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The Shifted Turán Sieve Method on
Tournaments

Wentang Kuo, Yu-Ru Liu, Sávio Ribas, and Kevin Zhou

Abstract. We construct a shi�ed version of the Turán sieve method developed by R. Murty and the
second author and apply it to counting problems on tournaments. More precisely, we obtain upper
bounds for the number of tournaments which contain a ûxed number of restricted r-cycles. hese are
the ûrst concrete results which count the number of cycles over “all tournaments”.

1 Introduction

In 1934, P. Turán [20] gave a very simple proof of a celebrated result of Hardy and
Ramanujan [6] that the normal order of distinct prime factors of a natural number n

is log log n. If ω(n) denotes the number of distinct prime factors of n, Turán proved
that

∑
n≤x

(ω(n) − log log x) 2
≪ x log log x;

fromwhich the normal order of ω(n) is easily deduced. Turán’s original derivation of
theHardy–Ramanujanheoremwas essentiallyprobabilistic and concealed in it an el-
ementary sievemethod. In [9], R. Murty and the second author introduced the Turán
sievemethod and applied it to probabilisticGalois theory problems. hismethodwas
further generalized to bipartite graphs in [10] to investigate a variety of combinatorial
questions, including graph colourings, Latin squares, etc.

Let X be a bipartite graph with ûnite partite sets (A, B). For a ∈ A and b ∈ B, we
write a ∼ b if there is an edge that joins a and b. For b ∈ B, we deûne the degree of b
to be

deg b ∶= #{a ∈ A ∣ a ∼ b}.

For b1 , b2 ∈ B, we deûne the number of common neighbors of b1 and b2 as

n(b1 , b2) ∶= #{a ∈ A ∣ a ∼ b1 and a ∼ b2}.

For a ∈ A, we deûne

ω(a) ∶= #{b ∈ B ∣ a ∼ b}.

Received by the editors September 9, 2017; revisedMarch 24, 2019.

he research of the ûrst and second authorswere partially supported byNSERC discovery grants. he
research of the third author was partially supported by CAPES and CSF/CNPQ, Brazil.

AMS subject classiûcation: 05A05, 11N35.
Keywords: shi�ed Turán sieve, tournament, cycle.

Published online on Cambridge Core August 20, 2019.

Canad. Math. Bull. Vol. 62 (4), 2019 pp. 841–855

https://doi.org/10.4153/S000843951900016X Published online by Cambridge University Press

https://doi.org/10.4153/S000843951900016X


W. Kuo, Y.-R. Liu, S. Ribas, and K. Zhou

Notice that

∑
a∈A

ω(a) =∑
b∈B

deg b and ∑
a∈A

ω
2
(a) = ∑

b1 ,b2∈B
n(b1 , b2).

hen R. Murty and the second author proved the following theorem [10,heorem 1].

heorem 1.1 Suppose that A and B are partite sets of a bipartite graph X. hen

∑
a∈A

(ω(a) −
1
∣A∣
∑
b∈B

deg b)
2
= ∑
b1 ,b2∈B

n(b1 , b2) −
1
∣A∣

(∑
b∈B

deg b)
2
.

From which, they derive the Turán sievemethod [10, Corollary 1] which states the
following.

Corollary 1.2 (he Turán Sieve)

#{a ∈ A ∣ ω(a) = 0} ≤ ∣A∣
2
⋅
∑b1 ,b2∈B n(b1 , b2)

(∑b∈B deg b)2 − ∣A∣.

he extension of sievemethods to a combinatorial setting has been attempted be-
fore. For example, R. Wilson [24] and T. Chow [2] have formulated the Selberg sieve
in a combinatorial context (see also [11, Section 2]). However, due to the diõculty of
computation of the Möbius function of a lattice in an abstract setting, it is not clear
how one can apply the Selberg sieve to general combinatorial problems. his obstruc-
tion is eliminated by the Turán sieve, as the bound in Corollary 1.2 does not involve
theMöbius function and thus can be applied to many questions in combinatorics.
For combinatorial applications, one could be interested in estimating the number

of a ∈ Awith ω(a) > 0. hus, to allow us more �exibility in some counting questions,
we construct a “shi�ed” version of the Turán sieve. For a ûxed integer k ∈ N ∪ {0},

#{a ∈ A ∣ ω(a) = k} ⋅ ( k −
1
∣A∣
∑
b∈B

deg b)
2
≤ ∑
a∈A

(ω(a) −
1
∣A∣
∑
b∈B

deg b)
2
.

Combining this inequality with heorem 1.1, we obtain the following ‘shi�ed’ version
of the Turán sievemethod.

Corollary 1.3 (he shi�ed Turán sieve) For k ∈ N ∪ {0}, we have

#{a ∈ A ∣ ω(a) = k} ≤
∣A∣2∑b1 ,b2∈B n(b1 , b2) − ∣A∣(∑b∈B deg b)2

(∣A∣ ⋅ k −∑b∈B deg b)2 .

