbb{B}$. By Fatou's theorem for the Poisson integrals (see, for example, $[2, p. 135]$), the limit of $u(x)$ as x tends non-tangentially to $\zeta \in S$ is $f(\zeta)$ for σ -almost every $\zeta \in S$, and similarly for h. Hence, either $f(\zeta) = f^{\Pi}(\zeta)$ for σ -almost every $\zeta \in S$ or $f(\zeta) = f^{\Pi}(\hat{\zeta})$ for σ -almost every $\zeta \in S$. So Claim 3.1 is proved. \square

Suppose now that the equality holds in (1.3) for some $r \in (0,1)$. Suppose also that $f \neq q \circ T$ on a set of positive σ -measure for any orthogonal transformation. By a standard result in the theory of symmetrization (see [**7**, Lemma 6.3] for the corresponding result for Steiner symmetrization), there exists an $(n-1)$ -dimensional plane H passing through the origin such that $f(\zeta) \neq f^H(\zeta)$ and $f(\zeta) \neq f^H(\hat{\zeta})$ for all $\zeta \in E \subset S$ with $\sigma(E) > 0$. Let h denote the harmonic extension of f^H in $\mathbb B$ and let the hat denote reflection in H. By Claim 3.1, for every $x \in \mathbb{B} \setminus H$,

$$
\Phi(u(x)) + \Phi(u(\hat{x})) < \Phi(h(x)) + \Phi(h(\hat{x})).\tag{3.6}
$$

Therefore,

$$
\int_{S} \Phi(u(r\zeta))\sigma(d\zeta) < \int_{S} \Phi(h(r\zeta))\sigma(d\zeta), \quad 0 < r < 1. \tag{3.7}
$$

But the cap-symmetric decreasing rearrangement of f^H is again q. By (1.3),

$$
\int_{S} \Phi(h(r\zeta))\sigma(\mathrm{d}\zeta) \leqslant \int_{S} \Phi(v(r\zeta))\sigma(\mathrm{d}\zeta), \quad 0 < r < 1. \tag{3.8}
$$

By (3.7) and (3.8),

$$
\int_{S} \Phi(u(r\zeta))\sigma(d\zeta) < \int_{S} \Phi(h(r\zeta))\sigma(d\zeta), \quad 0 < r < 1,\tag{3.9}
$$

which is a contradiction.

4. Proof of Theorem 1.2

Let $\Phi: (-1,1) \to \mathbb{R}$ be a convex function. Since u is bounded, there exists a function $f \in L^{\infty}(S)$ such that u is the Poisson integral of f (see, for example, [2, Chapter 6]). Let g be the cap-symmetric decreasing rearrangement of f , and let v be the Poisson integral of g. By Theorem 1.1,

$$
\int_{S} \Phi(u(r\zeta))\sigma(\mathrm{d}\zeta) \leqslant \int_{S} \Phi(v(r\zeta))\sigma(\mathrm{d}\zeta), \quad 0 < r < 1. \tag{4.1}
$$

Consider the star functions v^* and U^* of v and U, respectively. These functions are defined on the upper half D of the unit disc by the formulae

$$
v^*(r\mathrm{e}^{\mathrm{i}\theta}) = \sup_E \int_E v(r\zeta)\sigma(\mathrm{d}\zeta)
$$

and

$$
U^*(r e^{i\theta}) = \sup_E \int_E U(r\zeta)\sigma(d\zeta),
$$

where the supremum is taken over all sets $E \subset S$ with $\sigma(E) = \sigma(C(\theta))$. The function v is symmetric decreasing on each of the spheres rS , $0 < r < 1$; this fact can be proved easily by an approximation argument and by inequality (2.3). Therefore (see [**5**, p. 246]),

$$
v^*(re^{i\theta}) = \int_{C(\theta)} v(r\zeta)\sigma(d\zeta), \quad 0 < r < 1, \ 0 < \theta < \pi.
$$

Similarly,

$$
U^*(r e^{i\theta}) = \int_{C(\theta)} U(r\zeta)\sigma(d\zeta), \ \ 0 < r < 1, \ 0 < \theta < \pi.
$$

Since v and U are harmonic functions in $\mathbb B$ and depend only on the spherical coordinates r, θ (and not on the rest of the spherical coordinates), a calculation (see [5, p. 247])

shows that both v^* and U^* are L-harmonic functions. This means that $Lv^* = 0 = LU^*$, where L is the elliptic partial differential operator (written in polar coordinates)

$$
L = \frac{1}{r^{n-1}} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial}{\partial r} \right) + \frac{\sin^{n-2} \theta}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin^{n-2} \theta} \frac{\partial}{\partial \theta} \right).
$$

We shall prove that, for all $z \in D$,

$$
v^*(z) \leqslant U^*(z). \tag{4.2}
$$

We extend v^* and U^* to the closure \bar{D} of D by taking limits as z tends to boundary points of D. It is easy to see that the extended functions are both continuous on \overline{D} . By the fundamental result of the star function theory (see [**3**, Theorem A], [**13**, Theorem 1], [**5**, Theorem 5]), to prove (4.2) it suffices to show that (4.2) holds for every $z \in \partial D$. We distinguish four cases for the location of $z \in \partial D$.