We notice that for k = 0, Corollary 1.3 impliesCorollary 1.2. In this paper,we apply
Corollary 1.3 to some counting problems on tournaments.
For t ≥ 2, let X1 , X2 , . . . , Xt be t pairwise disjoint sets of points with ∣X i ∣ = m i

(1 ≤ i ≤ t). We join each pair of points that are not in the same X i by a line oriented
towards exactly one point and thus obtain a complete oriented t-partite graph. Such
a graph is called a t partite tournamentwith m1 × ⋅ ⋅ ⋅×mt players, andwe let Tm1 , . . . ,m t

denote the set of all such tournaments. If m1 = m2 = ⋅ ⋅ ⋅ = mt = 1, we denote it by
Tt , which is the set of all complete oriented graphs of t elements. In all subsequent

842

https://doi.org/10.4153/S000843951900016X Published online by Cambridge University Press

https://doi.org/10.4153/S000843951900016X


he Shi�ed Turán SieveMethod on Tournaments

sections, if {x , y} is an oriented edge toward y, we write x → y, meaning that y
defeates x.
For a tournament T , suppose that V = {x1 , x2 , . . . , xr} ⊆ T is a set of players

(vertices) such that x1 → x2 → ⋅ ⋅ ⋅ → xr → x1. We call this subgraph an r-cycle on
T and denote it by (V , τ) = (x1 , x2 , . . . , xr , τ), where τ represents the collection of
games x1 → x2 → ⋅ ⋅ ⋅ → xr → x1; we say τ generates T ∣V , the restriction of T on
V . An r-cycle (V , τ) is called a restricted r-cycle on a t-partite tournament T if every
partite set X1 , X2 , . . . , Xt contains at most one point in V . Otherwise we say that it is
an unrestricted r-cycle.

here aremany results on cycles in t-partite tournaments. For example, the paper
[15] contains a study on the average number of 4-cycles on random bipartite tourna-
ments (i.e., t = 2) and a proof that the distribution of the 4-cycles satisûes the same
conclusion as the Central Limit heorem. In addition, the paper [25] exhibits condi-
tions to ensure that some bipartites tournaments contains 2s-cycles for every 2 ≤ s ≤ r.
In addition, some results valid for bipartite tournaments were extended to t-partite
tournaments in [3]. For 3-partite tournaments, [21] and [22] consider certain lengths
of cycles contained in tournaments. Diòerent types of cycles contained in general
t-partite tournaments are considered in [23], [14], and [5].

Given k ∈ N ∪ {0} and r ∈ N, one can ask how many tournaments have exactly k

restricted, or unrestricted, r-cycles. In this paper, we work on the restricted case. We
ûrst consider the case of complete oriented graphs.

Notation For x ∈ R, x > 0, let f (x) and g(x) be two functions of x. If g(x) is a
positive function and there exists a constant C > 0 such that ∣ f (x)∣ ≤ Cg(x),wewrite
f (x) ≪ g(x) or f (x) = O( g(x)) ; if limx→∞ f (x)/g(x) = 0,write f (x) = o( g(x)) .
In all theorems of this paper, the O-terms mean absolute constants. ∎

heorem 1.4 Let 3 ≤ r ≤ n and 0 ≤ k ≤ (
n

r
)r! be integers. We have

#{T ∈ Tn ∣ T contains exactly k restricted r-cycles}

≤ 2(
n
2) ⋅ (

n

r
)r! ⋅ {

2nr−3 + O(( 6r
e
)r ⋅ n

r−4 ⋅r−4

(r−4)! )

[2rk − (r − 1)!(n

r
)]

2 } .

Notice that as n →∞, the above bound is of size 2(
n
2) ⋅ O( 1

n3 ). Since the size of Tn

is 2(
n
2), this result gives a non-trivial upper bound of the number of tournaments in

Tn containing exactly k restricted r-cycles.
he proof of heorem 1.4 is based on the shi�ed Turán sieve. he main technical

diõculty in applying Corollary 1.3 lies in the counting of the sum of n(b1 , b2). In the
earlier applications of the Turán sievemethod on combinatorial problems, such esti-
mates were o�en done by considering various cases and their subcases (see the Latin
square counting in [10]). However, this approach could become computationally im-
possible if the associated bipartite graph has amore complicated structure. For exam-
ple, in our case, the partite sets A and B are respectively chosen to be all tournaments
in Tn and the set of all r-cycles on {1, 2, . . . , n}. To count the number of tournaments
a ∈ A that associate to both r-cycles b1 , b2 ∈ B, we need to ûrst discuss how cycles b1
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and b2 intersect each other. his involves much more case studying than the one in
Latin squares, and hence increases the diõculty in computing the sum of n(b1 , b2).
In this paper,we develop a new counting method for estimating the sumof n(b1 , b2).
he central idea is to ûrst “omit some existing cases” and “include some non-existing
cases” to get the expectedmain contribution. henwe compare the “under-counting”
and “over-counting” of themain contribution to get the correct estimate. Such an ap-
proach greatly simpliûes many of our calculations. For example, in Section 2, for the
case l = 2, since one can argue that the numbers of under-counting and over-counting
are the same, only the estimate of the expectedmain term is required.
Because of the new counting method, we can also consider the restricted cycle

problem on general t-partite tournaments now. For m1 , . . . ,mt ∈ N and s ∈ Z with
0 ≤ s ≤ t, write σs = σs(m1 , . . . ,mt) to be the s-symmetric sum of m1 , . . . ,mt (0 ≤

s ≤ r), i.e.,

(1)
t

∏
i=1

(x +m i) =
t

∑
s=0

σsx
t−s .