Case 1. z lies on the interval $(0, 1)$.

Then $v^*(z) = U^*(z) = 0$.

Case 2. z lies on the interval $(-1, 0)$.

Then, by the mean-value theorem for harmonic functions,

$$
v^*(z) = \int_{C(\pi)} v(r\zeta)\sigma(\mathrm{d}\zeta) = \int_S v(r\zeta)\sigma(\mathrm{d}\zeta) = v(0) = 0,
$$

and similarly $U^*(z) = 0$.

Case 3. $z = e^{i\theta}$ for some $\theta \in [0, \frac{1}{2}\pi]$. Then

$$
v^*(z) = \int_{C(\theta)} g(\zeta) \sigma(\mathrm{d}\zeta) \leq \int_{C(\theta)} 1 \sigma(\mathrm{d}\zeta) = \int_{C(\theta)} F(\zeta) \sigma(\mathrm{d}\zeta) = U^*(z).
$$

Case 4. $z = e^{i\theta}$ for some $\theta \in (\frac{1}{2}\pi, \pi]$. Then

$$
v^*(z) = \int_{C(\theta)} g(\zeta)\sigma(\mathrm{d}\zeta) = -\int_{S \setminus C(\theta)} g(\zeta)\sigma(\mathrm{d}\zeta)
$$

\n
$$
\leq -\int_{S \setminus C(\theta)} (-1)\sigma(\mathrm{d}\zeta) = -\int_{S \setminus C(\theta)} F(\zeta)\sigma(\mathrm{d}\zeta)
$$

\n
$$
= \int_{C(\theta)} F(\zeta)\sigma(\mathrm{d}\zeta) = U^*(z).
$$

Therefore, (4.2) is proved. The inequality (4.2) implies that

$$
\int_{S} \Phi(v(r\zeta))\sigma(\mathrm{d}\zeta) \leqslant \int_{S} \Phi(U(r\zeta))\sigma(\mathrm{d}\zeta), \quad 0 < r < 1. \tag{4.3}
$$

This follows from a modification of [**3**, Proposition 3]. This proposition, in fact, has the additional assumption that Φ is increasing; however, this assumption is not necessary

when the two functions $(v(r \cdot))$ and $U(r \cdot)$ in our case) have the same integral, which is the case for the above application of the proposition.

Now (1.7) follows from (4.1) and (4.3) .

We proceed to prove the statement of the equality. If Φ is affine, then it follows from the mean-value property that (1.7) holds with equality for every $r \in (0,1)$. Suppose from now on that there is no interval on which Φ is affine. If $u = U \circ T$ for some orthogonal transformation, then clearly (1.7) holds with equality for every $r \in (0,1)$. Assume, conversely, that (1.7) holds with equality for some $r_o \in (0, 1)$, i.e.

$$
\int_{S} \Phi(u(r_o \zeta)) \sigma(d\zeta) = \int_{S} \Phi(U(r_o \zeta)) \sigma(d\zeta).
$$
\n(4.4)

Seeking a contradiction, suppose that $g \neq F$ on a set of positive σ -measure. Then there exists a small $\delta > 0$ such that

ess sup{
$$
g(x): \frac{1}{2}\pi - \delta < \theta < \frac{1}{2}\pi
$$
} =: $\alpha < 1$

and

ess inf{
$$
g(x): \frac{1}{2}\pi < \theta < \frac{1}{2}\pi + \delta
$$
} =: $\beta > -1$.