We prove the following theorem.

heorem 1.5 Let 3 ≤ r ≤ t andm1 , . . . ,mt ∈ N. For 0 ≤ s ≤ t, let σs = σs(m1 , . . . ,mt)

be the s-symmetric sum of m1 , . . . ,mt . If 0 ≤ k ≤ σrr!, then we have

#{T ∈ Tm1 , . . . ,m t ∣ T contains exactly k restricted r-cycles}

≤ 2σ2 ⋅ (r − 3)!2σr ⋅ {
12(r

3)σr−3 + O(6rσr−4)

[2rk − (r − 1)!σr]
2 } .

Notice that as m1 , . . . ,mt →∞, the above bound is of size 2σ2 ⋅O(
σr−3
σr

). Since the
size of Tm1 , . . . ,m t is 2σ2 , this result gives a non-trivial upper bound of the number of
tournaments in Tm1 , . . . ,m t containing exactly k restricted r-cycles.

We remark that the values of k are also bounded according to the other parameters.
For example, in heorem 1.4, each subset with r vertices can form at most r! cycles
and hence k ≤ (

n

r
)r! . Analogously, in heorem 1.5, we have k ≤ σrr! .

We will prove the above theorems in Section 2 and Section 3. We remark here
that estimates on the number of restricted 3-cycles on a tournament can be found in
[1], [4], [7], [13], [16] and [18] (see also [12, Sections 5 and 6]), and estimates on the
number of restricted 4-cycles on a tournament can be found in [8] and [19]. Although
research on restricted 3-cycles and 4-cycles has been active, the previous results are
focused on the number of restricted cycles on “one tournament”. hus, the theorems
in this paper are the ûrst to at once dealwith all tournaments and cycles of any length.
Fromour proofs, it is possible to ûnd the averagenumber of cycles of certain length

in the tournaments we studied (see Corollaries 2.2 and 3.2). We can compare this
averagewith existing results. For example, in [17], the number of 6-cycles in a regular
tournament of order n is bounded by (n+ 1)n(n− 1)(n−3)(n2 −6n+3)/384, yet the
average number of 6-cycles inCorollary 2.2 is (n−5)n(n−1)(n−3)(n2−6n+8)/384.
hus, the bound in [17] is very close to the average.

he upper bounds given byheorems 1.4 and 1.5 are not always tight. For example,
for the case k = 0 in heorem 1.4, the tournaments which do not contain 3-cycles are
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exactly the transitive tournaments (i.e., satisfying the property “x → y and y → zÔ⇒

x → z”). herefore

#{T ∈ Tn ∣ T contains no cycles of any length} = n! .

Onemight expect that

#{T ∈ Tm1 , . . . ,m t ∣ T contains no cycles of any length} = t!m1!m2! ⋅ ⋅ ⋅mt ! .

Although the above result and conjecture indicate that our results are not sharp in this
case, for general k ∈ N∪{0}, since it is diõcult to compute thenumber of tournaments
containing exactly k r-cycles, our theorems do provide non-trivial upper bounds for
the ûrst time in the literature.

2 Restricted r-cycles on Tournaments

In this section, we apply the shi�ed Turán sieve to count the number of tournaments
in Tn which contains a ûxed number of restricted r-cycles. All cycles considered in
this section are restricted cycles. For simplicity, we drop the word “restricted”.

Proof of Theorem 1.4 Let A = Tn and B be the set of all r-cycles on n vertices. An
element of B can be denoted by (V , τ), where V ⊆ {1, 2, . . . , n}, ∣V ∣ = r, and τ is a
cyclic permutation of V . Since there are (n

r
) choices for V and (r − 1)! ways to form

an r-cycle with vertices on V , we have

∣A∣ = 2(
n
2) and ∣B∣ = (

n

r
)(r − 1)! .

For a = Ta ∈ A and b = (Vb , τb) ∈ B, we say a ∼ b if τb generates Ta ∣Vb . hus,

ω(a) = # of r-cycles contained in Ta ,
deg b = #{a ∈ A ∣ τb generates Ta ∣Vb}.

Since τb generates an r-cycle on Ta ∣Vb , it determines r games of Ta . hus, deg b =

2(
n
2)−r and it follows that

∑
b∈B

deg b = (
n

r
)2(

n
2)−r

(r − 1)! .

For b1 = (Vb1 , τb1) ∈ B and b2 = (Vb2 , τb2) ∈ B, consider

n(b1 , b2) = #{a ∈ A ∣ τb1 generates Ta ∣Vb1 and τb2 generates Ta ∣Vb2 }.

For 0 ≤ l ≤ r, suppose that ∣Vb1 ∩ Vb2 ∣ = l . We consider the following possibilities
for l .
(i) l = 0: in this case, there are (n

r
)ways to chooseVb1 and (

n−r

r
)ways to chooseVb2 .

Also, there are (r− 1)! ways to construct each cycle and there are 2r determined
games. hus,

∑
b1 ,b2∈B

∣Vb1∩Vb2 ∣=0

n(b1 , b2) = (
n

r
)(

n − r

r
)2(

n
2)−2r

(r − 1)!2 .
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(ii) l = 1: In this case, there are (
n

r
) ways to choose Vb1 , (

r

1) ways to choose the
intersection point and (

n−r

r−1) ways to choose the other points of Vb2 . Also, there
are (r − 1)! ways to construct each cycle and there are 2r determined games.
hus,

∑
b1 ,b2∈B

∣Vb1∩Vb2 ∣=1

n(b1 , b2) = (
n

r
)(

n − r

r − 1
)(

r

1
)2(

n
2)−2r

(r − 1)!2 .

(iii) l = 2: In this case, there are (n

r
) choices for Vb1 and (

n−r

r−2)(
r

2) choices for Vb2 . For
ûxed Vb1 and Vb2 , observe that the game between their two intersection points,
say x and y,may ormay not belong to either cycle. We ûrst ignore the possibility
that τb1 and τb2 share the game x → y or y → x, and denote by D2 ∶= D2,b1 ,b2
the number of tournamentswhere the games in τb1 and τb2 are chosen indepen-
dently. hus, we have

D2 = 2(
n
2)−2r

(r − 1)!2 .

his term gives the expectedmain contribution, and we now estimate its diòer-
ence from the actual case. Let Gx→y ∶= Gx→y ;b1 ,b2 be the collection of all tour-
naments with ûxed Vb1 and Vb2 which share the game x → y. We notice that for
each tournament in Gx→y , since there are (2r − 1) games determined by τb1 and
τb2 , there are 2(

n
2)−(2r−1) = 2⋅2(

n
2)−2r possible games aside from τb1 and τb2 . How-

ever, in the counting ofD2, for such a tournament,we only count 2(
n
2)−2r possible

games aside from τb1 and τb2 . hus we “undercount” some games for tourna-
ments inGx→y . On the otherhand, in the counting ofD2,we “overcount” invalid
tournaments which have x → y in τb1 and y → x in τb2 . However, by reversing
the direction of the cycle τb2 , these cases are in one-to-one correspondencewith
the cases that x → y belongs to both cycles. In other words, the undercounting
of tournaments in Gx→y balances out its overcounting. he same conclusion
holds for Gy→x . Since the numbers of undercounting and overcounting in D2
are the same, we have

∑
b1 ,b2∈B

∣Vb1∩Vb2 ∣=2

n(b1 , b2) = (
n

r
)(

n − r

r − 2
)(

r

2
) ⋅ D2

= (
n

r
)(

n − r

r − 2
)(

r

2
)2(

n
2)−2r

(r − 1)!2 .

(iv) l = 3: In this case, there are (
n

r
) choices for Vb1 and (

n−r

r−3)(
r

3) choices for Vb2 .
For ûxed Vb1 and Vb2 , observe that the game between their three intersection
points, say x, y, and z, may or may not belong to either cycle. Similar to the
case l = 2, we ûrst ignore the sharing games among {x , y, z} and denote by
D3 ∶= D3,b1 ,b2 , the number of tournaments where the games in τb1 and τb2 are
chosen independently. hus, we have

D3 = 2(
n
2)−2r

(r − 1)!2 .

We now consider the undercounting and overcounting in D3. here are three
cases.
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(a) τb1 and τb2 have no game among {x , y, z}: In this case, there is no under-
counting or overcounting in D3.

(b) τb1 and τb2 share one game among {x , y, z}, say x → y:We have seen in (iii)
that in this case, the numbers of undercounting and overcounting in D3 are
the same. hus, there is no adjustment required here.

(c) τb1 and τb2 share two or more games among {x , y, z}: We notice that if
τb1 and τb2 share two games, since they are r-cycles and the games among
{x , y, z} do not form a cycle, we need to have r ≥ 4. On the other hand,
if τb1 and τb2 share three games among {x , y, z}, it means that they form a
3-cycle and so r = 3.
(c-1) Suppose that τb1 and τb2 share two games and r ≥ 4. Notice that

there are 3! = 6 possible choices for two games among {x , y, z}. Fix
one of such games, say x → y → z. Let Gx→y→z = Gx→y→z ;b1 ,b2 be
the collection of all tournaments with ûxed Vb1 and Vb2 which con-
tains the game x → y → z. We notice that for each tournament in
Gx→y→z , since there are (2r − 2) games determined by τb1 and τb2 ,
there are 2(

n
2)−(2r−2) = 4 ⋅ 2(

n
2)−2r possible games aside from τb1 and

τb2 . However, in the counting of D3, for such a tournament, we only
count 2(

n
2)−2r possible games aside from τb1 and τb2 . hus we “under-

count” 3 ⋅ 2(
n
2)−2r possible games for each tournament in Gx→y→z . On

the other hand, in the counting of D3,we “overcount” invalid tourna-
ments which have x → y → z in τb1 and z → y → x in τb2 . However,
by reversing the direction of the cycle τb2 , these cases are in one-to-
one correspondence with the cases that x → y → z belongs to both
cycles. hus for a tournament in Gx→y→z , the diòerence between un-
dercounting games and overcounting games in D3 is 2 ⋅ 2(

n
2)−2r . Fur-

thermore, for such a tournament, there are ((r−3)!) 2 choices for τb1

and τb2 . he same argument can be applied to all other ûve permu-
tations of {x , y, z}. Combining this with (a) and (b), we see that if
r ≥ 4,

∑
b1 ,b2∈B

∣Vb1∩Vb2 ∣=3

n(b1 , b2)

= (
n

r
)(

n − r

r − 3
)(

r

3
) ⋅ (D3 + 6 ⋅ 2 ⋅ 2(

n
2)−2r((r − 3)!) 2

)

= (
n

r
)(

n − r

r − 3
)(

r

3
)2(

n
2)−2r

[(r − 1)!2 + 12(r − 3)!2].