Recall that $\theta \in [0, \pi]$ is the first angular spherical coordinate of x. We set $\eta = \max\{\alpha, -\beta\}$ and note that $\eta \in [0,1)$. Consider the function $q: S \to \mathbb{R}$, which depends only on θ and is given by

$$
q(x) = \begin{cases} 1 - \eta, & \frac{1}{2}\pi - \delta < \theta < \frac{1}{2}\pi, \\ \eta - 1, & \frac{1}{2}\pi < \theta < \frac{1}{2}\pi + \delta, \\ 0, & \text{elsewhere.} \end{cases}
$$

Let $\mathcal{P}[\cdot]$ denote the Poisson integral. By symmetry,

$$
\mathcal{P}[q](x) = 0, \quad x \in \mathbb{B} \cap \Pi. \tag{4.5}
$$

So the maximum principle gives

$$
\mathcal{P}[q](x) = -\mathcal{P}[q](\hat{x}) > 0, \quad x \in \mathbb{B}_+.\tag{4.6}
$$

The function $\mathcal{P}[g + q]$ satisfies the assumptions of Theorem 1.2, namely $|\mathcal{P}[g + q]| < 1$ and $\mathcal{P}[g+q](0) = 0$. Hence,

$$
\int_{S} \Phi(\mathcal{P}[g+q](r_o \zeta)) \sigma(\mathrm{d}\zeta) \leqslant \int_{S} \Phi(U(r_o \zeta)) \sigma(\mathrm{d}\zeta). \tag{4.7}
$$

On the other hand, by (4.6) , for $x \in \mathbb{B}$,

$$
\mathcal{P}[g+q](x) + \mathcal{P}[g+q](\hat{x}) = \mathcal{P}[g](x) + \mathcal{P}[q](x) + \mathcal{P}[g](\hat{x}) + \mathcal{P}[q](\hat{x})
$$

$$
= \mathcal{P}[g](x) + \mathcal{P}[g](\hat{x})
$$

$$
= v(x) + v(\hat{x}), \qquad (4.8)
$$

and, for $x \in \mathbb{B}_+,$

$$
v(x) = \mathcal{P}[g](x) < \mathcal{P}[g](x) + \mathcal{P}[q](x) = \mathcal{P}[g + q](x). \tag{4.9}
$$

Hence, Lemma 2.1 implies that, for $x \in \mathbb{B}_+,$

$$
\Phi(v(x)) + \Phi(v(\hat{x})) < \Phi(\mathcal{P}[g+q](x)) + \Phi(\mathcal{P}[g+q](\hat{x})),\tag{4.10}
$$

and therefore

$$
\int_{S} \Phi(v(r_o \zeta)) \sigma(\mathrm{d}\zeta) < \int_{S} \Phi(\mathcal{P}[g+q](r_o \zeta)) \sigma(\mathrm{d}\zeta). \tag{4.11}
$$

By (4.1), (4.7) and (4.11),

$$
\int_{S} \Phi(u(r_o \zeta)) \sigma(d\zeta) < \int_{S} \Phi(U(r_o \zeta)) \sigma(d\zeta),\tag{4.12}
$$

which contradicts (4.4). We conclude that $g = F \sigma$ -a.e. on S, and therefore $v = U$ in B. By the equality statement of Theorem 1.1, there exists an orthogonal transformation T such that $f = g \circ T = F \circ T$ σ -a.e. on S. It follows that $u = U \circ T$ in $\mathbb B$.

5. Concluding remarks

Remark 5.1. Theorem 1.2 implies both inequalities (1.5) and (1.6). Indeed, by applying (1.7) with $\Phi(t) = |t|^p$, $1 \leq p < \infty$, we obtain

$$
\int_{S} |u(r\zeta)|^p \sigma(d\zeta) \le \int_{S} |U(r\zeta)|^p \sigma(d\zeta), \quad 0 < r < 1.
$$
\n(5.1)

Letting $p \to \infty$, we get

$$
\max_{\zeta \in S} |u(r\zeta)| \le \max_{\zeta \in S} |U(r\zeta)| = U(re_1), \quad 0 < r < 1,
$$

which is equivalent to (1.5). To prove (1.6), we use (5.1) for $p = 2$. By expanding u and U in a series of homogeneous polynomials (see $[2, pp. 24, 140]$), we see that (5.1) for $p = 2$ implies

$$
c|\nabla u(0)|^2r^2 + c_2r^4 + c_3r^6 + \cdots \leq c|\nabla U(0)|^2r^2 + C_2r^4 + C_3r^6 + \cdots,
$$

where $c > 0$ and c_j , C_j , $j = 2, 3, \ldots$, are real constants. By dividing by r^2 and letting $r \rightarrow 0$, we obtain (1.6).

Remark 5.2. We can replace the assumption $u(0) = 0$ in Theorem 1.2 by the weaker assumption $u(0) = c$ for a fixed $c \in (-1, 1)$. Then the extremal function is the harmonic extension U_c of the function $F_c = \chi_{C(\theta_c)} - \chi_{S\setminus C(\theta_c)}$, where $\theta_c \in (0, \pi)$ is chosen so that $U_c(0) = c$. The proof of this version of Theorem 1.2 is similar but more technical. Analogous modifications of the inequalities (1.5) and (1.6) have been proved in [**9**] and [**6**].