(c-2) Suppose that τb1 and τb2 share three games and r = 3. In this case, the
games among {x , y, z} form a 3-cycle and there are 2 possible choices
for such a cycle. Fix one of such cycles, say x → y → z → x. Let
Gx→y→z→x = Gx→y→z→x ;b1 ,b2 be the collection of all tournamentswith
ûxed Vb1 and Vb2 which contains the cycle x → y → z → x. We notice
that for each tournament in Gx→y→z→x , since there are 3 = (2r − 3)
games determined by τb1 and τb2 , there are 2(

n
2)−(2r−3) = 8 ⋅ 2(

n
2)−2r
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possible games aside from τb1 and τb2 . However, in the counting of
D3, for such a tournament,we only count 2(

n
2)−2r possible games aside

from τb1 and τb2 . hus,we “undercount” 7 ⋅2(
n
2)−2r possible games for

each tournament inGx→y→z→x . On the other hand, in the counting of
D3, we “overcount” invalid tournaments which have x → y → z → x

in τb1 and x → z → y → x in τb2 . However, by reversing the di-
rection of the cycle τb2 , these cases are in one-to-one correspondence
with the case that x → y → z → x belong to both cycles. hus, for
a tournament in Gx→y→z→x , the diòerence between undercounting
games and overcounting games in D3 is 6 ⋅ 2(

n
2)−2r . Furthermore, for

such a tournament, there are 12 = ((r − 3)!) 2 choices for τb1 and τb2 .
Combining this with (a) and (b), we see that for r = 3,

∑
b1 ,b2∈B

∣Vb1∩Vb2 ∣=3

n(b1 , b2) = (
n

r
)(

n − r

r − 3
)(

r

3
) ⋅ (D3 + 2 ⋅ 6 ⋅ 2(

n
2)−2r((r − 3)!) 2

)

= (
n

r
)(

n − r

r − 3
)(

r

3
)2(

n
2)−2r

[(r − 1)!2 + 12(r − 3)!2].

We notice that this formula is exactly the same as the one in (c-1).
(v) 4 ≤ v ≤ r: In these cases, there are (n

r
) choices for Vb1 , (

n−r

r−v)(
r

v
) choices for Vb2

and the number ofways to form each cycle is at most (r− 1)! . Since the number
of determined games is at least (2r − (v − 1)) , we have

∑
b1 ,b2∈B

4≤∣Vb1∩Vb2 ∣≤r

n(b1 , b2) ≤ (
n

r
)2(

n
2)−2r

(r − 1)!2 ∑
4≤v≤r

(
n − r

r − v
)(

r

v
)2v−1 .

Combining all the above ûve possibilities, we obtain

∑
b1 ,b2∈B

n(b1 , b2) ≤ 2(
n
2)−2r

(
n

r
)(r − 1)!2{(

n − r

r
) + (

n − r

r − 1
)(

r

1
)

+ (
n − r

r − 2
)(

r

2
) + (

n − r

r − 3
)(

r

3
)[ 1 +

12
(r − 1)2(r − 2)2 ]

+ ∑
4≤v≤r

(
n − r

r − v
)(

r

v
)2v−1

} .

To estimate the sum in the error term, for n ≥ r, r ≥ v ≥ 4, we apply the inequality

(
n − r

r − v
) ≤ (

n

r − v
) ≤ (

n

r − 4
) ⋅ (

r

v
) ⋅ (

r

4
)
−1

to the summation in the error term, and get

∑
4≤v≤r

(
n − r

r − v
)(

r

v
)2v−1

≤ (
n

r − 4
) ⋅ ( ∑

4≤v≤r
(
r

v
)

2
2v−1

) ⋅ (
r

4
)
−1

≤ (
n

r − 4
) ⋅ ( ∑

4≤v≤r
(
r

v
)2v−1

) ⋅ 2r
⋅ (

r

4
)
−1
≤ (

n

r − 4
) ⋅ 6r

⋅ (
r

4
)
−1
.
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hus, we have

(2) ∑
b1 ,b2∈B

n(b1 , b2) ≤ 2(
n
2)−2r

(
n

r
)(r−1)!2[(

n

r
)+

12(n−r

r−3)(
r

3)

(r − 1)2(r − 2)2 +O(
6r ⋅ nr−4

r4(r − 4)!
)] .

By applying Corollary 1.3 and Stirling’s approximation,heorem 1.4 follows. ∎

We notice that in the proof ofheorem 1.4, we have calculated explicitly the cases
r = 3 and r = 4. hus, we can derive the following from the above estimates.

Corollary 2.1

#{T ∈ Tn ∣ T contains exactly k restricted 3-cycles}

≤ 2(
n
2) ⋅ {

3
16

(
n

3
)( k −

1
4
(
n

3
))

2

} , and

#{T ∈ Tn ∣ T contains exactly k restricted 4-cycles}

≤ 2(
n
2) ⋅ {

3
64

(
n

4
)(4n − 11)( k −

3
8
(
n

4
))

2

} .

Remark We see from heorem 1.4 that for n suõciently large, we have

#{T ∈ Tn ∣ T contains exactly k restricted r-cycles} ≪ 2(
n
2) ⋅ {

1
n3 } .

hus, as n → ∞, the probability that a tournament contains exactly k restricted r-
cycles is 0. One can obtain various conclusions that aremuch stronger than the above
one from heorem 1.4. For example, let f ∶N → R+ such that f (n) = o(n3) and
3 ≤ r ≤ (log n)1−є for any є > 0. By heorem 1.4, one can show that as n →∞,

Prob{T ∈ Tn contains at most f (n) restricted r-cycles}Ð→ 0.

Since the total number of r-cycles in all tournaments is∑b∈B deg b and the number
of tournaments is ∣A∣, the averagenumber of r-cycles in a tournament is (∑b∈B deg b)/
∣A∣. We have the following result.

Corollary 2.2 he average number of r-cycles in a tournament is
(n

r)(r−1)!
2r .

3 Restricted r-cycles on t-partite Tournaments

In this section,we consider restricted cycles on t-partite tournaments. All cycles con-
sidered in this section are restricted. For simplicity, we drop the word “restricted” as
before.
For m1 , . . . ,mt ∈ N,we recall that Tm1 ,m2 , . . . ,m t is the set of all t-partite tournaments

with m1 ×m2 × ⋅ ⋅ ⋅ ×mt players. Also, for s ∈ Z with 0 ≤ s ≤ t, we recall the deûnition
of s-symmetric sum σs = σs(m1 , . . . ,mt) given in equation (1). In particular, we have

σ2 = ∑
1≤i< j≤t

m im j and σt =
t

∏
i=1

m i .
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Let 1 ≤ u ≤ s ≤ t. Since all m i ≥ 1, if { j1 , . . . , ju} ⊆ {i1 , . . . , is}, then the term
m i1 ⋅ ⋅ ⋅m is in σs is greater or equal to the term m j1 ⋅ ⋅ ⋅m ju of σu . In this case, we say
that m i1 ⋅ ⋅ ⋅m is covers m j1 ⋅ ⋅ ⋅m ju . Notice that each term m i1 ⋅ ⋅ ⋅m is in σs covers all
terms m j1 ⋅ ⋅ ⋅m ju in σs with { j1 , . . . , ju} ⊆ {i1 , . . . , is} and there are (

s

u
) such terms.

hus in the sum (
s

u
) ⋅ σs , each term m j1 ⋅ ⋅ ⋅m ju in σu is covered (

t−u

s−u
) times. It follows

that
σs(

s

u
) ≥ σu(

t − u

s − u
),

which implies that

(3) (
t

s
)
−1
⋅ (

t

u
)σs ≥ σu .

We make a remark here that the factor (
t

s
)
−1
⋅ (

t

u
) is a decreasing function in t, and

therefore it reaches themaximum at theminimal value of t.
Next, we claim that for any positive integer u with 1 ≤ u ≤ t, we have

(4)
t

∏
i=1

(m i − 1) =
u−1

∑
j=0

(−1) j
σt− j + O(σt−u).

In fact, we can establish the following stronger statement

(5)
2⌊(u−1)/2⌋+1

∑
j=0

(−1) j
σt− j ≤

t

∏
i=1

(m i − 1) ≤
2⌊u/2⌋
∑
j=0

(−1) j
σt− j .

We now prove the above claim by induction on t. For t = 1, it is clear. Assume that (5)
holds for all t < v and consider the case when t = v. Wemight assume that u is even
and the proof for the case of odd u is similar. For an integer s with 1 ≤ s ≤ (v − 1), let
σ
(v−1)
s denote the term of degree s in the expansion (m2 − 1) ⋅ ⋅ ⋅ (mv − 1). We have the

relation

(6) σs = m1σ
(v−1)
s−1 + σ

(v−1)
s .

By induction,
u−1

∑
j=0

(−1) j
σ
(v−1)
v−1− j

≤
v

∏
i=2

(m i − 1) ≤
u

∑
j=0

(−1) j
σ
(v−1)
v−1− j

.

Sincem1 ≥ 1, bymultiplying (m1 − 1) on both sides of the above inequality and apply-
ing (6), we can get

u−1

∑
j=0

(−1)i
σv− j ≤

u−1

∑
j=0

(−1) j
σv− j + σ

(v−1)
v−2u

≤
v

∏
i=1

(m i − 1) ≤
u

∑
j=0

(−1) j
σv− j − σ

(v−1)
v−2u−1 ≤

u

∑
j=0

(−1) j
σv− j .

It completes the proof of inequality (5).
From now on, we apply the shi�ed Turán sieve to count the number of t-partite

tournamentswhich contain a ûxed number of r-cycles. In the special casewhen t = r,
we can obtain the following theorem, which is sharper than heorem 1.5. Since the
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proof of the theorem is in the same spirit asheorem 1.4,wewill only provide a sketch
of the proof below.

heorem 3.1 Let r ≥ 3 and m1 , . . . ,mr ∈ N. For 0 ≤ s ≤ r, let σs = σs(m1 , . . . ,mr)

be the s-symmetric sum of m1 , . . . ,mt . If 0 ≤ k ≤ σrr!, then we have

#{T ∈ Tm1 , . . . ,mr ∣ T contains exactly k restricted r-cycles}

≤ 2σ2 ⋅ (r − 3)!2σr ⋅ {
12σr−3 + O(3rσr−4)

[2rk − (r − 1)!σr]
2 } .