Remark 5.3. By a basic symmetrization inequality for harmonic measure [**3**, **17**], if $x \in \mathbb{B}$ and E is a Borel subset of S, then

$$
\omega(-|x|e_1, E^{\sharp}) \leq \omega(x, E) \leq \omega(|x|e_1, E^{\sharp}), \tag{5.2}
$$

where E^{\sharp} is the spherical cap centred at e_1 with $\sigma(E^{\sharp}) = \sigma(E)$. It follows from (5.2) and a discretization argument (as in the proof of Theorem 1.1) that if $f \in L^1(S)$ and g is its cap-symmetric decreasing rearrangement, then, for $x, y \in r\mathbb{B}$,

$$
|\mathcal{P}[f](x) - \mathcal{P}[f](y)| \leq \mathcal{P}[g](re_1) - \mathcal{P}[g](-re_1) \leq \mathcal{P}[F](re_1) - \mathcal{P}[F](-re_1).
$$
 (5.3)

An immediate consequence of this inequality is the following diameter version of the harmonic Schwarz lemma; see [**8**] and references therein for the corresponding result for holomorphic functions.

Proposition. If u is a harmonic function in \mathbb{B} and $\text{diam}(u(\mathbb{B})) = 2$, then

$$
diam(u(r\mathbb{B})) \leq diam(U(r\mathbb{B})), \quad 0 < r < 1.
$$
 (5.4)

The equality holds in (5.4) for some $r \in (0,1)$ *if and only if* $u = \pm U \circ T + c$ *for some orthogonal transformation* T *and some real constant* c*.*

This easily extends to complex-valued harmonic functions. We do not give a detailed account of this result because it can easily be obtained from the methods in [**2**, **6**, **9**], which use only the properties of the Poisson integral.

Acknowledgements. I thank the referee for essential suggestions.

References

- 1. A. C. Allen, Note on a theorem of Gabriel, J. Lond. Math. Soc. **27** (1952), 367–369.
- 2. S. AXLER, P. BOURDON AND W. RAMEY, *Harmonic function theory* (2nd edn) (Springer, 2001).
- 3. A. Baernstein II, Integral means, univalent functions and circular symmetrization, Acta Math. **133** (1974), 139–169.
- 4. A. Baernstein II, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. **27** (1978), 833–852.
- 5. A. Baernstein II and B. A. Taylor, Spherical rearrangements, subharmonic functions, and ∗-functions in n-space, Duke Math. J. **43** (1976), 245–268.
- 6. A. F. Beardon, A. D. Rhodes and P. J. Rippon, Schwarz lemma for harmonic functions, Bull. Hong Kong Math. Soc. **2** (1998), 11–26.
- 7. F. Brock and A. Yu. Solynin, An approach to symmetrization via polarization, Trans. Am. Math. Soc. **352** (2000), 1759–1796.
- 8. R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini and T. J. Ransford, Area, capacity and diameter versions of Schwarz's lemma, Conform. Geom. Dyn. **12** (2008), 133–152.
- 9. B. Burgeth, A Schwarz lemma for harmonic and hyperbolic-harmonic functions in higher dimensions, Manuscr. Math. **77** (1992), 283–291.
- 10. P. Duren, Harmonic mappings in the plane (Cambridge University Press, 2004).

- 11. M. ESSÉN AND D. F. SHEA, On some questions of uniqueness in the theory of symmetrization, Annales Acad. Sci. Fenn. A **4** (1979), 311–340.
- 12. R. M. Gabriel, A 'star inequality' for harmonic functions, Proc. Lond. Math. Soc. **34** (1932), 305–313.
- 13. R. Gariepy and J. L. Lewis, A maximum principle with applications to subharmonic functions in n-space, Ark. Mat. **12** (1974), 253–266.
- 14. W. K. Hayman and P. B. Kennedy, Subharmonic functions, Volume 1 (Academic, 1976).
- 15. D. Kalaj and M. Vuorinen, On harmonic functions and the Schwarz lemma, Proc. Am. Math. Soc. **140** (2012), 161–165.
- 16. H. A. Schwarz, Gessamelte Mathematische Abhandlungen, Chelsea Publishing Series (Chelsea, New York, 1972).
- 17. A. Yu. Solynin, Functional inequalities via polarization, St Petersburg Math. J. **8** (1997), 1015–1038.