Sketch of proof Let A = Tm1 , . . . ,mr and B be the set of all r-cycles on Tm1 , . . . ,mr . An
element of B can be denoted by (x1 , . . . , xr , τ), where {x1 , . . . , xr} are taken from
distinct partite sets X i (1 ≤ i ≤ r), and τ is a cyclic permutation of {x1 , . . . , xr}. Since
there are σr choices for {x1 , . . . , xr} and (r − 1)! ways to form an r-cycle with vertices
x1 , . . . , xr , we have

(7) ∣A∣ = 2σ2 and ∣B∣ = σr(r − 1)! .

For a = Ta ∈ A and b = (x1,b , . . . , xr ,b , τb) ∈ B, we say a ∼ b if τb generates
Ta ∣{x1,b , . . . ,xr ,b}. hus, ω(a) is the number of r-cycles contained in Ta and deg b is the
number of a ∈ A such that τb generates Ta ∣{x1,b , . . . ,xr ,b}. Since τb generates an r-cycle
on Ta ∣{x1,b , . . . ,xr ,b}, it determines r games of Ta . hus, deg b = 2σ2−r and it follows that

(8) ∑
b∈B

deg b = σr2σ2−r
(r−1)! . ∎

For b1 = (x1,b1 , . . . , xr ,b1 , τb1) ∈ B and b2 = (x1,b2 , . . . , xr ,b2 , τb2) ∈ B, consider

n(b1 , b2) = #{a ∈ A ∣ τb1 generates Ta ∣{x1,b1 , . . . ,xr ,b1}

and τb2 generates Ta ∣{x1,b2 , . . . ,xr ,b2}} .

For i = 1, . . . , r, suppose

(9) ∣{x i ,b1} ∩ {x i ,b2}∣ = N i ,

where N i ∈ {0, 1}. Let M(N1 ,N2 , . . . ,Nr) denote the collection of all pairs (b1 , b2) ∈

B2 such that (9) holds. By counting thenumber of 1’s inN i (1 ≤ i ≤ r), up to symmetry,
there are (r+1)distinctpossibilities for (N1 , . . . ,Nr), ofwhichwe group intoûve cases
with the similar estimates as in the proof ofheorem 1.4.
(i) (N1 ,N2 , . . . ,Nr) = (0, 0, . . . , 0): In this case,

∑
(b1 ,b2)∈M(0, . . . ,0)

n(b1 , b2) = σr(m1 − 1)(m2 − 1)(m3 − 1) ⋅ ⋅ ⋅ (mr − 1)2σ2−2r
(r − 1)!2 .

(ii) (N1 ,N2 ,N3 , . . . ,Nr) = (1, 0, 0, . . . , 0): In this case,

∑
(b1 ,b2)∈M(1,0, . . . ,0)

n(b1 , b2) = σr(m2 − 1)(m3 − 1) ⋅ ⋅ ⋅ (mr − 1)2σ2−2r
(r − 1)!2 .

(iii) (N1 ,N2 ,N3 ,N4 , . . . ,Nr) = (1, 1, 0, 0, . . . , 0): In this case,

∑
(b1 ,b2)∈M(1,1,0, . . . ,0)

n(b1 , b2) = σr(m3 − 1)(m4 − 1) ⋅ ⋅ ⋅ (mr − 1)2σ2−2r
(r − 1)!2 .
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(iv) (N1 ,N2 ,N3 ,N4 ,N5 , . . . ,Nr) = (1, 1, 1, 0, 0, . . . , 0): In this case,

∑
(b1 ,b2)∈M(1,1,1,0, . . . ,0)

n(b1 , b2)

= σr(m4 − 1)(m5 − 1) ⋅ ⋅ ⋅ (mr − 1)2σ2−2r
[(r − 1)!2 + 12(r − 3)!2].

(v) (N1 ,N2 , . . . ,Nv ,Nv+1 ,Nv+2 , . . . ,Nr) = (1, 1, . . . , 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
v times

, 0, 0, . . . , 0): In these cases,

∑
4≤v≤r

(b1 ,b2)∈M(1,1,. . . ,1
´ ¹¹¹¹¹¹¸ ¹¹¹¹¹¹¶
v times

,0,0, . . . ,0)

n(b1 , b2)

≤ σr2σ2−2r
(r − 1)!2 ∑

4≤v≤r
(mv+1 − 1) . . . (mr − 1)2v−1 .

Combining all these possibilities and their symmetrical cases, by (4), we get

∑
b1 ,b2∈B

n(b1 , b2) = 2σ2−2r
σr(r − 1)!2

× {[σr − σr−1 + σr−2 − σr−3 + O(σr−4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

symmetrical sum of
(0, . . . ,0)

]

+ [σr−1 − 2σr−2 + 3σr−3 + O(σr−4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

symmetrical sum of
(1,0,0, . . . ,0)

]

+ [σr−2 − 3σr−3 + O(σr−4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

symmetrical sum of
(1,1,0,0, . . . ,0)

]

+ [( 1 +
12

(r − 1)2(r − 2)2 )σr−3 + O(σr−4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
symmetrical sum of

(1,1,1,0,0, . . . ,0)

]

+ O( ∑
4≤v≤r

2v−1
σr−v)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
symmetrical sum of

remainder cases

}

= 2σ2−2r
σr(r − 1)!2[σr +

12σr−3

(r − 1)2(r − 2)2 + O(3r
⋅ r
−4

σr−4)] ,

where we use the estimate (3) and

∑
4≤v≤r

2v−1
σr−v ≤ ∑

4≤v≤r
2v−1

⋅ σr−4 ⋅ (
r

r − v
) ⋅ (

r

r − 4
)
−1

≤ σr−4 ⋅ (
r

4
)
−1
⋅ ( ∑

4≤v≤r
(
r

v
)2v−1

) ≤ σr−4 ⋅ (
r

4
)
−1
⋅ 3r .

852

https://doi.org/10.4153/S000843951900016X Published online by Cambridge University Press

https://doi.org/10.4153/S000843951900016X


he Shi�ed Turán SieveMethod on Tournaments

By applying Corollary 1.3 with equations (7), (8) and estimate (3), heorem 3.1 fol-
lows. ∎

We now consider r-cycles on general t-partite tournamentswith t ≥ r. heorem1.5
is more general, but less sharp than heorem 3.1. Since its proof is in the same spirit
ofheorem 3.1, we will only provide a sketch of proof below.

Sketch of Theorem 1.5 Let A and B be deûned as in the proof ofheorem 3.1. hus,
we have

(10) ∣A∣ = 2σ2 and ∑
b∈B

deg b = σr2σ2−r
(r − 1)! .

It remains to consider the sum of n(b1 , b2). For b1 , b2 ∈ B, write b i = {x1,b i ⋅ ⋅ ⋅ , xr ,b i ,
τb i} (1 ≤ i ≤ 2). Assume x j ,b1 (1 ≤ j ≤ r) are in X1 , . . . , Xr and x j ,b2(1 ≤ j ≤ r) are in
X1 , . . . , X l , Xu l+1 , . . . , Xur for some 0 ≤ l ≤ r and u j ∈ {r+ 1, . . . , t} (l + 1 ≤ j ≤ r). For
v ∈ N, deûne σ

[v]
s = σs(m1 , . . . ,mv , 0, . . . , 0). hus σ

[t]
s = σs . hen using the same

argument as the one to prove (3), we can obtain that

∑
b1 ,b2∈B

b1∈X1 , . . . ,Xr
b2∈X1 , . . . ,X l ,Xu l+1 , . . . ,Xur

n(b1 , b2) ≤ 2σ2−2r
m1 ⋅ ⋅ ⋅mr(r − 1)!2

× [σ
[l]
l
+

12σ [l]
l−3

(r − 1)2(r − 2)2 + O(
r

∑
v=4

2v−1
σ
[l]
l−v)]muv+1 ⋅ ⋅ ⋅mur .

We now sum over the symmetric cases of b2. Notice that the term with the factor
σ
[l]
l−3mu l+1 ⋅ ⋅ ⋅mur appears at most (r

3) times. Also, the error term appears at most (r

v
)

times for each 4 ≤ v ≤ r. hus, similar to the end of proof of heorem 1.4, using the
estimates (3), we have

r

∑
v=4

2v−1
(
r

v
)σr−v ≤

r

∑
v=4

2v−1
(
r

v
) ⋅ (

r

r − v
) ⋅ (

r

r − 4
)
−1
σr−4 ≤ 6r

⋅ (
r

4
)
−1
σr−4 .

Finally, we get

(11) ∑
b1 ,b2∈B

n(b1 , b2) ≤ 2σ2−2r
σr(r − 1)!2[σr +

12(r

3)σr−3

(r − 1)2(r − 2)2 + O (6r
⋅ r
−4

σr−4)] .

hen, using equations in (10) and estimate (11), heorem 1.5 follows from Corol-
lary 1.3. ∎

Similar to Corollary 2.2, we have the following.

Corollary 3.2 he average number of r-cycles in a t-partite tournament is
σr(r − 1)!

2r
.
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Remark
(i) Notice that when we take m1 = ⋅ ⋅ ⋅ = mt = 1, by writing n = t, we have T1, . . . ,1 =

Tt = Tn . hus, in heorem 1.5, we obtain

∑
b1 ,b2∈B

n(b1 , b2)

≤ 2(
n
2)−2r

(
n

r
)(r − 1)!2[(

n

r
) +

12(r

3)(
n

r−3)

(r − 1)2(r − 2)2 + O(6r
⋅ r
−4

(
n

r − 4
))] .

Although this upper bound is diòerent from the one in inequality (2), the main
terms in both expressions have the same order of magnitude in n. he inconsis-
tency in these expressions comes from the coarser estimate (4) used in the proof of
heorem 1.5.

(ii) We see from heorem 1.5 that for m1 , . . . ,mt suõciently large, we have

#{T ∈ Tm1 , . . . ,m t ∣ T contains exactly k restricted r-cycles} ≪ 2σ2 ⋅ {
σr−3

σr

} .

hus, as one ofm1 , . . . ,mt →∞, the probability that a tournament contains exactly
k restricted r-cycles is 0. Similar to the remark at the end of Section 2, one can
obtain various conclusions that are stronger than the above one from heorem 1.5.
In addition, the same conclusion is valid for ûxed m1 = m2 = ⋅ ⋅ ⋅ = mt with t →∞.

We see in this paper that the setting of the shi�ed Turán sieve is rather �exible.
Also, when the structure of the partite set B is more complicated, the new counting
method helps in estimating the sum of n(b1 , b2). hus, the combination of these two
methodswill allow us to investigatemore combinatorial problems, andwewill report
further applications of these methods in our future papers. In particular, we plan to
study problems about unrestricted cycles in tournaments, which aremore diõcult to
approach than the restricted ones, due to the repetitions on the sets X i .
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